Dp-finite fields I(B): positive characteristic

Will Johnson
January 15, 2022

Abstract
We partially generalize the known results on dp-minimal fields to dp-finite fields.
We prove a dichotomy: if K is a sufficiently saturated dp-finite expansion of a field, then
either K has finite Morley rank or K has a non-trivial Aut(K/A)-invariant valuation
ring for some small set A. In the positive characteristic case, we can even obtain a
henselian valuation ring. Using this, we classify the positive characteristic dp-finite
pure fields.

8 Introduction

The two main conjectures for NIP fields are

e The henselianity conjecture: any NIP valued field (K, O) is henselian.

e The Shelah conjecture: any NIP field K is algebraically closed, real closed, finite, or
admits a non-trivial henselian valuation.

These conjectures are known to imply a full classification of dp-finite fields, i.e., fields of
finite dp-rank [I1]. See [20] for a reference on NIP and dp-rank, and [6] for a reference on
valued fields and henselianity.

In an earlier paper [13], we proved the henselianity conjecture for positive characteristic
NIP fields. Continuing [13], we prove the Shelah conjecture for positive characteristic dp-
finite fields. This yields the classification of positive characteristic dp-finite fields.

Our main technical result is the following statement, which holds in any characteristic.

Theorem 8.1 (= Theorem [11.29)). Let (K, +,-,...) be a sufficiently saturated dp-finite field,

possibly with extra structure. Then either

e K has finite Morley rank, or

e There is an Aut(K/A)-invariant non-trivial valuation ring on K for some small set
A.

Unfortunately, we can only obtain a henselian valuation ring in positive characteristic.
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8.1 The story so far

We review several facts from [13]. Let (M, +,-,...) be a field, possibly with extra structure.
Assume

e M is sufficiently saturated
e M has finite dp-rank
e M does not have finite Morley rank.

Under these assumptions, we defined a notion of heavy and light definable sets [13, Defini-
tion 4.19]. We proved the following:

Fact 8.2 ([13, Theorem 4.20]).
1. A definable set D C M is heavy if and only if it is not light.
2. Light sets form an ideal.
3. Heaviness/lightness is definable in families.
4. Heaviness/lightness is preserved by affine symmetries x — ax + b.

If X,Y are definable subsets of M, we defined
X —Y ={aeM: XN (Y +a) is heavy}.

Then we defined a basic neighborhood to be a set of the form X —, X for heavy definable
X C M. We proved:

Fact 8.3 ([13, Proposition 6.4]).
1. Every basic neighborhood is heavy.
2. The family of basic neighborhoods is downwards directed.

For any small model M =< M, we defined the set Iy, of M-infinitesimals to be the
intersection of all M-definable basic neighborhoods. We proved:

Fact 8.4 ([13, Remark 6.8, Theorem 6.16, and Proposition 6.18]).
1. Iy 1s an additive subgroup of M, type-definable over M.
2. Fvery definable set containing Iy, is heavy.
3. Ip 1s minimal among subgroups satisfying the previous two conditions.

4. Inp is a non-zero M -linear proper subspace of M.



Recall that a set is “A-invariant” if it is Aut(M/A)-invariant for some small set A. This
is a very weak form of A-definability.

Fact 8.5 ([13, Theorem 7.5]). Suppose M has positive characteristic. If there is a small
set A and a non-trivial A-invariant valuation ring O, then there is a small set A’ and a
non-trivial A’-invariant henselian valuation ring O'.

In order to prove the Shelah conjecture for positive characteristic dp-finite fields, it there-
fore suffices to produce a non-trivial A-invariant valuation ring. This is Theorem [8.1]

8.2 Constructing an invariant valuation ring

Assume M is unstable and highly saturated. Fix a small submodel My < M. Let P be the
poset of type-definable My-linear subspaces G C M that are 00-connected, in the sense that
G = G". Then P is always a modular lattice, with lattice operations given by

GVH=G+H
GANH=(GnH)",

By [3, Proposition 4.5.2], P has breadth at most r = dp-rk(M): for any Gy,...,G,11 € P,
there is some ¢ such that

GiAANGry1 =Gy A ANGist AGigy A+ A Gryt.

See [8, Chapter V] for background on lattice theory, modularity, and breadth.
In the dp-minimal case (r = 1), P is linearly ordered. Therefore, for J € P the set

{aeM:a-JCJ}

is a valuation ring on M. Taking J to be the My-infinitesimals I;;,, we obtain a non-trivial
valuation ring on M, proving Theorem

In higher ranks, the situation is more complicated. To begin, we need some lattice-
theoretic way to detect valuations.

If M is an R-module, let Subg(M) denote the lattice of R-submodules of M.

Definition 8.6 ([16, Definition 4.1]). An r-inflator on M consists of a semisimple My-algebra
S of length r, and a family of maps

fn : Suby(M™) — Subg(S™)
satisfying the following axioms:
1. Each f,, is order-preserving:

X <Y = fu(X) < fulY).



2. Each f, is GL,(Mj)-equivariant.
3. The f, are compatible with &:
fram(X @Y) = fu(X) & fm(Y).
4. Each f,, scales lengths by a factor of r:
Us(fn(X)) =7 - dimy(X).

If (O, m) is a valuation ring on M with residue field k¥ = O/m, then there is a 1l-inflator
given by

fn : SubM(M") — Subk(k")
X—=(XNO"+m")/m".

Modulo fine print, all 1-inflators arise this way [16, Theorem 5.20]. Thus, 1-inflators on M
are equivalent to valuations, and r-inflators are some kind of “generalized valuations.”
In a later paper [16], we will give a proof of Theorem in two steps:

Step 1 (= [16, Theorem 9.3]). If J € P satisfies a special property (Definition[11.5 below),
then J canonically determines an r-inflator { f, }nen for some r < dp-rk(M).

Step 2 (= [10, Theorem 10.12]). Any r-inflator {f,}nen on M canonically determines a
finite set of valuation rings on M.

The present paper is a simplified proof, avoiding all use of inflators, but losing some of
the corresponding intuition.

The proof uses a certain construction of Puczytowski [19] which associates to any modular
lattice M a modular pregeometry U (M), as well as a map ® from M to the lattice M of
closed sets in U(M). We will review this construction in § below. For an introduction to
pregeometries, see [21] or [8, §V.3.3].

Returning to our saturated dp-finite M, let P, be the lattice of 00-connected type-
definable My-linear subspaces of M". For example, P; = P. Fix some J € P;. For each n,
consider the interval [J", M"] C P,. Using Puczylowski’s construction, we get a map

fn : Suby(M™) — [J7, M|
Vis &V +J7).

When J satisfies a certain technical condition (Definition , this map scales lengths
proportionally (Rem. In a later paper [16, Corollary 7.29, Theorem 9.3], we will
build isomorphisms [J?, M"] 2 Subg(S™) and verify the inflator axioms, for some semisimple
algebra S.

With the maps f,, in hand, we extract a finite set of valuation rings in §11.2HI1.4] The
intuition from inflators is explained in Remark

Remark 8.7. The infinitesimals Ij;, play a minor but critical role in the above construction.
Specifically, the existence of I, rules out the degenerate possibility P; = {0, M}.
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8.3 A 00-technicality
In the lattices P,, the A-operator is given by

ANB=(ANB)".

The (—)% causes some technical problemsH Luckily, by choosing M, carefully, we can get
rid of the (—)%.

Theorem (= Corollary [10.7)). There is a small submodel My < M such that J = JY for
every type-definable My-linear subspace J < M. Consequently, the lattice operations on P
are given by

GVH=G+H
GNH=GNH.

This is a corollary of the following uniform bounding principle for dp-finite abelian groups:

Theorem (= Theorem [10.4). If H is a type-definable subgroup of a dp-finite abelian group
G, then |H/H®| is bounded by a cardinal k(G) depending only on G.

8.4 QOutline

In §9] we review some abstract facts about modular lattices, including the notions of breadth
and Goldie dimension (§ and Puczylowski’s construction of a modular pregeometry on
uniform elements (§9.4). We will also prove a subadditivity theorem for breadth (Proposi-
tion [9.19)), which is probably known to experts in lattice theory.

In §10| we prove the technical fact that |H/H"| is uniformly bounded as H ranges over
type-definable subgroups of a dp-finite abelian group. In §I1] we apply these tools to con-
struct valuation rings on dp-finite fields. §12] we verify the Shelah conjecture for positive
characteristic dp-finite fields, and enumerate the consequences.

9 Modular lattices

Recall that a lattice is modular if the identity
(xVa)ANb=(zAb)Va

holds whenever a < b. See [8, Chapter V] for background on modular lattices. Modularity
is equivalent to the statement that for any a, b, the interval [a A b, a] is isomorphic as a poset
to [b,a V b] via the maps
[aNb,a] — [b,aV b
r—=xVb

n the proof of Proposition we need (¢ € G and a € H) to imply a € GA H.
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and

[b,a Vbl — [aAb,al
Tz a.

