

Dp-finite fields I(B): positive characteristic

Will Johnson

January 15, 2022

Abstract

We partially generalize the known results on dp-minimal fields to dp-finite fields. We prove a dichotomy: if K is a sufficiently saturated dp-finite expansion of a field, then either K has finite Morley rank or K has a non-trivial $\text{Aut}(K/A)$ -invariant valuation ring for some small set A . In the positive characteristic case, we can even obtain a henselian valuation ring. Using this, we classify the positive characteristic dp-finite pure fields.

8 Introduction

The two main conjectures for NIP fields are

- The *henselianity conjecture*: any NIP valued field (K, \mathcal{O}) is henselian.
- The *Shelah conjecture*: any NIP field K is algebraically closed, real closed, finite, or admits a non-trivial henselian valuation.

These conjectures are known to imply a full classification of dp-finite fields, i.e., fields of finite dp-rank [11]. See [20] for a reference on NIP and dp-rank, and [6] for a reference on valued fields and henselianity.

In an earlier paper [13], we proved the henselianity conjecture for positive characteristic NIP fields. Continuing [13], we prove the Shelah conjecture for positive characteristic dp-finite fields. This yields the classification of positive characteristic dp-finite fields.

Our main technical result is the following statement, which holds in any characteristic.

Theorem 8.1 (= Theorem 11.29). *Let $(K, +, \cdot, \dots)$ be a sufficiently saturated dp-finite field, possibly with extra structure. Then either*

- *K has finite Morley rank, or*
- *There is an $\text{Aut}(K/A)$ -invariant non-trivial valuation ring on K for some small set A .*

Unfortunately, we can only obtain a henselian valuation ring in positive characteristic.

2010 Mathematical Subject Classification: 03C45

Key words and phrases: dp-rank, NIP fields, modular lattices

8.1 The story so far

We review several facts from [13]. Let $(\mathbb{M}, +, \cdot, \dots)$ be a field, possibly with extra structure. Assume

- \mathbb{M} is sufficiently saturated
- \mathbb{M} has finite dp-rank
- \mathbb{M} does not have finite Morley rank.

Under these assumptions, we defined a notion of *heavy* and *light* definable sets [13, Definition 4.19]. We proved the following:

Fact 8.2 ([13, Theorem 4.20]).

1. A definable set $D \subseteq \mathbb{M}$ is heavy if and only if it is not light.
2. Light sets form an ideal.
3. Heaviness/lightness is definable in families.
4. Heaviness/lightness is preserved by affine symmetries $x \mapsto ax + b$.

If X, Y are definable subsets of \mathbb{M} , we defined

$$X -_\infty Y := \{a \in \mathbb{M} : X \cap (Y + a) \text{ is heavy}\}.$$

Then we defined a *basic neighborhood* to be a set of the form $X -_\infty X$ for heavy definable $X \subseteq \mathbb{M}$. We proved:

Fact 8.3 ([13, Proposition 6.4]).

1. Every basic neighborhood is heavy.
2. The family of basic neighborhoods is downwards directed.

For any small model $M \preceq \mathbb{M}$, we defined the set I_M of M -infinitesimals to be the intersection of all M -definable basic neighborhoods. We proved:

Fact 8.4 ([13, Remark 6.8, Theorem 6.16, and Proposition 6.18]).

1. I_M is an additive subgroup of \mathbb{M} , type-definable over M .
2. Every definable set containing I_M is heavy.
3. I_M is minimal among subgroups satisfying the previous two conditions.
4. I_M is a non-zero M -linear proper subspace of \mathbb{M} .

Recall that a set is “ A -invariant” if it is $\text{Aut}(\mathbb{M}/A)$ -invariant for some small set A . This is a very weak form of A -definability.

Fact 8.5 ([13, Theorem 7.5]). *Suppose \mathbb{M} has positive characteristic. If there is a small set A and a non-trivial A -invariant valuation ring \mathcal{O} , then there is a small set A' and a non-trivial A' -invariant henselian valuation ring \mathcal{O}' .*

In order to prove the Shelah conjecture for positive characteristic dp-finite fields, it therefore suffices to produce a non-trivial A -invariant valuation ring. This is Theorem 8.1.

8.2 Constructing an invariant valuation ring

Assume \mathbb{M} is unstable and highly saturated. Fix a small submodel $M_0 \preceq \mathbb{M}$. Let \mathcal{P} be the poset of type-definable M_0 -linear subspaces $G \subseteq \mathbb{M}$ that are *00-connected*, in the sense that $G = G^{00}$. Then \mathcal{P} is always a *modular lattice*, with lattice operations given by

$$\begin{aligned} G \vee H &= G + H \\ G \wedge H &= (G \cap H)^{00}. \end{aligned}$$

By [3, Proposition 4.5.2], \mathcal{P} has *breadth* at most $r = \text{dp-rk}(\mathbb{M})$: for any $G_1, \dots, G_{r+1} \in \mathcal{P}$, there is some i such that

$$G_1 \wedge \dots \wedge G_{r+1} = G_1 \wedge \dots \wedge G_{i-1} \wedge G_{i+1} \wedge \dots \wedge G_{r+1}.$$

See [8, Chapter V] for background on lattice theory, modularity, and breadth.

In the dp-minimal case ($r = 1$), \mathcal{P} is linearly ordered. Therefore, for $J \in \mathcal{P}$ the set

$$\{a \in \mathbb{M} : a \cdot J \subseteq J\}$$

is a valuation ring on \mathbb{M} . Taking J to be the M_0 -infinitesimals I_{M_0} , we obtain a non-trivial valuation ring on \mathbb{M} , proving Theorem 8.1.

In higher ranks, the situation is more complicated. To begin, we need some lattice-theoretic way to detect valuations.

If M is an R -module, let $\text{Sub}_R(M)$ denote the lattice of R -submodules of M .

Definition 8.6 ([16, Definition 4.1]). An *r-inflator* on \mathbb{M} consists of a semisimple M_0 -algebra S of length r , and a family of maps

$$f_n : \text{Sub}_{\mathbb{M}}(\mathbb{M}^n) \rightarrow \text{Sub}_S(S^n)$$

satisfying the following axioms:

1. Each f_n is order-preserving;

$$X \leq Y \implies f_n(X) \leq f_n(Y).$$

2. Each f_n is $GL_n(M_0)$ -equivariant.

3. The f_n are compatible with \oplus :

$$f_{n+m}(X \oplus Y) = f_n(X) \oplus f_m(Y).$$

4. Each f_n scales lengths by a factor of r :

$$\ell_S(f_n(X)) = r \cdot \dim_{\mathbb{M}}(X).$$

If $(\mathcal{O}, \mathfrak{m})$ is a valuation ring on \mathbb{M} with residue field $k = \mathcal{O}/\mathfrak{m}$, then there is a 1-inflator given by

$$\begin{aligned} f_n : \text{Sub}_{\mathbb{M}}(\mathbb{M}^n) &\rightarrow \text{Sub}_k(k^n) \\ X &\mapsto (X \cap \mathcal{O}^n + \mathfrak{m}^n)/\mathfrak{m}^n. \end{aligned}$$

Modulo fine print, all 1-inflators arise this way [16, Theorem 5.20]. Thus, 1-inflators on \mathbb{M} are equivalent to valuations, and r -inflators are some kind of “generalized valuations.”

In a later paper [16], we will give a proof of Theorem 8.1 in two steps:

Step 1 (= [16, Theorem 9.3]). *If $J \in \mathcal{P}$ satisfies a special property (Definition 11.3 below), then J canonically determines an r -inflator $\{f_n\}_{n \in \mathbb{N}}$ for some $r \leq \text{dp-rk}(\mathbb{M})$.*

Step 2 (= [16, Theorem 10.12]). *Any r -inflator $\{f_n\}_{n \in \mathbb{N}}$ on \mathbb{M} canonically determines a finite set of valuation rings on \mathbb{M} .*

The present paper is a simplified proof, avoiding all use of inflators, but losing some of the corresponding intuition.

The proof uses a certain construction of Puczyłowski [19] which associates to any modular lattice M a modular pregeometry $U(M)$, as well as a map Φ from M to the lattice \overline{M} of closed sets in $U(M)$. We will review this construction in §9.4 below. For an introduction to pregeometries, see [21] or [8, §V.3.3].

Returning to our saturated dp-finite \mathbb{M} , let \mathcal{P}_n be the lattice of 00-connected type-definable M_0 -linear subspaces of \mathbb{M}^n . For example, $\mathcal{P}_1 = \mathcal{P}$. Fix some $J \in \mathcal{P}_1$. For each n , consider the interval $[J^n, \mathbb{M}^n] \subseteq \mathcal{P}_n$. Using Puczyłowski’s construction, we get a map

$$\begin{aligned} f_n : \text{Sub}_{\mathbb{M}}(\mathbb{M}^n) &\rightarrow \overline{[J^n, \mathbb{M}^n]} \\ V &\mapsto \Phi(V + J^n). \end{aligned}$$

When J satisfies a certain technical condition (Definition 11.3), this map scales lengths proportionally (Remark 11.12). In a later paper [16, Corollary 7.29, Theorem 9.3], we will build isomorphisms $\overline{[J^n, \mathbb{M}^n]} \cong \text{Sub}_S(S^n)$ and verify the inflator axioms, for some semisimple algebra S .

With the maps f_n in hand, we extract a finite set of valuation rings in §11.2–11.4. The intuition from inflators is explained in Remark 11.13.

Remark 8.7. The infinitesimals I_{M_0} play a minor but critical role in the above construction. Specifically, the existence of I_{M_0} rules out the degenerate possibility $\mathcal{P}_1 = \{0, \mathbb{M}\}$.

8.3 A 00-technicality

In the lattices \mathcal{P}_n , the \wedge -operator is given by

$$A \wedge B = (A \cap B)^{00}.$$

The $(-)^{00}$ causes some technical problems.¹ Luckily, by choosing M_0 carefully, we can get rid of the $(-)^{00}$.

Theorem (= Corollary 10.7). *There is a small submodel $M_0 \preceq \mathbb{M}$ such that $J = J^{00}$ for every type-definable M_0 -linear subspace $J \leq \mathbb{M}$. Consequently, the lattice operations on \mathcal{P} are given by*

$$\begin{aligned} G \vee H &= G + H \\ G \wedge H &= G \cap H. \end{aligned}$$

This is a corollary of the following uniform bounding principle for dp-finite abelian groups:

Theorem (= Theorem 10.4). *If H is a type-definable subgroup of a dp-finite abelian group G , then $|H/H^{00}|$ is bounded by a cardinal $\kappa(G)$ depending only on G .*

8.4 Outline

In §9, we review some abstract facts about modular lattices, including the notions of breadth and Goldie dimension (§9.2) and Puczyłowski's construction of a modular pregeometry on uniform elements (§9.4). We will also prove a subadditivity theorem for breadth (Proposition 9.19), which is probably known to experts in lattice theory.

In §10 we prove the technical fact that $|H/H^{00}|$ is uniformly bounded as H ranges over type-definable subgroups of a dp-finite abelian group. In §11, we apply these tools to construct valuation rings on dp-finite fields. §12 we verify the Shelah conjecture for positive characteristic dp-finite fields, and enumerate the consequences.

9 Modular lattices

Recall that a lattice is *modular* if the identity

$$(x \vee a) \wedge b = (x \wedge b) \vee a$$

holds whenever $a \leq b$. See [8, Chapter V] for background on modular lattices. Modularity is equivalent to the statement that for any a, b , the interval $[a \wedge b, a]$ is isomorphic as a poset to $[b, a \vee b]$ via the maps

$$\begin{aligned} [a \wedge b, a] &\rightarrow [b, a \vee b] \\ x &\mapsto x \vee b \end{aligned}$$

¹In the proof of Proposition 11.4, we need $(a \in G \text{ and } a \in H)$ to imply $a \in G \wedge H$.

and

$$\begin{aligned}[b, a \vee b] &\rightarrow [a \wedge b, a] \\ x &\mapsto x \wedge a.\end{aligned}$$

This is the “isomorphism theorem for modular lattices” [8, Theorem 348].

We will write the least and greatest elements of a lattice as \perp and \top , when they exist. In what follows, we require “lattice homomorphisms” to preserve \vee and \wedge , but not necessarily \top and \perp when they exist. A “sublattice” is a subset closed under \vee or \wedge , but not necessarily containing \top and \perp when they exist.

Abusing notation, we will write $[\perp, a]$ to denote $\{x \in P : x \leq a\}$, regardless of whether \perp exists. Similarly, $[a, \top]$ denotes $\{x \in P : x \geq a\}$, regardless of whether \top exists.

9.1 Independence and cubes

Let $(P, <)$ be a modular lattice with least element \perp .

Definition 9.1. A finite sequence $a_1, \dots, a_n \in P \setminus \{\perp\}$ is *independent* if $a_k \wedge \bigvee_{i=1}^{k-1} a_i = \perp$ for $2 \leq k \leq n$.

Fact 9.2 ([8, Theorem 360]). *Independence is permutation invariant: if a_1, \dots, a_n is independent and π is a permutation of $[n]$, then $a_{\pi(1)}, \dots, a_{\pi(n)}$ is independent.*

Therefore, independence is really a property of the set $\{a_1, \dots, a_n\}$ rather than the sequence a_1, \dots, a_n .

More generally, we can define a relative notion of independence *over* an element:

Definition 9.3. Let $(P, <)$ be a modular lattice and $b \in P$ be an element. A sequence a_1, \dots, a_n is *independent over b* if $a_i > b$ for each i , and

$$a_k \wedge \bigvee_{i < k} a_i = b$$

for $2 \leq k \leq n$.

In other words, an independent sequence over b is an independent sequence in the sublattice $[b, \top] \subseteq P$.

Definition 9.4. An *n -cube* in a modular lattice $(P, <)$ is a sublattice isomorphic to the powerset $\mathcal{P}ow([n])$. The *base* of the cube is its least element.

