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Abstract

We consider existentially closed fields with several orderings, valuations, and p-
valuations. We show that these structures are NTP5 of finite burden, but usually have
the independence property. Moreover, forking agrees with dividing, and forking can be
characterized in terms of forking in ACVF, RCF, and pCF.

1 Introduction

Consider the theory of fields with n distinct valuations. By the thesis of van den Dries [20],
this theory has a model companion. More generally, one can add orderings and p-valuations
into the mix, and a model companion exists. We will explore the classification-theoretic
properties of this model companion.

To be more precise, suppose that for each 1 <7 < n...

e The theory T; is one of ACVF (algebraically closed valued fields), RCF (real closed
fields), or pCF (p-adically closed fields).

e [, is some language in which 7T; has quantifier elimination, such as the language of
ordered rings for RCF, and the Macintyre language for pCF.

e (T;)y is the universal fragment of T}, plus the field axioms. For example, RCFy is the
theory of ordered fields, and ACVFy is the theory of valued fields.

Arrange that £; N L; = L,ings for i # j, and form the theory (J;_,(7;)v. In van den Dries’s
notation, this theory is denoted ((71)v, (T2)v, - - ., (T,)v). For example

(ACVFy, ACVFy, ACVFEy)
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is the theory of fields with three distinct valuations. The T; can be mixed; for example
(ACVFy, RCFy, 3CFy)

is the theory of fields with a valuation, an ordering, and a 3-valuation (plus Macintyre
predicates).
In all these cases, van den Dries proves the existence of a model companion

((Tl)V7 (T2>V7 SRR (Tn>\7)'

In fact, van den Dries’s result is more general than what we have stated, allowing the
T;’s to be arbitrary theories with quantifier elimination such that the (7;)y are “t-theories”
(Definition II1.1.2 in [20]).

However, we will only consider the case where the T; are ACVF, RCF, or pCF. In these
cases, we will prove the following about the model companion ((71)y, ..., (T,)v), which we
denote T for simplicity:

1. T is NTP,, but fails to be NIP (or NSOP) when n > 1. See Theorems [6.7] and [6.1] If
n =1, then T is one of ACVF, RCF, or pCF, which are all known to be NIP.

2. Moreover, T is “strong” in the sense of Adler [I], and, every type has finite burden.
The burden of affine m-space is exactly mn, where n is the number of valuations and
orderings. See Theorem [6.7]

3. Forking and dividing agree over sets in the home sort, so every set in the home sort is
an “extension base for forking” in the sense of Chernikov and Kaplan [3, Definition 2.7].
See Theorem [7.5

4. Forking in the home sort has the following characterization (Theorem . Suppose
K E T, and A, B,C C K are subsets of the home sort. For 1 < i < n, let K; be a
model of T; extending the L£;-reduct of K. For example, in the case of n orderings, K;
could be a real closure of K with respect to the i*" ordering. Then A J,C B holds in K
if and only if A J/C B holds in K; for every i. The choice of the K; does not matter.

It is likely that also holds of sets of imaginaries, which would imply that Lascar strong
type and compact strong type agree, by [2I] Corollary 3.6.

In the case where every T; is ACVF, Theorem gives a simple axiomatization of the
model companion 7T a model of T' is simply an algebraically closed field with n independent
non-trivial valuations. In this case, forking is characterized as follows: A | o B holds if and
only if it holds in the reduct (K, v;), for every i.

Something similar happens when all but one of the T; is ACVF. For example, if 77 is RCF
and Ty, ..., T, are all ACVF, then a model of T is a real closed field with n — 1 valuations
such that the ordering and the valuations are pairwise independent. See Theorem for
details.

As a concrete example, let K be one of the following fields: F,(¢)*9, Q% Q9 N R,
or Q9 N Q, for some p. Let Ry,..., R, be valuation rings on K. Then K with the ring

2



structure and with a unary predicate for each R; is a strong NTP, theory of finite burden,
and every set of real elements is an extension base. The same holds for (;_, R; as a pure
ring.

1.1 Related and future work

Existentially closed fields with several orderings were independently shown to be NTP, in
Montenegro’s thesis [16]. More generally, she shows that bounded pseudo-real-closed fields
are NTPs, proving Conjecture 5.1 of [4]. Similarly, Montenegro shows that bounded pseudo-
p-adically-closed fields are NTPy, which includes the case where every T; is pCF.

The techniques of the present paper have been generalized in [I1] to prove that NTP,
holds in algebraically closed fields with several valuations. The case of independent valuations
is Corollary [6.8 below.

Halevi, Hasson, and Jahnke use an argument related to §4] and §6.1] in order to prove
that a field with two independent valuations cannot be NIP if one of the two valuations is
henselian, which helps connect two conjectures on the classification of NIP fields [§].

The classification of dp-minimal fields [10] is not directly related to the present paper, but
suggests a direction for future research. Most of the properties shared by ACVF, RCF, and
pCF are shared by all dp-minimal theories of valued fields and ordered fields. Consequently,
the list

ACVF,RCF, pCF

appearing throughout the present paper can probably be extended to include all dp-minimal
theories of valued fields and ordered fields. But there are a large number of details to check.

1.2 Conventions

The algebraic closure of a field K will be denoted K%9. A variety over a field K is a reduced
finite-type scheme over K. If V is a K-variety, dim V' denotes the dimension of the definable
set V(K) in the structure K9, rather than the definable set V(K) in the structure K.
For example, if V is the R-variety cut out by the equations 22 +y? = 0, then dim V is 1, not
0.

The monster model will be denoted 9. Forking independence will be denoted A J/C B.

ACE B In other

When working in a field K, algebraic independence will be denoted AJ/C

words, A LgCF B means that A J/c B holds in K9,
When working with fields with several valuations and orderings, we will generally use the
following conventions:

e T; will denote the theory ACVF, RCF, or pCF.
e L; will denote the language of T;.

e (7T;)y will denote the universal fragment of T, plus the field axioms.



e 77 will denote the theory |, (T;)v.

e T will denote the model companion of 7.

1.3 Outline

In Section [2| we recall some elementary facts about ACVF, pCF, and RCF which will be
needed later. In Section[3], we quickly reprove the main facts needed from Chapters IT and III
of van den Dries’s thesis, arriving at a slightly different way of expressing the axioms of the
model companion, and handling the case of positive characteristic, which was not explicitly
considered by van den Dries. Section [4]is a digression aimed at proving Theorem (4.1 which
drastically simplifies the axioms of the model companions in some cases. Theorem is
probably known to experts, but we include a proof here for lack of a reference. In Section [5
we construct some Keisler measures that will be used in the later sections. In Section [6]
we determine where the model companion lies in terms of various classification theoretic
boundaries, proving that it is NTP, and strong, but not NSOP and usually not NIP. In
Section [7, we show that forking and dividing agree over sets in the home sort, and we
characterize forking in terms of forking in the 7;’s.

2 Various facts about ACVF, pCF, and RCF

Let T be one of ACVF, RCF, or pCF. Work in the usual one-sorted languages with quantifier
elimination:

e For ACVF, work in the language of fields with a binary predicate for val(z) > val(y).

e For RCF, work in the language of ordered rings.

e For pCF, work in the Macintyre language with unary predicates for nth powers [14].
Quantifier-elimination implies the following:

Fact 2.1. Let M be a model of T', and K be a subfield. Every K-definable set is a positive
boolean combination of topologically open sets and affine varieties defined over K. In partic-
ular, any K-definable subset of ™ has non-empty interior or is contained in a K-definable
proper closed subvariety of A™.

Let 99T be a monster model of T.

Definition 2.2. Let K be a subfield of 9. Let D C 91" be a definable set, defined over K.
Define the rank rkx D to be the supremum of tr. deg(a/K) as a ranges over D.

Lemma 2.3.

(a) If D C 9™, then vk D = n if and only if D has non-empty interior.



(b) If DCM" and 1 < k < n, then vk D > k if and only if tkx m(D) = k for one of the
(finitely many) coordinate projections w : IM™ —» IME,

(c) The rank of D does not depend on the choice of K, and rank is definable in families.

(d) If D CV where V is geometrically irreducible, then vk D = dim V' if and only if D(9)
is Zariski dense in V (9M9).

Proof. (a) If rkx D < n, then every tuple a from D lives inside an affine K-variety of
dimension less than n. By compactness, D is contained in the union of finitely many
affine K-varieties of dimension less than n. This union contains the Zariski closure of
D, so D is not Zariski dense. This forces D to have no topological interior, because
non-empty polydisks in affine space are Zariski dense. Conversely, if D has no interior,
then by Fact 2.1 D C V for some proper subvariety V' C A" with V' defined over K.
Then rtkxy D < dimV < n.

(b) Clear by properties of rank in pregeometries.
(c) Combine (a) and (b).

(d) Ifrk D < dim V, then every point in D is contained in an affine K-variety of dimension
less than dim V. By compactness, D is contained in the union of finitely many such
varieties. This finite union contains the Zariski closure of D, and is strictly smaller
than V itself. Conversely, suppose that D is not Zariski dense in V. Let V' C V be the
Zariski closure of D. As V is geometrically irreducible, dim V' < dim V. Also, V' is
defined over 91 rather than 9%, because it is the Zariski closure of a set of 9i-points.
Let L be a small subfield of 9t over which V' and D are defined. Then

tkg D =1k; D <1k, V' <dimV’' <dimV. O

Corollary 2.4. If K < L is an inclusion of small subfields of M and « is a finite tuple, we
can find o =g a with tr.deg(a//L) = tr.deg(d//K).

Proof. Let n = tr.deg(a/K). Let X(x) be the partial type asserting that z =k « and
that « belongs to no L-variety of dimension less than n. We claim that 3(z) is consistent.

Otherwise, there is some formula ¢(z) from tp(a/K) and some L-varieties Vi,...,V,, of
dimension less than n, such that ¢(9) C [J;*, Vi. But then

rk p(9M) = rky (M) < max dimV; < n,

contradicting the fact that o € ¢(9M) and tr. deg(a/ K) > n.
Thus X (z) is consistent. If o/ is a realization, then o/ =k « and

tr.deg(a’/L) > n = tr.deg(a/K) = tr.deg(a’/K) > tr.deg(a’/L). O



Corollary 2.5. Let L and L' be two fields satisfying Ty, and suppose they share a common
subfield K. Then L and L' can be amalgamated over K in a way which makes L and L' be
algebraically independent over K.

Proof. By quantifier elimination, we may as well assume that L and L’ and K live inside a
monster model M = T. By Corollary and compactness, we can extend tp(L/K) to L’
in such a way that any realization is algebraically independent from L' over K. O

Definition 2.6. Let K < L be an inclusion of fields. Say that K is relatively separably
closed in L if every x € L N K% is in the perfect closure of K.

This is a generalization of K being relatively algebraically closed in L; in characteristic
zero these two concepts are the same. Note that if we embed L into a monster model 9t of
ACF, then the following are equivalent:

e [ is relatively separably closed in L

e dcl(K) = acl(K) Ndcl(L)

e tp(L/K) is stationary

e The restriction map Aut(L% /L) — Aut(K%/K) is surjective.
From this, one gets

Fact 2.7. Let L > K < L' be (pure) fields. Suppose that K is relatively separably closed in
L or L'. Then there is only one way to amalgamate L and L' over K in such a way that L
and L' are algebraically independent over K.

Fact 2.8. If K is relatively separably closed in L and o« is a tuple from L, and V 1is the
variety over K of which « is the generic point, then V is geometrically irreducible.

2.1 Dense formulas

In this section, T continues to be one of ACVF, RCF, or pCF.

Definition 2.9. Let K be a model of Ti;. Let V be a geometrically irreducible affine
variety defined over K. Let ¢(z) be a quantifier-free formula with parameters from K,
defining a subset of V' in any/every model of T extending K. Say that ¢(z) is V-dense if
rk ¢(9M) = dim V. Here 9 is a monster model of T" extending K.

The choice of M is irrelevant by quantifier-elimination in 7" and by Lemma (C)

Lemma 2.10. Let K be a model of Ty, L be a model of T extending K, and V be a ge-
ometrically irreducible variety defined over K. For a quantifier-free K-formula ¢(x) with
o(L) CV(L), the following are equivalent:

(a) ¢(z) is V-dense.



(b) ¢(L) is Zariski dense in V (L49).

(c) We can extend the Ty-structure on K to the function field K(V') in such a way that the
generic point of V in K (V') satisfies ¢(x).

Proof. (a) = (b) Suppose ¢(x) is V-dense. Let W be the Zariski closure of ¢(L) in
V(L%9). Then W is defined over L rather than L, because W is the Zariski closure
of some L-points. Therefore it makes sense to think of W as a definable set. If 9 is
a monster model of T" extending L, then dimV =rk¢(IM) <tk W < dim W < dim V.
Therefore dim W = dim V. As V is geometrically irreducible, W = V.

(b) = (a) Let 9t be a monster model of T extending L, and let n = dim V. If ¢(z) is
not V-dense, then every element of ¢(9t) has transcendence degree less than n over
K. By compactness, ¢(9) is contained in a finite union of K-definable varieties of
dimension less than n. We may assume these varieties are closed subvarieties of V.
Of course ¢(L) is also contained in this union, which is clearly a Zariski closed proper
subset of V. So ¢(L) is not Zariski dense.

(a) = (c) Embed K into a monster model 9. Let a be a point in ¢(9M) C V(M) with
tr. deg(a/K) =tk (M) = dim V. Then « is a generic point on V, i.e., K(«a) = K(V).
And « satisfies ¢(z).