This is the “isomorphism theorem for modular lattices” [8, Theorem 348].

We will write the least and greatest elements of a lattice as | and T, when they exist. In
what follows, we require “lattice homomorphisms” to preserve V and A, but not necessarily
T and L when they exist. A “sublattice” is a subset closed under V or A, but not necessarily
containing T and L when they exist.

Abusing notation, we will write [ L, a| to denote {x € P : x < a}, regardless of whether
1 exists. Similarly, [a, T| denotes {x € P : x > a}, regardless of whether T exists.

9.1 Independence and cubes
Let (P, <) be a modular lattice with least element L.

Definition 9.1. A finite sequence ay,...,a, € P\ {L} is independent if aj A \/f;l1 a; = L
for 2 <k <n.

Fact 9.2 ([8, Theorem 360]). Independence is permutation invariant: if ai,...,a, is inde-
pendent and 7 is a permutation of [n], then arqy, ..., axm) is independent.

Therefore, independence is really a property of the set {ay,...,a,} rather than the se-
quence ay, . ..,Gy.
More generally, we can define a relative notion of independence over an element:

Definition 9.3. Let (P, <) be a modular lattice and b € P be an element. A sequence

ai, ..., ay, is independent over b if a; > b for each ¢, and
ap N\ \/ a; =b
i<k
for 2 <k <n.

In other words, an independent sequence over b is an independent sequence in the sub-
lattice [b, T|] C P.

Definition 9.4. An n-cube in a modular lattice (P, <) is a sublattice isomorphic to the
powerset Pow([n]). The base of the cube is its least element.

Equivalently, an n-cube in P is a family of elements {ag}sc}n such that

aS1USQ = asl \/ aSQ
as;ns, = as; N as,
S1 - Sy — as, < ag,.

The base is ag.



Fact 9.5 ([8, Corollary 359]). If ai,...,a, is independent over b, and we define

R S=0
° Viesai S7£®>

for S C [n], then {as}scp) is an n-cube with base b.

Conversely, if {as}scp is an n-cube with base b, and we define a; = ay;, then the
sequence ai, ..., a, is easily seen to be independent over b. We conclude that independent
sequences and cubes are in bijection:

Proposition 9.6. If (P, <) is a modular lattice, if b € P, andn € N, then there is a bijection
between n-cubes with base b and sequences ay, . .., a, independent over b.

9.2 Goldie dimension and breadth

Let (P, <) be a modular lattice with least element L.
Definition 9.7 (|9, Definition 6]). The Goldie dimension G.dim(P) is
sup{n € N | There is an independent sequence ay, ..., a,},

or oo if no finite supremum exists.

Goldie dimension is also called uniform dimension. By Proposition [9.6, we can charac-
terize Goldie dimension in terms of cubes:

Proposition 9.8. The Goldie dimension G.dim(P) is the supremum of n € N such that P
has an n-cube with base L.

Now let (P, <) be any modular lattice, not necessarily with a least element L.
Lemma 9.9. Forn € N, the following are equivalent:

1. There are aq,...,a, € P such that

Ay N Nap Far N~ Nai_1 Naiz1 A Nay
for all z.

2. There is b € P and a sequence ay, ... ,a, independent over b.

3. There is an n-cube in P.

4. There are ay,...,a, € P such that
ayV---Va,#aV---Va_1Vag1V---Vay,

for all i.



Proof. We first prove (1)) = (2) = (3) = (4)):
= : Let a; be as in . Define

b=ai N -+ Aay,
cl-:al/\---/\ai_l/\ai+1/\---/\an.

By assumption ¢; > b. Note that ¢; < ay for ¢ # k. Therefore

\/Ciﬁak

i<k
ck/\\/cigck/\ak:b.
i<k

Therefore the ¢; are independent over b, proving (2).
— : Proposition
" - : Let {as}ggn] be an n-cube. Define a; = agqy for 1 < i < n. Then for any i,

ap V- Va, = a1, n}

ar V- Va1 Va1 VeV ay, = aq,. i—1i+1,..n} 7 O{1,..n}

Therefore
al\/---\/an#al\/---\/ai,l\/aiﬂ\/---\/an,

proving .
Having proved — , the reverse implication == follows by duality. O]

Remark 9.10. The equivalence — holds in any lattice [8, Exercise 1.1.20], without
assuming modularity.

Definition 9.11. The breadth br(P) of a modular lattice P is
br(P) = sup{n € N | There is an n-cube in P},
or oo if there is no finite supremum.
Note br(P) > n if the equivalent conditions of Lemma [9.9) hold.
Remark 9.12. The following are equivalent:
1. br(P) < n.
2. For any ay,...,a,+1 € P, there is ¢ such that

alA...Aan+1:al/\H'/\CLZ’,l/\axi+1/\"‘/\an+1-
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3. For any finite subset S C P, there is S’ C S with

NS =NA\s

S <n

Indeed, — holds by Lemma Condition is a special case of , and =
holds by an inductive argument.

Condition is the conventional definition of “breadth” in lattice theory [I, Exer-
cise I1.5.6] (or [8, Exercise 1.1.19]).

Warning. In the model theory of modules, there is an unrelated notion of “breadth” in
modular lattices, due to Prest [18, p. 205].

Definition 9.13. Let (P, <) be a modular lattice, and a,b be elements with a > b. Then
G.dim(a/b) and br(a/b) denote the Goldie dimension and breadth of the sublattice [b, a] C P.

Lemma 9.14. Let (P, <) be a modular lattice. Suppose a > b.
1. G.dim(a/b) < br(a/b).
2. br(a/b) = sup{G.dim(a/c) : c € [b,a]}.
Proof. Clear from Proposition and Definition [9.11] [

9.3 Subadditivity of breadth

Work in a modular lattice (P, <).

Lemma 9.15. Ifx <y and b is arbitrary, then at least one of the following strict inequalities
holds:

TAb<YyAD
rVb<yVh.

Proof. Otherwise, t Ab=yAband xVb=yVb Then
y=0bVvVy Ahy=0bVve)hy=(bAy)Ve=(bAz)Vx=u,
where the middle equality is the modular law. O

Lemma 9.16. Let {ag}scin be an n-cube in P. Let b be some element.

1. Suppose that ag Nb > ag A'b for all S 2 0. Then the sublattice [L,b] has breadth at
least n.

2. Suppose that agV b < ap, Vb for all S C [n]. Then the sublattice [b, T] has breadth at
least n.



Proof. We prove ; is dual. Define a; = ay;y for 1 <4 < n. By assumption, a;A\b > ag/Nb.
For any 2 < k < n we have

(ar Ab) A \/(ai AD) < b

i<k

(ak/\b)/\\/(ai/\b)Sak/\\/ai:a@.

i<k i<k
Therefore
(ax AD) AN/ (a; AD) < ag AD.
i<k
So the sequence a; A b,as A b, ..., a, A b is independent over ayg A b. This sequence lies in
[ L, b] which must have breadth at least n by Lemma[9.9] O

Lemma 9.17. Let & < b < y be three elements of P. If there is an n-cube {as}scp) in
[z, y|, then there is an m-cube in [z,b] and an (-cube in [b,y| for some m + € =n.

Proof. Passing to the sublattice [z,y]|, we may assume z = 1 and y = T. Take Sy C [n]
maximal such that ag, Ab = ag Ab. Let £ = |Sy|. Then {as}scs, is an f-cube. For any
S C Sy, we have

as ANb= ag, N\ b

by choice of Sy, and then
as Vb< as, V b

by Lemma[9.15] By Lemma the lattice [b, T] has breadth at least /.

Likewise, {as}sos, is an m-cube, for m =n — ¢ = |[n] \ Sp|. By choice of Sy, we have
as, ANb < as N\ b
for any S 2 Sp. By Lemma [0.16][1] the lattice [L,b] has breadth at least m. O

Lemma 9.18. If M, My are two modular lattices, then
bl"(Ml X MQ) > bI‘(M1> + bl"(Mg)

Proof. Suppose M, contains an n; cube for : = 1,2. Take a sublattice C; C M; isomorphic
to Pow([n;]). Then Cy x Cy is isomorphic to Pow([ny + nsl), and C; x Cy is a sublattice of
Ml X MQ. So bI'(Ml X Mg) > ni + no. L]

Recall the notation br(a/b) for the breadth of [b, a.
Proposition 9.19. Let (P, <) be a modular lattice.

1. If a > b, then
br(a/b) =0 <= a=0b.
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2. Ifa>b>c, then

max(br(a/b),br(b/c)) < br(a/c) < br(a/b) 4+ br(b/c).
3. If a,b are arbitrary, then

br(a/a Ab) =br(a Vv b/b)
br(b/a Ab) =br(aVb/a)
br(aVb/aAb)=Dbr(a/aAb)+br(b/aAb).