Equivalently, an n -cube in P is a family of elements $\{a_S\}_{S \subseteq [n]}$ such that

$$\begin{aligned}a_{S_1 \cup S_2} &= a_{S_1} \vee a_{S_2} \\ a_{S_1 \cap S_2} &= a_{S_1} \wedge a_{S_2} \\ S_1 \subsetneq S_2 \implies a_{S_1} &< a_{S_2}.\end{aligned}$$

The base is a_\emptyset .

Fact 9.5 ([8, Corollary 359]). *If a_1, \dots, a_n is independent over b , and we define*

$$a_S = \begin{cases} b & S = \emptyset \\ \bigvee_{i \in S} a_i & S \neq \emptyset, \end{cases}$$

for $S \subseteq [n]$, then $\{a_S\}_{S \subseteq [n]}$ is an n -cube with base b .

Conversely, if $\{a_S\}_{S \subseteq [n]}$ is an n -cube with base b , and we define $a_i = a_{\{i\}}$, then the sequence a_1, \dots, a_n is easily seen to be independent over b . We conclude that independent sequences and cubes are in bijection:

Proposition 9.6. *If $(P, <)$ is a modular lattice, if $b \in P$, and $n \in \mathbb{N}$, then there is a bijection between n -cubes with base b and sequences a_1, \dots, a_n independent over b .*

9.2 Goldie dimension and breadth

Let $(P, <)$ be a modular lattice with least element \perp .

Definition 9.7 ([9, Definition 6]). The *Goldie dimension* $\text{G.dim}(P)$ is

$$\sup\{n \in \mathbb{N} \mid \text{There is an independent sequence } a_1, \dots, a_n\},$$

or ∞ if no finite supremum exists.

Goldie dimension is also called *uniform dimension*. By Proposition 9.6, we can characterize Goldie dimension in terms of cubes:

Proposition 9.8. *The Goldie dimension $\text{G.dim}(P)$ is the supremum of $n \in \mathbb{N}$ such that P has an n -cube with base \perp .*

Now let $(P, <)$ be any modular lattice, not necessarily with a least element \perp .

Lemma 9.9. *For $n \in \mathbb{N}$, the following are equivalent:*

1. *There are $a_1, \dots, a_n \in P$ such that*

$$a_1 \wedge \cdots \wedge a_n \neq a_1 \wedge \cdots \wedge a_{i-1} \wedge a_{i+1} \wedge \cdots \wedge a_n$$

for all i .

2. *There is $b \in P$ and a sequence a_1, \dots, a_n independent over b .*
3. *There is an n -cube in P .*
4. *There are $a_1, \dots, a_n \in P$ such that*

$$a_1 \vee \cdots \vee a_n \neq a_1 \vee \cdots \vee a_{i-1} \vee a_{i+1} \vee \cdots \vee a_n$$

for all i .

Proof. We first prove (1) \implies (2) \implies (3) \implies (4):

(1) \implies (2): Let a_i be as in (1). Define

$$b = a_1 \wedge \cdots \wedge a_n$$

$$c_i = a_1 \wedge \cdots \wedge a_{i-1} \wedge a_{i+1} \wedge \cdots \wedge a_n.$$

By assumption $c_i > b$. Note that $c_i \leq a_k$ for $i \neq k$. Therefore

$$\bigvee_{i < k} c_i \leq a_k$$

$$c_k \wedge \bigvee_{i < k} c_i \leq c_k \wedge a_k = b.$$

Therefore the c_i are independent over b , proving (2).

(2) \implies (3): Proposition 9.6.

(3) \implies (4): Let $\{a_S\}_{S \subseteq [n]}$ be an n -cube. Define $a_i = a_{\{i\}}$ for $1 \leq i \leq n$. Then for any i ,

$$a_1 \vee \cdots \vee a_n = a_{\{1, \dots, n\}}$$

$$a_1 \vee \cdots \vee a_{i-1} \vee a_{i+1} \vee \cdots \vee a_n = a_{\{1, \dots, i-1, i+1, \dots, n\}} \neq a_{\{1, \dots, n\}}$$

Therefore

$$a_1 \vee \cdots \vee a_n \neq a_1 \vee \cdots \vee a_{i-1} \vee a_{i+1} \vee \cdots \vee a_n,$$

proving (4).

Having proved (1) \implies (4), the reverse implication (4) \implies (1) follows by duality. \square

Remark 9.10. The equivalence (1) \iff (4) holds in any lattice [8, Exercise I.1.20], without assuming modularity.

Definition 9.11. The *breadth* $\text{br}(P)$ of a modular lattice P is

$$\text{br}(P) = \sup\{n \in \mathbb{N} \mid \text{There is an } n\text{-cube in } P\},$$

or ∞ if there is no finite supremum.

Note $\text{br}(P) \geq n$ if the equivalent conditions of Lemma 9.9 hold.

Remark 9.12. The following are equivalent:

1. $\text{br}(P) \leq n$.
2. For any $a_1, \dots, a_{n+1} \in P$, there is i such that

$$a_1 \wedge \cdots \wedge a_{n+1} = a_1 \wedge \cdots \wedge a_{i-1} \wedge a_{i+1} \wedge \cdots \wedge a_{n+1}.$$

3. For any finite subset $S \subseteq P$, there is $S' \subseteq S$ with

$$\bigwedge S' = \bigwedge S$$

$$|S'| \leq n$$

Indeed, (1) \iff (2) holds by Lemma 9.9. Condition (2) is a special case of (3), and (2) \implies (3) holds by an inductive argument.

Condition (3) is the conventional definition of “breadth” in lattice theory [1, Exercise II.5.6] (or [8, Exercise I.1.19]).

Warning. In the model theory of modules, there is an unrelated notion of “breadth” in modular lattices, due to Prest [18, p. 205].

Definition 9.13. Let $(P, <)$ be a modular lattice, and a, b be elements with $a \geq b$. Then $\text{G. dim}(a/b)$ and $\text{br}(a/b)$ denote the Goldie dimension and breadth of the sublattice $[b, a] \subseteq P$.

Lemma 9.14. Let $(P, <)$ be a modular lattice. Suppose $a \geq b$.

1. $\text{G. dim}(a/b) \leq \text{br}(a/b)$.
2. $\text{br}(a/b) = \sup\{\text{G. dim}(a/c) : c \in [b, a]\}$.

Proof. Clear from Proposition 9.8 and Definition 9.11. \square

9.3 Subadditivity of breadth

Work in a modular lattice $(P, <)$.

Lemma 9.15. If $x < y$ and b is arbitrary, then at least one of the following strict inequalities holds:

$$x \wedge b < y \wedge b$$

$$x \vee b < y \vee b.$$

Proof. Otherwise, $x \wedge b = y \wedge b$ and $x \vee b = y \vee b$. Then

$$y = (b \vee y) \wedge y = (b \vee x) \wedge y = (b \wedge y) \vee x = (b \wedge x) \vee x = x,$$

where the middle equality is the modular law. \square

Lemma 9.16. Let $\{a_S\}_{S \subseteq [n]}$ be an n -cube in P . Let b be some element.

1. Suppose that $a_S \wedge b > a_\emptyset \wedge b$ for all $S \supsetneq \emptyset$. Then the sublattice $[\perp, b]$ has breadth at least n .
2. Suppose that $a_S \vee b < a_{[n]} \vee b$ for all $S \subsetneq [n]$. Then the sublattice $[b, \top]$ has breadth at least n .

Proof. We prove (1); (2) is dual. Define $a_i = a_{\{i\}}$ for $1 \leq i \leq n$. By assumption, $a_i \wedge b > a_{\emptyset} \wedge b$. For any $2 \leq k \leq n$ we have

$$(a_k \wedge b) \wedge \bigvee_{i < k} (a_i \wedge b) \leq b$$

$$(a_k \wedge b) \wedge \bigvee_{i < k} (a_i \wedge b) \leq a_k \wedge \bigvee_{i < k} a_i = a_{\emptyset}.$$

Therefore

$$(a_k \wedge b) \wedge \bigvee_{i < k} (a_i \wedge b) \leq a_{\emptyset} \wedge b.$$

So the sequence $a_1 \wedge b, a_2 \wedge b, \dots, a_n \wedge b$ is independent over $a_{\emptyset} \wedge b$. This sequence lies in $[\perp, b]$ which must have breadth at least n by Lemma 9.9. \square

Lemma 9.17. *Let $x \leq b \leq y$ be three elements of P . If there is an n -cube $\{a_S\}_{S \subseteq [n]}$ in $[x, y]$, then there is an m -cube in $[x, b]$ and an ℓ -cube in $[b, y]$ for some $m + \ell = n$.*

Proof. Passing to the sublattice $[x, y]$, we may assume $x = \perp$ and $y = \top$. Take $S_0 \subseteq [n]$ maximal such that $a_{S_0} \wedge b = a_{\emptyset} \wedge b$. Let $\ell = |S_0|$. Then $\{a_S\}_{S \subseteq S_0}$ is an ℓ -cube. For any $S \subsetneq S_0$, we have

$$a_S \wedge b = a_{S_0} \wedge b$$

by choice of S_0 , and then

$$a_S \vee b < a_{S_0} \vee b$$

by Lemma 9.15. By Lemma 9.16.2, the lattice $[b, \top]$ has breadth at least ℓ .

Likewise, $\{a_S\}_{S \supseteq S_0}$ is an m -cube, for $m = n - \ell = |[n] \setminus S_0|$. By choice of S_0 , we have

$$a_{S_0} \wedge b < a_S \wedge b$$

for any $S \supsetneq S_0$. By Lemma 9.16.1, the lattice $[\perp, b]$ has breadth at least m . \square

Lemma 9.18. *If M_1, M_2 are two modular lattices, then*

$$\text{br}(M_1 \times M_2) \geq \text{br}(M_1) + \text{br}(M_2).$$

Proof. Suppose M_i contains an n_i cube for $i = 1, 2$. Take a sublattice $C_i \subseteq M_i$ isomorphic to $\text{Pow}([n_i])$. Then $C_1 \times C_2$ is isomorphic to $\text{Pow}([n_1 + n_2])$, and $C_1 \times C_2$ is a sublattice of $M_1 \times M_2$. So $\text{br}(M_1 \times M_2) \geq n_1 + n_2$. \square

Recall the notation $\text{br}(a/b)$ for the breadth of $[b, a]$.

Proposition 9.19. *Let (P, \leq) be a modular lattice.*

1. *If $a \geq b$, then*

$$\text{br}(a/b) = 0 \iff a = b.$$

2. If $a \geq b \geq c$, then

$$\max(\text{br}(a/b), \text{br}(b/c)) \leq \text{br}(a/c) \leq \text{br}(a/b) + \text{br}(b/c).$$

3. If a, b are arbitrary, then

$$\begin{aligned} \text{br}(a/a \wedge b) &= \text{br}(a \vee b/b) \\ \text{br}(b/a \wedge b) &= \text{br}(a \vee b/a) \\ \text{br}(a \vee b/a \wedge b) &= \text{br}(a/a \wedge b) + \text{br}(b/a \wedge b). \end{aligned}$$

Proof. 1. If $a = b$, then $[b, a]$ is a singleton, so it cannot contain a 1-cube. If $a > b$, then $\{a, b\}$ is a 1-cube in $[a, b]$.

2. The inequalities

$$\begin{aligned} \text{br}(a/b) &\leq \text{br}(a/c) \\ \text{br}(b/c) &\leq \text{br}(a/c) \end{aligned}$$

hold because $[b, a]$ and $[c, b]$ are sublattices of $[c, a]$. Any n -cube in $[b, a]$ or $[c, b]$ would give an n -cube in $[c, a]$. The other inequality

$$\text{br}(a/c) \leq \text{br}(a/b) + \text{br}(b/c)$$

holds by Lemma 9.17.

3. The equality $\text{br}(a/a \wedge b) = \text{br}(a \vee b/b)$ holds because of the isomorphism $[a \wedge b, a] \cong [b, a \vee b]$. The second equality holds similarly. Lastly, note that

$$\text{br}(a \vee b/a \wedge b) \leq \text{br}(a/a \wedge b) + \text{br}(a \vee b/a) = \text{br}(a/a \wedge b) + \text{br}(b/a \wedge b)$$

by the previous points. By [8, Theorem 364], the interval $[a \wedge b, a \vee b]$ contains a sublattice isomorphic to $[a \wedge b, a] \times [a \wedge b, b]$. By Lemma 9.18,

$$\text{br}(a \vee b/a \wedge b) \geq \text{br}(a/a \wedge b) + \text{br}(b/a \wedge b).$$

□

Corollary 9.20. If a_1, \dots, a_n are independent over b , then

$$\text{br}(a_1 \vee \dots \vee a_n/b) = \sum_{i=1}^n \text{br}(a_i/b).$$

The analogue for Goldie dimension is as follows:

Fact 9.21 ([9, Corollary 7(b)]). If a_1, \dots, a_n are independent over b , then

$$\text{G. dim}(a_1 \vee \dots \vee a_n/b) = \sum_{i=1}^n \text{G. dim}(a_i/b).$$

9.4 The pregeometry on uniform elements

In module theory, a submodule $N \subseteq M$ is *essential* if every non-zero submodule of M intersects N . A non-zero module M is *uniform* if every non-zero submodule is essential, i.e., any two non-zero submodules of M have non-zero intersection. For any module M , Dawson constructed a natural *pregeometry* on the set of uniform submodules [4]. For background on pregeometries (also called *independence systems* and *matroids*), see [21] or [8, §V.3.3].

Dawson's construction was generalized from modules to modular lattices by Puczyłowski [19]. Fix a modular lattice $(P, <)$ with least element \perp .

Definition 9.22 ([19, p. 305]). An element $a > \perp$ is *essential* if for every $b > \perp$, we have $a \wedge b > \perp$. The lattice P is *uniform* if every $a > \perp$ is essential. An element $a > \perp$ is *uniform* if the sublattice $[\perp, a]$ is uniform. The set of uniform elements in P is denoted $U(P)$.