(c) = (a) Embed K(V) into a monster model 9. Let a denote the generic point of
V, so that M = ¢(«) holds. Clearly tr.deg(a/K) = dimV. Thus rkg ¢(9) >
tr.deg(a/K) = dim V', implying V-density of ¢(x). O

Lemma 2.11. Let L be a model of ACVF, and let V- C A™ be an irreducible affine variety
over L. Suppose 0 € V. Let O} be the closed unit polydisk in A". Then O} NV is Zarisk:
dense in V.

This Lemma is essentially Lemma 1.1 in [6], but we will give give a more elementary
proof based on the proof of Proposition 4.2.1 in [7].

Proof. Let L(«) be the function field of V', obtained by adding a generic point v of V' to the
field L. By the implication (¢) = (b) of Lemma applied in the case where ¢(z) is
the formula defining O} NV, it suffices to extend the valuation on L to L(«) in such a way
that every coordinate of o has nonnegative valuation.

Now L[a] is the coordinate ring of V', so the fact that 0 € V implies that there is an
L-algebra homomorphism L[a] — L sending every coordinate of « to zero. This yields an
Op-algebra homomorphism f : Opla] — O sending every coordinate of o to 0. Let m be
the maximal ideal of Op, and let p = f~!(m). Then p is a prime ideal, and p N O = m.
Also, as f kills the coordinates of «, the coordinates of « live in p.

Since Op[a] is a domain, there is a valuation v" on L(«), the fraction field of Oy [a], with
the following properties:



e Every element of p has positive valuation. In particular, the elements of m and the
coordinates of o have positive valuation.

e Every element of Opla] \ p has valuation zero. In particular, the elements of Of =
O \ m have valuation zero.

(Indeed, it is a general fact that if S is a domain and p is a prime ideal, then there is a
valuation on the fraction field of S which assigns a positive valuation to elements of p and a
vanishing valuation to elements of S\ p. To find such a valuation, take a valuation ring in
Frac(S) dominating the local ring S,.)

The resulting valuation on L(«a) extends the valuation on L, because it assigns positive
valuation to elements in m, and zero valuation to elements in O, \ m. Also, the valuation of
any coordinate of «/ is positive, hence non-negative, so « lives in the closed unit polydisk. [J

Lemma 2.12. Let V' be a geometrically irreducible affine variety over K |= Ty, and let ¢(z)
be a quantifier-free K-formula. Let L be a model of T extending K. Suppose ¢(x) defines
an open subset of V(L).

(a) If T is ACVF, then ¢(z) is V-dense if and only if ¢(L) is non-empty.
(b) In general, ¢(z) is V-dense if ¢(L) contains a smooth point of V.

Proof. (a) If ¢(x) is V-dense, then certainly ¢(L) is non-empty. Conversely, suppose ¢(L)
is non-empty. Let p be a point in ¢(L) and let U be an open neighborhood of p, with
UNV C ¢(L). There is some L-definable affine transformation f which sends p to
the origin and moves U so as to contain the closed unit polydisk. Then f(U NV) =
f(U)N f(V) is Zariski dense in f(V), by Lemma [2.11] So ¢(L) 2 U NV is Zariski
dense in V. Thus ¢(x) is V-dense, by Lemma [2.10]

(b) If ¢(x) is V-dense, then ¢(L) contains a smooth point of V', because the smooth locus
of V' is a non-empty Zariski open. Conversely, suppose ¢(L) contains a smooth point
p. Note that L is perfect. In the field L, the tangent space T,V is L-definable. By
Hilbert’s Theorem 90, there is an L-definable basis of 7,,V'. Therefore, after applying an
L-definable change of coordinates, we may assume 7,V is horizontal. By the implicit
function theorem, V' then looks locally around p like the graph of a function. In
particular, the coordinate projection maps a neighborhood of p homeomorphically to
an open subset of affine n-space, where n = dim V. By Lemma this ensures that
any neighborhood of p, such as ¢(L), has rank at least n. So ¢(x) is V-dense. ]

Remark 2.13. Here, and in Lemma below, we are using the model-theoretic version
of Hilbert’s theorem 90. This folk theorem says that if M = ACF, if K is a subfield of
M, and if V is a K-definable M-vector space, then V admits a K-definable basis. For
completeness, we recall the proof. Because K% < M, we may replace M with K9 and
assume M = K% . Because dcl(K) = dcl(KP*"/) = KP/ we may replace K with K?¢'/
and assume K is perfect. Then M/K is (infinite) Galois. Take a basis {by,bs,...,b,} € V.



For every o € Gal(M/K), there is a matrix i, € GL,(M) such that p, - b = o(b). For
o,7 € GL,(M), we have

- —,

(7(b)) = o(pr - b)
(1) - 0 (b) = 0 (p1z) - i - b.

Therefore pi,. = o(p;) - po for all o,7. Therefore {fio}rccaim/k) is a cocycle, and de-
termines a cohomology class in H'(Gal(M/K),GL,(M)). By Hilbert’s Theorem 90 [15],
Lemma I11.4.10], the set H'(Gal(M/K), GL,(M)) is trivial. Therefore, {/i;}recaim/K) is a
coboundary. So there is some v € GL, (M) such that u, = o(v)-v! for all o € Gal(M/K).
Let @=v~1-b. Note that C1,...,Cq is a basis of V. For any o € Gal(M/K), we have

,um-l; o o
o b

o@=c( ) -ob)=c( ) b

—o(v ) -o) v b=v1b=C
Therefore ¢ is fixed by Gal(M/K), and the ¢; are K-definable.

Lemma 2.14. Let V' be a geometrically irreducible affine variety over K |= Ty, and let ¢(z)
be a quantifier-free K-formula that is V-dense. (In particular, ¢(x) defines a subset of V
in any/every model of T extending K.) Then there is a quantifier-free K-formula v (z) that
is also V-dense, such that in any/every L = T extending K, ¥ (L) is a topologically open
subset of V(L), and (L) C ¢(L).

Proof. Choose some monster model 9 = T extending K and let ¢(9) pick out the topo-
logical interior of ¢(9N) inside V(9M). By quantifier-elimination, we can take ¢(z) to be
quantifier-free with parameters from K. It remains to show that ¢ (9) is V-dense. Let
o € (M) have transcendence degree n over K, where n = dim V. By Fact [2.1] ¢(9) can
be written as a finite union of finite intersections of K-definable opens and varieties. Let X
be one of these finite intersections, containing . So X = W NU for some K-variety W and
some K-definable open U. As a« € W and « is a generic point on V', we must have V' C W.
Then
acVNUCWNU C ¢(M).

But V' NU is a relative open in V(9), so it must be part of ¢)(9). In particular, a € (9M).
As tr.deg(a/K) = n, we conclude that ¢ (z) is V-dense. O

2.2 Forking and Dividing

We continue to work in one of ACVF, RCF, or pCF. Recall that RCF and pCF have definable
Skolem functions in the home sort. Thus if S is a subset of the home sort, then acl(S) =
dcl(S) is a model. In ACVF, acl(S) is the algebraic closure of S, which is a model unless
acl(9) is trivially valued.

We will always be working in the home sort, rather than working with imaginaries.



Lemma 2.15. Let S be a set (in the home sort) and let ¢(x;b) be a formula. Then ¢(x;b)
forks over S if and only if it divides over S.

Proof. Indiscernibility over S is the same thing as indiscernibility over acl(S), so ¢(z;b)
divides over S if and only if it divides over acl(.S). Similarly, ¢(x;b) forks over S if and only
if it forks over acl(.S). So we may assme S = acl(S). If T"is RCF or pCF, then S is a model,
and therefore forking and dividing agree over S by [3, Theorem 1.1]. If T"is ACVF, then
forking and dividing agree over all sets, by [3, Corollary 1.3]. O

We use | to denote non-forking or non-dividing, and \LACF to denote algebraic inde-
pendence.

Lemma 2.16. Let 9 be a monster model of T', and let B, C' be small subsets of M, with B
finite. Then we can find a sequence By, B, Bo, ... in 9 that is C-indiscernible, such that
By =B and B; J/é,CF B_; for every i.

Proof. We may assume that B is ordered as a tuple in such a way that the first k& elements
of B are a transcendence basis of B over C'. Construct a sequence Dy, D1, ... of realizations
of tp(B/C) such that D; \LgCF D_; for every i. This is possible by using Corollary to
extend tp(B/C) to a type over C'D_; having the same transcendence degree over C'D_; as
over C. Let By, By, B, ... be a C-indiscernible sequence modeled on Dy, Dy, . ... Let m(X)
pick out the first k elements of a tuple X. Then w(Dg)” 7(D;y)" w(Dg) ™ - -- is an algebraically
independent sequence of singletons over C. This is part of the EM-type of the D, over C,
so it is also true that w(Bgy) 7(By) w(By)™ --- is an algebraically independent sequence of
singletons over C. Since D; =¢ B for every i, we also have B; =< B for every i. Thus

7(B;) is a transcendence basis for B; over C', and we conclude that B; LgCF B_; for every i.
Finally, moving the B; by an automorphism over C', we may assume that By = B. ]

Lemma 2.17. A\LCB implies ALgCFB.

Proof. Assume A J/c B. By Lemma , we can find a sequence By, By, Bo, ... of realiza-

tions of tp(B/C'), indiscernible over C', and satisfying B; LgCF B_; for every i. Suppose for
the sake of contradiction that in some ambient model of ACF, tp(A/BC') contains a formula
¢(X;Y) which divides (in the ACF sense) over C. By quantifier elimination in ACF, we
may assume ¢ is quantifier-free. In stable theories such as ACF, dividing is witnessed in any
Morley sequence. In particular

/\¢(X; B;)

is inconsistent in the ambient model of ACF, hence inconsistent in the original smaller
structure. Thus ¢(X; B) forks and divides over C in the original structure, a contradiction.
O

Lastly, we show that dividing is always witnessed by an algebraically independent se-
quence.
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Lemma 2.18. If a formula ¢(z;a) divides over a set A, then the dividing is witnessed by
o . ACF .
an A-indiscernible sequence a = ag, ay, as, . .. such that a; \LA a~; for every 1.

Proof. Apply Lemma 3.12 of [3] with the abstract independence relation taken to be | (non-
forking). Non-forking satisfies (1)—(4) of [3, Definition 2.4] by [3, Remark 2.14]. Non-forking
preserves indiscernibility over A by [3, Remark 2.20, Claim 2.24|. And A is an extension base
for non-forking by Lemma[2.15[above and [3, Theorem 1.2]. So [3, Lemma 3.12] is applicable.
Consequently we get a model M containing A, a global type p extending tp(a/M), | -free
over A, such that any/every Morley sequence generated by p over M witnesses the dividing
of ¢(x;a). Because | is stronger than Lascar invariance, any such Morley sequence will be
M-indiscernible, hence A-indiscernible. Because | is stronger than algebraic independence
(Lemma , and p is | -free over A, any Morley sequence ag, a1, ... generated by p will

be algebraically independent over A. Specifically, a; = p|aa.,;, so as p is | -free over A,

ACF
a; J/A Ma_;, and hence a; J/A Q. O

3 The Model Companion

Now we turn our attention to fields with several valuations, several orderings, and several
p-valuations. For 1 <i <mn, let T; be one of ACVF, RCF, or pCF (in the same languages as
in the previous section). Let £; denote the language of T;; assume that £; N L; = L5 for
i # j. Let T° be J_,(T;)v, the theory that would be denoted ((T%)v, (T2)v, - . ., (T,)v) in van
den Dries’s notation. Technically speaking, models of 7° should be allowed to be domains,
rather than fields. However, we will assume that 7 also includes the field axioms, sweeping
domains under the rug.

One essentially knows that T° has a model companion 7" by Chapter III of van den Dries’s
thesis [20]. We will quickly reprove the existence of T' in this section, expressing the axioms
of the model companion in a more geometric and less syntactic form, and also including the
case of positive characteristic explicitly.

3.1 The Axioms

Consider the following axioms that a model K of T° could satisfy:

A1l: K is existentially closed with respect to finite extensions, i.e., if L/K is a finite algebraic
extension and L = TV, then L = K.

A1’: For every irreducible polynomial P(X) € K[X] of degree greater than 1, there is some
1 < i < n such that P(z) = 0 has no solution in any/every model of T; extending
K |L,.

A2(m): Let V be an m-dimensional geometrically irreducible variety over K. For 1 <i <
n, let ¢;(x) be a V-dense quantifier-free £;-formula with parameters from K. Then

Mizy @i(K) # 0.
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A2(<m): A2(m’) holds for all m' < m.
A2: A2(m) holds, for all m
Remark 3.1. For K = T°, Al and A1’ are equivalent.

Proof. Suppose K satisfies Al, and P(X) € K[X] is irreducible of degree greater than 1.
Suppose that for every 1 < i < n, there is a solution «; of P(x) = 0 in a model M; = T;
extending K [ £;. Then we can extend the L;-structure from K to K(«a) = K[X]/P(X).
Because this holds for every i, we can endow K[X]/P(X) with the structure of a model of
T°. By Al, K[X]/P(X) must be K, so P(X) has degree 1.