Proof. 1. If a = b, then [b, a] is a singleton, so it cannot contain a 1-cube. If a > b, then
{a,b} is a 1-cube in [a, b].

2. The inequalities

br(a/b) < br(a/c)
br(b/c) < br(a/c)

hold because [b, a] and [c, b] are sublattices of [c, a]. Any n-cube in [b, a] or [c, b] would
give an n-cube in [c, a]. The other inequality

br(a/c) < br(a/b) + br(b/c)
holds by Lemma [9.17

3. The equality br(a/a A b) = br(a V b/b) holds because of the isomorphism [a A b, a] =
[b,a V b]. The second equality holds similarly. Lastly, note that

br(aVb/a Ab) < br(a/a Ab)+br(aVb/a)=br(a/aAb)+br(b/a Ab)

by the previous points. By [8 Theorem 364|, the interval [a A b,a V b] contains a
sublattice isomorphic to [a A b,a] X [a A b,b]. By Lemma [0.18]

br(a Vb/a Ab) > br(a/a A b) + br(b/a Ab). O

Corollary 9.20. If aq,...,a, are independent over b, then

br(ay V.-V a,/b) = Z br(a;/b).

The analogue for Goldie dimension is as follows:

Fact 9.21 ([9, Corollary 7(b)]). If ai,...,a, are independent over b, then
G.dim(ay V -+ Va,/b) = > G.dim(a;/b).
i=1
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9.4 The pregeometry on uniform elements

In module theory, a submodule N C M is essential if every non-zero submodule of M
intersects N. A non-zero module M is uniform if every non-zero submodule is essential, i.e.,
any two non-zero submodules of M have non-zero intersection. For any module M, Dawson
constructed a natural pregeometry on the set of uniform submodules [4]. For background on
pregeometries (also called independence systems and matroids), see [21] or [8, §V.3.3].

Dawson’s construction was generalized from modules to modular lattices by Puczytowski
[19]. Fix a modular lattice (P, <) with least element L.

Definition 9.22 ([19, p. 305]). An element a > L is essential if for every b > L, we have
aNb > 1. The lattice P is uniform if every a > L is essential. An element a > _L is uniform
if the sublattice [ L, a] is uniform. The set of uniform elements in P is denoted U(P).

Tracing through the definitions, a € P is uniform if for any z,y € P with 1 <z <a and
1 <y <a, wehave z Ay > L. Equivalently, a > L is uniform iff G.dim(a/L) = 1.

Theorem 9.23 (Puczylowski [19]). There is a pregeometry on U(P) with the following
properties:

1. A finite set ay,...,a, € U(P) is independent with respect to the pregeometry if and
only if {ay,...,a,} is lattice-theoretically independent (Definition[9.1]).

2. The pregeometry is modular. In other words, the lattice of closed sets is modular.

3. For any x € P, define
O(z)={acU(P):zNa> L1}

Then ®(z) is a closed set in the pregeometry.
Suppose in addition that G.dim(P) < co. Then
4. Every closed set is of the form ®(x).
5. The rank of the pregeometry is G.dim(P). In particular, the rank is finite.
6. If ai,...,a, € U(P) is a basis, then ay V - -+ V a,, is essential in P.
Proof. See Theorems 4, 5, 8, 9 in [19]. ]
We call this pregeometry the pregeometry on uniform elements.

Definition 9.24. A uniform basis in (P, <) is a basis in the pregeometry on uniform ele-
ments, i.e., a maximal independent set of uniform elements.

Lemma 9.25. Let ay,...,a, be a uniform basis for P. Suppose L < a, < a; for each i.

Then ay, ..., al is also a uniform basis for P.
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Proof. If a is uniform and L < @’ < a, then & is also uniform. The set {da},...,a,} is
therefore an independent set in the pregeometry on uniform elements. Since it has the same
cardinality as a basis, it must itself be a basis. O

Lemma 9.26. Let (P, <) be a modular lattice with least element L. Suppose G.dim(P) < co.
let a be any element of P. Then there is a uniform basis by,...,b,,c1,...,Cn such that

e Fach b; <a.
e The sequence a,cy, ..., Cy s independent.

Proof. Let n = G.dim(a/L). Let by, ..., b, be a uniform basis in the sublattice [ L, a]. Then

each b; is a uniform element, and the b; are independent. Therefore the set {by,...,b,} is
an independent set in U(P). We can find c,..., ¢, such that {by,..., by, c1,...,¢n} is a
uniform basis in P. We claim that ¢q,..., ¢, a is independent. Otherwise,
a N \/ c > L.
i=1

By Theorem [9.23]6], \/i_, b; is essential in [L,a]. Therefore

(5) 3) - (0 ()

But the sequence by, ..., by, c1,. .., ¢y is independent, so by Fact [9.5]

(Vo) () -

a contradiction. ]

Remark 9.27. In the proof of Lemmal[9.26] each b; belongs to the set ®(a) of Theorem [9.23|[3)
since b; ANa = b; > L. Thus {by,...,b,} is an independent subset of ®(a). Moreover,
{b1,...,b,} is a maximal independent subset of ®(a): if {by,...,b,,c} is independent for
some uniform element ¢ € ®(a), then {by,...,b,,c A a} is an independent set of uniform
elements in [, a|, contradicting the choice of the b;.

Therefore, the rank of the closed set ®(a) is equal to n. The b; were chosen to be a
uniform basis in [L, a], so by Theorem [9.23p n = G.dim(a/L). Therefore,

The rank of the closed set ®(a) is equal to G.dim(a/L).
We will often use relative notions of the above construction:

Definition 9.28. Let (P, <) be a modular lattice and b € P be an element. An element
a € P is uniform over b if a is a uniform element in [b, T], i.e., a > b and [b, a] is a uniform
lattice. A wuniform basis over b is a uniform basis in [b, T].
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10 Bounds on connected components

In this section, (G, +,...) is a monster-model abelian group, possibly with additional struc-
ture, of finite dp-rank n.

Fact 10.1. Let Gy, ..., G, be type-definable subgroups of G. There is some 0 < k < n such

that
" 00 00
i=0 itk

This is [3, Proposition 4.5.2]; the n there agrees with dp-rk(G) by inspecting the proof.

Lemma 10.2. Let H be a type-definable subgroup of G. There is a cardinal k depending
only on H and G such that if H < H' < G for some type-definable subgroup H', and if H'/H
is bounded, then H'/H has size at most k. This k continues to work in arbitrary elementary
extensions.

Proof. Naming parameters, we may assume that H (but not H') is type-definable over (). By
Morley-Erdos-Rado there is some cardinal x with the following property: for any sequence
{aa}a<x of elements of G, there is some 0O-indiscernible sequence {b;};cy such that for any
i1 < --- <1, thereis ay < --- < «,, such that

Aoy * G, =¢ by -+ by .

n

Let H' be a subgroup of G, containing H, type-definable over some small set A. Suppose
that |H'/H| > k. We claim that H'/H is unbounded. Suppose for the sake of contradiction
that |H'/H| < A in all elementary extensions. Take a sequence {aq }a<y of elements of H’
lying in pairwise distinct cosets of H. Let {b;};ey be an O-indiscernible sequence extracted
from the a, by Morley-Erdds-Rado. Because the a, live in pairwise distinct cosets of H
and H is O-definable, the b; live in pairwise distinct cosets of H. By indiscernibility, there
is a 0-definable set D O H such that b; — b; ¢ D for i # j. Consider the *-type over A in
variables {z,}.<) asserting that

1. z, € H' for every a < A

2. If oy < --- < ap, then
Tay** Tay, =0 b1+ by

This type is consistent. Indeed, if ¥, 4, (Z) is the sub-type asserting that

/
Tays- 3 Tay € H

Toy ' Tay, E(Dblbn

then X,, ., (%) is satisfied by (ags,,...,as,) for some well chosen f3;, by virtue of how the
b; were extracted. Moreover, the full type is a filtered union of ¥z(Z)’s, so it is consistent.
Let {cq}ta<a be a set of realizations. Then every ¢, lies in H', but

Co—Co € DD H
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for « # . Therefore, the ¢, lie in pairwise distinct cosets of H, and |H'/H| > A, a
contradiction. 0

Lemma 10.3. For any cardinal k there is a cardinal T(k) with the following property: given
any family {Hu}acr(x) of type-definable subgroups of G, there exist subsets Sy, Sy C 7(k)
such that Sy is finite, |Ss| = K, and

(ﬂ Ha)oo C () Ho-

a€eSy €Sy

Proof. Without loss of generality x > X,. By the Erdés-Rado theorem, we can choose 7(k)
such that any coloring of the n + 1-element subsets of 7(k) with n + 1 colors contains a
homogeneous subset of cardinality k™. Now suppose we are given H, for a < 7(k). Given

ap < -+ < Quy1, color the set {aq, ..., a,y1} with the smallest k € {1,...,n+ 1} such that
nt1 0o nt1 00
=1 1=k+1

This is possible by Fact [10.1, Passing to a homogeneous subset and re-indexing, we get
{Ha}a<r+ such that every (n+ 1)-element set has color k for some fixed k. In particular, for
any oy < -+ < apy1 < KT, we have

ntl 00 n+l 00
()" e
=1 i=k+1

Thus, for any f; < B3 < -+ < Bans1 < kT we have

Mm—k+2 00 241 00
Hﬁn+1;< ﬂ Hg v () Hﬁz) (ﬂH&ﬂ N H5Z>

i=n—k+2 1=n+2 i=n-+2

by taking
(Oéb cee ,Oén+1) = (ﬂn—k+2, .- ,52n—k+2)-

Then, for any 8 € [n+ 1, ],
Hg D (HiN---NH, N Hppy N Hpyn)™,
so we may take S; ={1,...,n,k+1,...,k+n} and Sy = [n+ 1, K]. ]

Theorem 10.4. There is a cardinal k, depending only on the ambient group G, such that for
any type-definable subgroup H < G, the index of H in H is less than k. This k continues
to work in arbitrary elementary extensions.

