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Abstract
We partially generalize the known results on dp-minimal fields to dp-finite fields.

We prove a dichotomy: ifK is a sufficiently saturated dp-finite expansion of a field, then
either K has finite Morley rank or K has a non-trivial Aut(K/A)-invariant valuation
ring for some small set A. In the positive characteristic case, we can even obtain a
henselian valuation ring. Using this, we classify the positive characteristic dp-finite
pure fields.

8 Introduction

The two main conjectures for NIP fields are

� The henselianity conjecture: any NIP valued field (K,O) is henselian.

� The Shelah conjecture: any NIP field K is algebraically closed, real closed, finite, or
admits a non-trivial henselian valuation.

These conjectures are known to imply a full classification of dp-finite fields, i.e., fields of
finite dp-rank [11]. See [20] for a reference on NIP and dp-rank, and [6] for a reference on
valued fields and henselianity.

In an earlier paper [13], we proved the henselianity conjecture for positive characteristic
NIP fields. Continuing [13], we prove the Shelah conjecture for positive characteristic dp-
finite fields. This yields the classification of positive characteristic dp-finite fields.

Our main technical result is the following statement, which holds in any characteristic.

Theorem 8.1 (= Theorem 11.29). Let (K,+, ·, . . .) be a sufficiently saturated dp-finite field,
possibly with extra structure. Then either

� K has finite Morley rank, or

� There is an Aut(K/A)-invariant non-trivial valuation ring on K for some small set
A.

Unfortunately, we can only obtain a henselian valuation ring in positive characteristic.
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8.1 The story so far

We review several facts from [13]. Let (M,+, ·, . . .) be a field, possibly with extra structure.
Assume

� M is sufficiently saturated

� M has finite dp-rank

� M does not have finite Morley rank.

Under these assumptions, we defined a notion of heavy and light definable sets [13, Defini-
tion 4.19]. We proved the following:

Fact 8.2 ([13, Theorem 4.20]).

1. A definable set D ⊆ M is heavy if and only if it is not light.

2. Light sets form an ideal.

3. Heaviness/lightness is definable in families.

4. Heaviness/lightness is preserved by affine symmetries x ↦→ ax + b.

If X, Y are definable subsets of M, we defined

X −∞ Y := {a ∈ M : X ∩ (Y + a) is heavy}.

Then we defined a basic neighborhood to be a set of the form X −∞ X for heavy definable
X ⊆ M. We proved:

Fact 8.3 ([13, Proposition 6.4]).

1. Every basic neighborhood is heavy.

2. The family of basic neighborhoods is downwards directed.

For any small model M ⪯ M, we defined the set IM of M-infinitesimals to be the
intersection of all M -definable basic neighborhoods. We proved:

Fact 8.4 ([13, Remark 6.8, Theorem 6.16, and Proposition 6.18]).

1. IM is an additive subgroup of M, type-definable over M .

2. Every definable set containing IM is heavy.

3. IM is minimal among subgroups satisfying the previous two conditions.

4. IM is a non-zero M-linear proper subspace of M.
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Recall that a set is “A-invariant” if it is Aut(M/A)-invariant for some small set A. This
is a very weak form of A-definability.

Fact 8.5 ([13, Theorem 7.5]). Suppose M has positive characteristic. If there is a small
set A and a non-trivial A-invariant valuation ring O, then there is a small set A′ and a
non-trivial A′-invariant henselian valuation ring O′.

In order to prove the Shelah conjecture for positive characteristic dp-finite fields, it there-
fore suffices to produce a non-trivial A-invariant valuation ring. This is Theorem 8.1.

8.2 Constructing an invariant valuation ring

Assume M is unstable and highly saturated. Fix a small submodel M0 ⪯ M. Let P be the
poset of type-definable M0-linear subspaces G ⊆ M that are 00-connected, in the sense that
G = G00. Then P is always a modular lattice, with lattice operations given by

G ∨H = G + H

G ∧H = (G ∩H)00.

By [3, Proposition 4.5.2], P has breadth at most r = dp-rk(M): for any G1, . . . , Gr+1 ∈ P ,
there is some i such that

G1 ∧ · · · ∧Gr+1 = G1 ∧ · · · ∧Gi−1 ∧Gi+1 ∧ · · · ∧Gr+1.

See [8, Chapter V] for background on lattice theory, modularity, and breadth.
In the dp-minimal case (r = 1), P is linearly ordered. Therefore, for J ∈ P the set

{a ∈ M : a · J ⊆ J}

is a valuation ring on M. Taking J to be the M0-infinitesimals IM0 , we obtain a non-trivial
valuation ring on M, proving Theorem 8.1.

In higher ranks, the situation is more complicated. To begin, we need some lattice-
theoretic way to detect valuations.

If M is an R-module, let SubR(M) denote the lattice of R-submodules of M .

Definition 8.6 ([16, Definition 4.1]). An r-inflator on M consists of a semisimple M0-algebra
S of length r, and a family of maps

fn : SubM(Mn) → SubS(Sn)

satisfying the following axioms:

1. Each fn is order-preserving:

X ≤ Y =⇒ fn(X) ≤ fn(Y ).
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2. Each fn is GLn(M0)-equivariant.

3. The fn are compatible with ⊕:

fn+m(X ⊕ Y ) = fn(X) ⊕ fm(Y ).

4. Each fn scales lengths by a factor of r:

ℓS(fn(X)) = r · dimM(X).

If (O,m) is a valuation ring on M with residue field k = O/m, then there is a 1-inflator
given by

fn : SubM(Mn) → Subk(kn)

X ↦→ (X ∩ On + mn)/mn.

Modulo fine print, all 1-inflators arise this way [16, Theorem 5.20]. Thus, 1-inflators on M
are equivalent to valuations, and r-inflators are some kind of “generalized valuations.”

In a later paper [16], we will give a proof of Theorem 8.1 in two steps:

Step 1 (= [16, Theorem 9.3]). If J ∈ P satisfies a special property (Definition 11.3 below),
then J canonically determines an r-inflator {fn}n∈N for some r ≤ dp-rk(M).

Step 2 (= [16, Theorem 10.12]). Any r-inflator {fn}n∈N on M canonically determines a
finite set of valuation rings on M.

The present paper is a simplified proof, avoiding all use of inflators, but losing some of
the corresponding intuition.

The proof uses a certain construction of Puczylowski [19] which associates to any modular
lattice M a modular pregeometry U(M), as well as a map Φ from M to the lattice M of
closed sets in U(M). We will review this construction in §9.4 below. For an introduction to
pregeometries, see [21] or [8, §V.3.3].

Returning to our saturated dp-finite M, let Pn be the lattice of 00-connected type-
definable M0-linear subspaces of Mn. For example, P1 = P . Fix some J ∈ P1. For each n,
consider the interval [Jn,Mn] ⊆ Pn. Using Puczylowski’s construction, we get a map

fn : SubM(Mn) → [Jn,Mn]

V ↦→ Φ(V + Jn).

When J satisfies a certain technical condition (Definition 11.3), this map scales lengths
proportionally (Remark 11.12). In a later paper [16, Corollary 7.29, Theorem 9.3], we will
build isomorphisms [Jn,Mn] ∼= SubS(Sn) and verify the inflator axioms, for some semisimple
algebra S.

With the maps fn in hand, we extract a finite set of valuation rings in §11.2–11.4. The
intuition from inflators is explained in Remark 11.13.

Remark 8.7. The infinitesimals IM0 play a minor but critical role in the above construction.
Specifically, the existence of IM0 rules out the degenerate possibility P1 = {0,M}.
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8.3 A 00-technicality

In the lattices Pn, the ∧-operator is given by

A ∧B = (A ∩B)00.

The (−)00 causes some technical problems.1 Luckily, by choosing M0 carefully, we can get
rid of the (−)00.

Theorem (= Corollary 10.7). There is a small submodel M0 ⪯ M such that J = J00 for
every type-definable M0-linear subspace J ≤ M. Consequently, the lattice operations on P
are given by

G ∨H = G + H

G ∧H = G ∩H.

This is a corollary of the following uniform bounding principle for dp-finite abelian groups:

Theorem (= Theorem 10.4). If H is a type-definable subgroup of a dp-finite abelian group
G, then |H/H00| is bounded by a cardinal κ(G) depending only on G.

8.4 Outline

In §9, we review some abstract facts about modular lattices, including the notions of breadth
and Goldie dimension (§9.2) and Puczylowski’s construction of a modular pregeometry on
uniform elements (§9.4). We will also prove a subadditivity theorem for breadth (Proposi-
tion 9.19), which is probably known to experts in lattice theory.

In §10 we prove the technical fact that |H/H00| is uniformly bounded as H ranges over
type-definable subgroups of a dp-finite abelian group. In §11, we apply these tools to con-
struct valuation rings on dp-finite fields. §12 we verify the Shelah conjecture for positive
characteristic dp-finite fields, and enumerate the consequences.

9 Modular lattices

Recall that a lattice is modular if the identity

(x ∨ a) ∧ b = (x ∧ b) ∨ a

holds whenever a ≤ b. See [8, Chapter V] for background on modular lattices. Modularity
is equivalent to the statement that for any a, b, the interval [a∧ b, a] is isomorphic as a poset
to [b, a ∨ b] via the maps

[a ∧ b, a] → [b, a ∨ b]

x ↦→ x ∨ b

1In the proof of Proposition 11.4, we need (a ∈ G and a ∈ H) to imply a ∈ G ∧H.
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and

[b, a ∨ b] → [a ∧ b, a]

x ↦→ x ∧ a.

This is the “isomorphism theorem for modular lattices” [8, Theorem 348].
We will write the least and greatest elements of a lattice as ⊥ and ⊤, when they exist. In

what follows, we require “lattice homomorphisms” to preserve ∨ and ∧, but not necessarily
⊤ and ⊥ when they exist. A “sublattice” is a subset closed under ∨ or ∧, but not necessarily
containing ⊤ and ⊥ when they exist.

Abusing notation, we will write [⊥, a] to denote {x ∈ P : x ≤ a}, regardless of whether
⊥ exists. Similarly, [a,⊤] denotes {x ∈ P : x ≥ a}, regardless of whether ⊤ exists.

9.1 Independence and cubes

Let (P,<) be a modular lattice with least element ⊥.

Definition 9.1. A finite sequence a1, . . . , an ∈ P \ {⊥} is independent if ak ∧
⋁︁k−1

i=1 ai = ⊥
for 2 ≤ k ≤ n.