Conversely, suppose K satisfies A1’ but not Al. Let L/K be a counterexample to Al,
and take some o« € L\ K. Let P(X) be the irreducible polynomial of « over K. This
polynomial must have degree greater than 1. For each i let M; be a model of T; extending
L | L;. Then P(x) = 0 has a solution in L, hence in M;, which is a model of T; extending
K. This contradicts A1, O

Lemma 3.2. Let K be a model of T°, and m > 1. The following are equivalent:

(a) For every model L of T° extending K, for every tuple o from L with tr. deg(a/K) < m,
the quantifier-free type qftp(a/K) is finitely satisfiable in K.

(b) K satisfies A1 and A2(< m).

Proof. (a) = (b) For Al, suppose that L/K is a finite extension, and L = T. If a € L,
then « is algebraic over K, so tr.deg(a/K) = 0 < m. By (a), the quantifier-free type of a is
realized in K. So the irreducible polynomial of o over K has a zero in K, implying a € K.
As a € L was arbitrary, L = K.

For A2(m’), let V' be an m’-dimensional geometrically irreducible variety over K. For
1 <7 < n,let ¢;(x) be a V-dense quantifier-free £;-formula with parameters from K. By
Lemmal[2.10|c), we can extend the £;-structure to K (V) in such a way that the generic point
satisfies ¢;(z). Doing this for all 4, we make K (V') be a model of T° extending K, such that if
a € K(V) denotes the generic point, then A}, ¢;(«) holds. Now tr.deg(a/K) = dimV < m,
so by (a), gftp(o/K) is finitely satisfiable in K. In particular, the formula A}, ¢(x) is
satisfiable in K, which is the conclusion of A2(m’).

(b) = (a). Suppose L is a model of T° extending K and « is a tuple from L, with
tr.deg(a/K) < m. By Al, K is relatively algebraically closed in L. Let V be the K-
variety of which « is a generic point. Then V is geometrically irreducible, by Fact Also,
m’ :=dimV = tr.deg(a/K) < m. Let 1(x) be any formula in qftp(a/K). We want to show
that 1 is satisfied by an element of K. We may assume that ¢(x) includes the statement
that « € V. By Fact [2.1] ¢(z) is a positive boolean combination of statements of the form

e v € W, for some K-definable affine variety W. Since we intersected ¢ (z) with V| we
may assume W C V.

e (), where 0(x) is a quantifier-free £;-formula for some ¢, such that §(L) is an open
subset of the ambient affine space, for any/every L = T; extending K | L;.
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Writing ¢ (z) as a disjunction of conjunctions of such statements, and replacing ¥ (x) by
whichever disjunct « satisfies, we may assume that () is a conjunction of such statements.
An intersection of K-varieties is a K-variety, and an intersection of open subsets of affine
space is an open subset of affine space, so we may assume

U(w) =z e W A N\ 6ile),
i=1

where W is some K-variety contained in V', and where ¢;(x) is a quantifier-free £;-formula
defining an open subset of the ambient affine space, when interpreted in any/every model of
T; extending K | L;.

Because « satisfies ¢(z), and « is a generic point of V', W must be V. Rewrite 1 as
Ni_; ¢i(z), where each ¢;(x) asserts that z € V and ¢;(x) holds. Because K satisfies axiom
A2(m’), () will be satisfiable in K as long as ¢;(x) is V-dense for each i. But note that L
provides a way of extending the £;-structure from K to K(a) = K(V) in such a way that
¢%() holds, so ¢/ is V-dense by Lemma [2.10|c). O

Theorem 3.3. The theory T° has a model companion T, whose models are exactly the
K =TV satisfying A1 and A2.

Proof. 1t is well known that a model K is existentially closed if and only if for every model
L extending K and for every tuple o from L, the quantifier-free type qftp(«/K) is finitely
satisfiable in K. So by Lemma , a model of T is existentially closed if and only if it
satisfies A1 and A2. By basic facts about model companions of V3-theories, it remains to
show that A1l and A2 are first order. For A1, this comes from Remark[3.1], because A1’ is first
order by quantifier-elimination in the 7T;. Axiom A2 is first order by quantifier-elimination
in the T}, by Lemma [2.3(c), and by the fact that geometric irreducibility is definable by a
quantifier-free formula in the language of fields (this is well-known and proven in Chapter

IV of [20]). O

Henceforth, we will use 7" to denote the model companion. Also, we will write T3 for T°,
sweeping the distinction between domains and fields under the rug.
We make several remarks about the axioms:

Remark 3.4. In the case where T; is ACVF for ¢ > 1, axiom Al merely says that K is
algebraically closed, real closed, or p-adically closed, according to whether T} is ACVF, RCF,
or pCF, respectively.

Remark 3.5. In Axiom A2(m), it suffices to consider the case of smooth V. If V is not
smooth, one can find an open subvariety V' of V' which is smooth, and which is isomorphic
to an affine variety. (Use the facts that the smooth locus of an irreducible variety is a Zariski
dense Zariski open, and that the affine open subsets of a scheme form a basis for its topology.)
If ¢;(x) is V-dense, then ¢;(z) A “z € V" is V'-dense, essentially by Lemma [2.10[b). Then
applying the smooth case of A2(m) to V' yields a point in V' satistying A, ¢;(z).

13



Remark 3.6. In Axiom A2, it suffices to consider V-dense formulas ¢;(x) such that ¢;(L)
defines an open subset of V(L) for any/every L = T; extending K [ L£;. This follows by
Lemma 2.141

Remark 3.7. We can combine the previous two remarks. Then Lemma [2.12b), yields the
following restatement of A2(m): if V' is a geometrically irreducible m-dimensional smooth
affine variety defined over K, and if ¢;(x) is a quantifier-free £;-formula over K for each
1 < i < mn, and if ¢;(K;) is a non-empty open subset of V(K;) for any/every K; = T;
extending K | £;, then (), ¢:i(K) # 0.

Remark 3.8. When every T; is ACVF, T has the following simpler axiomatization:
1. K is algebraically closed.

2. For 1 <i < mn, the ith valuation v;(x) is non-trivial.

3. If V' is a smooth irreducible m-dimensional affine variety, and ¢;(z) is a quantifier-free
L;-formula defining a non-empty open subset of V for 1 < ¢ < n, then (_, ¢;(K) is
non-empty.

Indeed, is equivalent to A1 by Remark[3.4] Axiom A2(1) implies (2)), because the formula
vi(x) > 0 is Al-dense. If (1)) and hold, then K [ £; = ACVF for all i, so we can take
K; = K in Remark [3.7 Then (3) is equivalent to A2(m) by Remark [3.7]

Condition (3|) can be restated even more concisely as follows: for every smooth m-
dimensional variety V', the diagonal map V(K) — [[;_, V(K) has dense image in the product
topology, using the topology from the ¢th valuation for the ith entry in the product. In fact,
in Section |4 we will see that it suffices to check the case of V' = A, the affine line(!)

3.2 Quantifier-Elimination up to Algebraic Covers

As in the previous section, Ty is the theory of fields with (7;)y structure for each 1 <i <n,
and T is the model companion of Ty.

Lemma 3.9. Let K be a model of Ty. Let L and L' be two models of Ty extending K.
Suppose that K is relatively separably closed in L or L' (Definition @) Then L and L' can
be amalgamated over K, and this can be done in such a way that L and L' are algebraically
independent over K.

Proof. For each 1 < i < n, we can find some amalgam M; = (T;)y of L | £; and L' [ L; over
K | L;, by Corollary The resulting compositums L L’ must be isomorphic on the level of
fields, by Fact[2.7] Consequently, we can endow the canonical field LL' with a (7} )y-structure
extending those on L and L', for each i. This gives LL’ the structure of a Ti,-model. And L
and L’ are algebraically independent inside LL'. ]

Corollary 3.10. Let K be a model of Ty and let L be a model of T extending K. Then K
is relatively algebraically closed in L if and only if K satisfies axiom Al. (In particular, this
does not depend on L.)
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Proof. If K satisfies axiom Al, then obviously K is relatively algebraically closed in L.
Conversely, suppose that K is relatively algebraically closed in L but does not satisfy Al.
Then there is some model L' of Ty extending K, with L'/ K finite and L' # K. By Lemma|3.9|
we can amalgamate L and L' over K. Embed the resulting compositum LL’ in a model M
of T. Because T is model-complete, L < M. Now choose some o € L'\ K. The irreducible
polynomial of o over K has a root in M, and hence has a root in L, contradicting the fact
that K is relatively algebraically closed in L. O

Corollary 3.11. Let K be model of Ty, and suppose K satisfies A1. Then the type of K is
determined, i.e., if L and L' are two models of T extending K, then K has the same type in
L and L'. Equivalently, the diagram of K implies the elementary diagram of K, modulo the
axioms of T.

Proof. By Corollary [3.10, K is relatively algebraically closed in L and L’. So we can amal-
gamate L and L' over K, by Lemma[3.9] If M is a model of T extending LL', then by model
completeness L < M » L', ensuring that K has the same type in each. O

Corollary 3.12. In models of T, field-theoretic algebraic closure agrees with model-theoretic
algebraic closure.

Proof. Let M be a model of T. Let S be a subset of M. Let K be the field-theoretic
algebraic closure of S, i.e., the relative algebraic closure of S in M. By Lemma (3.9 we can
amalgamate M and a copy M’ of M over K in a way that makes M and M’ be algebraically
independent over K. Embedding M M’ into a model N of T, and using model completeness,
we get M < N = M’. Now acl(S) is the same when computed in M, N, or M’. In particular,
acl(S) € M NM'. Since M and M’ are algebraically independent over K and K is relatively
algebraically closed in each, M N M’ = K. Thus acl(S) C K. Obviously K C acl(95). O

For K a field, let Abs(K') denote the algebraic closure of the prime field in K.

Corollary 3.13. Two models My, My |= T are elementarily equivalent if and only if Abs(M;)
and Abs(Ms) are isomorphic as models of Ty.

Proof. If M; and M, are elementarily equivalent, we can embed them as elementary sub-
structures into a third model M; = T. Then Abs(M;) = Abs(M;) = Abs(M,), so certainly
Abs(M;) is isomorphic to Abs(M,).

Conversely, suppose Abs(M;) = Abs(M;). Then, as Abs(M;) is relatively algebraically
closed in M; and in My, it follows by Corollaries and that we can amalgamate M,
and M, over Abs(M;). Embedding the resulting compositum into a model of 7" and using
model completeness, we get My = M. O

Corollary 3.14. Suppose Ty # ACVF and T; is ACVF for ¢ > 1. Consider the expanded
theory where we add in symbols for every zero-definable Ty-definable function. (This makes
sense because if M = T, then M | Ly |= Ti, by Remark [3.4,) Then T has quantifier-

elimination.

15



Proof. After adding in these new symbols, a substructure is the same as a subfield K closed
under all T}-definable functions. As RCF and pCF have definable Skolem functions, this is
equivalent to K | £, being a model of 77, which is equivalent to K satisfying axiom Al, as

noted in Remark [3.4, Now apply Corollary to get substructure completeness, which is
the same thing as quantifier-elimination. m

This probably also holds if T; # ACVF for more than one i, though the extra functions
would become partial functions.

Without adding in extra symbols, quantifier elimination fails. But we still get quantifier-
elimination up to algebraic covers, in a certain sense.

Theorem 3.15. In T, every formula ¢(Z) is equivalent to one of the form

Jy : (P(y, @) = 0AY(y, 7)), (1)

where y is a singleton, V(y, ¥) is quantifier-free, and P(y, ) is a polynomial in Z[Z,y], monic
as a polynomaual in y.

Proof. Let ¥(Z) be the set of all formulas of the form (I). First we observe that X(Z) is

closed under disjunction, because

(Fy: Py, ) =0AY(y, 7)) vV 3y : Qy,7) = 0AY'(y, 7))
is equivalent to
Jy: Py, D)Q(y, T) = 0A " (y,T),

where ¢ (y, Z) is the quantifier-free formula

(P(y, %) = 0AY(y, 7)) V (Qy, T) = 0 A (y, 7)) .

Now given a formula ¢(Z), not quantifier-free, let ¥o(#) be the set of formulas in X(7)
which imply ¢(Z), i.e.,

Y0(Z)={o(@) e X(Z) | TFVZ: (o(Z) = ¢(Z))}.

Of couse Yo(Z) is closed under disjunction. It suffices to show that ¢(Z) implies a finite
disjunction of formulas in ¥ (Z), because then ¢(Z) implies and is implied by a formula in
Yo(X).

Suppose for the sake of contradiction that ¢(Z) does not imply a finite disjunction of
formulas in ¥o(Z). Then the partial type

{o(2)} U{~a(7) : o(Z) € Xo(7)}

is consistent with T'. Let M be a model of T" containing a tuple & realizing this partial type.
So ¢(a) holds in M, but not because of any formula of the form ().

Let R be the ring Z[d@] C M. Let K C M be the smallest perfect field containing R;
note that M itself is perfect so this makes sense. Indeed, if every T; is ACVF, then M is
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algebraically closed by Remark [3.4, Otherwise, one of the T;’s is RCF or pCF, making M
be characteristic zero.

Let K be the relative algebraic closure of K (or equivalently, @) inside M. By Corollaries
and , the diagram of K implies the elementary diagram of K. In particular, the
diagram of K implies ¢(&). By compactness, the diagram of L implies ¢(@), for some finite
extension L of K. Because K is perfect, L = K(f) for some singleton . Multiplying § by
an appropriate element from R, we may assume that 3 is integral over R. Note that L is
perfect, because it is an algebraic extension of a perfect field, and in fact L is the smallest
perfect field containing @ and f.