Tracing through the definitions, $a \in P$ is uniform if for any $x, y \in P$ with $\perp < x \leq a$ and $\perp < y \leq a$, we have $x \wedge y > \perp$. Equivalently, $a > \perp$ is uniform iff $\text{G.dim}(a/\perp) = 1$.

Theorem 9.23 (Puczyłowski [19]). *There is a pregeometry on $U(P)$ with the following properties:*

1. *A finite set $a_1, \dots, a_n \in U(P)$ is independent with respect to the pregeometry if and only if $\{a_1, \dots, a_n\}$ is lattice-theoretically independent (Definition 9.1).*
2. *The pregeometry is modular. In other words, the lattice of closed sets is modular.*
3. *For any $x \in P$, define*

$$\Phi(x) = \{a \in U(P) : x \wedge a > \perp\}.$$

Then $\Phi(x)$ is a closed set in the pregeometry.

Suppose in addition that $\text{G.dim}(P) < \infty$. Then

4. *Every closed set is of the form $\Phi(x)$.*
5. *The rank of the pregeometry is $\text{G.dim}(P)$. In particular, the rank is finite.*
6. *If $a_1, \dots, a_n \in U(P)$ is a basis, then $a_1 \vee \dots \vee a_n$ is essential in P .*

Proof. See Theorems 4, 5, 8, 9 in [19]. □

We call this pregeometry the *pregeometry on uniform elements*.

Definition 9.24. A *uniform basis* in $(P, <)$ is a basis in the pregeometry on uniform elements, i.e., a maximal independent set of uniform elements.

Lemma 9.25. *Let a_1, \dots, a_n be a uniform basis for P . Suppose $\perp < a'_i \leq a_i$ for each i . Then a'_1, \dots, a'_n is also a uniform basis for P .*

Proof. If a is uniform and $\perp < a' \leq a$, then a' is also uniform. The set $\{a'_1, \dots, a'_n\}$ is therefore an independent set in the pregeometry on uniform elements. Since it has the same cardinality as a basis, it must itself be a basis. \square

Lemma 9.26. *Let (P, \leq) be a modular lattice with least element \perp . Suppose $\text{G. dim}(P) < \infty$. let a be any element of P . Then there is a uniform basis $b_1, \dots, b_n, c_1, \dots, c_m$ such that*

- *Each $b_i \leq a$.*
- *The sequence a, c_1, \dots, c_m is independent.*

Proof. Let $n = \text{G. dim}(a/\perp)$. Let b_1, \dots, b_n be a uniform basis in the sublattice $[\perp, a]$. Then each b_i is a uniform element, and the b_i are independent. Therefore the set $\{b_1, \dots, b_n\}$ is an independent set in $U(P)$. We can find c_1, \dots, c_m such that $\{b_1, \dots, b_n, c_1, \dots, c_m\}$ is a uniform basis in P . We claim that c_1, \dots, c_m, a is independent. Otherwise,

$$a \wedge \bigvee_{i=1}^m c_i > \perp.$$

By Theorem 9.23.6, $\bigvee_{i=1}^n b_i$ is essential in $[\perp, a]$. Therefore

$$\left(\bigvee_{i=1}^n b_i \right) \wedge \left(\bigvee_{i=1}^m c_i \right) = \left(\bigvee_{i=1}^n b_i \right) \wedge a \wedge \left(\bigvee_{i=1}^m c_i \right) > \perp.$$

But the sequence $b_1, \dots, b_n, c_1, \dots, c_m$ is independent, so by Fact 9.5,

$$\left(\bigvee_{i=1}^n b_i \right) \wedge \left(\bigvee_{i=1}^m c_i \right) = \perp,$$

a contradiction. \square

Remark 9.27. In the proof of Lemma 9.26, each b_i belongs to the set $\Phi(a)$ of Theorem 9.23.3, since $b_i \wedge a = b_i > \perp$. Thus $\{b_1, \dots, b_n\}$ is an independent subset of $\Phi(a)$. Moreover, $\{b_1, \dots, b_n\}$ is a maximal independent subset of $\Phi(a)$: if $\{b_1, \dots, b_n, c\}$ is independent for some uniform element $c \in \Phi(a)$, then $\{b_1, \dots, b_n, c \wedge a\}$ is an independent set of uniform elements in $[\perp, a]$, contradicting the choice of the b_i .

Therefore, the rank of the closed set $\Phi(a)$ is equal to n . The b_i were chosen to be a uniform basis in $[\perp, a]$, so by Theorem 9.23.5, $n = \text{G. dim}(a/\perp)$. Therefore,

The rank of the closed set $\Phi(a)$ is equal to $\text{G. dim}(a/\perp)$.

We will often use relative notions of the above construction:

Definition 9.28. Let $(P, <)$ be a modular lattice and $b \in P$ be an element. An element $a \in P$ is *uniform over b* if a is a uniform element in $[b, \top]$, i.e., $a > b$ and $[b, a]$ is a uniform lattice. A *uniform basis over b* is a uniform basis in $[b, \top]$.

10 Bounds on connected components

In this section, $(G, +, \dots)$ is a monster-model abelian group, possibly with additional structure, of finite dp-rank n .

Fact 10.1. *Let G_0, \dots, G_n be type-definable subgroups of G . There is some $0 \leq k \leq n$ such that*

$$\left(\bigcap_{i=0}^n G_i \right)^{00} = \left(\bigcap_{i \neq k} G_i \right)^{00}.$$

This is [3, Proposition 4.5.2]; the n there agrees with $\text{dp-rk}(G)$ by inspecting the proof.

Lemma 10.2. *Let H be a type-definable subgroup of G . There is a cardinal κ depending only on H and G such that if $H < H' < G$ for some type-definable subgroup H' , and if H'/H is bounded, then H'/H has size at most κ . This κ continues to work in arbitrary elementary extensions.*

Proof. Naming parameters, we may assume that H (but not H') is type-definable over \emptyset . By Morley-Erdős-Rado there is some cardinal κ with the following property: for any sequence $\{a_\alpha\}_{\alpha < \kappa}$ of elements of G , there is some 0-indiscernible sequence $\{b_i\}_{i \in \mathbb{N}}$ such that for any $i_1 < \dots < i_n$ there is $\alpha_1 < \dots < \alpha_n$ such that

$$a_{\alpha_1} \cdots a_{\alpha_n} \equiv_{\emptyset} b_{i_1} \cdots b_{i_n}.$$

Let H' be a subgroup of G , containing H , type-definable over some small set A . Suppose that $|H'/H| \geq \kappa$. We claim that H'/H is unbounded. Suppose for the sake of contradiction that $|H'/H| < \lambda$ in all elementary extensions. Take a sequence $\{a_\alpha\}_{\alpha < \kappa}$ of elements of H' lying in pairwise distinct cosets of H . Let $\{b_i\}_{i \in \mathbb{N}}$ be an 0-indiscernible sequence extracted from the a_α by Morley-Erdős-Rado. Because the a_α live in pairwise distinct cosets of H and H is 0-definable, the b_i live in pairwise distinct cosets of H . By indiscernibility, there is a 0-definable set $D \supseteq H$ such that $b_i - b_j \notin D$ for $i \neq j$. Consider the $*$ -type over A in variables $\{x_\alpha\}_{\alpha < \lambda}$ asserting that

1. $x_\alpha \in H'$ for every $\alpha < \lambda$
2. If $\alpha_1 < \dots < \alpha_n$, then

$$x_{\alpha_1} \cdots x_{\alpha_n} \equiv_{\emptyset} b_1 \cdots b_n.$$

This type is consistent. Indeed, if $\Sigma_{\alpha_1, \dots, \alpha_n}(\vec{x})$ is the sub-type asserting that

$$\begin{aligned} x_{\alpha_1}, \dots, x_{\alpha_n} &\in H' \\ x_{\alpha_1} \cdots x_{\alpha_n} &\equiv_{\emptyset} b_1 \cdots b_n \end{aligned}$$

then $\Sigma_{\alpha_1, \dots, \alpha_n}(\vec{x})$ is satisfied by $(a_{\beta_1}, \dots, a_{\beta_n})$ for some well chosen β_i , by virtue of how the b_i were extracted. Moreover, the full type is a filtered union of $\Sigma_{\vec{\alpha}}(\vec{x})$'s, so it is consistent. Let $\{c_\alpha\}_{\alpha < \lambda}$ be a set of realizations. Then every c_α lies in H' , but

$$c_\alpha - c_{\alpha'} \notin D \supseteq H$$

for $\alpha \neq \alpha'$. Therefore, the c_α lie in pairwise distinct cosets of H , and $|H'/H| \geq \lambda$, a contradiction. \square

Lemma 10.3. *For any cardinal κ there is a cardinal $\tau(\kappa)$ with the following property: given any family $\{H_\alpha\}_{\alpha < \tau(\kappa)}$ of type-definable subgroups of G , there exist subsets $S_1, S_2 \subseteq \tau(\kappa)$ such that S_1 is finite, $|S_2| = \kappa$, and*

$$\left(\bigcap_{\alpha \in S_1} H_\alpha \right)^{00} \subseteq \bigcap_{\alpha \in S_2} H_\alpha.$$

Proof. Without loss of generality $\kappa \geq \aleph_0$. By the Erdős-Rado theorem, we can choose $\tau(\kappa)$ such that any coloring of the $n+1$ -element subsets of $\tau(\kappa)$ with $n+1$ colors contains a homogeneous subset of cardinality κ^+ . Now suppose we are given H_α for $\alpha < \tau(\kappa)$. Given $\alpha_1 < \dots < \alpha_{n+1}$, color the set $\{\alpha_1, \dots, \alpha_{n+1}\}$ with the smallest $k \in \{1, \dots, n+1\}$ such that

$$\left(\bigcap_{i=1}^{n+1} H_{\alpha_i} \right)^{00} = \left(\bigcap_{i=1}^{k-1} H_{\alpha_i} \cap \bigcap_{i=k+1}^{n+1} H_{\alpha_i} \right)^{00}.$$

This is possible by Fact 10.1. Passing to a homogeneous subset and re-indexing, we get $\{H_\alpha\}_{\alpha < \kappa^+}$ such that every $(n+1)$ -element set has color k for some fixed k . In particular, for any $\alpha_1 < \dots < \alpha_{n+1} < \kappa^+$, we have

$$H_{\alpha_k} \supseteq \left(\bigcap_{i=1}^{n+1} H_{\alpha_i} \right)^{00} = \left(\bigcap_{i=1}^{k-1} H_{\alpha_i} \cap \bigcap_{i=k+1}^{n+1} H_{\alpha_i} \right)^{00}.$$

Thus, for any $\beta_1 < \beta_2 < \dots < \beta_{2n+1} < \kappa^+$ we have

$$H_{\beta_{n+1}} \supseteq \left(\bigcap_{i=n-k+2}^n H_{\beta_i} \cap \bigcap_{i=n+2}^{2n-k+2} H_{\beta_i} \right)^{00} \supseteq \left(\bigcap_{i=1}^n H_{\beta_i} \cap \bigcap_{i=n+2}^{2n+1} H_{\beta_i} \right)^{00}$$

by taking

$$(\alpha_1, \dots, \alpha_{n+1}) = (\beta_{n-k+2}, \dots, \beta_{2n-k+2}).$$

Then, for any $\beta \in [n+1, \kappa]$,

$$H_\beta \supseteq (H_1 \cap \dots \cap H_n \cap H_{\kappa+1} \cap H_{\kappa+n})^{00},$$

so we may take $S_1 = \{1, \dots, n, \kappa+1, \dots, \kappa+n\}$ and $S_2 = [n+1, \kappa]$. \square

Theorem 10.4. *There is a cardinal κ , depending only on the ambient group G , such that for any type-definable subgroup $H < G$, the index of H^{00} in H is less than κ . This κ continues to work in arbitrary elementary extensions.*

Proof. Say that a subgroup $K \subseteq G$ is ω -definable if it is type-definable over a countable set. Note that if K is ω -definable, so is K^{00} . Moreover, if K_1, K_2 are ω -definable, then so are $K_1 \cap K_2$ and $K_1 + K_2$. Also note that if H is any type-definable group, then H is a small filtered intersection of ω -definable groups.

Up to automorphism, there are only a bounded number of ω -definable subgroups of G , so by Lemma 10.2 there is some cardinal κ_0 with the following property: if K is an ω -definable group and if K' is a bigger type-definable group, then either $|K'/K| < \kappa_0$ or $|K'/K|$ is unbounded.

Claim 10.5. If H is a type-definable group and K is an ω -definable group containing H^{00} , then $|H/(H \cap K)| < \kappa_0$.

Proof. Note that

$$H^{00} \subseteq H \cap K \subseteq H,$$

so $H/(H \cap K)$ is bounded. On the other hand, $H/(H \cap K)$ is isomorphic to $(H + K)/K$, which must then have cardinality less than κ_0 . \square_{Claim}

Let $\kappa_1 = \tau((2^{\kappa_0})^+)$ where $\tau(-)$ is as in Lemma 10.3.

Claim 10.6. If H is a type-definable subgroup of G , then there are fewer than κ_1 subgroups of the form $H \cap K$ where K is ω -definable and $K \supseteq H^{00}$.