Fact 9.2 ([8, Theorem 360]). Independence is permutation invariant: if a1, . . . , an is inde-
pendent and π is a permutation of [n], then aπ(1), . . . , aπ(n) is independent.

Therefore, independence is really a property of the set {a1, . . . , an} rather than the se-
quence a1, . . . , an.

More generally, we can define a relative notion of independence over an element:

Definition 9.3. Let (P,<) be a modular lattice and b ∈ P be an element. A sequence
a1, . . . , an is independent over b if ai > b for each i, and

ak ∧
⋁︂
i<k

ai = b

for 2 ≤ k ≤ n.

In other words, an independent sequence over b is an independent sequence in the sub-
lattice [b,⊤] ⊆ P .

Definition 9.4. An n-cube in a modular lattice (P,<) is a sublattice isomorphic to the
powerset Pow([n]). The base of the cube is its least element.

Equivalently, an n-cube in P is a family of elements {aS}S⊆[n] such that

aS1∪S2 = aS1 ∨ aS2

aS1∩S2 = aS1 ∧ aS2

S1 ⊊ S2 =⇒ aS1 < aS2 .

The base is a∅.

6



Fact 9.5 ([8, Corollary 359]). If a1, . . . , an is independent over b, and we define

aS =

{︄
b S = ∅⋁︁

i∈S ai S ̸= ∅,

for S ⊆ [n], then {aS}S⊆[n] is an n-cube with base b.

Conversely, if {aS}S⊆[n] is an n-cube with base b, and we define ai = a{i}, then the
sequence a1, . . . , an is easily seen to be independent over b. We conclude that independent
sequences and cubes are in bijection:

Proposition 9.6. If (P,<) is a modular lattice, if b ∈ P , and n ∈ N, then there is a bijection
between n-cubes with base b and sequences a1, . . . , an independent over b.

9.2 Goldie dimension and breadth

Let (P,<) be a modular lattice with least element ⊥.

Definition 9.7 ([9, Definition 6]). The Goldie dimension G. dim(P ) is

sup{n ∈ N | There is an independent sequence a1, . . . , an},

or ∞ if no finite supremum exists.

Goldie dimension is also called uniform dimension. By Proposition 9.6, we can charac-
terize Goldie dimension in terms of cubes:

Proposition 9.8. The Goldie dimension G. dim(P ) is the supremum of n ∈ N such that P
has an n-cube with base ⊥.

Now let (P,<) be any modular lattice, not necessarily with a least element ⊥.

Lemma 9.9. For n ∈ N, the following are equivalent:

1. There are a1, . . . , an ∈ P such that

a1 ∧ · · · ∧ an ̸= a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ an

for all i.

2. There is b ∈ P and a sequence a1, . . . , an independent over b.

3. There is an n-cube in P .

4. There are a1, . . . , an ∈ P such that

a1 ∨ · · · ∨ an ̸= a1 ∨ · · · ∨ ai−1 ∨ ai+1 ∨ · · · ∨ an

for all i.
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Proof. We first prove (1) =⇒ (2) =⇒ (3) =⇒ (4):

(1) =⇒ (2): Let ai be as in (1). Define

b = a1 ∧ · · · ∧ an

ci = a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ an.

By assumption ci > b. Note that ci ≤ ak for i ̸= k. Therefore⋁︂
i<k

ci ≤ ak

ck ∧
⋁︂
i<k

ci ≤ ck ∧ ak = b.

Therefore the ci are independent over b, proving (2).

(2) =⇒ (3): Proposition 9.6.

(3) =⇒ (4): Let {aS}S⊆[n] be an n-cube. Define ai = a{i} for 1 ≤ i ≤ n. Then for any i,

a1 ∨ · · · ∨ an = a{1,...,n}

a1 ∨ · · · ∨ ai−1 ∨ ai+1 ∨ · · · ∨ an = a{1,...,i−1,i+1,...,n} ̸= a{1,...,n}

Therefore
a1 ∨ · · · ∨ an ̸= a1 ∨ · · · ∨ ai−1 ∨ ai+1 ∨ · · · ∨ an,

proving (4).

Having proved (1) =⇒ (4), the reverse implication (4) =⇒ (1) follows by duality.

Remark 9.10. The equivalence (1) ⇐⇒ (4) holds in any lattice [8, Exercise I.1.20], without
assuming modularity.

Definition 9.11. The breadth br(P ) of a modular lattice P is

br(P ) = sup{n ∈ N | There is an n-cube in P},

or ∞ if there is no finite supremum.

Note br(P ) ≥ n if the equivalent conditions of Lemma 9.9 hold.

Remark 9.12. The following are equivalent:

1. br(P ) ≤ n.

2. For any a1, . . . , an+1 ∈ P , there is i such that

a1 ∧ · · · ∧ an+1 = a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ an+1.
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3. For any finite subset S ⊆ P , there is S ′ ⊆ S with⋀︂
S ′ =

⋀︂
S

|S ′| ≤ n

Indeed, (1) ⇐⇒ (2) holds by Lemma 9.9. Condition (2) is a special case of (3), and (2) =⇒
(3) holds by an inductive argument.

Condition (3) is the conventional definition of “breadth” in lattice theory [1, Exer-
cise II.5.6] (or [8, Exercise I.1.19]).

Warning. In the model theory of modules, there is an unrelated notion of “breadth” in
modular lattices, due to Prest [18, p. 205].

Definition 9.13. Let (P,<) be a modular lattice, and a, b be elements with a ≥ b. Then
G. dim(a/b) and br(a/b) denote the Goldie dimension and breadth of the sublattice [b, a] ⊆ P .

Lemma 9.14. Let (P,<) be a modular lattice. Suppose a ≥ b.

1. G. dim(a/b) ≤ br(a/b).

2. br(a/b) = sup{G. dim(a/c) : c ∈ [b, a]}.

Proof. Clear from Proposition 9.8 and Definition 9.11.

9.3 Subadditivity of breadth

Work in a modular lattice (P,<).

Lemma 9.15. If x < y and b is arbitrary, then at least one of the following strict inequalities
holds:

x ∧ b < y ∧ b

x ∨ b < y ∨ b.

Proof. Otherwise, x ∧ b = y ∧ b and x ∨ b = y ∨ b. Then

y = (b ∨ y) ∧ y = (b ∨ x) ∧ y = (b ∧ y) ∨ x = (b ∧ x) ∨ x = x,

where the middle equality is the modular law.

Lemma 9.16. Let {aS}S⊆[n] be an n-cube in P . Let b be some element.

1. Suppose that aS ∧ b > a∅ ∧ b for all S ⊋ ∅. Then the sublattice [⊥, b] has breadth at
least n.

2. Suppose that aS ∨ b < a[n] ∨ b for all S ⊊ [n]. Then the sublattice [b,⊤] has breadth at
least n.
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Proof. We prove (1); (2) is dual. Define ai = a{i} for 1 ≤ i ≤ n. By assumption, ai∧b > a∅∧b.
For any 2 ≤ k ≤ n we have

(ak ∧ b) ∧
⋁︂
i<k

(ai ∧ b) ≤ b

(ak ∧ b) ∧
⋁︂
i<k

(ai ∧ b) ≤ ak ∧
⋁︂
i<k

ai = a∅.

Therefore
(ak ∧ b) ∧

⋁︂
i<k

(ai ∧ b) ≤ a∅ ∧ b.

So the sequence a1 ∧ b, a2 ∧ b, . . . , an ∧ b is independent over a∅ ∧ b. This sequence lies in
[⊥, b] which must have breadth at least n by Lemma 9.9.

Lemma 9.17. Let x ≤ b ≤ y be three elements of P . If there is an n-cube {aS}S⊆[n] in
[x, y], then there is an m-cube in [x, b] and an ℓ-cube in [b, y] for some m + ℓ = n.

Proof. Passing to the sublattice [x, y], we may assume x = ⊥ and y = ⊤. Take S0 ⊆ [n]
maximal such that aS0 ∧ b = a∅ ∧ b. Let ℓ = |S0|. Then {aS}S⊆S0 is an ℓ-cube. For any
S ⊊ S0, we have

aS ∧ b = aS0 ∧ b

by choice of S0, and then
aS ∨ b < aS0 ∨ b

by Lemma 9.15. By Lemma 9.16.2, the lattice [b,⊤] has breadth at least ℓ.
Likewise, {aS}S⊇S0 is an m-cube, for m = n− ℓ = |[n] \ S0|. By choice of S0, we have

aS0 ∧ b < aS ∧ b

for any S ⊋ S0. By Lemma 9.16.1, the lattice [⊥, b] has breadth at least m.

Lemma 9.18. If M1,M2 are two modular lattices, then

br(M1 ×M2) ≥ br(M1) + br(M2).

Proof. Suppose Mi contains an ni cube for i = 1, 2. Take a sublattice Ci ⊆ Mi isomorphic
to Pow([ni]). Then C1 × C2 is isomorphic to Pow([n1 + n2]), and C1 × C2 is a sublattice of
M1 ×M2. So br(M1 ×M2) ≥ n1 + n2.

Recall the notation br(a/b) for the breadth of [b, a].

Proposition 9.19. Let (P,≤) be a modular lattice.

1. If a ≥ b, then
br(a/b) = 0 ⇐⇒ a = b.
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2. If a ≥ b ≥ c, then

max(br(a/b), br(b/c)) ≤ br(a/c) ≤ br(a/b) + br(b/c).

3. If a, b are arbitrary, then

br(a/a ∧ b) = br(a ∨ b/b)

br(b/a ∧ b) = br(a ∨ b/a)

br(a ∨ b/a ∧ b) = br(a/a ∧ b) + br(b/a ∧ b).

Proof. 1. If a = b, then [b, a] is a singleton, so it cannot contain a 1-cube. If a > b, then
{a, b} is a 1-cube in [a, b].

2. The inequalities

br(a/b) ≤ br(a/c)

br(b/c) ≤ br(a/c)

hold because [b, a] and [c, b] are sublattices of [c, a]. Any n-cube in [b, a] or [c, b] would
give an n-cube in [c, a]. The other inequality

br(a/c) ≤ br(a/b) + br(b/c)

holds by Lemma 9.17.

3. The equality br(a/a ∧ b) = br(a ∨ b/b) holds because of the isomorphism [a ∧ b, a] ∼=
[b, a ∨ b]. The second equality holds similarly. Lastly, note that

br(a ∨ b/a ∧ b) ≤ br(a/a ∧ b) + br(a ∨ b/a) = br(a/a ∧ b) + br(b/a ∧ b)

by the previous points. By [8, Theorem 364], the interval [a ∧ b, a ∨ b] contains a
sublattice isomorphic to [a ∧ b, a] × [a ∧ b, b]. By Lemma 9.18,

br(a ∨ b/a ∧ b) ≥ br(a/a ∧ b) + br(b/a ∧ b).