15



Proof. Say that a subgroup K C G is w-definable if it is type-definable over a countable set.
Note that if K is w-definable, so is K%. Moreover, if K, K, are w-definable, then so are
KN Ky and K; + K. Also note that if H is any type-definable group, then H is a small
filtered intersection of w-definable groups.

Up to automorphism, there are only a bounded number of w-definable subgroups of GG, so
by Lemma[10.2) there is some cardinal ko with the following property: if K is an w-definable
group and if K’ is a bigger type-definable group, then either |K'/K| < ko or |K'/K]| is
unbounded.

Claim 10.5. If H is a type-definable group and K is an w-definable group containing H%,
then |H/(H N K)| < Ko.

Proof. Note that
H®CHNKCH,

so H/(H N K) is bounded. On the other hand, H/(H N K) is isomorphic to (H + K)/K,
which must then have cardinality less than k. Hctaim

Let k1 = 7((2%°)*") where 7(—) is as in Lemma [10.3]

Claim 10.6. If H is a type-definable subgroup of G, then there are fewer than x; subgroups
of the form H N K where K is w-definable and K O H.

Proof. Otherwise, choose { K, }aex, such that K, is w-definable, K, 2 H%, and
HAK, 4 HNK,y

for « < o < K. By Lemma [10.3] there are subsets Si,S2 C k; such that |S;| < N,

|Sa| = (2%0)*, and N
(ﬂ Ka> <) Ko

a€Sy a€Sy

Let J be the left-hand side. Then J is an w-definable group containing H%, so |H/(HNJ)| <
ko by Claim Now for any a € S5,

JCK, = HNnJCHNK,CH.

There are at most 2!/l < 2%0 groups between H N J and J, so there are at most 2%
possibilities for H N K, contradicting the fact that [S;| > 2%° and the H N K, are pairwise
distinct for distinct . Octaim

Now given the claim, we see that the index of H% in H can be at most x§'. Indeed, let S
be the collection of w-definable groups K such that K O H% and let S’ be a subcollection
containing a representative K for every possibility of H N K. By the second claim, |S'| < k;.
Every type-definable group is an intersection of w-definable groups, so

H"= (VK= ()HNK)= ()| (HNK).

KeS KeS Kes’
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Then there is an injective map

H/H® < ] H/(HNK),
Kes’

and the right hand size has cardinality at most x;'. But xg' is independent of H. O

Corollary 10.7. Let M be a field of finite dp-rank. There is a cardinal k with the following
property: if M < M is any small model of cardinality at least k, and if J is a type-definable

M -linear subspace of M, then J = J°. More generally, if J is a type-definable M -linear
subspace of MF, then J = J%.

Note that we are not assuming .J is type-definable over M.

Proof. Take k as in the Theorem, M a small model of size at least x, and J a type-definable
M-linear subspace of M. For any a € M*, we have (a - J)® = a - J%. Restricting to
a € M*, we see that o - J% = J% In other words, JY is an M-linear subspace itself. The
quotient J/J% naturally has the structure of a vector space over M. If it is non-trivial, it
has cardinality at least &, contradicting the choice of x. Therefore, J/J% is the trivial vector
space, and J% = J. For the “more generally” claim, apply Theorem to the groups M*
and take the supremum of the resulting x. m

Lemma 10.8. Let M be a field of finite dp-rank, and M < M be a small model. Let J be a
non-zero type-definable M -linear subspace of Ml. Then every definable set X O J is heavy.

Proof. Suppose for the sake of contradiction that X is light. Rescaling J and X, we may
assume 1 € J. The set X remains light by Fact .24 Then M C J C X. Passing to an
elementary extension of the pair (M, M), we may assume that M is mildly saturated. Then
M defines a “critical coordinate configuration” in the sense of [13, Definition 4.7]. The set
X remains light, because lightness is definable in families (Fact [8.2]3). By [13, Lemma 4.22]
(with Z = M), the inclusion M C X implies that X is heavy, a contradiction. H

11 Invariant valuation rings

Let (M, +,-,...) be a monster-model finite dp-rank expansion of a field. Assume that M is
not of finite Morley rank. Fix a small model M, large enough for Corollary to apply.
Thus, for any type-definable My-linear subspace J < M", we have J = J%.

Let P, be the poset of type-definable My-linear subspaces of M", let P = Py, and let P
be the poset of non-zero elements of P.

We collect the basic facts about these posets in the following proposition:

Proposition 11.1.

1. For each n, P, is a bounded lattice.
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2. For any small model M O My, the group Iy is an element of P. In particular, P
contains an element other than L. =0 and T = M.

If J € P is non-zero, every definable set D containing J is heavy.
If J € P is type-definable over M for some small model M D My, then J D I,;.
If J € P,, then J = J%.

Pt is a sublattice of P, i.e., it is closed under intersection.

NS & e

P has breadth r for some 0 < r < dp-rk(M). The breadth of P is also r, and the
breadth of P™ is rn.

Proof. 1. Clear—the lattice operations are given by

GVH=G+ H
GANH=GNH
1 =0
T =M".
2. Fact R 44
3. Lemma [10.8

4. Fact RA4E
5. By choice of M,.

6. Let Jp, Jo be two non-zero elements of P. Let M be a small model containing M, over
which both J; and J, are type-definable. Then J; N Jy > Iy > L. Therefore Pt is
closed under intersection.

7. Let 7 = br(P). The bound r < n follows by Fact and () = (1) of Lemma[9.9]
Then
0 < br(P") <br(P)=r<n,

where the left inequality is sharp because P has at least three elements by part [2| If
r > br(P7), there is a r-cube in P which does not lie in P*. The base of this cube
must be L, the only element of P\ P*. Then r < G.dim(P). However, part |§| says
G.dim(P) < 1, s0 r <1 < br(P*), a contradiction. Therefore br(P+) = r = br(P).
Finally, in P,, if we let J; = 090~ @ M @ 09"~ for ¢ = 1,...,n, then the sequence
Ji,...,J, is independent and J; V ---V J, = M". Thus

br(M"/0) = Z br(.J;/0)
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by Corollary [9.20f However, br(.J;/0) = r because of the isomorphism of lattices
X = 0% g X @ 0%, m
In what follows, we will let » be br(M/0).

Remark 11.2. If » = 1, then P is totally ordered and we can reuse the arguments for
dp-minimal fields to immediately see that I,; is a valuation ideal. Usually we are not so
lucky.

11.1 Special groups
Definition 11.3. An element J € P, is special if G.dim(M"/J) = br(M"/J) = rn.
For any J € P, we have
G.dim(M"/J) < br(M"/J) < br(P,) =rn

by Lemma [9.14][T, Proposition and Proposition [I1.1][7] Therefore, J € P, is special
if and only if G. dim(M"/J) > rn.
Note that if J € P, is special, then any uniform basis over .J has cardinality rn, by

Theorem [9.23]5]
Proposition 11.4.
1. There is at least one non-zero special J € P = Py.

2. Let J € P be special. Let Ay, ..., A, be a uniform basis over J. Let G € P be arbitrary.
IfGNA; £ J for each i, then G 2 J.

3. If J € P is special and nonzero and type-definable over a small model M 2O My, then

Ing-JC Iy CJ

4. If I € P, and J € P, are special, then I & J € Py, 1S special.
5. If I € P, is special and o € M, then o - I is special.

Proof. 1. By Proposition [I1.1][7] the breadth of P+ is exactly r, so we can find an r-cube
in P*. The base of such a cube is a non-zero special element of P.