As the diagram of L implies ¢(@), so does the diagram of Z[a, 3], by Lemma [3.16] below.
By compactness, there is some quantifier-free formula ¢ (y, ¥) which is true of (3, @) such
that

T Yy VZE:Y(y,T) = ¢(Z).

Let P(y,Z) be the polynomial witnessing integrality of 5 over R. Then clearly
TEVZ: (Jy: Py, ) =0A¢(y, 7)) — o),
so dy : P(y,Z) = 0 A ¢(y, Z) is in Xo(¥), contradicting the fact that it holds of @ in M. O

Lemma 3.16. Let M be a model of T and R be a subring of M. Let K C M be the
smallest perfect field containing R. Let a be a tuple from R, and ¢(x) be a formula such
that M = ¢(«v). If T and the diagram of K imply ¢(«), then T and the diagram of R imply
o(a).

Proof. 1f not, then there is a model N of T extending R, in which ¢(«) fails to hold. This
model N must not satisfy the diagram of K. Now N certainly contains a copy of the pure
field K, because the fraction field and perfect closure of a domain are unique. Consequently,
there must be at least two ways to extend the T-structure from R to K, one coming from M
and one coming from N. But this is absurd, because each valuation/ordering/p-valuation
on R extends uniquely to K, by quantifier elimination in the Tj. O

3.3 Simplifying the axioms down to curves

Lemma 3.17. Let K be an Xy -saturated and Ni-strongly homogeneous model of Ty satisfying
azioms Al and A2(1). Let M be a monster model of T' extending K. Let S be a countable
subset of K and « be a countable tuple from 9. Then tp(a/S) is realized in K.

Proof. Consider the following statements:

o Aj: if a is a finite tuple from 9, with tr. deg(«/S) < k, then qftp(a/.S) is realized in
K.

e By: if a is a countable tuple from 9, with tr. deg(a/S) < k, then qftp(a/S) is realized
in K.
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o () if v is a countable tuple from 9, with tr.deg(a/S) < k, then tp(a/S) is realized
in K.

There are several implications between these statements:
e For each k, Ay implies By, by compactness.

e For each k, By implies Cy. Indeed, if « is as in Cy, apply By to o' := acl(aS) and use
Corollary

e () for all k£ implies the statement of the Lemma, by compactness.

Finally, observe that C} and C; imply Cj4;: if o has transcendence degree & + j over
S, let 8 be a subtuple of a with transcendence degree k. Then tr.deg(8/S) < k and
tr.deg(a/BS) < j. By Cj, we can apply an automorphism over S to move J inside K. By
C; applied to tp(a/BS), we can then find a further automorphism moving « inside K.
Lemma [3.2| and N;-saturation of K imply A;. By the above comments, this implies Cf,
which in turn implies C1441,C5,Cy, . ... By compactness, the Lemma is true. O

Theorem 3.18. A field K = T is existentially closed, i.e., a model of T, if and only if it
satisfies A1 and A2(1).

Proof. 1f K is existentially closed, then certainly K satisfies Al and A2(1). Conversely,
suppose K satisfies A1 and A2(1). Let K’ be an Nj-saturated W;-strongly homogeneous
elementary extension of K. As K = K, it suffices to show that K’ = T. Let 9 be a
monster model of T', extending K’. It suffices to show that K’ < 91. It suffices to show that
if D is a non-empty K’-definable subset of 91, then D intersects K’. Let S be a finite subset
of K’ that D is defined over, and let o be a point in D. By Lemma [3.17, tp(a/S) is realized
in K’. Such a realization must live in D. O]

Consequently, in checking the axioms one only needs to consider curves. In fact, one only
needs to consider smooth curves, by Remark [3.5]

4 A Special Case

In the case where almost every T; is ACVF, the axioms can be drastically simplified.

Theorem 4.1. Suppose Ty, ... T, are all ACVF. A model K = T is existentially closed
(i.e., a model of T') if and only if the following three conditions hold:

o KL }: Ty
e Fach valuation ve, . .., v, 1S non-trivial.

e T, and T; do not induce the same topology on K, for i # j.
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For example, if we are considering the theory of ordered valued fields, this says that
a model is existentially closed if and only if the field is real closed, the valuation is non-
trivial, and the ordering and valuation induce different topologies on K. A field with n
valuations is existentially closed if and only if it is algebraically closed and the valuations
induce distinct non-discrete topologies on the field. Using this, we can easily see that Q9
with n distinct valuations is an existentially closed field with n valuations. This surprised
me, since I expected the Rumely Local-Global principle (Theorem 1 of [18]) to be necessary
in the proof.

Theorem is not model theoretic, and is presumably known to experts in algebraic
geometry or field theory.

In the proof of Theorem [4.1} we will use A. L. Stone’s Approximation Theorem ([19],
Theorem 3.4):

Fact 4.2. Let K be a field. Let ty,...,t, be topologies on K arising from orderings and
non-trivial valuations. Suppose that t; # t; for i # j. Then the {t;} are independent, i.e., if
U; is a non-empty t;-open subset of K for each i, then (\;_, U; is non-empty. Equivalently,
the diagonal map K — [, K has dense image with respect to the product topology, using
the topology t; for the i™" term in the product.

Note that Fact 4.2]does not contradict the existence of valuations which refine each other,
because two non-trivial valuations which refine each other always induce the same topology.
A self-contained model-theoretic proof of Stone Approximation is given in [I7], Theorem 4.1.

Also, we will need the following straightforward lemma.

Lemma 4.3. Let K be a model of T'. Let C' be an affine smooth curve over K, geometrically
irreducible. Let C be the canonical smooth projective model (as an abstract variety). For each
i, let ¢;(x) be a C-dense quantifier-free L;-formula with parameters from K. Then we can
find a K -definable rational function f : C — P! which is non-constant, and has the property
that the divisor f~1(0) is a sum of distinct points in (;_, ¢;(K), with no multipliticities. (In
particular, the support of the divisor contains no points from C(K%)\ C(K) and no points
from C\ C.)

Proof. Let g be the genus of C.
Claim 4.4. We can find g + 1 distinct points pi,...,py+1 in (i, ¢:(K) C C(K).

Proof. By Axiom A2, there is some p; € (), ¢;(K). Replace each ¢;(x) with ¢;(xz) Az # py
and repeat. This gives p, € (i, ¢:(K) with py # p;. Repeat g — 1 more times. Octaim

Now let D be the divisor } _; p; on the curve C. By Riemann-Roch, [(D) > deg D+1—g =

2. The space of global sections of O(D) is a K —deﬁnableﬂ vector space of dimension at least
2. By Hilbert’s Theorem 90, this vector space has a K-definable basis (see Remark [2.13]).

f M is a monster model of ACF and M extends K, then the space of global sections T'(C,O(D))
is M-definable and Aut(M/K)-invariant, hence K-definable. This can be made precise by choosing some
Aut(M/K)-invariant coding of rational functions on C' by tuples in M.
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Thinking of the sections of O(D) as functions with poles no worse than D, we can find a
non-constant K-definable meromorphic function h, with (k) — D > 0. Then the divisor of
poles of h is a subset of D, so every pole of h has multiplicity 1 and is in (;_, ¢;(K). Take
f=1/h. O

Proof (of Theorem . If K =T, then K satisfies Axioms Al and A2. Axiom Al implies
that K is algebraically closed or real closed or p-adically closed (Remark . As K is
existentially closed, it is also reasonably clear that all the named valuations must be non-
trivial. Consequently K | £ = T} and vs,...,v, are non-trivial. Lastly, suppose T; and
T; induce the same topology on K for some i. For notational simplicity assume 7 = 1 and
j = 2. As the topologies are Hausdorff, we can find non-empty U; and Uy with Uy a Tj-open,
U, a Tsr-open, and U; N Uy = (). Since the topologies from T} and T have a basis of open
sets consisting of quantifier-free definable sets, we can shrink U; and U, a little, and assume
U, is quantifier-free definable in £; and U, is quantifier-free definable in £5. Now U; and Us
are both Zariski dense in the affine line, so the formulas defining U; and U, are A'-dense.
Hence, by Axiom A2, U; must intersect Us,, a contradiction.

The other direction of the theorem is harder. We proceed by induction on n, the number
of orderings and valuations. The base case where n = 1 is easy/trivial, so suppose n > 1.
Suppose K satisfies the assumptions of the Theorem. By Fact [4.2 we know that the n
different topologies on K' are independent. The first bullet point ensures that K satisfies
axiom Al. By Theorem m, it suffices to prove axiom A2(1). By Remark we merely
need to prove the following:

Let C' be a geometrically irreducible smooth affine curve defined over K. Let
¢1(z) be a quantifier-free £,-formula with parameters from K such that ¢;(K)
is a non-empty open subset of C. For 2 < i < n, let ¢;(x) be a quantifier-free
L;-formula with parameters from K such that ¢;(x) defines a non-empty open
subset of C'(K%9) with respect to any/every extension of the ith valuation v
from K to K. THEN (_, ¢;(K) is non-empty.

Here we are using the facts that K | £ is already a model of T}, and that for « > 1, the
field K9 with any extension of v; will be a model of T; = ACVF.

For 1 < i < n, choose some extension v of the valuation v; to K. The valuations
vh, ..., v are independent on K.

Claim 4.5. K is dense in K9 with respect to the v-adic topology on K.

Proof. The claim is trivial if all the T; are ACVF, in which case K = K9, So we may assume
characteristic zero. It suffices to show that K is dense in every finite Galois extension of K F|
Let L/K be a finite Galois extension. We can write L as K(() for some singleton (. Let
P(X) € K[X] be the minimal polynomial of ¢ over K. The function z — P(x) from K to K
is finite-to-one, so it has infinite image. As K is a model of ACVF, pCF, or RCF, we see by

ZNote that the value group v/(K) is cofinal in v}(K%9), so e.g. the v;-adic topology on K is the restriction
of the v/-adic topology on K9 to K. Various pathologies are thus avoided.
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Fact that the image P(K) of this map contains an open subset of K with respect to the
Ti-topology. Because the v;-adic topology on K is independent from the Ti-topology on K,
we can find elements of P(K) of arbitrarily high v;-valuation. By the cofinality of the value
groups, for every v € v}(K%), we can find an x € K with v;(P(z)) > 7. Let (1,...,(n € L
be the conjugates of ¢ over K. Then we have just seen that for any v € vi(K9), we can
find an x € K with

7<) = Y vlla =)

This implies that at least one of the (;’s is in the topological closure of K with respect to
vi. Consequently, the vi-topological closure of K in L must contain K[(;] for some i. But
K[(;| = L, so K is v/-dense in L. Octaim

Now suppose we are given a geometrically irreducible smooth affine curve C' defined over
K, and we have quantifier-free £;-formulas ¢;(z) with parameters from K, such that ¢;(K)
is a non-empty open subset of C(K), and for 1 < i < n, ¢;(K%) is a non-empty v}-open
subset of C'(K9). (Here we are interpreting ¢;(K9) using v/.) By the inductive hypothesis,
K | U<, Li is an existentially closed model of J;_,,(T;)v. Applying Lemma [£.3]to it, we can
find a K-definable rational function f : C' — P!, whose divisor of zeros has no multiplicities
and consists entirely of points in (1),_, ¢:(K) (and no points at infinity and no points in
C(K®9)\ O(K)). Write this divisor as > i1 (P;), where the P; are m distinct points in
i<y, @i(K). Note that m is the degree of f.

Claim 4.6. There is a T}-open neighborhood U C K of zero such that for every y € U, the

divisor f~1(y) consists of m distinct points in ¢;(K). In particular, it contains no points in
C(K%)\ C(K) and no points in C \ C.

Proof. Because the P; are distinct, they have multiplicity one, so f does not have a critical
point at any of the P;’s. Consequently, by the implicit function theorem there is a Tj-open
neighborhood W; C C(K) of P; such that f induces a Tj-homeomorphism from W; to an
open neighborhood of 0. By shrinking W; if necessary, we may assume that W, C ¢;(K),
and that W; N Wy = for j # j'. Now let U = (N}, f(W;). This is an open neighborhood
of 0 in the affine line K'. And if y € U, then f~'(y) contains at least one point in each Wj.

Since the W; are disjoint, these points are distinct. Since f is a degree-m map, this exhausts
the divisor f~1(y). Uectaim

Claim 4.7. For 1 < i < n, there is a 7; € v;(K) such that if y € K% and v.(y) > ;, then
f~Yy) are all in ¢;(K9).

Proof. Use the same argument as Claim [4.6] Uctaim

By Claim , K is dense in K% with respect to the v/ -adic topology. Also, by assump-
tion, ¢, () interpreted in (K9 v) yields a non-empty v/,-open subset W C C(K9). Since
f is finite-to-one, the image f(W) is an infinite subset of P}(K®9), hence it has non-empty
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v/ -interior. Let V be a v/,-open subset of P!(K®9) contained in f(W). Now, as K is v/ -
adically dense in K%, V must intersect K. In particular, V N K is a non-empty v,-adic
open subset of K. By independence of the topologies, we can find a y in A'(K) such that

e y is in U, the Tj-open neighborhood of 0 from Claim [4.6]
e v;(y) >, for 1 <i < n, where the ~; are from Claim
e yisin VNK.