Corollary 9.20. If a1, . . . , an are independent over b, then

br(a1 ∨ · · · ∨ an/b) =
n∑︂

i=1

br(ai/b).

The analogue for Goldie dimension is as follows:

Fact 9.21 ([9, Corollary 7(b)]). If a1, . . . , an are independent over b, then

G. dim(a1 ∨ · · · ∨ an/b) =
n∑︂

i=1

G. dim(ai/b).
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9.4 The pregeometry on uniform elements

In module theory, a submodule N ⊆ M is essential if every non-zero submodule of M
intersects N . A non-zero module M is uniform if every non-zero submodule is essential, i.e.,
any two non-zero submodules of M have non-zero intersection. For any module M , Dawson
constructed a natural pregeometry on the set of uniform submodules [4]. For background on
pregeometries (also called independence systems and matroids), see [21] or [8, §V.3.3].

Dawson’s construction was generalized from modules to modular lattices by Puczylowski
[19]. Fix a modular lattice (P,<) with least element ⊥.

Definition 9.22 ([19, p. 305]). An element a > ⊥ is essential if for every b > ⊥, we have
a∧ b > ⊥. The lattice P is uniform if every a > ⊥ is essential. An element a > ⊥ is uniform
if the sublattice [⊥, a] is uniform. The set of uniform elements in P is denoted U(P ).

Tracing through the definitions, a ∈ P is uniform if for any x, y ∈ P with ⊥ < x ≤ a and
⊥ < y ≤ a, we have x ∧ y > ⊥. Equivalently, a > ⊥ is uniform iff G. dim(a/⊥) = 1.

Theorem 9.23 (Puczylowski [19]). There is a pregeometry on U(P ) with the following
properties:

1. A finite set a1, . . . , an ∈ U(P ) is independent with respect to the pregeometry if and
only if {a1, . . . , an} is lattice-theoretically independent (Definition 9.1).

2. The pregeometry is modular. In other words, the lattice of closed sets is modular.

3. For any x ∈ P , define
Φ(x) = {a ∈ U(P ) : x ∧ a > ⊥}.

Then Φ(x) is a closed set in the pregeometry.

Suppose in addition that G. dim(P ) < ∞. Then

4. Every closed set is of the form Φ(x).

5. The rank of the pregeometry is G. dim(P ). In particular, the rank is finite.

6. If a1, . . . , an ∈ U(P ) is a basis, then a1 ∨ · · · ∨ an is essential in P .

Proof. See Theorems 4, 5, 8, 9 in [19].

We call this pregeometry the pregeometry on uniform elements.

Definition 9.24. A uniform basis in (P,<) is a basis in the pregeometry on uniform ele-
ments, i.e., a maximal independent set of uniform elements.

Lemma 9.25. Let a1, . . . , an be a uniform basis for P . Suppose ⊥ < a′i ≤ ai for each i.
Then a′1, . . . , a

′
n is also a uniform basis for P .
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Proof. If a is uniform and ⊥ < a′ ≤ a, then a′ is also uniform. The set {a′1, . . . , a′n} is
therefore an independent set in the pregeometry on uniform elements. Since it has the same
cardinality as a basis, it must itself be a basis.

Lemma 9.26. Let (P,≤) be a modular lattice with least element ⊥. Suppose G. dim(P ) < ∞.
let a be any element of P . Then there is a uniform basis b1, . . . , bn, c1, . . . , cm such that

� Each bi ≤ a.

� The sequence a, c1, . . . , cm is independent.

Proof. Let n = G. dim(a/⊥). Let b1, . . . , bn be a uniform basis in the sublattice [⊥, a]. Then
each bi is a uniform element, and the bi are independent. Therefore the set {b1, . . . , bn} is
an independent set in U(P ). We can find c1, . . . , cm such that {b1, . . . , bn, c1, . . . , cm} is a
uniform basis in P . We claim that c1, . . . , cm, a is independent. Otherwise,

a ∧
m⋁︂
i=1

ci > ⊥.

By Theorem 9.23.6,
⋁︁n

i=1 bi is essential in [⊥, a]. Therefore(︄
n⋁︂

i=1

bi

)︄
∧

(︄
m⋁︂
i=1

ci

)︄
=

(︄
n⋁︂

i=1

bi

)︄
∧ a ∧

(︄
m⋁︂
i=1

ci

)︄
> ⊥.

But the sequence b1, . . . , bn, c1, . . . , cm is independent, so by Fact 9.5,(︄
n⋁︂

i=1

bi

)︄
∧

(︄
m⋁︂
i=1

ci

)︄
= ⊥,

a contradiction.

Remark 9.27. In the proof of Lemma 9.26, each bi belongs to the set Φ(a) of Theorem 9.23.3,
since bi ∧ a = bi > ⊥. Thus {b1, . . . , bn} is an independent subset of Φ(a). Moreover,
{b1, . . . , bn} is a maximal independent subset of Φ(a): if {b1, . . . , bn, c} is independent for
some uniform element c ∈ Φ(a), then {b1, . . . , bn, c ∧ a} is an independent set of uniform
elements in [⊥, a], contradicting the choice of the bi.

Therefore, the rank of the closed set Φ(a) is equal to n. The bi were chosen to be a
uniform basis in [⊥, a], so by Theorem 9.23.5, n = G. dim(a/⊥). Therefore,

The rank of the closed set Φ(a) is equal to G. dim(a/⊥).

We will often use relative notions of the above construction:

Definition 9.28. Let (P,<) be a modular lattice and b ∈ P be an element. An element
a ∈ P is uniform over b if a is a uniform element in [b,⊤], i.e., a > b and [b, a] is a uniform
lattice. A uniform basis over b is a uniform basis in [b,⊤].
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10 Bounds on connected components

In this section, (G,+, . . .) is a monster-model abelian group, possibly with additional struc-
ture, of finite dp-rank n.

Fact 10.1. Let G0, . . . , Gn be type-definable subgroups of G. There is some 0 ≤ k ≤ n such
that (︄

n⋂︂
i=0

Gi

)︄00

=

(︄⋂︂
i ̸=k

Gi

)︄00

.

This is [3, Proposition 4.5.2]; the n there agrees with dp-rk(G) by inspecting the proof.

Lemma 10.2. Let H be a type-definable subgroup of G. There is a cardinal κ depending
only on H and G such that if H < H ′ < G for some type-definable subgroup H ′, and if H ′/H
is bounded, then H ′/H has size at most κ. This κ continues to work in arbitrary elementary
extensions.

Proof. Naming parameters, we may assume that H (but not H ′) is type-definable over ∅. By
Morley-Erdős-Rado there is some cardinal κ with the following property: for any sequence
{aα}α<κ of elements of G, there is some 0-indiscernible sequence {bi}i∈N such that for any
i1 < · · · < in there is α1 < · · · < αn such that

aα1 · · · aαn ≡∅ bi1 · · · bin .

Let H ′ be a subgroup of G, containing H, type-definable over some small set A. Suppose
that |H ′/H| ≥ κ. We claim that H ′/H is unbounded. Suppose for the sake of contradiction
that |H ′/H| < λ in all elementary extensions. Take a sequence {aα}α<κ of elements of H ′

lying in pairwise distinct cosets of H. Let {bi}i∈N be an 0-indiscernible sequence extracted
from the aα by Morley-Erdős-Rado. Because the aα live in pairwise distinct cosets of H
and H is 0-definable, the bi live in pairwise distinct cosets of H. By indiscernibility, there
is a 0-definable set D ⊇ H such that bi − bj /∈ D for i ̸= j. Consider the ∗-type over A in
variables {xα}α<λ asserting that

1. xα ∈ H ′ for every α < λ

2. If α1 < · · · < αn, then
xα1 · · ·xαn ≡∅ b1 · · · bn.

This type is consistent. Indeed, if Σα1,...,αn(x⃗) is the sub-type asserting that

xα1 , . . . , xαn ∈ H ′

xα1 · · · xαn ≡∅ b1 · · · bn

then Σα1,...,αn(x⃗) is satisfied by (aβ1 , . . . , aβn) for some well chosen βi, by virtue of how the
bi were extracted. Moreover, the full type is a filtered union of Σα⃗(x⃗)’s, so it is consistent.
Let {cα}α<λ be a set of realizations. Then every cα lies in H ′, but

cα − cα′ /∈ D ⊇ H

14



for α ̸= α′. Therefore, the cα lie in pairwise distinct cosets of H, and |H ′/H| ≥ λ, a
contradiction.

Lemma 10.3. For any cardinal κ there is a cardinal τ(κ) with the following property: given
any family {Hα}α<τ(κ) of type-definable subgroups of G, there exist subsets S1, S2 ⊆ τ(κ)
such that S1 is finite, |S2| = κ, and(︄ ⋂︂

α∈S1

Hα

)︄00

⊆
⋂︂
α∈S2

Hα.

Proof. Without loss of generality κ ≥ ℵ0. By the Erdős-Rado theorem, we can choose τ(κ)
such that any coloring of the n + 1-element subsets of τ(κ) with n + 1 colors contains a
homogeneous subset of cardinality κ+. Now suppose we are given Hα for α < τ(κ). Given
α1 < · · · < αn+1, color the set {α1, . . . , αn+1} with the smallest k ∈ {1, . . . , n + 1} such that(︄

n+1⋂︂
i=1

Hαi

)︄00

=

(︄
k−1⋂︂
i=1

Hαi
∩

n+1⋂︂
i=k+1

Hαi

)︄00

.

This is possible by Fact 10.1. Passing to a homogeneous subset and re-indexing, we get
{Hα}α<κ+ such that every (n+ 1)-element set has color k for some fixed k. In particular, for
any α1 < · · · < αn+1 < κ+, we have

Hαk
⊇

(︄
n+1⋂︂
i=1

Hαi

)︄00

=

(︄
k−1⋂︂
i=1

Hαi
∩

n+1⋂︂
i=k+1

Hαi

)︄00

.

Thus, for any β1 < β2 < · · · < β2n+1 < κ+ we have

Hβn+1 ⊇

(︄
n⋂︂

i=n−k+2

Hβi
∩

2n−k+2⋂︂
i=n+2

Hβi

)︄00

⊇

(︄
n⋂︂

i=1

Hβi
∩

2n+1⋂︂
i=n+2

Hβi

)︄00

by taking
(α1, . . . , αn+1) = (βn−k+2, . . . , β2n−k+2).