2. Fori=1,...,r take a; € (GN A;) \ J. Then for each i, we have

(IZ¢J
(= )G+J)NA D J
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Consequently,
AAN(GH+ ), AN (G+J),...., AN (G+J)

is an independent sequence over J. It follows that
br(G/(GNJ))=br((G+ J)/J) > G.dim((G+ J)/J) > r.
On the other hand
br(G/(GNJ))+br(J/(GNJ)) =br((G+J)/(GNJ)) <,
and so br(J/(GNJ)) =0. This forces /] =GN J,so J CQG.

. The inclusion I, C J is Proposition [IT.1J[dl Let Ay,..., A, be a uniform basis over
J as in part [2 For each A; choose an element a; € A; \ J. Let M’ be a small model
containing M and the a;’s. We first claim that Iy, - J C I Let € be a non-zero
element of I;. As Iy is closed under multiplication by (M’)*, we have M’ C e~ Iy
In particular, a; € e~* - Iy for each i. Then

(et - Ly)NAZJ
for each 4, so by part [2] we have
8_1 . ]M’ 2 J.

In other words, ¢ - J C I;,. As € was an arbitrary non-zero element of I, it follows
that Iy - J C Ipp. Now suppose that D is an M-definable basic neighborhood. Then
D is an M’-definable basic neighborhood. By the above and compactness, there is
an M’-definable basic neighborhood X —., X and a definable set Dy D J such that
(X — X) - Dy € D. Furthermore, Dy can be taken to be M-definable, because J
is a directed intersection of M-definable sets. Having done this, we can then pull
the parameters defining X into M, and assume that X is M-definable. (This uses
the fact that heaviness is definable in families). Then we have an M-definable basic
neighborhood X —,, X and an M-definable set Dy O J such that (X —, X)- Dy C D.
As D was arbitrary, it follows that

Ipg - J C Iy

. The interval [I,M"] in P, is isomorphic to [[ & J,M" & J] in P4y, sO

rn=G.dim(M"/I) = G.dim((M" & J)/(I & J))
rm = G.dim(M™/J) = G.dim((I @ M™) /(I & J)),

where the second line is true for similar reasons. By Lemma [9.21],
G.dim((M" & M™)/(I & J)) > rn + rm.
On the other hand
G.dim(M"eM™)/(Ia J)) <br(M"eM™)/(I® J)) <r(n+m)
so equality holds and I & J is special.
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5. For any a € M*, the map X +— « - X is an automorphism of P,,. O]
Corollary 11.5. For any model M, Iy - Iny C Iy

Proof. Take a non-zero special element J € P;. Take a small model M’ containing M and
My, with J type-definable over M’. We first claim that Iy, - Iy C I, Indeed,

Inpr - Iy © Ipgr - J C Iy

by Proposition [[1.4]3] Then we can shrink from M’ to M using the technique of the proof
of Proposition [I1.4l3] Specifically, let D be any M-definable basic neighborhood. Then

]M/]M/QIMQD

By compactness, there is an M’-definable basic neighborhood Dy such that Dy - Dy C D.
Using the fact that heaviness is definable in families, we can take Ds to be M-definable.
Then Iy, - Iny € Dy - Dy C D. As D was arbitrary, Iy - Iy € Iyy. O

In [13, Remark 6.17], we defined a group topology on (M,+), for which Iy, is the set
of topological infinitesimals. Corollary implies that this topology is a ring topology.
With much more work, one can show that the canonical topology is a field topology [15]
Corollary 5.15].

Speculative Remark 11.6. Say that J € Py is bounded if J < J’' for some special J'.
Based on the argument in Proposition [ILT.4]2H3] it seems that J is bounded if and only if
a-J C I for some o € M* and some small model M. Bounded elements should form a
sublattice of P; [

Definition 11.7. Let I € P,, be special and D € P, be arbitrary. Then D dominates I if
D > I and G.dim(D/I) = nr.

Lemma 11.8. Let J € P, be special, let Ay, ..., An be a uniform basis in [J,M"], and D
be arbitrary. Then D dominates J if and only if D N A; 2 J for each i. In particular, this
condition doesn’t depend on the choice of the basis {A1,..., Ap}.

Proof. Suppose D dominates J. Let By,..., By, be a uniform basis in [J, D]. The B; are
independent uniform elements in the larger interval [J,M"], so {Bj,..., By} is a uniform
basis in [J, M"]. Therefore, for every i the sequence By, ..., B, A; is not independent over
J. Consequently

DNA; D (Bi+--+By,)NA 2 J

Conversely, suppose D N A; 2 J for each i. Then certainly D O J, and it remains to show
G.dim(D/J) > nr. Let A, := DN A;. Then the sequence A},..., Al is independent over

nr

J. As each A} lies in [J, D], it follows that G.dim(D/J) > nr. O
2These ideas have been developed in [15, §8].
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Lemma 11.9. Let I € P,, be special, and V' be a k-dimensional M-linear subspace of M™.
Then

G.dim((V + I)/I)
G.dim(V/(V N 1))
G. dim(M"/(V + I))

br((V + I)/1) = kr
br(V/(VNI))=kr
br(M"/(V + 1)) = (n — k)r.

Moreover, there exist Ay, ..., Ay, Bi,..., By € Pn such that the following conditions
hold:

1. The set {Ay, ..., A, Bi,..., Baupy} is a uniform basis in [1, M"].

2. Let Ay = A;NV. Then {Ay,..., Ay} is a uniform basis in [V N1, V].

3. Let B; = B; + V. Then {B1,..., By} is a uniform basis in [V + I, M"].
Given a D € P, dominating I, we may choose the A; and B; to lie in [I, D].

Proof. Let W be a complementary (n — k)-dimensional M-linear subspace, so that V +W =
M™ Let V=V + 1 and W/ =W + I. Then

nr =br(M"/I) < br(M"/V') + br(V'/I)

(
r((VI+W")/V') +br(V'/I)
r(W' /(W' nV’)) +br(V'/I)

(

(

(

IA

r(W'/I) + br(V'/I)
r(W/(W N 1)+ be(V/(V N 1))
r(W/0) + br(V/0).

b
b
b
b
b
b

IN

Now any M-linear isomorphism ¢ : M* = V induces an isomorphism of posets from P to
0,V] C P,, so

br(V/0) = br(Py) = kr
br(W/0) = br(P,—x) = (n — k)r,

where the second line follows similarly. Therefore the inequalities above are all equalities,
and

br((V + 1)/1) = br(V/(V N 1)) = kr
br(M"/(V + 1)) = br(M"/V") = (n — k)r.

By Lemma [9.26] there is a uniform basis {Ay,..., A, B1, ..., Byr—m } in [I, M"] such that
e Fach Al Q V+I

e The sequence (V + 1), By, ..., By, is independent over 1.
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If we are given D dominating I, we may replace each A; with A; N D and B; with B; N D,
and assume henceforth that A;, B; C D. By Corollary [9.20],

nr=br(M"/I) > br((V +1)/I)+br(Bi/I)+ -+ br(Bp—m/I)
=kr +br(Bi/I)+ -+ br(By_n/I).

Each B; is strictly greater than I, so
nr > kr +nr —m,

and thus m > kr. On the other hand, the set {A;,..., A,,} is a set of independent uniform
elements in [I,V + I], so

m < G.dim((V +1)/I) <br((V+1)/I)=kr.

Thus equality holds, m = kr, and the set {A;,..., A,,} is a uniform basis in [I,V + I].
Applying the isomorphism

[LV+1] S [VNIV]
X—=XNV,

the A; form a uniform basis in VN 1,V]. Next, let Q@ = By V-V Bk (Note that
nr—m = (n — k)r.) The fact that (V + 1), By, ..., Bk is independent over / implies
that (V + 1) N Q = I. Therefore, there is an isomorphism

L,Q S [V+I,V+I+Q)]
X=X+V+)=X+W

The elements {Bi, ..., Bn_k)} are independent uniform elements in [/, )], and therefore
the B, are a set of independent uniform elements in [V +1,V +1+@Q)] or even in [V 41, M"].
It follows that

(n—k)r <G.dim(M"/(V +1)) <br(M"/(V +1)) = (n—k)r,
so equality holds and the B; are a uniform basis in [V 4 I, M"]. O

Lemma 11.10. Let I,J € P, be special. Then I + J and I N J are special. Furthermore,
there exists

~

e a uniform basis Ay, ..., A, in [I N J,M"],

e a uniform basis By, ..., B, in I+ J,M"|, and
e a uniform basis Ay,..., A, Bi,..., B, in [ ® J M?>"]

23



related as follows:
A ={ZeM" | (Z,2) € A}
B; ={Z -7 | (%,§) € B;}.
Given D € Py, dominating I ® J, we may choose the A; and B; to lie in [I & J, D].