Proof. Otherwise, choose $\{K_\alpha\}_{\alpha \in \kappa_1}$ such that K_α is ω -definable, $K_\alpha \supseteq H^{00}$, and

$$H \cap K_\alpha \neq H \cap K_{\alpha'}$$

for $\alpha < \alpha' < \kappa_1$. By Lemma 10.3, there are subsets $S_1, S_2 \subseteq \kappa_1$ such that $|S_1| < \aleph_0$, $|S_2| = (2^{\kappa_0})^+$, and

$$\left(\bigcap_{\alpha \in S_1} K_\alpha \right)^{00} \subseteq \bigcap_{\alpha \in S_2} K_\alpha.$$

Let J be the left-hand side. Then J is an ω -definable group containing H^{00} , so $|H/(H \cap J)| < \kappa_0$ by Claim 10.5. Now for any $\alpha \in S_2$,

$$J \subseteq K_\alpha \implies H \cap J \subseteq H \cap K_\alpha \subseteq H.$$

There are at most $2^{|H/(H \cap J)|} \leq 2^{\kappa_0}$ groups between $H \cap J$ and J , so there are at most 2^{κ_0} possibilities for $H \cap K_\alpha$, contradicting the fact that $|S_2| > 2^{\kappa_0}$ and the $H \cap K_\alpha$ are pairwise distinct for distinct α . \square_{Claim}

Now given the claim, we see that the index of H^{00} in H can be at most $\kappa_0^{\kappa_1}$. Indeed, let \mathcal{S} be the collection of ω -definable groups K such that $K \supseteq H^{00}$, and let \mathcal{S}' be a subcollection containing a representative K for every possibility of $H \cap K$. By the second claim, $|\mathcal{S}'| < \kappa_1$. Every type-definable group is an intersection of ω -definable groups, so

$$H^{00} = \bigcap_{K \in \mathcal{S}} K = \bigcap_{K \in \mathcal{S}} (H \cap K) = \bigcap_{K \in \mathcal{S}'} (H \cap K).$$

Then there is an injective map

$$H/H^{00} \hookrightarrow \prod_{K \in S'} H/(H \cap K),$$

and the right hand size has cardinality at most $\kappa_0^{\kappa_1}$. But $\kappa_0^{\kappa_1}$ is independent of H . \square

Corollary 10.7. *Let \mathbb{M} be a field of finite dp-rank. There is a cardinal κ with the following property: if $M \preceq \mathbb{M}$ is any small model of cardinality at least κ , and if J is a type-definable M -linear subspace of \mathbb{M} , then $J = J^{00}$. More generally, if J is a type-definable M -linear subspace of \mathbb{M}^k , then $J = J^{00}$.*

Note that we are not assuming J is type-definable over M .

Proof. Take κ as in the Theorem, M a small model of size at least κ , and J a type-definable M -linear subspace of \mathbb{M} . For any $\alpha \in \mathbb{M}^\times$, we have $(\alpha \cdot J)^{00} = \alpha \cdot J^{00}$. Restricting to $\alpha \in M^\times$, we see that $\alpha \cdot J^{00} = J^{00}$. In other words, J^{00} is an M -linear subspace itself. The quotient J/J^{00} naturally has the structure of a vector space over M . If it is non-trivial, it has cardinality at least κ , contradicting the choice of κ . Therefore, J/J^{00} is the trivial vector space, and $J^{00} = J$. For the “more generally” claim, apply Theorem 10.4 to the groups \mathbb{M}^k and take the supremum of the resulting κ . \square

Lemma 10.8. *Let \mathbb{M} be a field of finite dp-rank, and $M \preceq \mathbb{M}$ be a small model. Let J be a non-zero type-definable M -linear subspace of \mathbb{M} . Then every definable set $X \supseteq J$ is heavy.*

Proof. Suppose for the sake of contradiction that X is light. Rescaling J and X , we may assume $1 \in J$. The set X remains light by Fact 8.2.4. Then $M \subseteq J \subseteq X$. Passing to an elementary extension of the pair (\mathbb{M}, M) , we may assume that M is mildly saturated. Then M defines a “critical coordinate configuration” in the sense of [13, Definition 4.7]. The set X remains light, because lightness is definable in families (Fact 8.2.3). By [13, Lemma 4.22] (with $Z = \mathbb{M}$), the inclusion $M \subseteq X$ implies that X is heavy, a contradiction. \square

11 Invariant valuation rings

Let $(\mathbb{M}, +, \cdot, \dots)$ be a monster-model finite dp-rank expansion of a field. Assume that \mathbb{M} is not of finite Morley rank. Fix a small model M_0 large enough for Corollary 10.7 to apply. Thus, for any type-definable M_0 -linear subspace $J \leq \mathbb{M}^n$, we have $J = J^{00}$.

Let \mathcal{P}_n be the poset of type-definable M_0 -linear subspaces of \mathbb{M}^n , let $\mathcal{P} = \mathcal{P}_1$, and let \mathcal{P}^+ be the poset of non-zero elements of \mathcal{P} .

We collect the basic facts about these posets in the following proposition:

Proposition 11.1.

1. For each n , \mathcal{P}_n is a bounded lattice.

2. For any small model $M \supseteq M_0$, the group I_M is an element of \mathcal{P} . In particular, \mathcal{P} contains an element other than $\perp = 0$ and $\top = \mathbb{M}$.
3. If $J \in \mathcal{P}$ is non-zero, every definable set D containing J is heavy.
4. If $J \in \mathcal{P}^+$ is type-definable over M for some small model $M \supseteq M_0$, then $J \supseteq I_M$.
5. If $J \in \mathcal{P}_n$, then $J = J^{00}$.
6. \mathcal{P}^+ is a sublattice of \mathcal{P} , i.e., it is closed under intersection.
7. \mathcal{P} has breadth r for some $0 < r \leq \text{dp-rk}(\mathbb{M})$. The breadth of \mathcal{P}^+ is also r , and the breadth of \mathcal{P}^n is rn .

Proof. 1. Clear—the lattice operations are given by

$$\begin{aligned} G \vee H &= G + H \\ G \wedge H &= G \cap H \\ \perp &= 0 \\ \top &= \mathbb{M}^n. \end{aligned}$$

2. Fact 8.4.4.
3. Lemma 10.8.
4. Fact 8.4.3.
5. By choice of M_0 .
6. Let J_1, J_2 be two non-zero elements of \mathcal{P} . Let M be a small model containing M_0 , over which both J_1 and J_2 are type-definable. Then $J_1 \cap J_2 \geq I_M > \perp$. Therefore \mathcal{P}^+ is closed under intersection.
7. Let $r = \text{br}(\mathcal{P})$. The bound $r \leq n$ follows by Fact 10.1 and (3) \implies (1) of Lemma 9.9. Then

$$0 < \text{br}(\mathcal{P}^+) \leq \text{br}(\mathcal{P}) = r \leq n,$$

where the left inequality is sharp because \mathcal{P} has at least three elements by part 2. If $r > \text{br}(\mathcal{P}^+)$, there is a r -cube in \mathcal{P} which does not lie in \mathcal{P}^+ . The base of this cube must be \perp , the only element of $\mathcal{P} \setminus \mathcal{P}^+$. Then $r \leq \text{G.dim}(\mathcal{P})$. However, part 6 says $\text{G.dim}(\mathcal{P}) \leq 1$, so $r \leq 1 \leq \text{br}(\mathcal{P}^+)$, a contradiction. Therefore $\text{br}(\mathcal{P}^+) = r = \text{br}(\mathcal{P})$. Finally, in \mathcal{P}_n , if we let $J_i = 0^{\oplus(i-1)} \oplus \mathbb{M} \oplus 0^{\oplus(n-i)}$ for $i = 1, \dots, n$, then the sequence J_1, \dots, J_n is independent and $J_1 \vee \dots \vee J_n = \mathbb{M}^n$. Thus

$$\text{br}(\mathbb{M}^n/0) = \sum_{i=1}^n \text{br}(J_i/0)$$

by Corollary 9.20. However, $\text{br}(J_i/0) = r$ because of the isomorphism of lattices

$$\begin{aligned}\mathcal{P} &\rightarrow [0, J_i] \\ X &\mapsto 0^{\oplus(i-1)} \oplus X \oplus 0^{\oplus(n-i)}.\end{aligned}$$

□

In what follows, we will let r be $\text{br}(\mathbb{M}/0)$.

Remark 11.2. If $r = 1$, then \mathcal{P} is totally ordered and we can reuse the arguments for dp-minimal fields to immediately see that I_M is a valuation ideal. Usually we are not so lucky.

11.1 Special groups

Definition 11.3. An element $J \in \mathcal{P}_n$ is *special* if $\text{G.dim}(\mathbb{M}^n/J) = \text{br}(\mathbb{M}^n/J) = rn$.

For any $J \in \mathcal{P}_n$, we have

$$\text{G.dim}(\mathbb{M}^n/J) \leq \text{br}(\mathbb{M}^n/J) \leq \text{br}(\mathcal{P}_n) = rn$$

by Lemma 9.14.1, Proposition 9.19.2, and Proposition 11.1.7. Therefore, $J \in \mathcal{P}_n$ is special if and only if $\text{G.dim}(\mathbb{M}^n/J) \geq rn$.

Note that if $J \in \mathcal{P}_n$ is special, then any uniform basis over J has cardinality rn , by Theorem 9.23.5.

Proposition 11.4.

1. *There is at least one non-zero special $J \in \mathcal{P} = \mathcal{P}_1$.*
2. *Let $J \in \mathcal{P}$ be special. Let A_1, \dots, A_r be a uniform basis over J . Let $G \in \mathcal{P}$ be arbitrary. If $G \cap A_i \not\subseteq J$ for each i , then $G \supseteq J$.*
3. *If $J \in \mathcal{P}$ is special and nonzero and type-definable over a small model $M \supseteq M_0$, then*

$$I_M \cdot J \subseteq I_M \subseteq J$$

4. *If $I \in \mathcal{P}_n$ and $J \in \mathcal{P}_m$ are special, then $I \oplus J \in \mathcal{P}_{n+m}$ is special.*
5. *If $I \in \mathcal{P}_n$ is special and $\alpha \in \mathbb{M}^\times$, then $\alpha \cdot I$ is special.*

Proof. 1. By Proposition 11.1.7 the breadth of \mathcal{P}^+ is exactly r , so we can find an r -cube in \mathcal{P}^+ . The base of such a cube is a non-zero special element of \mathcal{P} .

2. For $i = 1, \dots, r$ take $a_i \in (G \cap A_i) \setminus J$. Then for each i , we have

$$\begin{aligned}a_i &\in G \cap A_i \subseteq (G + J) \cap A_i \supseteq J \cap A_i = J \\ a_i &\notin J \\ (\implies) (G + J) \cap A_i &\supsetneq J.\end{aligned}$$

Consequently,

$$A_1 \cap (G + J), A_2 \cap (G + J), \dots, A_r \cap (G + J)$$

is an independent sequence over J . It follows that

$$\text{br}(G/(G \cap J)) = \text{br}((G + J)/J) \geq \text{G. dim}((G + J)/J) \geq r.$$

On the other hand

$$\text{br}(G/(G \cap J)) + \text{br}(J/(G \cap J)) = \text{br}((G + J)/(G \cap J)) \leq r,$$

and so $\text{br}(J/(G \cap J)) = 0$. This forces $J = G \cap J$, so $J \subseteq G$.

3. The inclusion $I_M \subseteq J$ is Proposition 11.1.4. Let A_1, \dots, A_r be a uniform basis over J as in part 2. For each A_i choose an element $a_i \in A_i \setminus J$. Let M' be a small model containing M and the a_i 's. We first claim that $I_{M'} \cdot J \subseteq I_{M'}$. Let ε be a non-zero element of $I_{M'}$. As $I_{M'}$ is closed under multiplication by $(M')^\times$, we have $M' \subseteq \varepsilon^{-1} \cdot I_{M'}$. In particular, $a_i \in \varepsilon^{-1} \cdot I_{M'}$ for each i . Then

$$(\varepsilon^{-1} \cdot I_{M'}) \cap A_i \not\subseteq J$$

for each i , so by part 2 we have

$$\varepsilon^{-1} \cdot I_{M'} \supseteq J.$$

In other words, $\varepsilon \cdot J \subseteq I_{M'}$. As ε was an arbitrary non-zero element of $I_{M'}$, it follows that $I_{M'} \cdot J \subseteq I_{M'}$. Now suppose that D is an M -definable basic neighborhood. Then D is an M' -definable basic neighborhood. By the above and compactness, there is an M' -definable basic neighborhood $X -_\infty X$ and a definable set $D_2 \supseteq J$ such that $(X -_\infty X) \cdot D_2 \subseteq D$. Furthermore, D_2 can be taken to be M -definable, because J is a directed intersection of M -definable sets. Having done this, we can then pull the parameters defining X into M , and assume that X is M -definable. (This uses the fact that heaviness is definable in families). Then we have an M -definable basic neighborhood $X -_\infty X$ and an M -definable set $D_2 \supseteq J$ such that $(X -_\infty X) \cdot D_2 \subseteq D$. As D was arbitrary, it follows that

$$I_M \cdot J \subseteq I_M.$$

4. The interval $[I, \mathbb{M}^n]$ in \mathcal{P}_n is isomorphic to $[I \oplus J, \mathbb{M}^n \oplus J]$ in \mathcal{P}_{n+m} , so

$$\begin{aligned} rn &= \text{G. dim}(\mathbb{M}^n/I) = \text{G. dim}((\mathbb{M}^n \oplus J)/(I \oplus J)) \\ rm &= \text{G. dim}(\mathbb{M}^m/J) = \text{G. dim}((I \oplus \mathbb{M}^m)/(I \oplus J)), \end{aligned}$$

where the second line is true for similar reasons. By Lemma 9.21,

$$\text{G. dim}((\mathbb{M}^n \oplus \mathbb{M}^m)/(I \oplus J)) \geq rn + rm.$$

On the other hand

$$\text{G. dim}((\mathbb{M}^n \oplus \mathbb{M}^m)/(I \oplus J)) \leq \text{br}((\mathbb{M}^n \oplus \mathbb{M}^m)/(I \oplus J)) \leq r(n + m)$$

so equality holds and $I \oplus J$ is special.