Then, for any β ∈ [n + 1, κ],

Hβ ⊇ (H1 ∩ · · · ∩Hn ∩Hκ+1 ∩Hκ+n)00 ,

so we may take S1 = {1, . . . , n, κ + 1, . . . , κ + n} and S2 = [n + 1, κ].

Theorem 10.4. There is a cardinal κ, depending only on the ambient group G, such that for
any type-definable subgroup H < G, the index of H00 in H is less than κ. This κ continues
to work in arbitrary elementary extensions.
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Proof. Say that a subgroup K ⊆ G is ω-definable if it is type-definable over a countable set.
Note that if K is ω-definable, so is K00. Moreover, if K1, K2 are ω-definable, then so are
K1 ∩K2 and K1 + K2. Also note that if H is any type-definable group, then H is a small
filtered intersection of ω-definable groups.

Up to automorphism, there are only a bounded number of ω-definable subgroups of G, so
by Lemma 10.2 there is some cardinal κ0 with the following property: if K is an ω-definable
group and if K ′ is a bigger type-definable group, then either |K ′/K| < κ0 or |K ′/K| is
unbounded.

Claim 10.5. If H is a type-definable group and K is an ω-definable group containing H00,
then |H/(H ∩K)| < κ0.

Proof. Note that
H00 ⊆ H ∩K ⊆ H,

so H/(H ∩ K) is bounded. On the other hand, H/(H ∩ K) is isomorphic to (H + K)/K,
which must then have cardinality less than κ0. □Claim

Let κ1 = τ((2κ0)+) where τ(−) is as in Lemma 10.3.

Claim 10.6. If H is a type-definable subgroup of G, then there are fewer than κ1 subgroups
of the form H ∩K where K is ω-definable and K ⊇ H00.

Proof. Otherwise, choose {Kα}α∈κ1 such that Kα is ω-definable, Kα ⊇ H00, and

H ∩Kα ̸= H ∩Kα′

for α < α′ < κ1. By Lemma 10.3, there are subsets S1, S2 ⊆ κ1 such that |S1| < ℵ0,
|S2| = (2κ0)+, and (︄ ⋂︂

α∈S1

Kα

)︄00

⊆
⋂︂
α∈S2

Kα.

Let J be the left-hand side. Then J is an ω-definable group containing H00, so |H/(H∩J)| <
κ0 by Claim 10.5. Now for any α ∈ S2,

J ⊆ Kα =⇒ H ∩ J ⊆ H ∩Kα ⊆ H.

There are at most 2|H/(H∩J)| ≤ 2κ0 groups between H ∩ J and J , so there are at most 2κ0

possibilities for H ∩Kα, contradicting the fact that |S2| > 2κ0 and the H ∩Kα are pairwise
distinct for distinct α. □Claim

Now given the claim, we see that the index of H00 in H can be at most κκ1
0 . Indeed, let S

be the collection of ω-definable groups K such that K ⊇ H00, and let S ′ be a subcollection
containing a representative K for every possibility of H ∩K. By the second claim, |S ′| < κ1.
Every type-definable group is an intersection of ω-definable groups, so

H00 =
⋂︂
K∈S

K =
⋂︂
K∈S

(H ∩K) =
⋂︂

K∈S′

(H ∩K).
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Then there is an injective map

H/H00 ↪→
∏︂
K∈S′

H/(H ∩K),

and the right hand size has cardinality at most κκ1
0 . But κκ1

0 is independent of H.

Corollary 10.7. Let M be a field of finite dp-rank. There is a cardinal κ with the following
property: if M ⪯ M is any small model of cardinality at least κ, and if J is a type-definable
M-linear subspace of M, then J = J00. More generally, if J is a type-definable M-linear
subspace of Mk, then J = J00.

Note that we are not assuming J is type-definable over M .

Proof. Take κ as in the Theorem, M a small model of size at least κ, and J a type-definable
M -linear subspace of M. For any α ∈ M×, we have (α · J)00 = α · J00. Restricting to
α ∈ M×, we see that α · J00 = J00. In other words, J00 is an M -linear subspace itself. The
quotient J/J00 naturally has the structure of a vector space over M . If it is non-trivial, it
has cardinality at least κ, contradicting the choice of κ. Therefore, J/J00 is the trivial vector
space, and J00 = J . For the “more generally” claim, apply Theorem 10.4 to the groups Mk

and take the supremum of the resulting κ.

Lemma 10.8. Let M be a field of finite dp-rank, and M ⪯ M be a small model. Let J be a
non-zero type-definable M-linear subspace of M. Then every definable set X ⊇ J is heavy.

Proof. Suppose for the sake of contradiction that X is light. Rescaling J and X, we may
assume 1 ∈ J . The set X remains light by Fact 8.2.4. Then M ⊆ J ⊆ X. Passing to an
elementary extension of the pair (M,M), we may assume that M is mildly saturated. Then
M defines a “critical coordinate configuration” in the sense of [13, Definition 4.7]. The set
X remains light, because lightness is definable in families (Fact 8.2.3). By [13, Lemma 4.22]
(with Z = M), the inclusion M ⊆ X implies that X is heavy, a contradiction.

11 Invariant valuation rings

Let (M,+, ·, . . .) be a monster-model finite dp-rank expansion of a field. Assume that M is
not of finite Morley rank. Fix a small model M0 large enough for Corollary 10.7 to apply.
Thus, for any type-definable M0-linear subspace J ≤ Mn, we have J = J00.

Let Pn be the poset of type-definable M0-linear subspaces of Mn, let P = P1, and let P+

be the poset of non-zero elements of P .
We collect the basic facts about these posets in the following proposition:

Proposition 11.1.

1. For each n, Pn is a bounded lattice.
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2. For any small model M ⊇ M0, the group IM is an element of P. In particular, P
contains an element other than ⊥ = 0 and ⊤ = M.

3. If J ∈ P is non-zero, every definable set D containing J is heavy.

4. If J ∈ P+ is type-definable over M for some small model M ⊇ M0, then J ⊇ IM .

5. If J ∈ Pn, then J = J00.

6. P+ is a sublattice of P, i.e., it is closed under intersection.

7. P has breadth r for some 0 < r ≤ dp-rk(M). The breadth of P+ is also r, and the
breadth of Pn is rn.

Proof. 1. Clear—the lattice operations are given by

G ∨H = G + H

G ∧H = G ∩H

⊥ = 0

⊤ = Mn.

2. Fact 8.4.4.

3. Lemma 10.8.

4. Fact 8.4.3.

5. By choice of M0.

6. Let J1, J2 be two non-zero elements of P . Let M be a small model containing M0, over
which both J1 and J2 are type-definable. Then J1 ∩ J2 ≥ IM > ⊥. Therefore P+ is
closed under intersection.

7. Let r = br(P). The bound r ≤ n follows by Fact 10.1 and (3) =⇒ (1) of Lemma 9.9.
Then

0 < br(P+) ≤ br(P) = r ≤ n,

where the left inequality is sharp because P has at least three elements by part 2. If
r > br(P+), there is a r-cube in P which does not lie in P+. The base of this cube
must be ⊥, the only element of P \ P+. Then r ≤ G. dim(P). However, part 6 says
G. dim(P) ≤ 1, so r ≤ 1 ≤ br(P+), a contradiction. Therefore br(P+) = r = br(P).
Finally, in Pn, if we let Ji = 0⊕(i−1) ⊕M ⊕ 0⊕(n−i) for i = 1, . . . , n, then the sequence
J1, . . . , Jn is independent and J1 ∨ · · · ∨ Jn = Mn. Thus

br(Mn/0) =
n∑︂

i=1

br(Ji/0)
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by Corollary 9.20. However, br(Ji/0) = r because of the isomorphism of lattices

P → [0, Ji]

X ↦→ 0⊕(i−1) ⊕X ⊕ 0⊕(n−i).

In what follows, we will let r be br(M/0).

Remark 11.2. If r = 1, then P is totally ordered and we can reuse the arguments for
dp-minimal fields to immediately see that IM is a valuation ideal. Usually we are not so
lucky.

11.1 Special groups

Definition 11.3. An element J ∈ Pn is special if G. dim(Mn/J) = br(Mn/J) = rn.

For any J ∈ Pn, we have

G. dim(Mn/J) ≤ br(Mn/J) ≤ br(Pn) = rn

by Lemma 9.14.1, Proposition 9.19.2, and Proposition 11.1.7. Therefore, J ∈ Pn is special
if and only if G. dim(Mn/J) ≥ rn.

Note that if J ∈ Pn is special, then any uniform basis over J has cardinality rn, by
Theorem 9.23.5.

Proposition 11.4.

1. There is at least one non-zero special J ∈ P = P1.

2. Let J ∈ P be special. Let A1, . . . , Ar be a uniform basis over J . Let G ∈ P be arbitrary.
If G ∩ Ai ̸⊆ J for each i, then G ⊇ J .

3. If J ∈ P is special and nonzero and type-definable over a small model M ⊇ M0, then

IM · J ⊆ IM ⊆ J

4. If I ∈ Pn and J ∈ Pm are special, then I ⊕ J ∈ Pn+m is special.

5. If I ∈ Pn is special and α ∈ M×, then α · I is special.

Proof. 1. By Proposition 11.1.7 the breadth of P+ is exactly r, so we can find an r-cube
in P+. The base of such a cube is a non-zero special element of P .

2. For i = 1, . . . , r take ai ∈ (G ∩ Ai) \ J . Then for each i, we have

ai ∈ G ∩ Ai ⊆ (G + J) ∩ Ai ⊇ J ∩ Ai = J

ai /∈ J

( =⇒ )(G + J) ∩ Ai ⊋ J.
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Consequently,
A1 ∩ (G + J), A2 ∩ (G + J), . . . , Ar ∩ (G + J)

is an independent sequence over J . It follows that

br(G/(G ∩ J)) = br((G + J)/J) ≥ G. dim((G + J)/J) ≥ r.

On the other hand

br(G/(G ∩ J)) + br(J/(G ∩ J)) = br((G + J)/(G ∩ J)) ≤ r,

and so br(J/(G ∩ J)) = 0. This forces J = G ∩ J , so J ⊆ G.

3. The inclusion IM ⊆ J is Proposition 11.1.4. Let A1, . . . , Ar be a uniform basis over
J as in part 2. For each Ai choose an element ai ∈ Ai \ J . Let M ′ be a small model
containing M and the ai’s. We first claim that IM ′ · J ⊆ IM ′ . Let ε be a non-zero
element of IM ′ . As IM ′ is closed under multiplication by (M ′)×, we have M ′ ⊆ ε−1 ·IM ′ .
In particular, ai ∈ ε−1 · IM ′ for each i. Then

(ε−1 · IM ′) ∩ Ai ̸⊆ J

for each i, so by part 2 we have
ε−1 · IM ′ ⊇ J.