Proof. For any J € P, define

Indeed, the inverses are given by

A0, V] S [0, M"]
Cw{Z|(Z,7)eC}

vl [V, M2 S [0, M7
C={Z-7|(Z,y) € C}.

Note that A~* (VN (I @ J)=INnJand VIV + (I & J)) =1+ J. Therefore, A~! and
V! restrict to isomorphisms

AT VI e J),V]
Vi V+ U e J),M™

[INJ M"

=~
5 I+ J,M"].
It follows that

G.dim(M"/(INJ)) = G.dm(V/(V N (I ® J)) = G.dim((V + (I & J))/V)
G.dim(M"/(I + J)) = G. dim(M>"/(V + (I & .J))/V).

Now I @ J is special in Py, by Proposition [I1.44] and V is an n-dimensional M-linear
subspace of M?", so by Lemma, [11.9]

G.dim(M"/(I N .J)) = G.dim((V + (I & J))/V) = rn
G.dim(M"/(I + J)) = G.dim(M2"/(V + (I & J))) = rn.

Therefore I NJ and I 4+ J are special. Furthermore, by Lemma there exists a uniform
basis {A1, ..., A, B1, ..., By} over I @ J such that
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e The elements A; := A; NV form a uniform basis in [V N (I ® J), V].
e The clements B; := B; + V form a uniform basis in [V + (I & J), M?"].

(Additionally, the A; and B; can be chosen below any given D dominating I @ J.) Applying
A~! and V! we see that the elements

A= AN ANV)={Z| (Z,7) € ANV}
= {7 | (7,7) € Ai}
Bi=V A4+ V)={F-§| (Z,§) € B+ V}
={T-7|(Z,9) € Bi}
form uniform bases for [/ N J,M"] and [I + J,M"], respectively. O

Question 11.11. By Lemma [11.10 special elements of P, form a sublattice. Can this be
proven directly (lattice theoretically) within P, without using the larger lattice Pay, ?

Speculative Remark 11.12. We explain how the above picture should give an r-inflator,
as in §8.2] Fix a special element J of Py. For every n, J" is a special element of P,,. Let G,
be the lattice of closed sets in the pregeometry on uniform elements over J". There should
be natural maps

D :Gn X Gm = Gngm

and a GL,(My) action on G,, induced by the analogous structure on the P,. Using this
additional structure, one should be able to prove the following: there is a semisimple M-
algebra S of length r, and isomorphisms

1 = Subg(S™)
respecting ¢ and the GLn(MQ)—aCtiOHSH For every n we should get a map
fn s Suby(M"™) — G,, = Subg(S™)
Vi oV +J).

These maps should form an r-inflator, as in Definition [8.6, By Remark [9.27, the rank of
OV + J") is G.dim((V + J™)/J™). Therefore the scaling axiom (Definition says that

G.dim((V 4+ J")/J") = r - dimy(V),
which follows by Lemma [11.9] The other inflator axioms (Definition [8.6][1H3)) should be a

matter of tracing through the definition of f,,, ensuring that each step preserves the order,
GL,(My)-action, and @®-operation]

3These claims have now been verified in [I6]. The lattice G, is the “flattening” of the interval
[J",M"] C P, in the sense of [I6, Definition 7.2]. The family of lattices {[J",M"]},en form a “direc-
tory” [16, Definition 2.1] by [16, Proposition 2.12, Theorem 3.7]. By [16, Corollary 7.20], the family {G, },en
is also a “directory,” and a “semisimple directory” by [I6], Proposition 7.3.1]. The existence of the semisimple
My-algebra S now follows by [16l Theorem 2.7].

4The details have been verified in [I6, Theorem 9.3].
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Speculative Remark 11.13. Next, we describe how r-inflators should yield valuation rings.
Fix an r-inflator { f, }nen, where

fn @ Suby(M™) — Subg(S™).
Say that a € M specializes to b € S if
foM-(1,a)) = 5 (1,0).
This should define a homomorphism
res: R — S (1)

for some subring R C M. In the case of 1-inflators (r = 1), R should be a valuation ring on
Ml
When r > 1, one might intuitively hope that R will be an intersection of r or fewer
valuation rings on Mﬁ However, several things go wrong. For example, there is a 2-inflator
on C given by
V)=V +V,VnV),

where V is the complex conjugate of V For this inflator, the ring R is R, which is not a
finite intersection of valuation rings on C.

There is a certain way to “mutate” f that improves the situation. Specifically, we can
define a new inflator f’ by the formula

V) o= fan({(Z,0-7) | T € V})

for some constant a. By choosing a carefully (for example, a = v/—1), the ring R’ associated
to f’ will be bigger, and closer to being a finite intersection of valuation ringsﬁ

Ideally, after finitely many mutations, one would arrive at an inflator f” whose associated
ring R” is a finite intersection of valuation rings. Unfortunately, this does not happen.ﬂ
Nevertheless, if one defines R, to be the union of all the rings R’ associated to mutations
f'of f, it turns out that R, is a finite intersection of valuation rings.H In other words, we
get R to be a finite intersection of valuation rings in the limat.

®These claims have been verified in [16, Propositions 5.7, 5.19].

6The intuition is that if K = ACFy and O, ...,0, are independent valuation rings on K, then the
structure (K, +,-, 01, ...,O,) has burden r, by [I4, Theorem 11.5.7]. The analogue of Fact holds in this
context [3, Proposition 4.5.2], and one can probaby carry out the analogous construction of r-inflators. (See
[16, Theorem 9.7] for one result in this direction.) So one expects to get r-inflators from r-fold intersections
of valuation rings.

"See [16, Example 4.9] for a precise description. The semisimple ring S is C x C in this example, so
S-modules are pairs of C-vector spaces.

8The idea of “mutation” is made precise in [16, §10.1]. The fact that mutation “improves the situation”
is [16, Lemma 10.11]. For the specific example V +— (V + V,V NV) discussed above, see [16], §12.1].

9See [16], §12.3] for an example.

0T his is verified in [16, Theorem 10.12].

26



In sections below, we will follow a simpler parallel argument, which avoids the
use of inflators. In Proposition [11.16| we will associate a ring R; C M and an ideal I; < R
to any special J; these should correspond to the domain and kernel of the specialization map
res(—) of (1)) above. In we will “mutate” J by replacing it with

J=JNa;-JN---Na,-J.

This should correspond to mutation of inflators[']] By considering the union of Ry as J’
ranges over all mutations, we will obtain a finite intersection of valuation rings (Theo-

rem |11.26]).

11.2 The associated rings and ideals

Definition 11.14. Let J € P,, be special, and a € M*. Say that a contracts J if a = 0 or
J dominates a - J (i.e., G.dim(J/a - J) = nr).

Note that when a # 0, J dominates a - J if and only if a=! - J dominates J.
Lemma 11.15.

1. Let Aq, ..., A, be a uniform basis over J € P, and a be an element of M. Ifa-A; C J
for all i, then a contracts J. Conversely, suppose a contracts J. Then there exists
Al e (J, Ay such that AY, ..., AL, is a uniform basis over J and a - A, C J for each i.

If a contracts J and b € M, then a contracts b- J.
If a,b contract J then a + b contracts J.
If a contracts J and b-J C J, then a-b contracts J.

If a contracts both I € P, and J € P,,, then a contracts [ & J € Ppipm.

S v e e

If a contracts I,J € P,, then a contracts INJ and I + J.

Proof. 1. First suppose a - A; C J. If a = 0 then a contracts J by definition, so suppose
a # 0. Then
(ail J)ﬂAlel 2 J

for each 7, so by Lemma the group a~!-J dominates J, or equivalently, .J dominates
a-J. Thus a contracts J. Conversely, suppose that a contracts J. If a = 0 then
a-A; C J so we may take A, = A;. Otherwise, note that a=! - J dominates J, so by

Lemma [T1.8]
A; = (a’l : J) ﬂAi 2 J.

By Lemma [9.25] {A],..., A, } is a uniform basis over J. Furthermore A} C a™' - J,
soa-A; CJ.

HThese correspondences have been verified in [16, Theorem 9.3] and [16, Proposition 10.15].
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2. Multiplication by b induces an automorphism of P, sending the interval [a - J, J] to
la-(b-J),b-J], so G.dim(J/a-J) = G.dim(b- J/(ab) - J).

3. Take a uniform basis Ay, ..., A,, over J. By part 1, we may shrink the A; and assume
that a - A; C J. Shrinking again, we may assume b- A; C J. Then

(a+b)-A; Ca-Ai+b- AiCTJ+J=J
so by part 1, a 4+ b contracts J.

4. Suppose a contracts J and b-J C J. Then

G.dim(J/a-b-J) > G.dim(b- J/a-b-J) = G.dim(J/a - J) = nr.