Having chosen such a y, we know by Claim that f~!(y) consists of m distinct points in
¢1(K). In particular, each point in f~!(y) is a point of C'(K). And by Claim , each of
these points also belongs to ¢;(K%9), hence satisfies ¢;(—), for i < n. Finally, because ¥ is
in VN K, yis in the image of ¢,,(K%9) under f. So there is some z € ¢,(K%9) mapping
to y. But we said that every point in C'(K9) mapping to y is already in C'(K) and even in
Nicp, @i(K). Thus

7 € 6u(K™) 0 [ 6i(K) = [ 6i(K).

<n

In particular some point in C'(K) satisfies A\!_, ¢;(x), and the theorem is proven. O

5 Keisler Measures

To establish NTP, and analyze forking and dividing in 7', we need the following tool.

Theorem 5.1. Let T be one of the model companions from 5@ For each K |= Ty that
is a perfect field, each formula ¢(x) and each tuple a from K, we can assign a number
P(¢(a), K) € [0,1] such that the following conditions hold:

o [f K is held fized, the function P(—, K) is a Keisler measure on the space of completions
of the quantifier-free type of K. Thus

P(¢(a), K) + P(p(b), K) = P(¢(a) A(b), K) + P(d(a) V ¥ (b), K)
P(=¢(a), K) = 1 = P(¢(a), K)

for sentences ¢(a) and (b) over K. And if ¢(a) holds in every model of T extending
K, then P(¢(a), K) = 1. For example, if ¢(x) is quantifier-free, then P(¢(a), K) is 1
or 0 according to whether or not K |= ¢(a). And if K satisfies axiom Al of then
P(¢(a),K) € {0,1} for every ¢(a), by Corollary[3.11]

e [somorphism invariance: if K, L are two perfect fields satisfying Ty, and f : K — L is
an isomorphism of structures, then P(¢(a), K) = P(¢(f(a)), L) for every K-sentence

¢(a).
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e Lrtension invariance: if Ko C K are perfect fields satisfying Ty, and K, is rela-
tively algebraically closed in K, and ¢(a) is a formula with parameters from Ky, then

P<¢(a)’KO) = P(¢<a)7K)

e Density: if K |= Ty is a perfect field and ¢(a) is a K-formula, and if M = ¢(a) for
at least one M = T extending K, then P(¢(a),K) > 0. In other words, the associ-
ated Keisler measure is spread out throughout the entire Stone space of completions of

aftp(K).

5.1 The Algebraically Closed Case

We first prove Theorem in the case where every T; is a model of ACVF, i.e., the case of
existentially closed fields with n valuations. Define P(¢(a), K) as follows. Fix some algebraic
closure K% of K. For each 1 < i < n, let v; be an extension to K alg of the it valuation
v; on K. Choose automorphisms oy, ..., 0, € Gal(K%/K) randomly with respect to Haar
measure on Gal(K*/K). Then

N al / / /
o = (K% v ooy,v5009,...,0 00,)

-----

.....

Define P(¢(a), K) to be the probability that ¢(a) holds in any/every model of T" extending
K, . .- This probability exists, i.e., the relevant event is measurable, because whether or
not ¢(a) holds is determined by the behavior of the valuations on some finite Galois extension
L/K, by virtue of Theorem [3.15|

Note that the choice of the v; does not matter. If v is a valuation on K and w; and wsy
are two extensions of v to K, then there is a 7 in Gal(K®9/K) such that w; = wy o 7.
Thus, if o is a randomly chosen element of Gal(K%9/K), then w; o o and w; o o have the
same distribution. Consequently the choice of the valuations v does not effect the resulting
value of P(¢(a), K).

So we have a well-defined number P(¢(a), K), and it is defined canonically. The first two
bullet points of Theorem are therefore clear. The density part can be seen as follows:
suppose M |= ¢(a) for some M |= T extending K. Let K% be the algebraic closure of K
in M. For the v/’s, take the restrictions of the valuations on M to K. By Theorem m,
there is a field K < L < K% with L/K a finite Galois extension, such that ¢(a) is implied
by T and the diagram of L. Specifically, write ¢(a) as Jy : Q(y;a) = 0 AY(y;a), and let L
be the splitting field of the polynomial Q(X;a) € K[X]|. Now with probability 1/[L : K],
every o; will restrict to the identity on L. Consequently, K,, 5. will be a model of T§
extending L, so in any model M of T" extending K,
probability at least 1/[L : K|, and consequently P(¢(a), K) > 1/[L : K|".

It remains to verify the extension invariance part of Theorem [5.1 Let Ky < K be
an inclusion of perfect fields, with Ky relatively algebraically closed in K. Let ¢(a) be
a formula with parameters a from Kj,. As in the previous paragraph, write ¢(a) as Jy :
Q(y;a) = 0 AY(y;a) and let Ly be the splitting field of Q(y;a) over K,. At present L is
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nothing but a pure field. Write Ly = Ky(8) for some singleton 8 € Ly, and let Q(X) be
the irreducible polynomial of g over Ky. Let L = LoK = K([); this is a Galois extension
of K. There are only finitely many ways of factoring Q(X) in K%, so in each way of
factoring Q(X), the coefficients come from K. In particular, if Q(X) can be factored
over K, the coefficients would belong to K N K = Ky. So Q(X) is still irreducible over
K. Consequently [L : K| = deg Q(X) = [Lo : Ko|. Now there is a natural restriction map
Gal(L/K) — Gal(Lo/Kj). It is injective because an element of Gal(K (8)/K) is determined
by what it does to 5. Since Gal(L/K) has the same size as Gal(Ly/Kj), the restriction
map must be an isomorphism. Consequently, if 7 is chosen from Gal(L/K) randomly, its
restriction to Ly is a random element of Gal(Ly/Ky). Consequently, if o is a random element
of Gal(K™ /) and oy is a random element of Gal(K§"/Ky), then o | Ly and g | Lo have
the same distribution, namely, the uniform distribution on Gal(Lo/Ky). From this, it follows
easily that P(¢(a), K) = P(¢(a), Ko).

This completes the proof of Theorem when every T; is ACVF. The other cases are
more complicated, though as a consolation all fields are characteristic zero, hence perfect.

A first attempt at defining P(¢(a), K) is as follows: fix some algebraic closure K9 of
K. For each i such that T; is RCF, let K; be a real closure of (K, <;) inside K. For
each i such that T; is pCF, let K; be a p-adic closure of (K,v;) inside K%9. For each i
such that T; is ACVF, let K; be K9 with some valuation extending v;. In each case, there
is a choice, but any two choices are related by an element of Gal(K%9/K). Now choose
o1,...,0, € Gal(K%/K) randomly. For each i, consider o;(K;), which is (usually) a model
of T; extending K. Let K’ be the field

K/ = ﬁ 01<Kz>
i=1

There is an obvious way to give K’ the structure of a Ty-model. If we knew that K’ satisfies
condition Al of with high probability, we could define P(¢(a), K) to be the probability
that ¢(a) holds in any/every model of T' extending K’. Unfortunately, K’ usually satisfies
condition Al with probability zero. Instead, we will proceed by repeating the above proce-
dure with K’ in place of K, getting a third field K”. Iterating this, we get an increasing
sequence K C K' C K" C ... C K™ C ... of Ty-structures on subfields of K*. The union
K>* ="K (") does actually turn out to satisfy axiom A1l with probability 1, and we let
P(¢(a), K) be the probability that ¢(a) holds in any/every model of T extending K°°.

The rest of this section will make this construction more precise, and verify that it satisfies
the requirements of Theorem

5.2 The General Case

All fields will be perfect, unless stated otherwise. All models of Ty and (T;)y will be (perfect)
fields, unless stated otherwise. Galois extensions need not be finite Galois extensions.
We start off with some easy but confusing facts that will be needed later.
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Lemma 5.2. Let L/K be a Galois extension of fields, and suppose K has the structure of a
(T;)y model (but L does not). The following are equivalent

(a) For every F, if F is a model of (T;)y extending K, and F is a subfield of L, then F = K.
(b) There is a model M |=T; extending K, such that M N L = K.

(c) For every model M |=T; extending K, MNL =K.
Note that it makes sense to talk about whether M N L = K, because L/ K is Galois.

Proof. The equivalence of (b) and (c) follows from quantifier elimination in 7;. Indeed, the
statement that M N L = K is equivalent to the statement that for each x € L\ K, the
irreducible polynomial of z over K has no zeros in M. This is a conjunction of first order
statements about K, so it holds in one choice of M if and only if it holds in another choice
of M.

Suppose (a) holds. Let M be a model of T; extending K. Taking F' = M N L, (a) implies
that M N L = K. So (a) implies (c).

Conversely, suppose (a) does not hold. Let F' witness a contradiction to (a), so K C F C
L, and F is a model of (T})y extending K. Let M be a model of T; extending F' and hence
K. Then M N L contains F', contradicting (c). O

Definition 5.3. Say that K is locally T;-closed in L if it satisfies the equivalent conditions
of the previous lemma.

Definition 5.4. Let L/K be a Galois extension of fields, and suppose K has the structure

of a (T;)y-model (but L does not). Let €;(L/K) denote the set of models of (7})y which
extend K, are subfields of L, and are locally Tj-closed in L.

The subscript on €; is present so that €;(L/K) will be unambiguous when K is a model
of Ty, in addition to being a model of (7;)y.
There is a natural action of Gal(L/K) on €;(L/K).

Lemma 5.5. Suppose L/K is a Galois extension of fields, and K |= (T;)y.
(a) The action of Gal(L/K) on €;(L/K) has exactly one orbit.

(b) Suppose K' is a model of (T;)y extending K, and L' is a field extension of L and K’,
with L' Galois over K'. If F € €(L'/K'), then FNL € &(L/LNK").

Proof. (a) Note that €;(L/K) is non-empty by a Zorn’s lemma argument and condition (a)
of Lemma [5.2l Now suppose F and F’ are two elements of ¢;(L/K). By quantifier
elimination in 7T}, we can amalgamate F' and F’ over K. Thus, we can find a model
M = T extending F, and an embedding ¢ : F' — M which is the identity on K.
Choosing some way of amalgamating M and L as fields, we get that «(F') C L D F,
because of L/K being Galois. The compositum ¢(F”)F is a subfield of L with a (7})y-
structure extending that on F and «(F”), so by local T;-closedness of ¢(F’) and F
in L, «(F') = «(F")F = F. It follows that F’ and F are isomorphic over K. This
isomorphism must extend to an automorphism of L, because L/K is Galois. So some
automorphism on L/K maps F’ to F' (as (T;)y-structures).
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(b) Let M be a model of T; extending F'. Choose some way of amalgamating M with L'.
Then M NL = F by (c) of Lemmal[5.2] Therefore, MNL=MNL'NL=FNL. So by
(b) of Lemma[5.2] F N L is locally Tj-closed in L. Therefore it is in &;(L/LNK’). O

Now we turn our attention from 7T; to T

Definition 5.6. Let K |= Ty and let L be a pure field that is a Galois extension of K. Let
S(L/K) be the set of all K" = Ty extending K, with K’ a subfield of L. In other words, an
element of 6(L/K) is a subfield F' of L, endowed with a Ty-structure, such that F' O K and
the structure on F' extends the structure on K.

There is a natural partial order on &(L/K) coming from inclusion of substructures.
There is also a natural action of Gal(L/K) on &(L/K). One should think of §(L/K) as
the set of states in a Markov chain, specifically the random process described at the end of
the previous section.

Definition 5.7. Suppose K |= Ty and L/ K is a Galois extension of K. For 1 < ¢ < n, choose
some L; € €(L/K). Choose oy,...,0, € Gal(L/K) independently and randomly, using
Haar measure on Gal(L/K). Let I be (;_, 0;(L;), with the obvious choice of a T} structure.
So F' is a random variable with values in &(L/K). Let u} /i be the probability distribution
on 6(L/K) obtained in this way. The choice of the L;’s is irrelevant, by Lemma [5.5(a).

The superscript 1 is to indicate that this is the first step of the Markov chain.

Lemma 5.8. Suppose L/K is finite. Then every event (subset of S(L/K)) which has
positive probability with respect to ui/K has probability at least 1/m™, where m = [L : K].

Proof. The only randomness comes from the o;’s. Each element of Gal(L/K) has an equal
probability under Haar measure, and this probability is 1/m. Since the o;’s are chosen
independently, each choice of the o;’s has probability 1/m" of occurring. O

Lemma 5.9. Suppose L/K is finite, and F is a mazimal element of &(L/K). Then
Mi/K<{F}) > 0.

Proof. For each i, let M; be a model of T; extending F' | L;, and choose some way of
amalgamating M; and L as fields over F. Let F; = LN M;. Of course F; O F. By
Lemma [5.2(b), F; € €(L/K). Let F' = (", F;. Then F' € &(L/K) and F’ extends
F,so FF =F / by maximality of F. Now if we choose o1,...,0, € Gal(L/K) randomly,
then (L, 0;i(F5) is distributed according to jij ;. Since L/K is finite, there is a positive
probability that o; = 1 for every 4, in which case (), 0;(F;) = F' = F. O

Lemma 5.10. Let L/K be a Galois extension, and K be a model of Ty. Let K' be a
model of Ty extending K. Let L' be a field extending L and K', with L' Galois over K'. If
F € 6(L'/K') is distributed randomly according to ,ulL,/K,, then FNL is distributed randomly

according to juy, jger-
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Proof. For 1 <i < n, choose some F; € €;(L'/K’). By Lemma[5.5(b), F;N Lisin &;(L/LN
K').