In other words, ε · J ⊆ IM ′ . As ε was an arbitrary non-zero element of IM ′ , it follows
that IM ′ · J ⊆ IM ′ . Now suppose that D is an M -definable basic neighborhood. Then
D is an M ′-definable basic neighborhood. By the above and compactness, there is
an M ′-definable basic neighborhood X −∞ X and a definable set D2 ⊇ J such that
(X −∞ X) · D2 ⊆ D. Furthermore, D2 can be taken to be M -definable, because J
is a directed intersection of M -definable sets. Having done this, we can then pull
the parameters defining X into M , and assume that X is M -definable. (This uses
the fact that heaviness is definable in families). Then we have an M -definable basic
neighborhood X −∞ X and an M -definable set D2 ⊇ J such that (X −∞ X) ·D2 ⊆ D.
As D was arbitrary, it follows that

IM · J ⊆ IM .

4. The interval [I,Mn] in Pn is isomorphic to [I ⊕ J,Mn ⊕ J ] in Pn+m, so

rn = G. dim(Mn/I) = G. dim((Mn ⊕ J)/(I ⊕ J))

rm = G. dim(Mm/J) = G. dim((I ⊕Mm)/(I ⊕ J)),

where the second line is true for similar reasons. By Lemma 9.21,

G. dim((Mn ⊕Mm)/(I ⊕ J)) ≥ rn + rm.

On the other hand

G. dim((Mn ⊕Mm)/(I ⊕ J)) ≤ br((Mn ⊕Mm)/(I ⊕ J)) ≤ r(n + m)

so equality holds and I ⊕ J is special.
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5. For any α ∈ M×, the map X ↦→ α ·X is an automorphism of Pn.

Corollary 11.5. For any model M , IM · IM ⊆ IM .

Proof. Take a non-zero special element J ∈ P1. Take a small model M ′ containing M and
M0, with J type-definable over M ′. We first claim that IM ′ · IM ′ ⊆ IM ′ . Indeed,

IM ′ · IM ′ ⊆ IM ′ · J ⊆ IM ′

by Proposition 11.4.3. Then we can shrink from M ′ to M using the technique of the proof
of Proposition 11.4.3. Specifically, let D be any M -definable basic neighborhood. Then

IM ′ · IM ′ ⊆ IM ⊆ D.

By compactness, there is an M ′-definable basic neighborhood D2 such that D2 · D2 ⊆ D.
Using the fact that heaviness is definable in families, we can take D2 to be M -definable.
Then IM · IM ⊆ D2 ·D2 ⊆ D. As D was arbitrary, IM · IM ⊆ IM .

In [13, Remark 6.17], we defined a group topology on (M,+), for which IM is the set
of topological infinitesimals. Corollary 11.5 implies that this topology is a ring topology.
With much more work, one can show that the canonical topology is a field topology [15,
Corollary 5.15].

Speculative Remark 11.6. Say that J ∈ P1 is bounded if J ≤ J ′ for some special J ′.
Based on the argument in Proposition 11.4.2-3, it seems that J is bounded if and only if
α · J ⊆ IM for some α ∈ M× and some small model M . Bounded elements should form a
sublattice of P1.

2

Definition 11.7. Let I ∈ Pn be special and D ∈ Pn be arbitrary. Then D dominates I if
D ≥ I and G. dim(D/I) = nr.

Lemma 11.8. Let J ∈ Pn be special, let A1, . . . , Anr be a uniform basis in [J,Mn], and D
be arbitrary. Then D dominates J if and only if D ∩ Ai ⊋ J for each i. In particular, this
condition doesn’t depend on the choice of the basis {A1, . . . , Anr}.

Proof. Suppose D dominates J . Let B1, . . . , Bnr be a uniform basis in [J,D]. The Bi are
independent uniform elements in the larger interval [J,Mn], so {B1, . . . , Bnr} is a uniform
basis in [J,Mn]. Therefore, for every i the sequence B1, . . . , Bnr, Ai is not independent over
J . Consequently

D ∩ Ai ⊇ (B1 + · · · + Bnr) ∩ Ai ⊋ J.

Conversely, suppose D ∩ Ai ⊋ J for each i. Then certainly D ⊇ J , and it remains to show
G. dim(D/J) ≥ nr. Let A′

i := D ∩ Ai. Then the sequence A′
1, . . . , A

′
nr is independent over

J . As each A′
i lies in [J,D], it follows that G. dim(D/J) ≥ nr.

2These ideas have been developed in [15, §8].
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Lemma 11.9. Let I ∈ Pn be special, and V be a k-dimensional M-linear subspace of Mn.
Then

G. dim((V + I)/I) = br((V + I)/I) = kr

G. dim(V/(V ∩ I)) = br(V/(V ∩ I)) = kr

G. dim(Mn/(V + I)) = br(Mn/(V + I)) = (n− k)r.

Moreover, there exist A1, . . . , Akr, B1, . . . , B(n−k)r ∈ Pn such that the following conditions
hold:

1. The set {A1, . . . , Akr, B1, . . . , B(n−k)r} is a uniform basis in [I,Mn].

2. Let Ãi = Ai ∩ V . Then {Ã1, . . . , Ãkr} is a uniform basis in [V ∩ I, V ].

3. Let B̃i = Bi + V . Then {B̃1, . . . , B̃(n−k)r} is a uniform basis in [V + I,Mn].

Given a D ∈ Pn dominating I, we may choose the Ai and Bi to lie in [I,D].

Proof. Let W be a complementary (n−k)-dimensional M-linear subspace, so that V +W =
Mn. Let V ′ = V + I and W ′ = W + I. Then

nr = br(Mn/I) ≤ br(Mn/V ′) + br(V ′/I)

= br((V ′ + W ′)/V ′) + br(V ′/I)

= br(W ′/(W ′ ∩ V ′)) + br(V ′/I)

≤ br(W ′/I) + br(V ′/I)

= br(W/(W ∩ I)) + br(V/(V ∩ I))

≤ br(W/0) + br(V/0).

Now any M-linear isomorphism ϕ : Mk ∼→ V induces an isomorphism of posets from Pk to
[0, V ] ⊆ Pn, so

br(V/0) = br(Pk) = kr

br(W/0) = br(Pn−k) = (n− k)r,

where the second line follows similarly. Therefore the inequalities above are all equalities,
and

br((V + I)/I) = br(V/(V ∩ I)) = kr

br(Mn/(V + I)) = br(Mn/V ′) = (n− k)r.

By Lemma 9.26, there is a uniform basis {A1, . . . , Am, B1, . . . , Bnr−m} in [I,Mn] such that

� Each Ai ⊆ V + I.

� The sequence (V + I), B1, . . . , Bnr−m is independent over I.
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If we are given D dominating I, we may replace each Ai with Ai ∩D and Bi with Bi ∩D,
and assume henceforth that Ai, Bi ⊆ D. By Corollary 9.20,

nr = br(Mn/I) ≥ br((V + I)/I) + br(B1/I) + · · · + br(Bnr−m/I)

= kr + br(B1/I) + · · · + br(Bnr−m/I).

Each Bi is strictly greater than I, so

nr ≥ kr + nr −m,

and thus m ≥ kr. On the other hand, the set {A1, . . . , Am} is a set of independent uniform
elements in [I, V + I], so

m ≤ G. dim((V + I)/I) ≤ br((V + I)/I) = kr.

Thus equality holds, m = kr, and the set {A1, . . . , Am} is a uniform basis in [I, V + I].
Applying the isomorphism

[I, V + I]
∼→ [V ∩ I, V ]

X ↦→ X ∩ V,

the Ãi form a uniform basis in [V ∩ I, V ]. Next, let Q = B1 ∨ · · · ∨ B(n−k)r. (Note that
nr − m = (n − k)r.) The fact that (V + I), B1, . . . , B(n−k)r is independent over I implies
that (V + I) ∩Q = I. Therefore, there is an isomorphism

[I,Q]
∼→ [V + I, V + I + Q]

X ↦→ X + (V + I) = X + V.

The elements {B1, . . . , B(n−k)r} are independent uniform elements in [I,Q], and therefore

the B̃i are a set of independent uniform elements in [V +I, V +I +Q] or even in [V +I,Mn].
It follows that

(n− k)r ≤ G. dim(Mn/(V + I)) ≤ br(Mn/(V + I)) = (n− k)r,

so equality holds and the B̃i are a uniform basis in [V + I,Mn].

Lemma 11.10. Let I, J ∈ Pn be special. Then I + J and I ∩ J are special. Furthermore,
there exists

� a uniform basis Â1, . . . , Ân in [I ∩ J,Mn],

� a uniform basis B̂1, . . . , B̂n in [I + J,Mn], and

� a uniform basis A1, . . . , An, B1, . . . , Bn in [I ⊕ J,M2n]
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related as follows:

Âi = {x⃗ ∈ Mn | (x⃗, x⃗) ∈ Ai}
B̂i = {x⃗− y⃗ | (x⃗, y⃗) ∈ Bi}.

Given D ∈ P2n dominating I ⊕ J , we may choose the Ai and Bi to lie in [I ⊕ J,D].

Proof. For any J ∈ Pn, define

∆(C) = {(x⃗, x⃗) | x⃗ ∈ C} ∈ P2n

∇(C) = {(x⃗, x⃗ + y⃗) | x⃗ ∈ Mn, y⃗ ∈ C} ∈ P2n.

Let V = ∆(Mn) = ∇(0). The maps ∆(−),∇(−) yield isomorphisms

∆ : Pn
∼→ [0, V ] ⊆ P2n

∇ : Pn
∼→ [V,M2n] ⊆ P2n.

Indeed, the inverses are given by

∆−1 : [0, V ]
∼→ [0,Mn]

C ↦→ {x⃗ | (x⃗, x⃗) ∈ C}
∇−1 : [V,M2n]

∼→ [0,Mn]

C ↦→ {x⃗− y⃗ | (x⃗, y⃗) ∈ C}.

Note that ∆−1(V ∩ (I ⊕ J)) = I ∩ J and ∇−1(V + (I ⊕ J)) = I + J . Therefore, ∆−1 and
∇−1 restrict to isomorphisms

∆−1 : [V ∩ (I ⊕ J), V ]
∼→ [I ∩ J,Mn]

∇−1 : [V + (I ⊕ J),M2n]
∼→ [I + J,Mn].