5. Let Ay,..., A, be a uniform basis in [I,M"], and By, ..., By, be a uniform basis in
[J,M™]. Shrinking the A; and B;, we may assume a-A; C I and a- B; C J. Note that
the sequence

AT AT . . A, ®JI®B,I®DBy,....10 B,

is a uniform basis in [I @ J, M"*t™]|. Multiplication by a collapses each of these uniform
elements into [ @ J (using the fact that a-I C I and a-J C J). Therefore a contracts
I'eoJ.

6. We may assume a # 0. By the previous point, a™' - (I @ J) dominates I & J.
By Lemma [11.10] I + J and I N J are special. Moreover, there is a uniform basis
Ay, ..., An, By, ..., B, in [I ®J M?"] such that for

FTeM" | (Z,7) € A}
— ¥ (%,9) € Bi}
the set {Ay,..., A,} is a uniform basis over IN.J and the set {By, ..., B,} is a uniform

basis over I + J. Furthermore Lemma [11.10] ensures that the A; and B; can be chosen
in[I®dJal (I®J). Thusa-A; CI@®Janda-B; CI® J. Then

Ai={
Bi ={

8l

—

Teld; <= (I,0) el = (a-Za-T)el®] < a-Telnl

SO @ - AZ CINJ. Asthe AZ form a uniform basis over I N.J, it follows that a contracts
I'NJ. Similarly,

(Z,9)eB, = (a-Z,a-y)ecl®d] = a-(Z—-Y)el+J
soa-Bigl—i—J. Thus a contracts I + J. ]

Proposition 11.16. For any special J € P = Py, let Ry be the set of a € M such that
a-J CJ, and let I; be the set of a € M that contract J.
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1. Ry is a subring of Ml, containing M.

1; is an ideal in Rj.

If b e M* then Ry = Ry.;y and I; = 1,.;.

If J is type-definable over M O My, then R; and I; are M -invariant.

If J is non-zero and type-definable over M O My then Ipy C I;.

S v e

If J, and Jy are special, then
Ry NRy, € Ryng,
Iy OVl C 1pna,
7. (14 1;) € R}. Consequently, 1; lies inside the Jacobson radical of R;.
Proof. 1. Straightforward.
2. The set I, is a subset of R;. The fact that I; < Ry is exactly Lemma [TT.15|[3}{4l

3. For I; this is Lemma [IT.I52] For R; this is clear:

a-JCJ = (ab)-JCb-J

4. The definitions are Aut(M/M )-invariant.

5. Let Ay,..., A, be a uniform basis over J. For each i let a; be an element of A; \ J.
Let M’ be a small model containing M and the a;’s.

Claim 11.17. Any € € I contracts J.

Proof. We may assume € # 0. Let D = e~ !- I};,. By Fact a;-e € M'- Iy C Iy,
and so a; € D. Thus
DNAZJ

By Proposition [I1.42, D O J. Then
DNA; D J

so by Lemma [11.8 D dominates J. By Proposition et JDe Iy = D.
Thus e~ - J dominates J. Octaim
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Let € be a realization of the partial type over M’ asserting that ¢ € Iy and ¢ ¢ X
for any light M’-definable set X. This type is consistent because M’-definable basic
neighborhoods are heavy (Fact and no heavy set is contained in a finite union of
light sets (Fact . Then € € Iy C I;. As I; is M-invariant, every realization of
tp(e/M) is in I;. Let Y be the type-definable set of realizations of tp(e/M). For any
M-definable X DY we have

IyCX - XCX-X.
Therefore I,; CY —-Y. BwtY —-Y CI;—I; =1;.
. If a € Ry, and a € Ry,, then
a-(JiNJy)=(a-J)N(a-Jy) CJNJy
so a € Ry ny,- The inclusion I;, NIy, C I;ny, is Lemma|[11.15]6]

. First note that 1 does not contract J. Indeed, G.dim(J/J) =0# r. Thus 1 ¢ I;. As
I; is an ideal, it follows that —1 ¢ 1.

Claim 11.18. If e € I; then /(1 +¢) € ;.

Proof. We may assume € # 0. Using Lemma[11.15]1]choose a uniform basis {4, ..., 4,}
over J such that ¢ - A; C J. For each i choose a; € A;\ J. Then ¢-a; € J, so
(14¢e)-a;, € A;\ J. Let = (1+¢)/e. Then

B-(e-a;)epf-J
(Boe)-as=(142)-ai € A\ J
In particular
(B-I)NA & J,

for every i, so f-.J O J by Proposition 11.4.. Then (8- J)N A; 2 J for every i, so
S - J dominates J by Lemma [11.8] This means that ~! = ¢/(1 + ¢) lies in 1. Octaim

Now if € € I, then
1 €
=1——¢€l1+1;CR;. 0
14 lre o thisiy

Remark 11.19. Proposition [I1.16][f] also holds for R, 1, and Iy, 4,

Speculative Remark 11.20. In Proposition [IT.I6][F, not only is I, a subset of I;, it is
a subideal in the ring R;. One can probably prove this by first increasing M to contain a
non-zero element jo of JJ. Then for any ¢ € I; and a € R;, we have

€-a-j0€[M-RJ-J§[M-J§IM,
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So€-a€ jO_IIM = Iy. Thus Iy - Ry C Ip;. Then one can probably shrink M back to the
original model by the usual methods[]
Suppose we could show that R; was a finite intersection of valuation rings. (As discussed

in Remark [11.13] this was the initial expectation.) Then the ring

would also be a finite intersection of valuation rings. In fact, using the henselianity arguments
from the dp-minimal case, one can show that R would be a single henselian valuation ringm
This would provide a nice strategy for proving the Shelah conjecture in general.

Unfortunately, it turns out that there are dp-finite fields in which I, is not a valuation
ideal [I7, §10]. Therefore a different strategy is needed.

11.3 Mutation and the limiting ring

The next two lemmas provide a way to “mutate” a special group J and obtain a better
special group J’ for which R is closer than R; to being a finite intersection of valuation
rings.

Lemma 11.21. Let J € P be special and non-zero. Let aq,...,a, be elements of M*. Let
J'=JNa-JNay-JN---Na,-J. Then J' is special and non-zero, Ry C Ry, and I; C 1.
Proof. By Proposition each a; - J is special, so the intersection J’ is special by
Lemmal[I1.10] It is nonzero by Proposition[I1.1][6] By Proposition[I1.16][3|we have R; = Rq,.s

and [; = [,,.; for each ¢. Then the inclusions R; C Ry and I; C Iy follow by an interated
application of Proposition [11.16](0] O

Recall that 7 is the breadth of P.

Lemma 11.22. Let J € P be special and non-zero. Let o € M* be arbitrary. Let J =
JN(a-J)yn---n(a"t-J). Let qo,q1,--.,q ber+ 1 distinct elements of My. Then there
is at least one i such that o # q; and

1

=g

€ RJ/.

Proof. For each 0 <7 <7 let

Qi =& —g;

Gi={reM|azeJAair e JA---Najz € J}

H=JNnG ={zeM|zeJAhoyzeJAN - Najz € J}.
Also let

H={zeM|zeJNhaxe JAN---Na"z € J}.

12The details are worked out in [17, Lemma 6.9].
13The details are worked out in [I5, Proposition 7.7, Theorem 9.9].
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Claim 11.23. H; = H for any 1.
Proof. Note a = «; + ¢;. If x € H; then
n.. n.. - n k n—k
a"r = (0 +q)'r = (k)aiqi reJ
k=0

for 0 < n < r, because ofx € J, q?_k € My, and J is an My-vector space. Thus H; C H;
the reverse inclusion follows by symmetry. Uctaim

Because the ¢; are distinct, the (r+ 1) x (r + 1) Vandermonde matrix built from the g; is
invertible. Let f: Mt — M"*! be the M-linear map sending (1, ¢;, ..., ') to the ith basis
vector. Let g : M — M"™! be the map

r

g(x) = (z,ax,...,a"x).

Claim 11.24. The composition
M £> Mr—i—l i> ML (M/J)r-‘rl
has kernel H, and maps G; into 0° & (M/J) & 07"

Proof. The invertible matrix defining f has coefficients in My, and J is closed under multi-
plication by My, so f maps J"*! isomorphically to J"*!. Therefore,

flgx)) € '™ <= g(z) € J''! <= z € H,

where the second <= is the definition of H. Now suppose z € G;. Then g(x) —

(z,qz,...,q'x) € J1 Indeed, for any 0 < n < r we have
e = (v 4+ a:)"r = " -~ (" n=k(qf
« x_(al—i_ql) T qzx—i_;(k)qz (OéZI>,

and the sum is an element of J by definition of G;. As f preserves J" !, it follows that

flg@)) = f(z,qx,...,¢ix) =2 -¢; (mod Jt1),
where ¢; is the ith basis vector. Octaim
Claim 11.25. If (zg,21,...,2,) € Go X +-- X G, has xy + --- + x, € H, then each x; € H.