5. For any $\alpha \in \mathbb{M}^\times$, the map $X \mapsto \alpha \cdot X$ is an automorphism of \mathcal{P}_n . \square

Corollary 11.5. *For any model M , $I_M \cdot I_M \subseteq I_M$.*

Proof. Take a non-zero special element $J \in \mathcal{P}_1$. Take a small model M' containing M and M_0 , with J type-definable over M' . We first claim that $I_{M'} \cdot I_{M'} \subseteq I_{M'}$. Indeed,

$$I_{M'} \cdot I_{M'} \subseteq I_{M'} \cdot J \subseteq I_{M'}$$

by Proposition 11.4.3. Then we can shrink from M' to M using the technique of the proof of Proposition 11.4.3. Specifically, let D be any M -definable basic neighborhood. Then

$$I_{M'} \cdot I_{M'} \subseteq I_M \subseteq D.$$

By compactness, there is an M' -definable basic neighborhood D_2 such that $D_2 \cdot D_2 \subseteq D$. Using the fact that heaviness is definable in families, we can take D_2 to be M -definable. Then $I_M \cdot I_M \subseteq D_2 \cdot D_2 \subseteq D$. As D was arbitrary, $I_M \cdot I_M \subseteq I_M$. \square

In [13, Remark 6.17], we defined a group topology on $(M, +)$, for which I_M is the set of topological infinitesimals. Corollary 11.5 implies that this topology is a ring topology. With much more work, one can show that the canonical topology is a field topology [15, Corollary 5.15].

Speculative Remark 11.6. Say that $J \in \mathcal{P}_1$ is *bounded* if $J \leq J'$ for some special J' . Based on the argument in Proposition 11.4.2-3, it seems that J is bounded if and only if $\alpha \cdot J \subseteq I_M$ for some $\alpha \in \mathbb{M}^\times$ and some small model M . Bounded elements should form a sublattice of \mathcal{P}_1 .²

Definition 11.7. Let $I \in \mathcal{P}_n$ be special and $D \in \mathcal{P}_n$ be arbitrary. Then D *dominates* I if $D \geq I$ and $\text{G.dim}(D/I) = nr$.

Lemma 11.8. *Let $J \in \mathcal{P}_n$ be special, let A_1, \dots, A_{nr} be a uniform basis in $[J, \mathbb{M}^n]$, and D be arbitrary. Then D dominates J if and only if $D \cap A_i \supsetneq J$ for each i . In particular, this condition doesn't depend on the choice of the basis $\{A_1, \dots, A_{nr}\}$.*

Proof. Suppose D dominates J . Let B_1, \dots, B_{nr} be a uniform basis in $[J, D]$. The B_i are independent uniform elements in the larger interval $[J, \mathbb{M}^n]$, so $\{B_1, \dots, B_{nr}\}$ is a uniform basis in $[J, \mathbb{M}^n]$. Therefore, for every i the sequence B_1, \dots, B_{nr}, A_i is not independent over J . Consequently

$$D \cap A_i \supseteq (B_1 + \dots + B_{nr}) \cap A_i \supsetneq J.$$

Conversely, suppose $D \cap A_i \supsetneq J$ for each i . Then certainly $D \supseteq J$, and it remains to show $\text{G.dim}(D/J) \geq nr$. Let $A'_i := D \cap A_i$. Then the sequence A'_1, \dots, A'_{nr} is independent over J . As each A'_i lies in $[J, D]$, it follows that $\text{G.dim}(D/J) \geq nr$. \square

²These ideas have been developed in [15, §8].

Lemma 11.9. *Let $I \in \mathcal{P}_n$ be special, and V be a k -dimensional \mathbb{M} -linear subspace of \mathbb{M}^n . Then*

$$\begin{aligned}\text{G. dim}((V + I)/I) &= \text{br}((V + I)/I) = kr \\ \text{G. dim}(V/(V \cap I)) &= \text{br}(V/(V \cap I)) = kr \\ \text{G. dim}(\mathbb{M}^n/(V + I)) &= \text{br}(\mathbb{M}^n/(V + I)) = (n - k)r.\end{aligned}$$

Moreover, there exist $A_1, \dots, A_{kr}, B_1, \dots, B_{(n-k)r} \in \mathcal{P}_n$ such that the following conditions hold:

1. The set $\{A_1, \dots, A_{kr}, B_1, \dots, B_{(n-k)r}\}$ is a uniform basis in $[I, \mathbb{M}^n]$.
2. Let $\tilde{A}_i = A_i \cap V$. Then $\{\tilde{A}_1, \dots, \tilde{A}_{kr}\}$ is a uniform basis in $[V \cap I, V]$.
3. Let $\tilde{B}_i = B_i + V$. Then $\{\tilde{B}_1, \dots, \tilde{B}_{(n-k)r}\}$ is a uniform basis in $[V + I, \mathbb{M}^n]$.

Given a $D \in \mathcal{P}_n$ dominating I , we may choose the A_i and B_i to lie in $[I, D]$.

Proof. Let W be a complementary $(n - k)$ -dimensional \mathbb{M} -linear subspace, so that $V + W = \mathbb{M}^n$. Let $V' = V + I$ and $W' = W + I$. Then

$$\begin{aligned}nr &= \text{br}(\mathbb{M}^n/I) \leq \text{br}(\mathbb{M}^n/V') + \text{br}(V'/I) \\ &= \text{br}((V' + W')/V') + \text{br}(V'/I) \\ &= \text{br}(W'/(W' \cap V')) + \text{br}(V'/I) \\ &\leq \text{br}(W'/I) + \text{br}(V'/I) \\ &= \text{br}(W/(W \cap I)) + \text{br}(V/(V \cap I)) \\ &\leq \text{br}(W/0) + \text{br}(V/0).\end{aligned}$$

Now any \mathbb{M} -linear isomorphism $\phi : \mathbb{M}^k \xrightarrow{\sim} V$ induces an isomorphism of posets from \mathcal{P}_k to $[0, V] \subseteq \mathcal{P}_n$, so

$$\begin{aligned}\text{br}(V/0) &= \text{br}(\mathcal{P}_k) = kr \\ \text{br}(W/0) &= \text{br}(\mathcal{P}_{n-k}) = (n - k)r,\end{aligned}$$

where the second line follows similarly. Therefore the inequalities above are all equalities, and

$$\begin{aligned}\text{br}((V + I)/I) &= \text{br}(V/(V \cap I)) = kr \\ \text{br}(\mathbb{M}^n/(V + I)) &= \text{br}(\mathbb{M}^n/V') = (n - k)r.\end{aligned}$$

By Lemma 9.26, there is a uniform basis $\{A_1, \dots, A_m, B_1, \dots, B_{nr-m}\}$ in $[I, \mathbb{M}^n]$ such that

- Each $A_i \subseteq V + I$.
- The sequence $(V + I), B_1, \dots, B_{nr-m}$ is independent over I .

If we are given D dominating I , we may replace each A_i with $A_i \cap D$ and B_i with $B_i \cap D$, and assume henceforth that $A_i, B_i \subseteq D$. By Corollary 9.20,

$$\begin{aligned} nr &= \text{br}(\mathbb{M}^n/I) \geq \text{br}((V+I)/I) + \text{br}(B_1/I) + \cdots + \text{br}(B_{nr-m}/I) \\ &= kr + \text{br}(B_1/I) + \cdots + \text{br}(B_{nr-m}/I). \end{aligned}$$

Each B_i is strictly greater than I , so

$$nr \geq kr + nr - m,$$

and thus $m \geq kr$. On the other hand, the set $\{A_1, \dots, A_m\}$ is a set of independent uniform elements in $[I, V+I]$, so

$$m \leq \text{G. dim}((V+I)/I) \leq \text{br}((V+I)/I) = kr.$$

Thus equality holds, $m = kr$, and the set $\{A_1, \dots, A_m\}$ is a uniform basis in $[I, V+I]$. Applying the isomorphism

$$\begin{aligned} [I, V+I] &\xrightarrow{\sim} [V \cap I, V] \\ X &\mapsto X \cap V, \end{aligned}$$

the \tilde{A}_i form a uniform basis in $[V \cap I, V]$. Next, let $Q = B_1 \vee \cdots \vee B_{(n-k)r}$. (Note that $nr - m = (n-k)r$.) The fact that $(V+I), B_1, \dots, B_{(n-k)r}$ is independent over I implies that $(V+I) \cap Q = I$. Therefore, there is an isomorphism

$$\begin{aligned} [I, Q] &\xrightarrow{\sim} [V+I, V+I+Q] \\ X &\mapsto X + (V+I) = X + V. \end{aligned}$$

The elements $\{B_1, \dots, B_{(n-k)r}\}$ are independent uniform elements in $[I, Q]$, and therefore the \tilde{B}_i are a set of independent uniform elements in $[V+I, V+I+Q]$ or even in $[V+I, \mathbb{M}^n]$. It follows that

$$(n-k)r \leq \text{G. dim}(\mathbb{M}^n/(V+I)) \leq \text{br}(\mathbb{M}^n/(V+I)) = (n-k)r,$$

so equality holds and the \tilde{B}_i are a uniform basis in $[V+I, \mathbb{M}^n]$. \square

Lemma 11.10. *Let $I, J \in \mathcal{P}_n$ be special. Then $I+J$ and $I \cap J$ are special. Furthermore, there exists*

- a uniform basis $\hat{A}_1, \dots, \hat{A}_n$ in $[I \cap J, \mathbb{M}^n]$,
- a uniform basis $\hat{B}_1, \dots, \hat{B}_n$ in $[I+J, \mathbb{M}^n]$, and
- a uniform basis $A_1, \dots, A_n, B_1, \dots, B_n$ in $[I \oplus J, \mathbb{M}^{2n}]$

related as follows:

$$\begin{aligned}\hat{A}_i &= \{\vec{x} \in \mathbb{M}^n \mid (\vec{x}, \vec{x}) \in A_i\} \\ \hat{B}_i &= \{\vec{x} - \vec{y} \mid (\vec{x}, \vec{y}) \in B_i\}.\end{aligned}$$

Given $D \in \mathcal{P}_{2n}$ dominating $I \oplus J$, we may choose the A_i and B_i to lie in $[I \oplus J, D]$.

Proof. For any $J \in \mathcal{P}_n$, define

$$\begin{aligned}\Delta(C) &= \{(\vec{x}, \vec{x}) \mid \vec{x} \in C\} \in \mathcal{P}_{2n} \\ \nabla(C) &= \{(\vec{x}, \vec{x} + \vec{y}) \mid \vec{x} \in \mathbb{M}^n, \vec{y} \in C\} \in \mathcal{P}_{2n}.\end{aligned}$$

Let $V = \Delta(\mathbb{M}^n) = \nabla(0)$. The maps $\Delta(-), \nabla(-)$ yield isomorphisms

$$\begin{aligned}\Delta : \mathcal{P}_n &\xrightarrow{\sim} [0, V] \subseteq \mathcal{P}_{2n} \\ \nabla : \mathcal{P}_n &\xrightarrow{\sim} [V, \mathbb{M}^{2n}] \subseteq \mathcal{P}_{2n}.\end{aligned}$$

Indeed, the inverses are given by

$$\begin{aligned}\Delta^{-1} : [0, V] &\xrightarrow{\sim} [0, \mathbb{M}^n] \\ C &\mapsto \{\vec{x} \mid (\vec{x}, \vec{x}) \in C\} \\ \nabla^{-1} : [V, \mathbb{M}^{2n}] &\xrightarrow{\sim} [0, \mathbb{M}^n] \\ C &\mapsto \{\vec{x} - \vec{y} \mid (\vec{x}, \vec{y}) \in C\}.\end{aligned}$$

Note that $\Delta^{-1}(V \cap (I \oplus J)) = I \cap J$ and $\nabla^{-1}(V + (I \oplus J)) = I + J$. Therefore, Δ^{-1} and ∇^{-1} restrict to isomorphisms

$$\begin{aligned}\Delta^{-1} : [V \cap (I \oplus J), V] &\xrightarrow{\sim} [I \cap J, \mathbb{M}^n] \\ \nabla^{-1} : [V + (I \oplus J), \mathbb{M}^{2n}] &\xrightarrow{\sim} [I + J, \mathbb{M}^n].\end{aligned}$$

It follows that

$$\begin{aligned}\text{G. dim}(\mathbb{M}^n / (I \cap J)) &= \text{G. dim}(V / (V \cap (I \oplus J))) = \text{G. dim}((V + (I \oplus J)) / V) \\ \text{G. dim}(\mathbb{M}^n / (I + J)) &= \text{G. dim}(\mathbb{M}^{2n} / (V + (I \oplus J)) / V).\end{aligned}$$

Now $I \oplus J$ is special in \mathcal{P}_{2n} by Proposition 11.4.4, and V is an n -dimensional \mathbb{M} -linear subspace of \mathbb{M}^{2n} , so by Lemma 11.9,

$$\begin{aligned}\text{G. dim}(\mathbb{M}^n / (I \cap J)) &= \text{G. dim}((V + (I \oplus J)) / V) = rn \\ \text{G. dim}(\mathbb{M}^n / (I + J)) &= \text{G. dim}(\mathbb{M}^{2n} / (V + (I \oplus J))) = rn.\end{aligned}$$

Therefore $I \cap J$ and $I + J$ are special. Furthermore, by Lemma 11.9 there exists a uniform basis $\{A_1, \dots, A_{rn}, B_1, \dots, B_{rn}\}$ over $I \oplus J$ such that

- The elements $\tilde{A}_i := A_i \cap V$ form a uniform basis in $[V \cap (I \oplus J), V]$.
- The elements $\tilde{B}_i := B_i + V$ form a uniform basis in $[V + (I \oplus J), \mathbb{M}^{2n}]$.