It follows that

G. dim(Mn/(I ∩ J)) = G. dim(V/(V ∩ (I ⊕ J))) = G. dim((V + (I ⊕ J))/V )

G. dim(Mn/(I + J)) = G. dim(M2n/(V + (I ⊕ J))/V ).

Now I ⊕ J is special in P2n by Proposition 11.4.4, and V is an n-dimensional M-linear
subspace of M2n, so by Lemma 11.9,

G. dim(Mn/(I ∩ J)) = G. dim((V + (I ⊕ J))/V ) = rn

G. dim(Mn/(I + J)) = G. dim(M2n/(V + (I ⊕ J))) = rn.

Therefore I ∩ J and I + J are special. Furthermore, by Lemma 11.9 there exists a uniform
basis {A1, . . . , Arn, B1, . . . , Brn} over I ⊕ J such that
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� The elements Ãi := Ai ∩ V form a uniform basis in [V ∩ (I ⊕ J), V ].

� The elements B̃i := Bi + V form a uniform basis in [V + (I ⊕ J),M2n].

(Additionally, the Ai and Bi can be chosen below any given D dominating I ⊕J .) Applying
∆−1 and ∇−1 we see that the elements

Âi = ∆−1(Ai ∩ V ) = {x⃗ | (x⃗, x⃗) ∈ Ai ∩ V }
= {x⃗ | (x⃗, x⃗) ∈ Ai}

B̂i = ∇−1(Ai + V ) = {x⃗− y⃗ | (x⃗, y⃗) ∈ Bi + V }
= {x⃗− y⃗ | (x⃗, y⃗) ∈ Bi}

form uniform bases for [I ∩ J,Mn] and [I + J,Mn], respectively.

Question 11.11. By Lemma 11.10 special elements of Pn form a sublattice. Can this be
proven directly (lattice theoretically) within Pn without using the larger lattice P2n?

Speculative Remark 11.12. We explain how the above picture should give an r-inflator,
as in §8.2. Fix a special element J of P1. For every n, Jn is a special element of Pn. Let Gn

be the lattice of closed sets in the pregeometry on uniform elements over Jn. There should
be natural maps

⊕ : Gn × Gm → Gn+m

and a GLn(M0) action on Gn, induced by the analogous structure on the Pn. Using this
additional structure, one should be able to prove the following: there is a semisimple M0-
algebra S of length r, and isomorphisms

Gn
∼= SubS(Sn)

respecting ⊕ and the GLn(M0)-actions.3 For every n we should get a map

fn : SubM(Mn) → Gn
∼= SubS(Sn)

V ↦→ Φ(V + Jn).

These maps should form an r-inflator, as in Definition 8.6. By Remark 9.27, the rank of
Φ(V + Jn) is G. dim((V + Jn)/Jn). Therefore the scaling axiom (Definition 8.6.4) says that

G. dim((V + Jn)/Jn) = r · dimM(V ),

which follows by Lemma 11.9. The other inflator axioms (Definition 8.6.1–3) should be a
matter of tracing through the definition of fn, ensuring that each step preserves the order,
GLn(M0)-action, and ⊕-operation.4

3These claims have now been verified in [16]. The lattice Gn is the “flattening” of the interval
[Jn,Mn] ⊆ Pn, in the sense of [16, Definition 7.2]. The family of lattices {[Jn,Mn]}n∈N form a “direc-
tory” [16, Definition 2.1] by [16, Proposition 2.12, Theorem 3.7]. By [16, Corollary 7.20], the family {Gn}n∈N
is also a “directory,” and a “semisimple directory” by [16, Proposition 7.3.1]. The existence of the semisimple
M0-algebra S now follows by [16, Theorem 2.7].

4The details have been verified in [16, Theorem 9.3].
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Speculative Remark 11.13. Next, we describe how r-inflators should yield valuation rings.
Fix an r-inflator {fn}n∈N, where

fn : SubM(Mn) → SubS(Sn).

Say that a ∈ M specializes to b ∈ S if

f2(M · (1, a)) = S · (1, b).

This should define a homomorphism

res : R → S (1)

for some subring R ⊆ M. In the case of 1-inflators (r = 1), R should be a valuation ring on
M.5

When r > 1, one might intuitively hope that R will be an intersection of r or fewer
valuation rings on M.6 However, several things go wrong. For example, there is a 2-inflator
on C given by

fn(V ) = (V + V , V ∩ V ),

where V is the complex conjugate of V .7 For this inflator, the ring R is R, which is not a
finite intersection of valuation rings on C.

There is a certain way to “mutate” f that improves the situation. Specifically, we can
define a new inflator f ′ by the formula

f ′
n(V ) := f2n({(x⃗, a · x⃗) | x⃗ ∈ V })

for some constant a. By choosing a carefully (for example, a =
√
−1), the ring R′ associated

to f ′ will be bigger, and closer to being a finite intersection of valuation rings.8

Ideally, after finitely many mutations, one would arrive at an inflator f ′′ whose associated
ring R′′ is a finite intersection of valuation rings. Unfortunately, this does not happen.9

Nevertheless, if one defines R∞ to be the union of all the rings R′ associated to mutations
f ′ of f , it turns out that R∞ is a finite intersection of valuation rings.10 In other words, we
get R to be a finite intersection of valuation rings in the limit.

5These claims have been verified in [16, Propositions 5.7, 5.19].
6The intuition is that if K |= ACF0 and O1, . . . ,Or are independent valuation rings on K, then the

structure (K,+, ·,O1, . . . ,Or) has burden r, by [14, Theorem 11.5.7]. The analogue of Fact 10.1 holds in this
context [3, Proposition 4.5.2], and one can probaby carry out the analogous construction of r-inflators. (See
[16, Theorem 9.7] for one result in this direction.) So one expects to get r-inflators from r-fold intersections
of valuation rings.

7See [16, Example 4.9] for a precise description. The semisimple ring S is C × C in this example, so
S-modules are pairs of C-vector spaces.

8The idea of “mutation” is made precise in [16, §10.1]. The fact that mutation “improves the situation”
is [16, Lemma 10.11]. For the specific example V ↦→ (V + V , V ∩ V ) discussed above, see [16, §12.1].

9See [16, §12.3] for an example.
10This is verified in [16, Theorem 10.12].
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In sections 11.2–11.3 below, we will follow a simpler parallel argument, which avoids the
use of inflators. In Proposition 11.16 we will associate a ring RJ ⊆ M and an ideal IJ ◁RJ

to any special J ; these should correspond to the domain and kernel of the specialization map
res(−) of (1) above. In §11.3 we will “mutate” J by replacing it with

J ′ = J ∩ a1 · J ∩ · · · ∩ an · J.

This should correspond to mutation of inflators.11 By considering the union of RJ ′ as J ′

ranges over all mutations, we will obtain a finite intersection of valuation rings (Theo-
rem 11.26).

11.2 The associated rings and ideals

Definition 11.14. Let J ∈ Pn be special, and a ∈ M×. Say that a contracts J if a = 0 or
J dominates a · J (i.e., G. dim(J/a · J) = nr).

Note that when a ̸= 0, J dominates a · J if and only if a−1 · J dominates J .

Lemma 11.15.

1. Let A1, . . . , Anr be a uniform basis over J ∈ Pn and a be an element of M. If a ·Ai ⊆ J
for all i, then a contracts J . Conversely, suppose a contracts J . Then there exists
A′

i ∈ (J,Ai] such that A′
1, . . . , A

′
nr is a uniform basis over J and a · A′

i ⊆ J for each i.

2. If a contracts J and b ∈ M×, then a contracts b · J .

3. If a, b contract J then a + b contracts J .

4. If a contracts J and b · J ⊆ J , then a · b contracts J .

5. If a contracts both I ∈ Pn and J ∈ Pm, then a contracts I ⊕ J ∈ Pn+m.

6. If a contracts I, J ∈ Pn, then a contracts I ∩ J and I + J .

Proof. 1. First suppose a · Ai ⊆ J . If a = 0 then a contracts J by definition, so suppose
a ̸= 0. Then

(a−1 · J) ∩ Ai = Ai ⊋ J

for each i, so by Lemma 11.8 the group a−1·J dominates J , or equivalently, J dominates
a · J . Thus a contracts J . Conversely, suppose that a contracts J . If a = 0 then
a · Ai ⊆ J so we may take A′

i = Ai. Otherwise, note that a−1 · J dominates J , so by
Lemma 11.8,

A′
i := (a−1 · J) ∩ Ai ⊋ J.

By Lemma 9.25, {A′
1, . . . , A

′
nr} is a uniform basis over J . Furthermore A′

i ⊆ a−1 · J ,
so a · A′

i ⊆ J .

11These correspondences have been verified in [16, Theorem 9.3] and [16, Proposition 10.15].
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2. Multiplication by b induces an automorphism of Pn sending the interval [a · J, J ] to
[a · (b · J), b · J ], so G. dim(J/a · J) = G. dim(b · J/(ab) · J).

3. Take a uniform basis A1, . . . , Arn over J . By part 1, we may shrink the Ai and assume
that a · Ai ⊆ J . Shrinking again, we may assume b · Ai ⊆ J . Then

(a + b) · Ai ⊆ a · Ai + b · Ai ⊆ J + J = J

so by part 1, a + b contracts J .

4. Suppose a contracts J and b · J ⊆ J . Then

G. dim(J/a · b · J) ≥ G. dim(b · J/a · b · J) = G. dim(J/a · J) = nr.

5. Let A1, . . . , Arn be a uniform basis in [I,Mn], and B1, . . . , Brm be a uniform basis in
[J,Mm]. Shrinking the Ai and Bi, we may assume a ·Ai ⊆ I and a ·Bi ⊆ J . Note that
the sequence

A1 ⊕ J,A2 ⊕ J, . . . , Arn ⊕ J, I ⊕B1, I ⊕B2, . . . , I ⊕Brm

is a uniform basis in [I⊕J,Mn+m]. Multiplication by a collapses each of these uniform
elements into I ⊕ J (using the fact that a · I ⊆ I and a · J ⊆ J). Therefore a contracts
I ⊕ J .