Proof. For 0 <i <rlet p; : M"™! — M/J be the composition of the ith projection and the
quotient map M — M/J. Claim [11.24] implies that
veH = pi(f(g(x))) =0

veG; = pi(flg(x) =0 ifi#j.
Thus

0=pi(f(g(@o+ -+ ) = pi(f(g(x:)))-
As p;(f(g(x;))) = 0 for j # 1, it follows that p;(f(g(x;))) = 0 for all j. In other words,
f(g(z)) € Jr. By Claim [11.24] x; € H. Octaim
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Now Claim [11.25|implies that the map

([L’O,...,xr)i—>$0_|_...+xr

is injective. The image is D/H for some type-definable D € P, namely D = Gy + - - - + G,.
Then the interval [H™ Gy @ -+ @ G,] in P,y is isomorphic to the interval [H, D] in P;.
Thus

r>br(D/H) =br(Gy/H) + -+ br(G,/H).

Therefore G; = H = H; for at least one ¢. By definition of GG; and H;, this means that
areJN---Nojee = xzeJ (2)
for any x € M. As J # 0, this implies a; # 0. Then (2]) can be rephrased as
a7t JN-Na; " JC (3)
Define

J =Jna TN na Y
=JNnatJN---Nna Y7

where the second equality follows by the proof of Claim . By ,
o I =a TN na " CInatNna T = 0"
Therefore o; ' € Ryv. But
J=Jn--naJ=a"-(JNn---na V) = a7l

Thus, by Proposition [I1.16|[3]
Oé;leRL]//:RJ/. ]

Theorem 11.26. Let J € Py be special, non-zero, and type-definable over M O My. Then
there is an M -invariant ring RS and ideal I5° < R satisfying the following properties:

RT and I are M -invariant.

(1+ 1) C(RY)™, so I is a subideal of the Jacobson radical of R .

The M -infinitesimals I are a subgroup of 15° (and therefore of the Jacobson radical).

[ ] MQQRSO

RY 1s a Bézout domain with at most r maximal ideals.

The field of fractions of RT 1is M.
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Proof. Let P be the set of finite S C M* such that 1 € S. Then P is a commutative monoid
with respect to the product S-S" = {zx-y | x € S,y € S’}. For any S € P and G € Py,

define
G5 = ﬂ s-G.

SES

Note that (G*)% = G5 If G is special and non-zero then by Lemma [11.21] G* is special
and non-zero, and there are inclusions Rg C Rgs and I C Igs. Define sets

Ry == Rys
Sep

157 = Ips.
Sep

These sets are clearly M-invariant. Moreover, the unions are directed: given any S and S’
we have

Rys UR;s C Rjs.s
[JS UIJS’ g IJSASI.

Therefore RS is a ring and I5° is an ideal. The fact that (1 + I5°) C (R3°)* also follows

(using Proposition [11.16][7). Taking S = {1}, we see that I; C I5°. Proposition [11.16]] says
Ing C 1y, 50 Ipy C I as desired. Similarly, My, C R; C RF.

Claim 11.27. If qo, ¢, . . ., g are distinct elements of My and o € M*, then at least one of

/(o —¢;) is in RY.

Proof. By Lemma [11.22] at least one of 1/(a — ¢;) lies in Rys for S ={1,,...,a" '}, Oclaim
It follows formally that RS is a Bézout domain with no more than r maximal ideals. Let

a,b be two elements of R°. We claim that the ideal (a, b) is principal. This is clear if a = 0
or b = 0. Otherwise, let @ = a/b. As M, is infinite, Claim implies that

b 1

a

a—qb_g—q

€ RY

for some ¢ € My. Then the principal ideal (a — ¢b) << RS contains b, hence gb and thus a.
Therefore (a — ¢b) = (a, b).

Next, we show that RS has at most r maximal ideals. Suppose for the sake of contra-
diction that there were distinct maximal ideals mg, ..., m, in R?. As R is an My-algebra,
each quotient Ry /m; is a field extending M. Take distinct qo,...,q € My, and find an
element x € RY such that x = ¢; (mod m;) for each ¢, by the Chinese remainder theorem.
Then x —¢q; € m; C RP\ (RY)* for each i. So 1/(z—¢;) does not lie in Ry for any 0 < i <,
contrary to Claim [I1.27]

Lastly, note that if = is any element of M*, then 1/(z —¢q) € R for some q € My, q # .
As ¢ € My C RT, the field of fractions of R} contains z. So the field of fractions must be
all of M. O
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11.4 From Bézout domains to valuation rings

Remark 11.28. Let R be a Bézout domain.

1. For each maximal ideal m, the localization R, is a valuation ring on the field of fractions

of R.
2. R is the intersection of the valuation rings Ry,.
See [2, VII, §2, Exercise 7a] and [2, II, §3, no. 3, Corollary 4], respectively.

Theorem 11.29. Let M be a sufficiently saturated dp-finite field, possibly with extra struc-
ture. Suppose M is not of finite Morley rank. Then there is a small set A C M and a
non-trivial A-invariant valuation ring.

Proof. Take M, as usual in this section. By Proposition there is a non-zero special
J € Pi. The group J is type-definable over some small M DO M,. Let R be the R}
of Theorem [[1.26l Then R is an M-invariant Bézout domain with at most r maximal
ideals, the Jacobson radical of R is non-zero (because it contains /), and Frac(R) = M.
Let my,...,m; enumerate the maximal ideals of R. Let O; be the localization R,,. By
Remark [I1.28] each O; is a valuation ring on M, and

R=0:N---N0Oy.

At least one O; is non-trivial; otherwise R = M and has Jacobson radical 0[] Without loss
of generality O; is non-trivial. By the Chinese remainder theorem, choose a € R such that
a=1 (mod my) and a =0 (mod m;) for i # 1. We claim that O, is Aut(M/aM )-invariant.
If 0 € Aut(M/aM), then o € Aut(M/M) so o preserves R setwise. It therefore permutes
the finite set of maximal ideals. As m; is the unique maximal ideal not containing a, it must
be preserved (setwise). Therefore o preserves the localization O; setwise. O

Remark 11.30. Stable fields do not admit non-trivial invariant valuation rings [15, Lemma 2.1].
Consequently, Theorem [11.29| can be used to give an extremely roundabout proof of Halevi
and Palacin’s theorem that stable dp-finite fields have finite Morley rank [12, Proposition 7.2].

12 Shelah conjecture and classification

Proposition 12.1. Let K be a sufficiently saturated dp-finite field of positive characteristic.
Then one of the following holds:

e K has finite Morley rank (and is therefore finite or algebraically closed).

o K admits a non-trivial henselian valuation.

“Tracing through the proof, here is what explicitly happens. If ¢ € I; then —1/¢ cannot be in RP,
orelsee € Iy CI; ClIys <Rys and —1/e € Rys for large enough S, so that —1 € s, contradicting

Proposition [IT.16][7}
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Proof. This is Fact [8.5 and Theorem [11.29] O

Lemma 12.2. Let K be a sufficiently saturated dp-finite field of positive characteristic.
Assume K is infinite. Let Oy be the intersection of all K-definable valuation rings on K.
Then O is a henselian valuation ring on K whose residue field is algebraically closed.

Proof. The proof for dp-minimal fields ([I4, Theorem 9.5.7]) goes through without changes,
using Proposition together with [13, Theorems 2.6, 2.8]. Additionally, we must rule out
the possibility that the residue field is real closed or finite. The first cannot happen because
we are in positive characteristic. The second cannot happen because K is Artin-Schreier
closed, a property which transfers to the residue field. O

Corollary 12.3. Let K be a sufficiently saturated infinite dp-finite field of positive charac-
teristic. If every definable valuation on K 1is trivial, then K is algebraically closed.

Corollary 12.4. Let K be a dp-finite field of positive characteristic. Then one of the fol-
lowing holds:

o K is finite.
e K is algebraically closed.
e K admits a non-trivial definable henselian valuation.

Proof. Suppose K is neither finite nor algebraically closed. Let K’ = K be a sufficiently
saturated elementary extension. Then K’ is neither finite nor algebraically closed. By
Corollary there is a non-trivial definable valuation O = ¢(K’,a) on K'. The statement
that ¢(z;a) cuts out a valuation ring is expressed by a 0-definable condition on a, so we
can take a € dcl(K). Then ¢(K,a) is a non-trivial valuation ring on K, henselian by [13]
Theorem 2.8]. O

So the Shelah conjecture holds for dp-finite fields of positive characteristic.

By [11, Proposition 3.9, Remark 3.10, and Theorem 3.11], this implies the following
classification of dp-finite fields of positive characteristic: up to elementary equivalence, they
are exactly the Hahn series fields F,((I')) where I' is a dp-finite p-divisible group. Dp-finite
ordered abelian groups have been algebraically characterized and are the same thing as
strongly dependent ordered abelian groups [5], [7, [10].
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