(Additionally, the A_i and B_i can be chosen below any given D dominating $I \oplus J$.) Applying Δ^{-1} and ∇^{-1} we see that the elements

$$\begin{aligned}\hat{A}_i &= \Delta^{-1}(A_i \cap V) = \{\vec{x} \mid (\vec{x}, \vec{x}) \in A_i \cap V\} \\ &= \{\vec{x} \mid (\vec{x}, \vec{x}) \in A_i\} \\ \hat{B}_i &= \nabla^{-1}(A_i + V) = \{\vec{x} - \vec{y} \mid (\vec{x}, \vec{y}) \in B_i + V\} \\ &= \{\vec{x} - \vec{y} \mid (\vec{x}, \vec{y}) \in B_i\}\end{aligned}$$

form uniform bases for $[I \cap J, \mathbb{M}^n]$ and $[I + J, \mathbb{M}^n]$, respectively. \square

Question 11.11. *By Lemma 11.10 special elements of \mathcal{P}_n form a sublattice. Can this be proven directly (lattice theoretically) within \mathcal{P}_n without using the larger lattice \mathcal{P}_{2n} ?*

Speculative Remark 11.12. We explain how the above picture should give an r -inflator, as in §8.2. Fix a special element J of \mathcal{P}_1 . For every n , J^n is a special element of \mathcal{P}_n . Let \mathcal{G}_n be the lattice of closed sets in the pregeometry on uniform elements over J^n . There should be natural maps

$$\oplus : \mathcal{G}_n \times \mathcal{G}_m \rightarrow \mathcal{G}_{n+m}$$

and a $GL_n(M_0)$ action on \mathcal{G}_n , induced by the analogous structure on the \mathcal{P}_n . Using this additional structure, one should be able to prove the following: there is a semisimple M_0 -algebra S of length r , and isomorphisms

$$\mathcal{G}_n \cong \text{Sub}_S(S^n)$$

respecting \oplus and the $GL_n(M_0)$ -actions.³ For every n we should get a map

$$\begin{aligned}f_n : \text{Sub}_{\mathbb{M}}(\mathbb{M}^n) &\rightarrow \mathcal{G}_n \cong \text{Sub}_S(S^n) \\ V &\mapsto \Phi(V + J^n).\end{aligned}$$

These maps should form an r -inflator, as in Definition 8.6. By Remark 9.27, the rank of $\Phi(V + J^n)$ is $\text{G.dim}((V + J^n)/J^n)$. Therefore the scaling axiom (Definition 8.6.4) says that

$$\text{G.dim}((V + J^n)/J^n) = r \cdot \dim_{\mathbb{M}}(V),$$

which follows by Lemma 11.9. The other inflator axioms (Definition 8.6.1–3) should be a matter of tracing through the definition of f_n , ensuring that each step preserves the order, $GL_n(M_0)$ -action, and \oplus -operation.⁴

³These claims have now been verified in [16]. The lattice \mathcal{G}_n is the “flattening” of the interval $[J^n, \mathbb{M}^n] \subseteq \mathcal{P}_n$, in the sense of [16, Definition 7.2]. The family of lattices $\{[J^n, \mathbb{M}^n]\}_{n \in \mathbb{N}}$ form a “directory” [16, Definition 2.1] by [16, Proposition 2.12, Theorem 3.7]. By [16, Corollary 7.20], the family $\{\mathcal{G}_n\}_{n \in \mathbb{N}}$ is also a “directory,” and a “semisimple directory” by [16, Proposition 7.3.1]. The existence of the semisimple M_0 -algebra S now follows by [16, Theorem 2.7].

⁴The details have been verified in [16, Theorem 9.3].

Speculative Remark 11.13. Next, we describe how r -inflators should yield valuation rings. Fix an r -inflator $\{f_n\}_{n \in \mathbb{N}}$, where

$$f_n : \text{Sub}_{\mathbb{M}}(\mathbb{M}^n) \rightarrow \text{Sub}_S(S^n).$$

Say that $a \in \mathbb{M}$ *specializes* to $b \in S$ if

$$f_2(\mathbb{M} \cdot (1, a)) = S \cdot (1, b).$$

This should define a homomorphism

$$\text{res} : R \rightarrow S \tag{1}$$

for some subring $R \subseteq \mathbb{M}$. In the case of 1-inflators ($r = 1$), R should be a valuation ring on \mathbb{M} .⁵

When $r > 1$, one might intuitively hope that R will be an intersection of r or fewer valuation rings on \mathbb{M} .⁶ However, several things go wrong. For example, there is a 2-inflator on \mathbb{C} given by

$$f_n(V) = (V + \overline{V}, V \cap \overline{V}),$$

where \overline{V} is the complex conjugate of V .⁷ For this inflator, the ring R is \mathbb{R} , which is *not* a finite intersection of valuation rings on \mathbb{C} .

There is a certain way to “mutate” f that improves the situation. Specifically, we can define a new inflator f' by the formula

$$f'_n(V) := f_{2n}(\{(\vec{x}, a \cdot \vec{x}) \mid \vec{x} \in V\})$$

for some constant a . By choosing a carefully (for example, $a = \sqrt{-1}$), the ring R' associated to f' will be bigger, and closer to being a finite intersection of valuation rings.⁸

Ideally, after finitely many mutations, one would arrive at an inflator f'' whose associated ring R'' is a finite intersection of valuation rings. Unfortunately, this does not happen.⁹ Nevertheless, if one defines R_∞ to be the union of all the rings R' associated to mutations f' of f , it turns out that R_∞ is a finite intersection of valuation rings.¹⁰ In other words, we get R to be a finite intersection of valuation rings *in the limit*.

⁵These claims have been verified in [16, Propositions 5.7, 5.19].

⁶The intuition is that if $K \models \text{ACF}_0$ and $\mathcal{O}_1, \dots, \mathcal{O}_r$ are independent valuation rings on K , then the structure $(K, +, \cdot, \mathcal{O}_1, \dots, \mathcal{O}_r)$ has burden r , by [14, Theorem 11.5.7]. The analogue of Fact 10.1 holds in this context [3, Proposition 4.5.2], and one can probably carry out the analogous construction of r -inflators. (See [16, Theorem 9.7] for one result in this direction.) So one expects to get r -inflators from r -fold intersections of valuation rings.

⁷See [16, Example 4.9] for a precise description. The semisimple ring S is $\mathbb{C} \times \mathbb{C}$ in this example, so S -modules are pairs of \mathbb{C} -vector spaces.

⁸The idea of “mutation” is made precise in [16, §10.1]. The fact that mutation “improves the situation” is [16, Lemma 10.11]. For the specific example $V \mapsto (V + \overline{V}, V \cap \overline{V})$ discussed above, see [16, §12.1].

⁹See [16, §12.3] for an example.

¹⁰This is verified in [16, Theorem 10.12].

In sections 11.2–11.3 below, we will follow a simpler parallel argument, which avoids the use of inflators. In Proposition 11.16 we will associate a ring $R_J \subseteq \mathbb{M}$ and an ideal $I_J \triangleleft R_J$ to any special J ; these should correspond to the domain and kernel of the specialization map $\text{res}(-)$ of (1) above. In §11.3 we will “mutate” J by replacing it with

$$J' = J \cap a_1 \cdot J \cap \cdots \cap a_n \cdot J.$$

This should correspond to mutation of inflators.¹¹ By considering the union of $R_{J'}$ as J' ranges over all mutations, we will obtain a finite intersection of valuation rings (Theorem 11.26).

11.2 The associated rings and ideals

Definition 11.14. Let $J \in \mathcal{P}_n$ be special, and $a \in \mathbb{M}^\times$. Say that a *contracts* J if $a = 0$ or J dominates $a \cdot J$ (i.e., $\text{G.dim}(J/a \cdot J) = nr$).

Note that when $a \neq 0$, J dominates $a \cdot J$ if and only if $a^{-1} \cdot J$ dominates J .

Lemma 11.15.

1. Let A_1, \dots, A_{nr} be a uniform basis over $J \in \mathcal{P}_n$ and a be an element of \mathbb{M} . If $a \cdot A_i \subseteq J$ for all i , then a contracts J . Conversely, suppose a contracts J . Then there exists $A'_i \in (J, A_i]$ such that A'_1, \dots, A'_{nr} is a uniform basis over J and $a \cdot A'_i \subseteq J$ for each i .
2. If a contracts J and $b \in \mathbb{M}^\times$, then a contracts $b \cdot J$.
3. If a, b contract J then $a + b$ contracts J .
4. If a contracts J and $b \cdot J \subseteq J$, then $a \cdot b$ contracts J .
5. If a contracts both $I \in \mathcal{P}_n$ and $J \in \mathcal{P}_m$, then a contracts $I \oplus J \in \mathcal{P}_{n+m}$.
6. If a contracts $I, J \in \mathcal{P}_n$, then a contracts $I \cap J$ and $I + J$.

Proof. 1. First suppose $a \cdot A_i \subseteq J$. If $a = 0$ then a contracts J by definition, so suppose $a \neq 0$. Then

$$(a^{-1} \cdot J) \cap A_i = A_i \supsetneq J$$

for each i , so by Lemma 11.8 the group $a^{-1} \cdot J$ dominates J , or equivalently, J dominates $a \cdot J$. Thus a contracts J . Conversely, suppose that a contracts J . If $a = 0$ then $a \cdot A_i \subseteq J$ so we may take $A'_i = A_i$. Otherwise, note that $a^{-1} \cdot J$ dominates J , so by Lemma 11.8,

$$A'_i := (a^{-1} \cdot J) \cap A_i \supsetneq J.$$

By Lemma 9.25, $\{A'_1, \dots, A'_{nr}\}$ is a uniform basis over J . Furthermore $A'_i \subseteq a^{-1} \cdot J$, so $a \cdot A'_i \subseteq J$.

¹¹These correspondences have been verified in [16, Theorem 9.3] and [16, Proposition 10.15].

2. Multiplication by b induces an automorphism of \mathcal{P}_n sending the interval $[a \cdot J, J]$ to $[a \cdot (b \cdot J), b \cdot J]$, so $\text{G. dim}(J/a \cdot J) = \text{G. dim}(b \cdot J/(ab) \cdot J)$.
3. Take a uniform basis A_1, \dots, A_{rn} over J . By part 1, we may shrink the A_i and assume that $a \cdot A_i \subseteq J$. Shrinking again, we may assume $b \cdot A_i \subseteq J$. Then

$$(a + b) \cdot A_i \subseteq a \cdot A_i + b \cdot A_i \subseteq J + J = J$$

so by part 1, $a + b$ contracts J .

4. Suppose a contracts J and $b \cdot J \subseteq J$. Then

$$\text{G. dim}(J/a \cdot b \cdot J) \geq \text{G. dim}(b \cdot J/a \cdot b \cdot J) = \text{G. dim}(J/a \cdot J) = nr.$$

5. Let A_1, \dots, A_{rn} be a uniform basis in $[I, \mathbb{M}^n]$, and B_1, \dots, B_{rm} be a uniform basis in $[J, \mathbb{M}^m]$. Shrinking the A_i and B_i , we may assume $a \cdot A_i \subseteq I$ and $a \cdot B_i \subseteq J$. Note that the sequence

$$A_1 \oplus J, A_2 \oplus J, \dots, A_{rn} \oplus J, I \oplus B_1, I \oplus B_2, \dots, I \oplus B_{rm}$$

is a uniform basis in $[I \oplus J, \mathbb{M}^{n+m}]$. Multiplication by a collapses each of these uniform elements into $I \oplus J$ (using the fact that $a \cdot I \subseteq I$ and $a \cdot J \subseteq J$). Therefore a contracts $I \oplus J$.

6. We may assume $a \neq 0$. By the previous point, $a^{-1} \cdot (I \oplus J)$ dominates $I \oplus J$. By Lemma 11.10, $I + J$ and $I \cap J$ are special. Moreover, there is a uniform basis $A_1, \dots, A_n, B_1, \dots, B_n$ in $[I \oplus J, \mathbb{M}^{2n}]$ such that for

$$\begin{aligned}\hat{A}_i &= \{\vec{x} \in \mathbb{M}^n \mid (\vec{x}, \vec{x}) \in A_i\} \\ \hat{B}_i &= \{\vec{x} - \vec{y} \mid (\vec{x}, \vec{y}) \in B_i\}\end{aligned}$$

the set $\{\hat{A}_1, \dots, \hat{A}_n\}$ is a uniform basis over $I \cap J$ and the set $\{\hat{B}_1, \dots, \hat{B}_n\}$ is a uniform basis over $I + J$. Furthermore Lemma 11.10 ensures that the A_i and B_i can be chosen in $[I \oplus J, a^{-1} \cdot (I \oplus J)]$. Thus $a \cdot A_i \subseteq I \oplus J$ and $a \cdot B_i \subseteq I \oplus J$. Then

$$\vec{x} \in \hat{A}_i \iff (\vec{x}, \vec{x}) \in A_i \implies (a \cdot \vec{x}, a \cdot \vec{x}) \in I \oplus J \iff a \cdot \vec{x} \in I \cap J,$$

so $a \cdot \hat{A}_i \subseteq I \cap J$. As the \hat{A}_i form a uniform basis over $I \cap J$, it follows that a contracts $I \cap J$. Similarly,

$$(\vec{x}, \vec{y}) \in B_i \implies (a \cdot \vec{x}, a \cdot \vec{y}) \in I \oplus J \implies a \cdot (\vec{x} - \vec{y}) \in I + J$$

so $a \cdot \hat{B}_i \subseteq I + J$. Thus a contracts $I + J$. \square

Proposition 11.16. *For any special $J \in \mathcal{P} = \mathcal{P}_1$, let R_J be the set of $a \in \mathbb{M}$ such that $a \cdot J \subseteq J$, and let I_J be the set of $a \in \mathbb{M}$ that contract J .*

1. R_J is a subring of \mathbb{M} , containing M_0 .
2. I_J is an ideal in R_J .
3. If $b \in \mathbb{M}^\times$ then $R_J = R_{b \cdot J}$ and $I_J = I_{b \cdot J}$.
4. If J is type-definable over $M \supseteq M_0$, then R_J and I_J are M -invariant.
5. If J is non-zero and type-definable over $M \supseteq M_0$ then $I_M \subseteq I_J$.
6. If J_1 and J_2 are special, then

$$\begin{aligned} R_{J_1} \cap R_{J_2} &\subseteq R_{J_1 \cap J_2} \\ I_{J_1} \cap I_{J_2} &\subseteq I_{J_1 \cap J_2} \end{aligned}$$

7. $(1 + I_J) \subseteq R_J^\times$. Consequently, I_J lies inside the Jacobson radical of R_J .