6. We may assume a ̸= 0. By the previous point, a−1 · (I ⊕ J) dominates I ⊕ J .
By Lemma 11.10, I + J and I ∩ J are special. Moreover, there is a uniform basis
A1, . . . , An, B1, . . . , Bn in [I ⊕ J,M2n] such that for

Âi = {x⃗ ∈ Mn | (x⃗, x⃗) ∈ Ai}
B̂i = {x⃗− y⃗ | (x⃗, y⃗) ∈ Bi}

the set {Â1, . . . , Ân} is a uniform basis over I∩J and the set {B̂1, . . . , B̂n} is a uniform
basis over I + J . Furthermore Lemma 11.10 ensures that the Ai and Bi can be chosen
in [I ⊕ J, a−1 · (I ⊕ J)]. Thus a · Ai ⊆ I ⊕ J and a ·Bi ⊆ I ⊕ J . Then

x⃗ ∈ Âi ⇐⇒ (x⃗, x⃗) ∈ Ai =⇒ (a · x⃗, a · x⃗) ∈ I ⊕ J ⇐⇒ a · x⃗ ∈ I ∩ J,

so a · Âi ⊆ I ∩ J . As the Âi form a uniform basis over I ∩ J , it follows that a contracts
I ∩ J . Similarly,

(x⃗, y⃗) ∈ Bi =⇒ (a · x⃗, a · y⃗) ∈ I ⊕ J =⇒ a · (x⃗− y⃗) ∈ I + J

so a · B̂i ⊆ I + J . Thus a contracts I + J .

Proposition 11.16. For any special J ∈ P = P1, let RJ be the set of a ∈ M such that
a · J ⊆ J , and let IJ be the set of a ∈ M that contract J .
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1. RJ is a subring of M, containing M0.

2. IJ is an ideal in RJ .

3. If b ∈ M× then RJ = Rb·J and IJ = Ib·J .

4. If J is type-definable over M ⊇ M0, then RJ and IJ are M-invariant.

5. If J is non-zero and type-definable over M ⊇ M0 then IM ⊆ IJ .

6. If J1 and J2 are special, then

RJ1 ∩RJ2 ⊆ RJ1∩J2

IJ1 ∩ IJ2 ⊆ IJ1∩J2

7. (1 + IJ) ⊆ R×
J . Consequently, IJ lies inside the Jacobson radical of RJ .

Proof. 1. Straightforward.

2. The set IJ is a subset of RJ . The fact that IJ ◁RJ is exactly Lemma 11.15.3-4.

3. For IJ this is Lemma 11.15.2. For RJ this is clear:

a · J ⊆ J =⇒ (ab) · J ⊆ b · J.

4. The definitions are Aut(M/M)-invariant.

5. Let A1, . . . , Ar be a uniform basis over J . For each i let ai be an element of Ai \ J .
Let M ′ be a small model containing M and the ai’s.

Claim 11.17. Any ε ∈ IM ′ contracts J .

Proof. We may assume ε ̸= 0. Let D = ε−1 · IM ′ . By Fact 8.4.4, ai · ε ∈ M ′ · IM ′ ⊆ IM ′ ,
and so ai ∈ D. Thus

D ∩ Ai ̸⊆ J

By Proposition 11.4.2, D ⊇ J . Then

D ∩ Ai ⊋ J

so by Lemma 11.8, D dominates J . By Proposition 11.1.4, ε−1 · J ⊇ ε−1 · IM ′ = D.
Thus ε−1 · J dominates J . □Claim
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Let ε be a realization of the partial type over M ′ asserting that ε ∈ IM ′ and ε /∈ X
for any light M ′-definable set X. This type is consistent because M ′-definable basic
neighborhoods are heavy (Fact 8.3.1) and no heavy set is contained in a finite union of
light sets (Fact 8.2.2). Then ε ∈ IM ′ ⊆ IJ . As IJ is M -invariant, every realization of
tp(ε/M) is in IJ . Let Y be the type-definable set of realizations of tp(ε/M). For any
M -definable X ⊇ Y we have

IM ⊆ X −∞ X ⊆ X −X.

Therefore IM ⊆ Y − Y . But Y − Y ⊆ IJ − IJ = IJ .

6. If a ∈ RJ1 and a ∈ RJ2 , then

a · (J1 ∩ J2) = (a · J1) ∩ (a · J2) ⊆ J1 ∩ J2

so a ∈ RJ1∩J2 . The inclusion IJ1 ∩ IJ2 ⊆ IJ1∩J2 is Lemma 11.15.6.

7. First note that 1 does not contract J . Indeed, G. dim(J/J) = 0 ̸= r. Thus 1 /∈ IJ . As
IJ is an ideal, it follows that −1 /∈ IJ .

Claim 11.18. If ε ∈ IJ then ε/(1 + ε) ∈ IJ .

Proof. We may assume ε ̸= 0. Using Lemma 11.15.1 choose a uniform basis {A1, . . . , Ar}
over J such that ε · Ai ⊆ J . For each i choose ai ∈ Ai \ J . Then ε · ai ∈ J , so
(1 + ε) · ai ∈ Ai \ J . Let β = (1 + ε)/ε. Then

β · (ε · ai) ∈ β · J
(β · ε) · ai = (1 + ε) · ai ∈ Ai \ J.

In particular
(β · J) ∩ Ai ̸⊆ J,

for every i, so β · J ⊇ J by Proposition 11.4.2. Then (β · J) ∩ Ai ⊋ J for every i, so
β · J dominates J by Lemma 11.8. This means that β−1 = ε/(1 + ε) lies in IJ . □Claim

Now if ε ∈ IJ , then
1

1 + ε
= 1 − ε

1 + ε
∈ 1 + IJ ⊆ RJ .

Remark 11.19. Proposition 11.16.6 also holds for RJ1+J2 and IJ1+J2 .

Speculative Remark 11.20. In Proposition 11.16.5, not only is IM a subset of IJ , it is
a subideal in the ring RJ . One can probably prove this by first increasing M to contain a
non-zero element j0 of J . Then for any ε ∈ IM and a ∈ RJ , we have

ε · a · j0 ∈ IM ·RJ · J ⊆ IM · J ⊆ IM ,
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so ε · a ∈ j−1
0 IM = IM . Thus IM · RJ ⊆ IM . Then one can probably shrink M back to the

original model by the usual methods.12

Suppose we could show that RJ was a finite intersection of valuation rings. (As discussed
in Remark 11.13, this was the initial expectation.) Then the ring

R = {x ∈ M : xIM ⊆ IM}

would also be a finite intersection of valuation rings. In fact, using the henselianity arguments
from the dp-minimal case, one can show that R would be a single henselian valuation ring.13

This would provide a nice strategy for proving the Shelah conjecture in general.
Unfortunately, it turns out that there are dp-finite fields in which IM is not a valuation

ideal [17, §10]. Therefore a different strategy is needed.

11.3 Mutation and the limiting ring

The next two lemmas provide a way to “mutate” a special group J and obtain a better
special group J ′ for which RJ ′ is closer than RJ to being a finite intersection of valuation
rings.

Lemma 11.21. Let J ∈ P be special and non-zero. Let a1, . . . , an be elements of M×. Let
J ′ = J ∩a1 ·J ∩a2 ·J ∩ · · ·∩an ·J . Then J ′ is special and non-zero, RJ ⊆ RJ ′, and IJ ⊆ IJ ′.

Proof. By Proposition 11.4.5, each ai · J is special, so the intersection J ′ is special by
Lemma 11.10. It is nonzero by Proposition 11.1.6. By Proposition 11.16.3 we have RJ = Rai·J
and IJ = Iai·J for each i. Then the inclusions RJ ⊆ RJ ′ and IJ ⊆ IJ ′ follow by an interated
application of Proposition 11.16.6.

Recall that r is the breadth of P .

Lemma 11.22. Let J ∈ P be special and non-zero. Let α ∈ M× be arbitrary. Let J ′ =
J ∩ (α · J) ∩ · · · ∩ (αr−1 · J). Let q0, q1, . . . , qr be r + 1 distinct elements of M0. Then there
is at least one i such that α ̸= qi and

1

α− qi
∈ RJ ′ .

Proof. For each 0 ≤ i ≤ r let

αi := α− qi

Gi := {x ∈ M | αix ∈ J ∧ α2
ix ∈ J ∧ · · · ∧ αr

ix ∈ J}
Hi := J ∩Gi = {x ∈ M | x ∈ J ∧ αix ∈ J ∧ · · · ∧ αr

ix ∈ J}.

Also let

H = {x ∈ M | x ∈ J ∧ αx ∈ J ∧ · · · ∧ αrx ∈ J}.
12The details are worked out in [17, Lemma 6.9].
13The details are worked out in [15, Proposition 7.7, Theorem 9.9].
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Claim 11.23. Hi = H for any i.

Proof. Note α = αi + qi. If x ∈ Hi then

αnx = (αi + qi)
nx =

n∑︂
k=0

(︃
n

k

)︃
αk
i q

n−k
i x ∈ J

for 0 ≤ n ≤ r, because αk
i x ∈ J , qn−k

i ∈ M0, and J is an M0-vector space. Thus Hi ⊆ H;
the reverse inclusion follows by symmetry. □Claim

Because the qi are distinct, the (r+ 1)× (r+ 1) Vandermonde matrix built from the qi is
invertible. Let f : Mr+1 → Mr+1 be the M-linear map sending (1, qi, . . . , q

r
i ) to the ith basis

vector. Let g : M → Mr+1 be the map

g(x) = (x, αx, . . . , αrx).

Claim 11.24. The composition

M g→ Mr+1 f→ Mr+1 ↠ (M/J)r+1

has kernel H, and maps Gi into 0i ⊕ (M/J) ⊕ 0r−i.

Proof. The invertible matrix defining f has coefficients in M0, and J is closed under multi-
plication by M0, so f maps Jr+1 isomorphically to Jr+1. Therefore,

f(g(x)) ∈ Jr+1 ⇐⇒ g(x) ∈ Jr+1 ⇐⇒ x ∈ H,

where the second ⇐⇒ is the definition of H. Now suppose x ∈ Gi. Then g(x) −
(x, qix, . . . , q

r
i x) ∈ Jr+1. Indeed, for any 0 ≤ n ≤ r we have

αnx = (αi + qi)
nx = qni x +

n∑︂
k=1

(︃
n

k

)︃
qn−k
i (αk

i x),

and the sum is an element of J by definition of Gi. As f preserves Jr+1, it follows that

f(g(x)) ≡ f(x, qix, . . . , q
r
i x) = x · ei (mod Jr+1),

where ei is the ith basis vector. □Claim

Claim 11.25. If (x0, x1, . . . , xr) ∈ G0 × · · · ×Gr has x0 + · · · + xr ∈ H, then each xi ∈ H.