Claim 5.11. If we choose ¢ from Gal(L’'/K’) randomly using Haar measure, then o [ L is
also randomly distributed in Gal(L/L N K’) with respect to Haar measure.

Proof. 1f II denotes the image of the restriction homomorphism Gal(L'/K') — Gal(L/L N
K'), then the fixed field of II is clearly L Ndcl(K’) = L N K’ (all fields are perfect). By
Galois theory, IT = Gal(L/L N K'), and the restriction homomorphism is surjective. Octaim

From the Claim, we conclude that if the o; are distributed randomly from Gal(L'/K"),
then o; | L are distributed randomly from Gal(L/L N K’). Taking F' = (., 0;(F;), we get
F' distributed according to u1, /i But

FﬂL:ﬁ(Ji ' L)(F,NL)

i=1

is then distributed according to fi ;. because F;N L € &(L/(K'N L)) and o; [ L is
distributed according to Haar measure on Gal(L/L N K'). O

Definition 5.12. Let L/K be a Galois extension, and K be a model of Ty. Define a series
of distributions {/LiL/K}i<w on 6(L/K) as follows:

® /1] i assigns probability 1 to {K} C &(L/K).
® i} is as above.

e For i > 0, if we choose F' € &(L/K) randomly according to p’ K and then choose
F' e 6(L/F) C 6(L/K) randomly according to ui/F, then F” is distributed according
to /ﬂ;/}(
In other words, we are running some kind of Markov chain whose states are the elements
of 6(L/K). The transition probabilities out of the state F are given by uj s and pip e s
the distribution of the Markov chain after n steps.

Lemma 5.13. Let L/K be a finite Galois extension, and K be a model of Ty. Then
lim; o0 ML/K exists, and the corresponding distribution on S(L/K) is concentrated on the

mazimal elements of S(L/K).

Proof. Our finite Markov chain is an absorbing Markov chain, so the limit distribution exists
and is concentrated on the set of absorbing states [13, Theorem 3.1.1]. By Lemma [5.9
the absorbing states are the maximal elements of G(L/K). Indeed, if F € &(L/K) is not
maximal, then p} /F is not concentrated on {F'} by Lemma , and so F'is not an absorbing
state. [l

We let 417 denote the limit distribution on &(L/K).
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Lemma 5.14. Let L/K be a finite Galois extension, and K be a model of Ty. Then every
mazximal element of &(L/K) has a positive probability with respect to e

Proof. This follows immediately from Lemma [5.9 and the fact that once the Markov chain
reaches a maximal element of G(L/K), it must remain there. O

Lemma 5.15. Let L/K be a Galois extension, with K a model of Ty. Let K' be a model
of Ty extending K. Let L' be a field extending K’ and L, Galois over K'. If F is a random
element of &(L'/K') distributed according to ML,/K,, then F'N L is distributed according to

K3
ML onK

Proof. We proceed by induction on i. For ¢ = 0, F' is guaranteed to be K’, and F N L is
guaranteed to be K’ N L, which agrees with p% JLAK-

For the inductive step, suppose we know the statement of the lemma for i, and prove
it for p*t. If we let Fy € &(L'/K') be chosen according to iy, s, and we then choose
E € 6(L'/Fy) C6(L'/ K ) according to puy, p, , then F is randomly distributed according to
MLT}K,, by definition of ™. Also, FyNL is distributed according to ', JLAK? by the inductive
hypothesis. By Lemma we know that £ N L is distributed according to uj JLAF- In
particular, the distribution ot F'N L only depends on FyN L. So if we want to sample FN L,
we can simply choose Fy N L using p’ JLAK? and can then choose F'N L using u} IR This
is the recipe for sampling the distribution ui;ﬁ(,m ;- S0 F'N L is indeed distributed according

i+1
L0 fp k- H
Corollary 5.16. When L/K and L'/K' are finite Galois extension, Lemmal[5.15 holds for

7 = OQ.

Definition 5.17. Let K = T, be a perfect field, ¢(a) be a formula in the language of T
with parameters a from K. Say that a finite Galois extension L/K determines the truth of
¢(a) if the following holds: whenever M and M’ are two models of T extending K, if M N L
is isomorphic as a model of Ty, to M’ N L, then [M | ¢(a)] <= [M’' | ¢(a)]. (Note that
the isomorphism class of M N L does not depend on how we choose to form the compositum
ML.)

For every formula ¢(a), there is some finite Galois extension L/K which determines the
truth of ¢(a). Namely, use Theorem to write ¢(a) in the form Jy : Q(y; a) = 0AY(y; a),
and take L to be the splitting field over K of Q(X;a) € K[X].

Lemma 5.18. Let K be a model of Ty, M be a model of T extending K, and let L/K be a
Galois extension of K. Assume M and L are embedded over K into some bigger field. Then
M N L is a mazimal element of S(L/K).

Proof. Suppose not. Let F' be an element of &(L/K), strictly bigger than M N L, and
finitely generated over M N L. Let x be a generator of F' over M N L. If S denotes the set
of algebraic conjugates of x over M, then the code for the finite set S is in M, and also in L
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because S C L. So the code for S is in M N L, implying that S is also the set of algebraic
conjugates of x over M N L. Since we are assuming that all fields are perfect, this implies
that the degree of x over M is the same as the degree of x over M N L. In particular, the
irreducible polynomial Q(X) of x over M N L remains irreducible over M. For 1 < i < n,
let M; be a model of T; extending M | L;. Let N; be a model of T; extending F' [ L£;. The
polynomial Q(X) has a zero in F', namely x. Hence it has a zero in N; 2O F. As M, and
N; are two models of T; extending M N L and Q(X) is defined over M N L, it follows from
quantifier-elimination in 7; that Q(X) also has a zero in M;.

Now we have a polynomial Q(X) of degree > 1, irreducible over M, such that Q(X) has
a root in M; for every i. This contradicts condition A1’ of §3.1] O

Definition 5.19. Let L/K be a Galois extension, with K a model of Ty. Let §(L/K) be
the set of maximal elements of &G(L/K).

By Zorn’s lemma, it is clear that every element of &(L/K) is bounded above by an
element of §(L/K), even if L/K is infinite. When L/K is a finite extension, 477 induces
a probability distribution on §(L/K).

Remark 5.20. §(L/K) is exactly the set of F' of the form LN M, where M is a model of T
extending K. One inclusion is Lemma[5.18] The other inclusion is obvious: if F' is a maximal
element of G(L/K), then letting M be a model of T extending F', and combining M and L
into a bigger field in any way we like, we have FF C M N L € &(L/K), so maximality of F
forces M NL = F.

Suppose that L/K determines the truth of ¢(a). Then by Remark [5.20] there must
be a uniquely determined map fy,r from F(L/K) to {L, T} such that for every M = T
extending K, and every way of forming the compositum M L, the truth of M = ¢(a) is given
by f¢(a)7L(M NL).

Another corollary of Remark [5.20]is that if K < L < L/, with L’ and L Galois extensions
of K =Ty, and if F € §(L'/K), then FF = M N L' for some model M, and hence FN L =
MAL'NL=MnNLisin (L/K).

Finally, we define P(¢(a), K) to be uf ({F": foa),(F) = T}).

Lemma 5.21. The choice of L does not matter.

Proof. If L and L’ are two finite Galois extensions of K which determine the truth of ¢(a),
then so does their compositum LL'. So we may assume L' C L. Let r: §(L/K) — §(L'/K)
be the restriction map, F +— FN L.

Claim 5.22. f¢(a),L = f(i)(a),L’ or.

Proof. For F' € §(L/K), we will show fy(a),0.(F) = fo(a),/(r(F)). Write F' as M N L, with M
a model of T" extending F'. Then fya),(M NL) = foa),.(F) is the truth value of M = ¢(a).
But M N L' = FN L, so by definition of fy r/, we also know that fyq), (M NL) =
foa),rr(r(F)) is the truth value of M = ¢(a), which is the same thing. So fy),/(r(F)) =

f¢>(a),L<F)- |:|Claim
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By Corollary applied in the K = K’ case, if F' is a random element of §(L/K) chosen
according to ug ., then r(F) = F N L' is distributed according to g7 .. In particular, the
probability of fya),r(F) or equivalently of fy)r/(r(F)) is the same as the probability of
fota),(F'), with F" chosen directly from pf . But the former probability is P(¢(a), K)
computed using L, while the latter is P(¢(a), K) computed using L' ]

So P(¢(a), K) is at least a well-defined number. The “isomorphism invariance” part
of Theorem [5.1] is clear from the definitions. We need to prove the other conditions of
Theorem (.11

Lemma 5.23. For any fived K, the function P(—, K) is a Keisler measure on the space of
completions of the quantifier-free type of K.

Proof. 1t suffices to prove the following:

e If ¢(a) and ¢(b) are forced to be logically equivalent by 7" and the diagram of K, then
P(¢(a), K) = P(y(b), K). This is easy/trivial, because if we choose a finite Galois
extension L determining the truth of both ¢(a) and 1(b), we see that fya),L = few).L
by unwinding the definitions.

e P(¢(a),K) =1— P(—¢(a), K), which follows similarly, though it uses the fact that
1775 is concentrated on §(L/K).

o If ¢(a) A ¢(b) contradicts T' U diag(K), then P(¢(a) V ¢(b), K) = P(¢(a), K) +
P((b), K). Again, this is not difficult: if L is a field determining the truth of both
¢(a) and 1 (b), then it is clear that

fota),o N fyw). = fo@npe)L =L

fot@,L V fow),L = fo@vum),L-

Consequently, {F': fo@)vue),.(F) = T} is a disjoint union of {F : fyq),L(F) = T} and
{F: fow),.(F) = T}, so we reduce to the fact that ;> is a probability distribution.

e 0 < P(¢(a), K) <1, which is clear from the definition. O

Lemma 5.24. If K C K’ are models of Ty and K is relatively algebraically closed in K,
and ¢(a) is a formula with parameters from K, then P(¢(a), K) = P(¢(a), K').

(This is the “extension invariance” part of Theorem [5.1])

Proof. Let L be a finite Galois extension of K determining the truth of ¢(a). Let L’ be a
finite Galois extension of K’ determining the truth of ¢(a); we may assume L’ O L. (In fact,
we can take L' = LK'.) Because K is relatively algebraically closed in K', LN K' = K.
So by Corollary if I' € §(L'/K’) is distributed according to pgs e, then F'N L is
distributed according to 47 . Using Lemma [5.14] this implies that F'N L € §(L/K) for
any F' € §(L'/K'). Let r : §(L'/K') — §(L/K) be the map F — F N L. By unwinding the
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definitions (as in the claim in the proof of Lemma, one sees that fy),0//k" = fo(a),L/K0T-
As in the proof of Lemma [5.21] we see that for F” chosen randomly from §(L'/K’) and F
chosen randomly from §(L/K), the distribution of F' and r(F") is the same, and therefore
so too is the distribution of

Jotwr i (F') = foa).Liu (r(F"))
and
foa)o/x(F).
This ensures that P(¢(a), K) = P(¢(a), K'). O

Lemma 5.25. If K = T\, and ¢(a) is a K-formula which holds in some model of T extending
K, then P(¢(a), K) > 0.

(This is the “density” part of Theorem [5.1])

Proof. Let M be the model where ¢(a) holds. Let L be a finite Galois extension of K
determining the truth of ¢(a). Then LN M € §F(L/K) and fya) (LN M) = T. By

Lemma [5.14]) P(¢(a), K) > 0. O
We have verified each condition of Theorem which is now proven.

6 NTP, and the Independence Property

We show that the model companion T' (usually) fails to be NIP, but is always NTP,, the
next best possibility.

6.1 Failure of NIP

If n =1, then T = T; is one of ACVF, RCF, or pCF, which are all known to be NIP. On the
other hand,

Theorem 6.1. Suppose n > 1. Then T has the independence property.

Proof. We give a proof which works in characteristic # 2. It is not hard to modify it to work
in characteristic 2, replacing square roots with Artin-Schreier roots.

Claim 6.2. For each ¢, we can produce quantifier-free £;-formulas ¢;(z,y) and x;(y) without
parameters such that z,y are singletons, and such that if K; = T;, then x;(K;) is a non-
empty open set and for every b € y;(K;), both square roots of b are present in K;, and
exactly one of them satisfies ¢;(z, b).
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Proof. If T; is RCF, let x;(y) say that y > 0 and ¢;(z,y) say that =z > 0. If T; is ACVF, let
Xi(y) say that v(y—1/4) > 0, and ¢;(z, y) say that v(z—1/2) > 0. Note that if v(y—1/4) > 0
and 2% =y, then t = x — 1/2 satisfies

+t+1/d—y=(+1/2>—y=0.

By Newton polygons, one of the possibilities for ¢ has valuation zero, and the other has
valuation v(y — 1/4) > 0. If T; is pCF, the same formulas work as in the case of ACVF.
The only thing to check is that if v(y — 1/4) > 0 for some y € K | pCF, then the two
roots of 7% + T + (1/4 — y) = 0 are present in K. If not, then since the two roots have
different valuations (in an ambient model of ACVF), there are two different ways to extend
the valuation from K to K[T|/(T? + T + (1/4 — y)), contradicting Henselianity of K.  Ocaim

Given the ¢; and x; from the Claim, let x(y) = A/, xi(v). Note that x(y) defines an
infinite subset of any model of T, by condition A2 of §3.1 (Each x;(—) is Al-dense.) If
K =T and b € x(K), then X? — b has roots in K by choice of y;(—) and condition A1’ of
So each element of x(K) is a square.