Proof. 1. Straightforward.

2. The set I_J is a subset of R_J . The fact that $I_J \triangleleft R_J$ is exactly Lemma 11.15.3-4.
3. For I_J this is Lemma 11.15.2. For R_J this is clear:

$$a \cdot J \subseteq J \implies (ab) \cdot J \subseteq b \cdot J.$$

4. The definitions are $\text{Aut}(\mathbb{M}/M)$ -invariant.
5. Let A_1, \dots, A_r be a uniform basis over J . For each i let a_i be an element of $A_i \setminus J$. Let M' be a small model containing M and the a_i 's.

Claim 11.17. Any $\varepsilon \in I_{M'}$ contracts J .

Proof. We may assume $\varepsilon \neq 0$. Let $D = \varepsilon^{-1} \cdot I_{M'}$. By Fact 8.4.4, $a_i \cdot \varepsilon \in M' \cdot I_{M'} \subseteq I_{M'}$, and so $a_i \in D$. Thus

$$D \cap A_i \not\subseteq J$$

By Proposition 11.4.2, $D \supseteq J$. Then

$$D \cap A_i \supsetneq J$$

so by Lemma 11.8, D dominates J . By Proposition 11.1.4, $\varepsilon^{-1} \cdot J \supseteq \varepsilon^{-1} \cdot I_{M'} = D$. Thus $\varepsilon^{-1} \cdot J$ dominates J . \square_{Claim}

Let ε be a realization of the partial type over M' asserting that $\varepsilon \in I_{M'}$ and $\varepsilon \notin X$ for any light M' -definable set X . This type is consistent because M' -definable basic neighborhoods are heavy (Fact 8.3.1) and no heavy set is contained in a finite union of light sets (Fact 8.2.2). Then $\varepsilon \in I_{M'} \subseteq I_J$. As I_J is M -invariant, every realization of $\text{tp}(\varepsilon/M)$ is in I_J . Let Y be the type-definable set of realizations of $\text{tp}(\varepsilon/M)$. For any M -definable $X \supseteq Y$ we have

$$I_M \subseteq X -_\infty X \subseteq X - X.$$

Therefore $I_M \subseteq Y - Y$. But $Y - Y \subseteq I_J - I_J = I_J$.

6. If $a \in R_{J_1}$ and $a \in R_{J_2}$, then

$$a \cdot (J_1 \cap J_2) = (a \cdot J_1) \cap (a \cdot J_2) \subseteq J_1 \cap J_2$$

so $a \in R_{J_1 \cap J_2}$. The inclusion $I_{J_1} \cap I_{J_2} \subseteq I_{J_1 \cap J_2}$ is Lemma 11.15.6.

7. First note that 1 does not contract J . Indeed, $\text{G.dim}(J/J) = 0 \neq r$. Thus $1 \notin I_J$. As I_J is an ideal, it follows that $-1 \notin I_J$.

Claim 11.18. If $\varepsilon \in I_J$ then $\varepsilon/(1 + \varepsilon) \in I_J$.

Proof. We may assume $\varepsilon \neq 0$. Using Lemma 11.15.1 choose a uniform basis $\{A_1, \dots, A_r\}$ over J such that $\varepsilon \cdot A_i \subseteq J$. For each i choose $a_i \in A_i \setminus J$. Then $\varepsilon \cdot a_i \in J$, so $(1 + \varepsilon) \cdot a_i \in A_i \setminus J$. Let $\beta = (1 + \varepsilon)/\varepsilon$. Then

$$\begin{aligned} \beta \cdot (\varepsilon \cdot a_i) &\in \beta \cdot J \\ (\beta \cdot \varepsilon) \cdot a_i &= (1 + \varepsilon) \cdot a_i \in A_i \setminus J. \end{aligned}$$

In particular

$$(\beta \cdot J) \cap A_i \not\subseteq J,$$

for every i , so $\beta \cdot J \supseteq J$ by Proposition 11.4.2. Then $(\beta \cdot J) \cap A_i \supsetneq J$ for every i , so $\beta \cdot J$ dominates J by Lemma 11.8. This means that $\beta^{-1} = \varepsilon/(1 + \varepsilon)$ lies in I_J . \square_{Claim}

Now if $\varepsilon \in I_J$, then

$$\frac{1}{1 + \varepsilon} = 1 - \frac{\varepsilon}{1 + \varepsilon} \in 1 + I_J \subseteq R_J. \quad \square$$

Remark 11.19. Proposition 11.16.6 also holds for $R_{J_1+J_2}$ and $I_{J_1+J_2}$.

Speculative Remark 11.20. In Proposition 11.16.5, not only is I_M a subset of I_J , it is a subideal in the ring R_J . One can probably prove this by first increasing M to contain a non-zero element j_0 of J . Then for any $\varepsilon \in I_M$ and $a \in R_J$, we have

$$\varepsilon \cdot a \cdot j_0 \in I_M \cdot R_J \cdot J \subseteq I_M \cdot J \subseteq I_M,$$

so $\varepsilon \cdot a \in j_0^{-1}I_M = I_M$. Thus $I_M \cdot R_J \subseteq I_M$. Then one can probably shrink M back to the original model by the usual methods.¹²

Suppose we could show that R_J was a finite intersection of valuation rings. (As discussed in Remark 11.13, this was the initial expectation.) Then the ring

$$R = \{x \in \mathbb{M} : xI_M \subseteq I_M\}$$

would also be a finite intersection of valuation rings. In fact, using the henselianity arguments from the dp-minimal case, one can show that R would be a single *henselian* valuation ring.¹³ This would provide a nice strategy for proving the Shelah conjecture in general.

Unfortunately, it turns out that there are dp-finite fields in which I_M is *not* a valuation ideal [17, §10]. Therefore a different strategy is needed.

11.3 Mutation and the limiting ring

The next two lemmas provide a way to “mutate” a special group J and obtain a better special group J' for which $R_{J'}$ is closer than R_J to being a finite intersection of valuation rings.

Lemma 11.21. *Let $J \in \mathcal{P}$ be special and non-zero. Let a_1, \dots, a_n be elements of \mathbb{M}^\times . Let $J' = J \cap a_1 \cdot J \cap a_2 \cdot J \cap \dots \cap a_n \cdot J$. Then J' is special and non-zero, $R_J \subseteq R_{J'}$, and $I_J \subseteq I_{J'}$.*

Proof. By Proposition 11.4.5, each $a_i \cdot J$ is special, so the intersection J' is special by Lemma 11.10. It is nonzero by Proposition 11.1.6. By Proposition 11.16.3 we have $R_J = R_{a_i \cdot J}$ and $I_J = I_{a_i \cdot J}$ for each i . Then the inclusions $R_J \subseteq R_{J'}$ and $I_J \subseteq I_{J'}$ follow by an interated application of Proposition 11.16.6. \square

Recall that r is the breadth of \mathcal{P} .

Lemma 11.22. *Let $J \in \mathcal{P}$ be special and non-zero. Let $\alpha \in \mathbb{M}^\times$ be arbitrary. Let $J' = J \cap (\alpha \cdot J) \cap \dots \cap (\alpha^{r-1} \cdot J)$. Let q_0, q_1, \dots, q_r be $r+1$ distinct elements of M_0 . Then there is at least one i such that $\alpha \neq q_i$ and*

$$\frac{1}{\alpha - q_i} \in R_{J'}.$$

Proof. For each $0 \leq i \leq r$ let

$$\begin{aligned} \alpha_i &:= \alpha - q_i \\ G_i &:= \{x \in \mathbb{M} \mid \alpha_i x \in J \wedge \alpha_i^2 x \in J \wedge \dots \wedge \alpha_i^r x \in J\} \\ H_i &:= J \cap G_i = \{x \in \mathbb{M} \mid x \in J \wedge \alpha_i x \in J \wedge \dots \wedge \alpha_i^r x \in J\}. \end{aligned}$$

Also let

$$H = \{x \in \mathbb{M} \mid x \in J \wedge \alpha x \in J \wedge \dots \wedge \alpha^r x \in J\}.$$

¹²The details are worked out in [17, Lemma 6.9].

¹³The details are worked out in [15, Proposition 7.7, Theorem 9.9].

Claim 11.23. $H_i = H$ for any i .

Proof. Note $\alpha = \alpha_i + q_i$. If $x \in H_i$ then

$$\alpha^n x = (\alpha_i + q_i)^n x = \sum_{k=0}^n \binom{n}{k} \alpha_i^k q_i^{n-k} x \in J$$

for $0 \leq n \leq r$, because $\alpha_i^k x \in J$, $q_i^{n-k} \in M_0$, and J is an M_0 -vector space. Thus $H_i \subseteq H$; the reverse inclusion follows by symmetry. \square_{Claim}

Because the q_i are distinct, the $(r+1) \times (r+1)$ Vandermonde matrix built from the q_i is invertible. Let $f : \mathbb{M}^{r+1} \rightarrow \mathbb{M}^{r+1}$ be the \mathbb{M} -linear map sending $(1, q_i, \dots, q_i^r)$ to the i th basis vector. Let $g : \mathbb{M} \rightarrow \mathbb{M}^{r+1}$ be the map

$$g(x) = (x, \alpha x, \dots, \alpha^r x).$$

Claim 11.24. The composition

$$\mathbb{M} \xrightarrow{g} \mathbb{M}^{r+1} \xrightarrow{f} \mathbb{M}^{r+1} \twoheadrightarrow (\mathbb{M}/J)^{r+1}$$

has kernel H , and maps G_i into $0^i \oplus (\mathbb{M}/J) \oplus 0^{r-i}$.

Proof. The invertible matrix defining f has coefficients in M_0 , and J is closed under multiplication by M_0 , so f maps J^{r+1} isomorphically to J^{r+1} . Therefore,

$$f(g(x)) \in J^{r+1} \iff g(x) \in J^{r+1} \iff x \in H,$$

where the second \iff is the definition of H . Now suppose $x \in G_i$. Then $g(x) = (x, q_i x, \dots, q_i^r x) \in J^{r+1}$. Indeed, for any $0 \leq n \leq r$ we have

$$\alpha^n x = (\alpha_i + q_i)^n x = q_i^n x + \sum_{k=1}^n \binom{n}{k} q_i^{n-k} (\alpha_i^k x),$$

and the sum is an element of J by definition of G_i . As f preserves J^{r+1} , it follows that

$$f(g(x)) \equiv f(x, q_i x, \dots, q_i^r x) = x \cdot e_i \pmod{J^{r+1}},$$

where e_i is the i th basis vector. \square_{Claim}

Claim 11.25. If $(x_0, x_1, \dots, x_r) \in G_0 \times \dots \times G_r$ has $x_0 + \dots + x_r \in H$, then each $x_i \in H$.

Proof. For $0 \leq i \leq r$ let $p_i : \mathbb{M}^{r+1} \rightarrow \mathbb{M}/J$ be the composition of the i th projection and the quotient map $\mathbb{M} \rightarrow \mathbb{M}/J$. Claim 11.24 implies that

$$\begin{aligned} x \in H &\implies p_i(f(g(x))) = 0 \\ x \in G_j &\implies p_i(f(g(x))) = 0 \quad \text{if } i \neq j. \end{aligned}$$

Thus

$$0 = p_i(f(g(x_0 + \dots + x_r))) = p_i(f(g(x_i))).$$

As $p_j(f(g(x_i))) = 0$ for $j \neq i$, it follows that $p_j(f(g(x_i))) = 0$ for all j . In other words, $f(g(x_i)) \in J^{r+1}$. By Claim 11.24, $x_i \in H$. \square_{Claim}

Now Claim 11.25 implies that the map

$$(G_0/H) \times \cdots \times (G_r/H) \rightarrow \mathbb{M}/H$$

$$(x_0, \dots, x_r) \mapsto x_0 + \cdots + x_r$$

is injective. The image is D/H for some type-definable $D \in \mathcal{P}$, namely $D = G_0 + \cdots + G_r$. Then the interval $[H^{r+1}, G_0 \oplus \cdots \oplus G_r]$ in \mathcal{P}_{r+1} is isomorphic to the interval $[H, D]$ in \mathcal{P}_1 . Thus

$$r \geq \text{br}(D/H) = \text{br}(G_0/H) + \cdots + \text{br}(G_r/H).$$

Therefore $G_i = H = H_i$ for at least one i . By definition of G_i and H_i , this means that

$$\alpha_i x \in J \wedge \cdots \wedge \alpha_i^r x \in J \implies x \in J \quad (2)$$

for any $x \in \mathbb{M}$. As $J \neq 0$, this implies $\alpha_i \neq 0$. Then (2) can be rephrased as

$$\alpha_i^{-1} \cdot J \cap \cdots \cap \alpha_i^{-r} \cdot J \subseteq J. \quad (3)$$

Define

$$\begin{aligned} J'' &:= J \cap \alpha_i^{-1} J \cap \cdots \cap \alpha_i^{-(r-1)} J \\ &= J \cap \alpha^{-1} J \cap \cdots \cap \alpha^{-(r-1)} J, \end{aligned}$$

where the second equality follows by the proof of Claim 11.23. By (3),

$$\alpha_i^{-1} \cdot J'' = \alpha_i^{-1} J \cap \cdots \cap \alpha_i^{-r} \subseteq J \cap \alpha_i^{-1} J \cap \cdots \cap \alpha_i^{-(r-1)} J = J''.$$

Therefore $\alpha_i^{-1} \in R_{J''}$. But

$$J' = J \cap \cdots \cap \alpha^{r-1} J = \alpha^{r-1} \cdot (J \cap \cdots \cap \alpha^{-(r-1)} J) = \alpha^{r-1} J''.$$

Thus, by Proposition 11.16.3

$$\alpha_i^{-1} \in R_{J''} = R_{J'}. \quad \square$$

Theorem 11.26. *Let $J \in \mathcal{P}_1$ be special, non-zero, and type-definable over $M \supseteq M_0$. Then there is an M -invariant ring R_J^∞ and ideal $I_J^\infty \triangleleft R_J^\infty$ satisfying the following properties:*

- R_J^∞ and I_J^∞ are M -invariant.
- $(1 + I_J^\infty) \subseteq (R_J^\infty)^\times$, so I_J^∞ is a subideal of the Jacobson radical of R_J^∞ .
- The M -infinitesimals I_M are a subgroup of I_J^∞ (and therefore of the Jacobson radical).
- $M_0 \subseteq R_J^\infty$.
- R_J^∞ is a Bézout domain with at most r maximal ideals.
- The field of fractions of R_J^∞ is \mathbb{M} .