Proof. For 0 ≤ i ≤ r let pi : Mr+1 → M/J be the composition of the ith projection and the
quotient map M → M/J . Claim 11.24 implies that

x ∈ H =⇒ pi(f(g(x))) = 0

x ∈ Gj =⇒ pi(f(g(x))) = 0 if i ̸= j.

Thus
0 = pi(f(g(x0 + · · · + xr))) = pi(f(g(xi))).

As pj(f(g(xi))) = 0 for j ̸= i, it follows that pj(f(g(xi))) = 0 for all j. In other words,
f(g(xi)) ∈ Jr+1. By Claim 11.24, xi ∈ H. □Claim
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Now Claim 11.25 implies that the map

(G0/H) × · · · × (Gr/H) → M/H

(x0, . . . , xr) ↦→ x0 + · · · + xr

is injective. The image is D/H for some type-definable D ∈ P , namely D = G0 + · · · + Gr.
Then the interval [Hr+1, G0 ⊕ · · · ⊕ Gr] in Pr+1 is isomorphic to the interval [H,D] in P1.
Thus

r ≥ br(D/H) = br(G0/H) + · · · + br(Gr/H).

Therefore Gi = H = Hi for at least one i. By definition of Gi and Hi, this means that

αix ∈ J ∧ · · · ∧ αr
ix ∈ J =⇒ x ∈ J (2)

for any x ∈ M. As J ̸= 0, this implies αi ̸= 0. Then (2) can be rephrased as

α−1
i · J ∩ · · · ∩ α−r

i · J ⊆ J. (3)

Define

J ′′ := J ∩ α−1
i J ∩ · · · ∩ α

−(r−1)
i J

= J ∩ α−1J ∩ · · · ∩ α−(r−1)J,

where the second equality follows by the proof of Claim 11.23. By (3),

α−1
i · J ′′ = α−1

i J ∩ · · · ∩ α−r
i ⊆ J ∩ α−1

i J ∩ · · · ∩ α
−(r−1)
i J = J ′′.

Therefore α−1
i ∈ RJ ′′ . But

J ′ = J ∩ · · · ∩ αr−1J = αr−1 · (J ∩ · · · ∩ α−(r−1)J) = αr−1J ′′.

Thus, by Proposition 11.16.3
α−1
i ∈ RJ ′′ = RJ ′ .

Theorem 11.26. Let J ∈ P1 be special, non-zero, and type-definable over M ⊇ M0. Then
there is an M-invariant ring R∞

J and ideal I∞J ◁R∞
J satisfying the following properties:

� R∞
J and I∞J are M-invariant.

� (1 + I∞J ) ⊆ (R∞
J )×, so I∞J is a subideal of the Jacobson radical of R∞

J .

� The M-infinitesimals IM are a subgroup of I∞J (and therefore of the Jacobson radical).

� M0 ⊆ R∞
J .

� R∞
J is a Bézout domain with at most r maximal ideals.

� The field of fractions of R∞
J is M.
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Proof. Let P be the set of finite S ⊆ M× such that 1 ∈ S. Then P is a commutative monoid
with respect to the product S · S ′ = {x · y | x ∈ S, y ∈ S ′}. For any S ∈ P and G ∈ P1,
define

GS :=
⋂︂
s∈S

s ·G.

Note that (GS)S
′

= GS·S′
. If G is special and non-zero then by Lemma 11.21 GS is special

and non-zero, and there are inclusions RG ⊆ RGS and IG ⊆ IGS . Define sets

R∞
J :=

⋃︂
S∈P

RJS

I∞J :=
⋃︂
S∈P

IJS .

These sets are clearly M -invariant. Moreover, the unions are directed: given any S and S ′

we have

RJS ∪RJS′ ⊆ RJS·S′

IJS ∪ IJS′ ⊆ IJS·S′ .

Therefore R∞
J is a ring and I∞J is an ideal. The fact that (1 + I∞J ) ⊆ (R∞

J )× also follows
(using Proposition 11.16.7). Taking S = {1}, we see that IJ ⊆ I∞J . Proposition 11.16.5 says
IM ⊆ IJ , so IM ⊆ I∞J as desired. Similarly, M0 ⊆ RJ ⊆ R∞

J .

Claim 11.27. If q0, q1, . . . , qr are distinct elements of M0 and α ∈ M×, then at least one of
1/(α− qi) is in R∞

J .

Proof. By Lemma 11.22, at least one of 1/(α− qi) lies in RJS for S = {1, α, . . . , αr−1}. □Claim

It follows formally that R∞
J is a Bézout domain with no more than r maximal ideals. Let

a, b be two elements of R∞
J . We claim that the ideal (a, b) is principal. This is clear if a = 0

or b = 0. Otherwise, let α = a/b. As M0 is infinite, Claim 11.27 implies that

b

a− qb
=

1
a
b
− q

∈ R∞
J

for some q ∈ M0. Then the principal ideal (a − qb) ◁ R∞
J contains b, hence qb and thus a.

Therefore (a− qb) = (a, b).
Next, we show that R∞

J has at most r maximal ideals. Suppose for the sake of contra-
diction that there were distinct maximal ideals m0, . . . ,mr in R∞

J . As R∞
J is an M0-algebra,

each quotient R∞
J /mi is a field extending M0. Take distinct q0, . . . , qr ∈ M0, and find an

element x ∈ R∞
J such that x ≡ qi (mod mi) for each i, by the Chinese remainder theorem.

Then x−qi ∈ mi ⊆ R∞
J \(R∞

J )× for each i. So 1/(x−qi) does not lie in R∞
J for any 0 ≤ i ≤ r,

contrary to Claim 11.27.
Lastly, note that if x is any element of M×, then 1/(x− q) ∈ R∞

J for some q ∈ M0, q ̸= x.
As q ∈ M0 ⊆ R∞

J , the field of fractions of R∞
J contains x. So the field of fractions must be

all of M.
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11.4 From Bézout domains to valuation rings

Remark 11.28. Let R be a Bézout domain.

1. For each maximal ideal m, the localization Rm is a valuation ring on the field of fractions
of R.

2. R is the intersection of the valuation rings Rm.

See [2, VII, §2, Exercise 7a] and [2, II, §3, no. 3, Corollary 4], respectively.

Theorem 11.29. Let M be a sufficiently saturated dp-finite field, possibly with extra struc-
ture. Suppose M is not of finite Morley rank. Then there is a small set A ⊆ M and a
non-trivial A-invariant valuation ring.

Proof. Take M0 as usual in this section. By Proposition 11.4 there is a non-zero special
J ∈ P1. The group J is type-definable over some small M ⊇ M0. Let R be the R∞

J

of Theorem 11.26. Then R is an M -invariant Bézout domain with at most r maximal
ideals, the Jacobson radical of R is non-zero (because it contains IM), and Frac(R) = M.
Let m1, . . . ,mk enumerate the maximal ideals of R. Let Oi be the localization Rmi

. By
Remark 11.28, each Oi is a valuation ring on M, and

R = O1 ∩ · · · ∩ Ok.

At least one Oi is non-trivial; otherwise R = M and has Jacobson radical 0.14 Without loss
of generality O1 is non-trivial. By the Chinese remainder theorem, choose a ∈ R such that
a ≡ 1 (mod m1) and a ≡ 0 (mod mi) for i ̸= 1. We claim that O1 is Aut(M/aM)-invariant.
If σ ∈ Aut(M/aM), then σ ∈ Aut(M/M) so σ preserves R setwise. It therefore permutes
the finite set of maximal ideals. As m1 is the unique maximal ideal not containing a, it must
be preserved (setwise). Therefore σ preserves the localization O1 setwise.

Remark 11.30. Stable fields do not admit non-trivial invariant valuation rings [15, Lemma 2.1].
Consequently, Theorem 11.29 can be used to give an extremely roundabout proof of Halevi
and Palaćın’s theorem that stable dp-finite fields have finite Morley rank [12, Proposition 7.2].

12 Shelah conjecture and classification

Proposition 12.1. Let K be a sufficiently saturated dp-finite field of positive characteristic.
Then one of the following holds:

� K has finite Morley rank (and is therefore finite or algebraically closed).

� K admits a non-trivial henselian valuation.

14Tracing through the proof, here is what explicitly happens. If ε ∈ IM then −1/ε cannot be in R∞
J ,

or else ε ∈ IM ⊆ IJ ⊆ IJS ◁ RJS and −1/ε ∈ RJS for large enough S, so that −1 ∈ IJS , contradicting
Proposition 11.16.7.
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Proof. This is Fact 8.5 and Theorem 11.29.

Lemma 12.2. Let K be a sufficiently saturated dp-finite field of positive characteristic.
Assume K is infinite. Let O∞ be the intersection of all K-definable valuation rings on K.
Then O∞ is a henselian valuation ring on K whose residue field is algebraically closed.

Proof. The proof for dp-minimal fields ([14, Theorem 9.5.7]) goes through without changes,
using Proposition 12.1 together with [13, Theorems 2.6, 2.8]. Additionally, we must rule out
the possibility that the residue field is real closed or finite. The first cannot happen because
we are in positive characteristic. The second cannot happen because K is Artin-Schreier
closed, a property which transfers to the residue field.

Corollary 12.3. Let K be a sufficiently saturated infinite dp-finite field of positive charac-
teristic. If every definable valuation on K is trivial, then K is algebraically closed.

Corollary 12.4. Let K be a dp-finite field of positive characteristic. Then one of the fol-
lowing holds:

� K is finite.

� K is algebraically closed.

� K admits a non-trivial definable henselian valuation.

Proof. Suppose K is neither finite nor algebraically closed. Let K ′ ⪰ K be a sufficiently
saturated elementary extension. Then K ′ is neither finite nor algebraically closed. By
Corollary 12.3 there is a non-trivial definable valuation O = ϕ(K ′, a) on K ′. The statement
that ϕ(x; a) cuts out a valuation ring is expressed by a 0-definable condition on a, so we
can take a ∈ dcl(K). Then ϕ(K, a) is a non-trivial valuation ring on K, henselian by [13,
Theorem 2.8].

So the Shelah conjecture holds for dp-finite fields of positive characteristic.
By [11, Proposition 3.9, Remark 3.10, and Theorem 3.11], this implies the following

classification of dp-finite fields of positive characteristic: up to elementary equivalence, they
are exactly the Hahn series fields Fp((Γ)) where Γ is a dp-finite p-divisible group. Dp-finite
ordered abelian groups have been algebraically characterized and are the same thing as
strongly dependent ordered abelian groups [5, 7, 10].
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[7] Rafel Farré. Strong ordered abelian groups and dp-rank. arXiv:1706.05471v1 [math.LO],
2017.

[8] George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.
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