Let 1(y) assert that x(y) holds and there is a square root of y which satisfies exactly one
of ¢ and ¢o. Note that if x(b) holds, then both square roots of b are present in K, exactly
one of them satisfies ¢, and exactly one of them satisfies ¢,. Letting, ® denote exclusive-or,
we can write 1 (y) as ¢1(y/y) ® ¢2(y/y), where the choice of ,/y is unimportant.

Let K be a model of T. We will show that ¢)(z + y) has the independence property in
K. Let ay,...,a, be any m elements in x(K'), which as we noted above is an infinite set.
We will show that for any subset Sop C {1,...,m}, there is a b in K such that j € Sy <
K |=¢(b+ a;). It suffices to find such a b in an elementary extension of K, rather than K
itself. Let K’ = K be an elementary extension containing an element € which is infinitesimal
compared to K, with respect to every one of the valuations. That is, for each ¢ such that T; is
valuative, we want v;(e) > v;(K), and for each ¢ such that 7; is RCF, we want —«a <; € <; «
for every a >; 0 in K. The fact that such an € exists follows by our axiom A2, and can be
shown directly.

Note that for 1 < j < m, a; + € € x(K’). (Indeed, for every i, K’ = x;(a; + €),
because x;(—) defines an open set in a model of T}, and e is infinitesimal with respect to
the prime model of T; over K | L£;.) Consequently, \/a; +€ € K’ for every 1 < j < m.
Let L be K(y/a;+€:1 < j <m) C K’, as a model of 7Ty,. Since € is transcendental
over K, Gal(L/K (¢)) = (Z/2Z)™. In particular, for every S C {1,...,m}, there is a field
automorphism og € Gal(L/K (€)) which swaps the square roots of a; + € if and only if j € S.
Let Lg be the Ty-model with underlying field L, with the same L;-structure as L for ¢ > 1,
and with the L£;-structure obtained by pulling back the L;-structure of L along og. If A
denotes symmetric difference of sets, then

{7:Ls E ga(a;+€)} ={j: L E d(\/a; +¢€)}
{iiLsEn(yVa+e}={j:LE¢(os(y/a;+¢€)}
={i:LEa(/a+e}AS

_|_
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where the last equality holds because L = ¢1(y/a; +€) <= —¢1(—+/a; T €). Now let Kg
be a model of T" extending Lg. Since Lg is a model of Ty extending K, Kg = K. Also,

i :KsEvlaj+e)} =1{j: Ls F ¢r1(\/a; +€)}A{j : Ls = ¢2(\/a; + €)}
={j: L ¢i(\Ja; +€)}A{j : L = d2(\/a; +€)}AS
={j: K' EvY(a; +€)}AS

Therefore, by choosing S =Sy A {j : K’ |=(a; + €)}, we can arrange that

{7 Ks E¢(a; +€)} = So,

ie., Kg = ¢(a; + €) if and only if j € Sp. Taking b to be € € Kg, this completes the
proof. ]

Because T' has the independence property and clearly has the strict order property, the
best classification-theoretic property we could hope for T to have is NTPs.

6.2 NTP, holds

First we make some elementary remarks about relative algebraic closures.

Lemma 6.3. Let M be a pure field. Let K be a subfield of M which is relatively separably
closed in M (in the sense of Definition . Let a and b be two tuples from M such that

aJ//;CF b, i.e., a and b are algebraically independent from each other over K. Then K(a) is
relatively separably closed in K(a,b).

Proof. Embed M into a monster model M = ACF. By the remarks after Definition 2.6}
tp(a/K) and tp(b/K) are stationary. Since a . b, the type of b over acl(K(a)) is K-
definable. Now suppose that some singleton ¢ € K (a,b) is algebraic over K(a). Write ¢ as
f(a,b), for some rational function f(X,Y) € K(X,Y). Note that stp(b/K(a)) includes the
statement f(a,z) = c¢. On the other hand, it does not include f(a,z) = ¢ for any conjugate
' # cof c over K(a). As stp(b/K(a)) is definable over K, ac and ac’ cannot have the same
type over K. But if ¢ and ¢ are conjugate over K (a), then ac and ac’ have the same type.
So ¢ does not exist, and ¢ has no other conjugates over K(a). Thus ¢ € dcl(K(a)). So
" € K(a) for some k. As ¢ was an arbitrary element of K (a,b) N K (a)™, we see that K (a)
is relatively separably closed in K(a,b). O

Lemma 6.4. Let M be a pure field. Suppose K1 C Ky are two subfields of M, each relatively
separably closed in M. Let ¢ be a tuple from M, possibly infinite. Suppose that C\L?{?F K,
i.e., Ky and c are algebraically independent over K. Then Ki(c) is relatively separably

closed in Ky(c).

Proof. As in the previous lemma, embed M into a monster model 9t of ACF. Then ¢ | K Ko,

and by properties of forking, Ki(c) | x, 2. By the previous lemma, K (c) is relatively
separably closed in Ky K (c) = Ks(c). O
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Now we return to existentially closed fields with valuations and orderings. As always, T’
is the model companion.

Lemma 6.5. In a monster model of T, let B be a small set of parameters and ai,as,. ..
be a B-indiscernible sequence. Suppose that B = acl(B) and a; = acl(Ba;) for any/every
. Suppose also that a; L/;CF a<j for every j, i.e., the sequence is algebraically independent
over B. Let ¢ be a finite tuple and suppose that ay,as, ... is quantifier-free indiscernible over
cB, ie, if iy <o <y oand j1 < -+ < Jm, then

aftp(ai, ai, - - - a;,, /cB) = aftp(ay,a, -~ a;,, /cB).
Let ¢(x;y) be a formula over B such that ¢(c;ay) holds. Then /\;’i1 o(z;a4) is consistent.

Proof. Because ay, a, ... is B-indiscernible, it suffices to show for each k that {¢(z;a;) | j <
w} is not k-inconsistent.

First observe that whether or not ¢ J,gCF a; holds depends only on the quantifier-free type
of c and a; over B. In particular, it does not depend on j, by quantifier-free indiscernibility
of ai,as,... over cB. If ¢ [ %CFaj for one j, then this holds for all j. As the a; are
an algebraically independent sequence over B, this contradicts the fact that finite tuples
have finite preweight in ACF. So cL/;CF a; for each j. The same argument applied to the
sequence aids, asdy, ... shows that CLABCF aias. Similarly CJ//;CF aiasaz, and so on, and so
CJ-//;CF ajasas . . ..

Let M be the monster model of 7. Any subset of M closed under acl(—) is relatively
algebraically closed in M, hence relatively separably closed in M. In particular, if we let
K, = B(a;j) = aj and Ky = acl(Bajas .. .), then each of K, K is relatively separably closed
in M, and B C K; C K,. By the previous paragraph and Corollary |3.12] chCF K5, and
therefore CJ/?(?F K5. By Lemma , we conclude that Kj(c) is relatively separably closed
in Ks(c), i.e., B(aj,c) is relatively separably closed in K(c). Using bars to denote perfect

closures, this means that B(a;, c) is relatively algebraically closed in Ks(c).
Recall the function P(—,—) from Theorem . By the “extension invariance” part of
that theorem,

P(¢(c; a;); Blag, ) = P(o(c; a;); Ka(c)).
Now by quantifier-free indiscernibility of ay, as, ... over ¢B, we see that B(a;,c) = B(aj,c)
for all j, j'. By the isomorphism-invariance part of Theorem [.1]

P(¢(c;a5); Blaj, ¢)) = P(¢(c; ay); Blag, )

for all j, j'. Consequently, P(¢(c;a;); K2(c)) does not depend on j.

Now M is a model of T extending Ks(c), and in M, ¢(c;ay) holds. So by the “den-
sity” part of Theorem , P(¢(c;a1); Ko(c)) is some positive number € > 0. Consequently,
P(¢p(c;a;); Ka(c)) = € > 0 for every j.

Suppose for the sake of contradiction that {¢(z;a;) | j < w} is k-inconsistent for some
k. Let N be big enough that Ne > k. Let ¢(x) be the statement over K, asserting
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that at least k of ¢(z;ay),...,¢(z;ayn) hold. By the Keisler measure part of Theorem ,
P(y(c); Ka(c)) > 0, and there is a model M’ of T' extending K5(c) in which ¢ holds. In
particular, M’ |= 3z : ¢(z). But K is relatively algebraically closed in M, hence satisfies
axiom Al of §3.1] by Corollary [3.10f By Corollary the statement 3z : ¢(z) holds in M
if and only if it holds in M’. Consequently, it holds in M, and therefore {¢(z;a;) | j < N}is

not k-inconsistent. O

Recall from [I] or [2] that the burden of a partial type p(x) is the supremum of x such that
there is an inp-pattern in p(x) of depth &, that is, an array of formulas ¢;(x; a;;) for i < x
and j < w, and some k; < w such that the ith row {¢;(z;a;;) | j < w} is k;-inconsistent for
each ¢, and such that for any n : £ — w, the corresponding downwards path A,_, &;(z; a;a))
is consistent with p(z). A theory is NTP, if every partial type has burden less than co. A
theory is strong if every partial type has burden less than Xy, roughly. (See [I] for a more
precise statement.) At any rate, if every partial type has burden less than Ry, then the
theory is strong. By the submultiplicativity of burden (Theorem 11 in [2]), it suffices to
check the burden of the home sort.

Fact 6.6. If D and E are definable sets, bdn(D x E) > bdn(D) + bdn(FE).

In fact, we can get an inp-pattern for D x E by vertically concatenating an inp-pattern
for D with an inp-pattern for E.

In NIP theories, burden is the same thing as dp-rank, which is known to be additive
[12]. The theories ACVF, pCF, and RCF are all known to be dp-minimal, i.e., to have
dp-rank 1 [5]. One of the descriptions of dp-rank is that a partial type X (z) over a set C' has
dp-rank > k if and only if there are k-many mutually indiscernible sequences over C' and a
realization a of ¥(z) such that each sequence is not indiscernible over C'a. Recall that an
array {aijticaj<p 15 mutually indiscernible over C' if for each 4, the ith row {a;; : j < (5} is
indiscernible over C'U {a;; : ¢ < a,j < 5,7 # i}.

Theorem 6.7. The model companion T is NTP,, and strong. In fact, the burden of affine
m-space 1s exactly mn, where n is the number of valuations and orderings.

Proof. To show that the burden of A™ is at least mn, it suffices by Fact to show that
bdn(A') > n. In the case where every T; is ACVF, one can take ¢;(z;y) to assert that
vi(z) =y, for 1 < i < n, and take a;0,a;1,... to be an increasing sequence in the ith
valuation group. Variations on this handle the remaining cases. We leave the details as an
exercise to the reader.

For the upper bound, suppose for the sake of contradiction that there is an inp-pattern
{¢i(z; ai;) bicmnt1; 0<j<w Of depth mn + 1, with z a tuple of length m. We may assume that
the a;; form a mutually (-indiscernible array. Extend the array to the left, i.e., let j range
over negative numbers. Let B be acl(a;; : ¢ < mn+ 1, j < 0). From stability theory, one

knows that a;; JJQCF aioa; - - - a; j—1 for every j. By mutual indiscernibility, each sequence
@0, i1, - . . is indiscernible over {a;; : j < 0}, hence over B. In particular, a;; =p a;; for
Jj # j'. For each i < mn + 1, let by be an enumeration of acl(Ba;o). For j > 0, choose
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b;; such that a; ;b ; =p a;ob;o. Then b;; is an enumeration of acl(Ba; ;) for every i and
every j > 0. Let ¢ ;d; ; be a mutually B-indiscernible array modeled on the array a; ;b; ;.
Then ¢; ;d; ; =p a;obio, so d;; is an enumeration of acl(Bc; ;). Also, because a;,a;1, ... was
already B-indiscernible, we must have

Ci,0Ci,1 " =B Q041"

. ACF .
for each i. Consequently, ¢; ; J,B o+ Cij—1. And since d; ; C acl(Bc; ), we also have

ACF
di,j \L di,Odi,l e di,j—la
B

using Corollary[3.12] As b;  is an enumeration of acl(Ba; ), the elements of a; o must actually
appear somewhere in b; o. Let m; be the coordinate projection such that m;(b; o) = a;o. Hence
Cij = Wi(di,j)-

Because the a;; formed a mutually (-indiscernible array, the collective type of all the ¢; ;'s
must agree with that of all the a; ;’s. Hence ¢;(z;¢; ;) is still an inp-pattern of depth mn + 1.
Let 9;(z;y) be ¢;(x;m;(y)). Then 9;(z;d; ;) is an inp-pattern of depth mn + 1. Let ¢ be a
realization of A\,_, .., ¥i(z;dio). Note that c is a tuple of length m.

Let 9t be the ambient monster. For each 1 < k < n, let 91, be a model of T}, extending
M | Ly By quantifier-elimination, the array {d;;} is still mutually B-indiscernible in
M;. By additivity of dp-rank and by dp-minimality of the home sort in 9, we know
that the dp-rank of tp(c/B) in 9 is at most m. In particular, for each 1 < k < n,
at most m of the rows in the array {d;;} can fail to be Bc-indiscernible in 9%,. By the

pigeonhole principle, there must be some value of ¢ such that the sequence d;,d;1,... is
Be-indiscernible in each of 91, My, ..., 9M,,. Back in 9, this means that d;o,d; 1, ... is
quantifier-free Be-indiscernible. Since d; 0, d; 1, . . . is also B-indiscernible and B-independent,
Lemma applies. Consequently, /\;‘;O Vi(z;d; ;) is consistent, because v;(c; d; ) holds.
This contradicts the fact that {¢;(z;d;;)} is an inp-pattern. O
Corollary 6.8. If (K,vy,...,v,) is an algebraically closed field with n independent non-
trivial valuations, then (K, vq,...,v,) is strong of burden n.