Proof. Let P be the set of finite $S \subseteq \mathbb{M}^\times$ such that $1 \in S$. Then P is a commutative monoid with respect to the product $S \cdot S' = \{x \cdot y \mid x \in S, y \in S'\}$. For any $S \in P$ and $G \in \mathcal{P}_1$, define

$$G^S := \bigcap_{s \in S} s \cdot G.$$

Note that $(G^S)^{S'} = G^{S \cdot S'}$. If G is special and non-zero then by Lemma 11.21 G^S is special and non-zero, and there are inclusions $R_G \subseteq R_{G^S}$ and $I_G \subseteq I_{G^S}$. Define sets

$$R_J^\infty := \bigcup_{S \in P} R_{JS}$$

$$I_J^\infty := \bigcup_{S \in P} I_{JS}.$$

These sets are clearly M -invariant. Moreover, the unions are directed: given any S and S' we have

$$R_{JS} \cup R_{JS'} \subseteq R_{JS \cdot S'}$$

$$I_{JS} \cup I_{JS'} \subseteq I_{JS \cdot S'}.$$

Therefore R_J^∞ is a ring and I_J^∞ is an ideal. The fact that $(1 + I_J^\infty) \subseteq (R_J^\infty)^\times$ also follows (using Proposition 11.16.7). Taking $S = \{1\}$, we see that $I_J \subseteq I_J^\infty$. Proposition 11.16.5 says $I_M \subseteq I_J$, so $I_M \subseteq I_J^\infty$ as desired. Similarly, $M_0 \subseteq R_J \subseteq R_J^\infty$.

Claim 11.27. If q_0, q_1, \dots, q_r are distinct elements of M_0 and $\alpha \in \mathbb{M}^\times$, then at least one of $1/(\alpha - q_i)$ is in R_J^∞ .

Proof. By Lemma 11.22, at least one of $1/(\alpha - q_i)$ lies in R_{JS} for $S = \{1, \alpha, \dots, \alpha^{r-1}\}$. \square_{Claim}

It follows formally that R_J^∞ is a Bézout domain with no more than r maximal ideals. Let a, b be two elements of R_J^∞ . We claim that the ideal (a, b) is principal. This is clear if $a = 0$ or $b = 0$. Otherwise, let $\alpha = a/b$. As M_0 is infinite, Claim 11.27 implies that

$$\frac{b}{a - qb} = \frac{1}{\frac{a}{b} - q} \in R_J^\infty$$

for some $q \in M_0$. Then the principal ideal $(a - qb) \triangleleft R_J^\infty$ contains b , hence qb and thus a . Therefore $(a - qb) = (a, b)$.

Next, we show that R_J^∞ has at most r maximal ideals. Suppose for the sake of contradiction that there were distinct maximal ideals $\mathfrak{m}_0, \dots, \mathfrak{m}_r$ in R_J^∞ . As R_J^∞ is an M_0 -algebra, each quotient $R_J^\infty/\mathfrak{m}_i$ is a field extending M_0 . Take distinct $q_0, \dots, q_r \in M_0$, and find an element $x \in R_J^\infty$ such that $x \equiv q_i \pmod{\mathfrak{m}_i}$ for each i , by the Chinese remainder theorem. Then $x - q_i \in \mathfrak{m}_i \subseteq R_J^\infty \setminus (R_J^\infty)^\times$ for each i . So $1/(x - q_i)$ does not lie in R_J^∞ for any $0 \leq i \leq r$, contrary to Claim 11.27.

Lastly, note that if x is any element of \mathbb{M}^\times , then $1/(x - q) \in R_J^\infty$ for some $q \in M_0$, $q \neq x$. As $q \in M_0 \subseteq R_J^\infty$, the field of fractions of R_J^∞ contains x . So the field of fractions must be all of \mathbb{M} . \square

11.4 From Bézout domains to valuation rings

Remark 11.28. Let R be a Bézout domain.

1. For each maximal ideal \mathfrak{m} , the localization $R_{\mathfrak{m}}$ is a valuation ring on the field of fractions of R .
2. R is the intersection of the valuation rings $R_{\mathfrak{m}}$.

See [2, VII, §2, Exercise 7a] and [2, II, §3, no. 3, Corollary 4], respectively.

Theorem 11.29. *Let \mathbb{M} be a sufficiently saturated dp-finite field, possibly with extra structure. Suppose \mathbb{M} is not of finite Morley rank. Then there is a small set $A \subseteq \mathbb{M}$ and a non-trivial A -invariant valuation ring.*

Proof. Take M_0 as usual in this section. By Proposition 11.4 there is a non-zero special $J \in \mathcal{P}_1$. The group J is type-definable over some small $M \supseteq M_0$. Let R be the R_J^∞ of Theorem 11.26. Then R is an M -invariant Bézout domain with at most r maximal ideals, the Jacobson radical of R is non-zero (because it contains I_M), and $\text{Frac}(R) = \mathbb{M}$. Let $\mathfrak{m}_1, \dots, \mathfrak{m}_k$ enumerate the maximal ideals of R . Let \mathcal{O}_i be the localization $R_{\mathfrak{m}_i}$. By Remark 11.28, each \mathcal{O}_i is a valuation ring on \mathbb{M} , and

$$R = \mathcal{O}_1 \cap \dots \cap \mathcal{O}_k.$$

At least one \mathcal{O}_i is non-trivial; otherwise $R = \mathbb{M}$ and has Jacobson radical 0.¹⁴ Without loss of generality \mathcal{O}_1 is non-trivial. By the Chinese remainder theorem, choose $a \in R$ such that $a \equiv 1 \pmod{\mathfrak{m}_1}$ and $a \equiv 0 \pmod{\mathfrak{m}_i}$ for $i \neq 1$. We claim that \mathcal{O}_1 is $\text{Aut}(\mathbb{M}/aM)$ -invariant. If $\sigma \in \text{Aut}(\mathbb{M}/aM)$, then $\sigma \in \text{Aut}(\mathbb{M}/M)$ so σ preserves R setwise. It therefore permutes the finite set of maximal ideals. As \mathfrak{m}_1 is the unique maximal ideal not containing a , it must be preserved (setwise). Therefore σ preserves the localization \mathcal{O}_1 setwise. \square

Remark 11.30. Stable fields do not admit non-trivial invariant valuation rings [15, Lemma 2.1]. Consequently, Theorem 11.29 can be used to give an extremely roundabout proof of Halevi and Palacín's theorem that stable dp-finite fields have finite Morley rank [12, Proposition 7.2].

12 Shelah conjecture and classification

Proposition 12.1. *Let K be a sufficiently saturated dp-finite field of positive characteristic. Then one of the following holds:*

- K has finite Morley rank (and is therefore finite or algebraically closed).
- K admits a non-trivial henselian valuation.

¹⁴Tracing through the proof, here is what explicitly happens. If $\varepsilon \in I_M$ then $-1/\varepsilon$ cannot be in R_J^∞ , or else $\varepsilon \in I_M \subseteq I_J \subseteq I_{JS} \triangleleft R_{JS}$ and $-1/\varepsilon \in R_{JS}$ for large enough S , so that $-1 \in I_{JS}$, contradicting Proposition 11.16.7.

Proof. This is Fact 8.5 and Theorem 11.29. \square

Lemma 12.2. *Let K be a sufficiently saturated dp-finite field of positive characteristic. Assume K is infinite. Let \mathcal{O}_∞ be the intersection of all K -definable valuation rings on K . Then \mathcal{O}_∞ is a henselian valuation ring on K whose residue field is algebraically closed.*

Proof. The proof for dp-minimal fields ([14, Theorem 9.5.7]) goes through without changes, using Proposition 12.1 together with [13, Theorems 2.6, 2.8]. Additionally, we must rule out the possibility that the residue field is real closed or finite. The first cannot happen because we are in positive characteristic. The second cannot happen because K is Artin-Schreier closed, a property which transfers to the residue field. \square

Corollary 12.3. *Let K be a sufficiently saturated infinite dp-finite field of positive characteristic. If every definable valuation on K is trivial, then K is algebraically closed.*

Corollary 12.4. *Let K be a dp-finite field of positive characteristic. Then one of the following holds:*

- K is finite.
- K is algebraically closed.
- K admits a non-trivial definable henselian valuation.

Proof. Suppose K is neither finite nor algebraically closed. Let $K' \succeq K$ be a sufficiently saturated elementary extension. Then K' is neither finite nor algebraically closed. By Corollary 12.3 there is a non-trivial definable valuation $\mathcal{O} = \phi(K', a)$ on K' . The statement that $\phi(x; a)$ cuts out a valuation ring is expressed by a 0-definable condition on a , so we can take $a \in \text{dcl}(K)$. Then $\phi(K, a)$ is a non-trivial valuation ring on K , henselian by [13, Theorem 2.8]. \square

So the Shelah conjecture holds for dp-finite fields of positive characteristic.

By [11, Proposition 3.9, Remark 3.10, and Theorem 3.11], this implies the following classification of dp-finite fields of positive characteristic: up to elementary equivalence, they are exactly the Hahn series fields $\mathbb{F}_p((\Gamma))$ where Γ is a dp-finite p -divisible group. Dp-finite ordered abelian groups have been algebraically characterized and are the same thing as strongly dependent ordered abelian groups [5, 7, 10].

Acknowledgments. The author would like to thank

- Meng Chen, for hosting the author at Fudan University, where this research was carried out.
- Jan Dobrowolski, Yatir Halevi, and Françoise Point, who provided some helpful references.
- The UCLA model theorists, who read parts of this paper and pointed out typos.

- Two anonymous referees, who provided many helpful comments on this paper and [13].

This material is based upon work supported by the National Science Foundation under Award No. DMS-1803120. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

- [1] Garrett Birkhoff. *Lattice Theory*, volume 25 of *Colloquium Publications*. American Mathematical Society, 1995.
- [2] N. Bourbaki. *Algèbre Commutative*. Éléments de mathématique. Masson, 1985.
- [3] Artem Chernikov, Itay Kaplan, and Pierre Simon. Groups and fields with NTP_2 . *Proc. Amer. Math. Soc.*, 143:395–406, 2015.
- [4] Jeremy E. Dawson. Independence spaces and uniform modules. *European Journal of Combinatorics*, 6:29–36, 1985.
- [5] Alfred Dolich and John Goodrick. A characterization of strongly dependent ordered abelian groups. arXiv:1707.06344v1 [math.LO], 2017.
- [6] Antonio J. Engler and Alexander Prestel. *Valued Fields*. Springer, 2005.
- [7] Rafel Farré. Strong ordered abelian groups and dp-rank. arXiv:1706.05471v1 [math.LO], 2017.
- [8] George Grätzer. *Lattice Theory: Foundation*. Birkhäuser, 2011.
- [9] P. Grzeszczuk and E. R. Puczyłowski. On Goldie and dual Goldie dimension. *Journal of Pure and Applied Algebra*, 31:47–54, 1984.
- [10] Yatir Halevi and Assaf Hasson. Strongly dependent ordered abelian groups and henselian fields. arXiv:1706.03376v3 [math.LO], 2017.
- [11] Yatir Halevi, Assaf Hasson, and Franziska Jahnke. A conjectural classification of strongly dependent fields. *Bulletin of Symbolic Logic*, 25(2):182–195, June 2019.
- [12] Yatir Halevi and Daniel Palacín. The dp-rank of abelian groups. *Journal of Symbolic Logic*, 84:957–986, September 2019.
- [13] Will Johnson. Dp-finite fields I(A): the infinitesimals. *This journal*.
- [14] Will Johnson. *Fun with Fields*. PhD thesis, University of California, Berkeley, 2016. Available at <https://math.berkeley.edu/~willij/drafts/will-thesis.pdf>.

- [15] Will Johnson. Dp-finite fields II: the canonical topology and its relation to henselianity. arXiv:1910.05932v2 [math.LO], October 2019.
- [16] Will Johnson. Dp-finite fields III: inflators and directories. arXiv:1911.04727v1 [math.LO], November 2019.
- [17] Will Johnson. Dp-finite fields IV: the rank 2 picture. arXiv:2003.09130v1 [math.LO], March 2020.
- [18] Mike Prest. *Model Theory and Modules*. Number 130 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1988.
- [19] E. R. Puczyłowski. On some dimesions of modular lattices and matroids. In Gary F. Birkenmeier, Jae Keol Park, and Young Soo Park, editors, *International Symposium on Ring Theory*, pages 303–312. Birkhäuser, 1999.
- [20] Pierre Simon. *A guide to NIP theories*. Lecture Notes in Logic. Cambridge University Press, July 2015.
- [21] D. J. A. Welsh. *Matroid Theory*. Number 8 in London Mathematical Society Monographs. Academic Press, 1976.