Proof. Theorems [4.1] and [6.7] O

7 Forking and Dividing

We will make use of the following general fact, which is the implication (ii) = (i) in
Proposition 4.3 of [9]F]

Fact 7.1. Let 9 be a monster model of some theory, let S C M be a small set, and let ¢(x)
be a formula with parameters from M. Suppose there is a global Keisler measure p which is
Lascar-invariant over S, and suppose p(¢(x)) > 0. Then ¢(x) does not fork over S.

3Hrushovski and Pillay assume NIP, but the assumption is unused for the implication (ii) = (i).

36



Now we specialize to the theory T" under consideration.

Lemma 7.2. Let 9 be a monster model of T. Let S be a small subset of M, and let p
be a complete quantifier-free type over MM which is Lascar-invariant over S. Then there is
a Keisler measure p on S(IM), Lascar-invariant over S, whose support is exactly the set of
completions of p.

This is nothing but a restatement or special case of Theorem

Proof. Let a be a realization of p in some bigger model, and consider the structure 9[a]
generated by 9t and a. The structure of M[a] is determined by p. Also, if o is any Lascar
strong automorphism of 9t over S, then p = o(p). This implies that there is a uniquely
determined automorphism o’ of MJa] extending o on M and fixing a.

Let 9M[a] denote the perfect closure of the field of fractions of 9[a]. This is uniquely
determined (as a model of T3,) by 9M[a], and hence is determined by p. Let u be the Keisler

measure on 2 which assigns to an 9-formula ¢(x;b) the value

P((a;b); Ma]),
where P is as in Theorem [5.1] By the Keisler measure part of Theorem this is a Keisler
measure on the space of completions of qftp(9[a]). By model completeness, any extension of
qftp(Mfa]) to a complete type must satisfy tp(9), so we have a legitimate Keisler measure
on the space of extensions of p to complete types over M. And if ¢ is any Lascar strong
automorphism over S, then by the “isomorphism invariance” part of Theorem [5.1]

P(¢(a; 0 (b)); Mla]) = P(¢(o"(a); 0'(0)); M[a]) = P(¢(a, b); Mal)

where ¢’ is the aforementioned automorphism of M[a] extending o and fixing a. Thus

w(p(x;b)) = p(op(x;0(b))). We conclude that p(p(z; b)) = p(p(x; b)) for any formula ¢(x;y)
and any b, b’ € 9t having the same Lascar strong type over S. Finally, if b is a tuple from 9t

and ¢(z;b) is a formula which is consistent with p, then ¢(a;b) is also consistent with the
diagram of Mal, hence has positive probability by the “density” part of Theorem . O]

Corollary 7.3. Let 9 be a monster model of T and S be a small subset of M. Suppose q is
a complete quantifier-free type on MM which is Lascar invariant over S. Then every complete
type on M extending q does not fork over S.

Proof. Let p(x) be a complete type extending ¢(x). Let ¢(x) be any formula from p(z). Let
1 be the Keisler measure from Lemma[7.2] Then g is Lascar invariant over S, and p(¢(z))
is positive because ¢(z) is consistent with ¢(z). By Fact[7.1} ¢(z) does not fork over S. O

If M is a model of T" and A, B, C' are subsets of M, let A\Lg B indicate that ALC B
holds in any/every model of T; extending M | L;.

Lemma 7.4. Work in a monster model N of T'. Let a be a finite tuple, and B and C be

sets (in the home sort, as always). Suppose C = acl(C'). Suppose a\L? B holds for every
1 <i < n. Then qftp(a/BC) can be extended to a quantifier-free type q(x) on M which is
Lascar invariant over C'.
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Proof. Let V be the variety over C' of which a is a generic point. By Fact [2.8 V is geomet-
rically irreducible.

Let M; be a model of T; extending 9N [ £;. Within 91;, aj,? B. By Adler’s character-
ization of forking in NIP theories (Proposition 2.1 in [09]), there is an L;-type p;(z) on IM;
which extends the type of a over BC' and which is Lascar-invariant over C'. The restric-
tion of this £;-type to a quantifier-free L,;,4s-type must say that z lives on V' and on no
M;-definable proper subvarieties of V. This follows from Lemma Let g;(x) be the set
of quantifier-free £;-statements in p;(x) with parameters from 9. Then ¢;(x) is a complete
quantifier-free £;-type on M. Let g(x) be |J;_, ¢;(x). This is a complete quantifier-free type
on 9M; it is consistent because the ¢;(z) all have the same restriction to the language of
rings, namely, the generic type of V. Also, ¢(z) extends qftp(a/BC), because the L;-part of
aftp(a/BC) is present in p;(z) and ¢;(z).

To show Lascar-invariance of ¢(x) over C, it suffices to show that if I is a C-indiscernible
sequence in M, a and @’ are two elements of I, and ¢(x;y) is a quantifier-free formula, then
¢(x;a) € q(z) if and only if ¢(z;a’) € g(x). In fact, we only need to consider the case where
¢(z) is a quantifier-free £;-formula, for some i. But then

d(r;a) € q(z) <= ¢(x;0) € pi(r) <= o(r;d)) € pi(r) <= ¢(x;d") € q(z)

where the middle equivalence follows from the fact that p;(x) is Lascar-invariant, and I is
C-indiscernible within 9; (by quantifier-elimination in 7;). Thus ¢(z) is Lascar-invariant
over C, as claimed. O

Theorem 7.5. Forking and dividing agree over every set (in the home sort).

Proof. First we show that if a is a finite tuple and B is a set, then qftp(a/B) does not fork
over B. By Lemma[7.4] there is a global quantifier-free type ¢(z) which is Lascar-invariant
over B. By Corollary , any extension of ¢(z) to a complete global type does not fork over
B. So qftp(a/B) has a global non-forking extension. Now if a is any small tuple, and B is
a set, then qftp(a/B) does not fork over B, by compactness. Consequently, if a is a small
tuple and B is a (small) set, then qftp(a’/B) does not fork over B, where o' enumerates
acl(aB). By Corollary [3.11] qftp(a’/B) implies tp(a’/B), so tp(a’/B) does not fork over B.
By monotonicity, tp(a/B) does not fork over B. As a and B are arbitrary, every set in the
home sort is an extension base for forking in the sense of [3], so by Theorem 1.2 in [3], forking
and dividing agree over every set in the home sort. O

Lemma 7.6. Let MM be a monster model of T and C = acl(C) be a small subset of .
Suppose p(x) is a complete type on C' and q(x) is a complete quantifier-free type on M, with
q(z) extending the quantifier-free part of p(x). Suppose q(x) is Lascar-invariant over C.
Then q(x) U p(x) is consistent.

Proof. Let 9M[a] be the structure obtained by adjoining a realization a of g(x) to M. Let
W be the variety over 91 of which a is the generic point. By Fact W' is geometrically
irreducible. Moreover, the ACF-theoretic code "W for W must lie in 9. By Lascar
invariance of g(x), one sees that W is Lascar invariant over C. Consequently, the finite

38



tuple "W is fixed by every Lascar strong automorphism over C. So "W C acl(C) = C.
Consequently, in an ambient model of ACF we have Cb(stp(a/9)) C C, and so a \LQCF m.
By Lemma C'lal is relatively algebraically closed in 91[a].

Because the quantifier-free type of a over C' is consistent with p(x), there is a model
N E T extending Cla] such that within N, tp(a/C) = p(z). By Lemma [B.9] we can
amalgamate M[a] and N over C[a]. So there is a model N’ of T' extending N and M[a]. In
N, tp(a/C) = p(z). As N = N, tp(a/C) = p(z) holds in N’ as well. And as N’ D M(a),
aftp(a/M) = q(x). So q(x) U p(z) is consistent. O

Lemma 7.7. Work in a monster model 9 of T'. Let a be a finite tuple, and B and C' be sets
(in the home sort, as always). Suppose aj/? B holds for every 1 < i <n. Then aJ/C B.

Proof. A type forks/divides over C' if and only if it forks/divides over acl(C'), so it suffices
to show that tp(a/BC) does not fork over acl(C'). By monotonicity, it suffices to show that
tp(a/ acl(BC)) does not fork over acl(C'). By [3, Lemma 3.21(2)] and Lemma above,
a \LZ;(C) acl(CB) for every i. So we may assume that C' = acl(C) C B = acl(B).

Now by Lemma [7.4] there is a global quantifier-free type ¢(z) extending gftp(a/BC) =
qftp(a/B), with ¢(z) Lascar-invariant over C. Clearly ¢(z) is also Lascar-invariant over
B, so by Lemma q(z) is consistent with tp(a/B). Let p(z) be a global complete type
extending ¢(x) Utp(a/B). Then p(z) does not fork over C' by Corollary O

Let qftp’(a/B) denote the quantifier-free L;-type of a over B, and let qftp”“F(a/B)
denote the field-theoretic quantifier-free type of a over B.

Lemma 7.8. Let M be a monster model of T', and let C = acl(C) be a small subset. For
each 1, let M; be a model of T; extending N | L;. For each i, let a; be a tuple in M;.

Suppose that qftpACF(qi/C') does not depend on i. Then we can find a tuple a in N such
that qftp'(a/C) = qftp’(a;/C) for every i.

Proof. Let C|a;] denote the subring or subfield of M; generated by C' and a;. By assumption,
C'la;] is isomorphic to Clay] as a ring, for every ¢ and i’. Use these isomorphisms to identify
all the C[a;] with each other, getting a single ring C[a] which is isomorphic to C|a;| for every
i. Use these isomorphisms to move the (7;)y structure from C[a;] to C[a]. Now Cla] is a
model of Ty, and qftp’(a/C) = qftp’(a;/C), for every i. As C = acl(C), C is relatively
separably closed in 91, so by Lemma , one can embed C[a] and 9 into a bigger model of
T. By model completeness and saturation, tp(a/C') is already realized in 9. O

Lemma 7.9. Let a, B,C be small subsets of a monster model M = T. Suppose a f glb.
Then a J. cb.

Proof. By [3, Lemma 3.21(2)] applied to both 77 and 7', we may assume C' = acl(C) and
B = acl(BC). By finite character of forking, we may assume « is finite. For every i, let ;
be an even more monstrous model of 7} extending M | £,. Then a J. ¢B holds in ;. By
Lemmal[2.15 some £;-formula ¢(z; B) in tp(a/BC) divides over C.. By quantifier-elimination
in T}, we may assume that ¢(z;y) is a quantifier-free £;-formula. By Lemma , there
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is a sequence B = B}, B}, By,... in My which is indiscernible over C' and algebraically
independent over C, and such that {¢(z; le) | j < w} is k-inconsistent in My, for some k.
Thus qftpl(le»/C’) = qftp’(B/C), and in a certain sense

qftpACF(BéBllB21 /O = qftpACF(B/C) ® qftpACF(B/C') R

The right hand side makes sense because C'is relatively separably closed in B (Deﬁnition,
so qftp* ¥ (B/C) is stationary.

Meanwhile, for ¢ > 1, we can apply Lemma to M; and tp(B/C), getting a sequence
B = Bj, B}, By, ... which is indiscernible over C and algebraically independent over C. (Note
that Lemma is true even without the restriction that B be finite.) So again, we get
qftpi(B}/C') = qftp’(B/C), and

qftpACF(BéBiBé /O = qftpACF(B/C') ® qftpACF(B/C') R

In particular, qftp*“* (BiBiBj--- /C) does not depend on i, as i ranges from 1 to n. By
Lemma [7.8] we can therefore find a sequence By, By, ... in 9 such that

aftp’(BoB, ... /C) = qftp'(BLBIBL, ... /C)

for every i. In particular, qftp’(B;/C) = qftpi(Bj/C) = qftp’(B/C). Because this holds
for all 4, qftp(B;/C) = qftp(B/C). Because B = acl(B), qftp(B/C) F tp(B/C) by Corol-
lary 3.11] So tp(B;/C) = tp(B/C) for every j. Also,

aftp’ (ByBs ... /C) = qftp' (ByB; ... /C)

implies that there is an automorphism o of 9, sending BB} ... to ByBjy . ... Consequently,
{¢(x; B;) | j < w} is k-inconsistent in 9;. Clearly it is also k-inconsistent in 9, because I
is smaller than 9%;. Since By, By, ... is a sequence of realizations of tp(B/C'), we conclude
that ¢(x; B) divides over C, in 9. O

Theorem 7.10. Let M be a model of T, and let A, B,C' be subsets of M (in the home sort).
The following are equivalent:

° AJ/C B, i.e., the type of A over BC does not fork over C.
e The type of A over BC does not divide over C.
° A\LZfoor every 1 <i < n.

Proof. The first two bullet points are equivalent by Theorem If AJ/CB, then by

Lemma A\L? B. Similarly, AJ/Ti B for every 1 < i < n. Conversely, if A\Lg B for
every 1 < ¢ < n, then by Lemma , aLCB for every finite subset a C A. By finite
character of forking, A J/c B. O
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