
Forking and Dividing in Fields with Several Orderings
and Valuations

Will Johnson

January 15, 2022

Abstract

We consider existentially closed fields with several orderings, valuations, and p-
valuations. We show that these structures are NTP2 of finite burden, but usually have
the independence property. Moreover, forking agrees with dividing, and forking can be
characterized in terms of forking in ACVF, RCF, and pCF.

1 Introduction

Consider the theory of fields with n distinct valuations. By the thesis of van den Dries [20],
this theory has a model companion. More generally, one can add orderings and p-valuations
into the mix, and a model companion exists. We will explore the classification-theoretic
properties of this model companion.

To be more precise, suppose that for each 1 ≤ i ≤ n. . .

� The theory Ti is one of ACVF (algebraically closed valued fields), RCF (real closed
fields), or pCF (p-adically closed fields).

� Li is some language in which Ti has quantifier elimination, such as the language of
ordered rings for RCF, and the Macintyre language for pCF.

� (Ti)∀ is the universal fragment of Ti, plus the field axioms. For example, RCF∀ is the
theory of ordered fields, and ACVF∀ is the theory of valued fields.

Arrange that Li ∩ Lj = Lrings for i ̸= j, and form the theory
⋃︁n
i=1(Ti)∀. In van den Dries’s

notation, this theory is denoted ((T1)∀, (T2)∀, . . . , (Tn)∀). For example

(ACVF∀,ACVF∀,ACVF∀)
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is the theory of fields with three distinct valuations. The Ti can be mixed; for example

(ACVF∀,RCF∀, 3CF∀)

is the theory of fields with a valuation, an ordering, and a 3-valuation (plus Macintyre
predicates).

In all these cases, van den Dries proves the existence of a model companion

((T1)∀, (T2)∀, . . . , (Tn)∀).

In fact, van den Dries’s result is more general than what we have stated, allowing the
Ti’s to be arbitrary theories with quantifier elimination such that the (Ti)∀ are “t-theories”
(Definition III.1.2 in [20]).

However, we will only consider the case where the Ti are ACVF, RCF, or pCF. In these
cases, we will prove the following about the model companion ((T1)∀, . . . , (Tn)∀), which we
denote T for simplicity:

1. T is NTP2, but fails to be NIP (or NSOP) when n > 1. See Theorems 6.7 and 6.1. If
n = 1, then T is one of ACVF, RCF, or pCF, which are all known to be NIP.

2. Moreover, T is “strong” in the sense of Adler [1], and, every type has finite burden.
The burden of affine m-space is exactly mn, where n is the number of valuations and
orderings. See Theorem 6.7.

3. Forking and dividing agree over sets in the home sort, so every set in the home sort is
an “extension base for forking” in the sense of Chernikov and Kaplan [3, Definition 2.7].
See Theorem 7.5.

4. Forking in the home sort has the following characterization (Theorem 7.10). Suppose
K |= T , and A,B,C ⊆ K are subsets of the home sort. For 1 ≤ i ≤ n, let Ki be a
model of Ti extending the Li-reduct of K. For example, in the case of n orderings, Ki

could be a real closure of K with respect to the ith ordering. Then A |⌣C
B holds in K

if and only if A |⌣C
B holds in Ki for every i. The choice of the Ki does not matter.

It is likely that (3) also holds of sets of imaginaries, which would imply that Lascar strong
type and compact strong type agree, by [21] Corollary 3.6.

In the case where every Ti is ACVF, Theorem 4.1 gives a simple axiomatization of the
model companion T : a model of T is simply an algebraically closed field with n independent
non-trivial valuations. In this case, forking is characterized as follows: A |⌣C

B holds if and
only if it holds in the reduct (K, vi), for every i.

Something similar happens when all but one of the Ti is ACVF. For example, if T1 is RCF
and T2, . . . , Tn are all ACVF, then a model of T is a real closed field with n − 1 valuations
such that the ordering and the valuations are pairwise independent. See Theorem 4.1 for
details.

As a concrete example, let K be one of the following fields: Fp(t)alg, Qalg, Qalg ∩ R,
or Qalg ∩ Qp for some p. Let R1, . . . , Rn be valuation rings on K. Then K with the ring
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structure and with a unary predicate for each Ri is a strong NTP2 theory of finite burden,
and every set of real elements is an extension base. The same holds for

⋂︁n
i=1Ri as a pure

ring.

1.1 Related and future work

Existentially closed fields with several orderings were independently shown to be NTP2 in
Montenegro’s thesis [16]. More generally, she shows that bounded pseudo-real-closed fields
are NTP2, proving Conjecture 5.1 of [4]. Similarly, Montenegro shows that bounded pseudo-
p-adically-closed fields are NTP2, which includes the case where every Ti is pCF.

The techniques of the present paper have been generalized in [11] to prove that NTP2

holds in algebraically closed fields with several valuations. The case of independent valuations
is Corollary 6.8 below.

Halevi, Hasson, and Jahnke use an argument related to §4 and §6.1 in order to prove
that a field with two independent valuations cannot be NIP if one of the two valuations is
henselian, which helps connect two conjectures on the classification of NIP fields [8].

The classification of dp-minimal fields [10] is not directly related to the present paper, but
suggests a direction for future research. Most of the properties shared by ACVF, RCF, and
pCF are shared by all dp-minimal theories of valued fields and ordered fields. Consequently,
the list

ACVF,RCF, pCF

appearing throughout the present paper can probably be extended to include all dp-minimal
theories of valued fields and ordered fields. But there are a large number of details to check.

1.2 Conventions

The algebraic closure of a field K will be denoted Kalg. A variety over a field K is a reduced
finite-type scheme over K. If V is a K-variety, dimV denotes the dimension of the definable
set V (Kalg) in the structure Kalg, rather than the definable set V (K) in the structure K.
For example, if V is the R-variety cut out by the equations x2+ y2 = 0, then dimV is 1, not
0.

The monster model will be denoted M. Forking independence will be denoted A |⌣C
B.

When working in a field K, algebraic independence will be denoted A |⌣
ACF

C
B. In other

words, A |⌣
ACF

C
B means that A |⌣C

B holds in Kalg.
When working with fields with several valuations and orderings, we will generally use the

following conventions:

� Ti will denote the theory ACVF, RCF, or pCF.

� Li will denote the language of Ti.

� (Ti)∀ will denote the universal fragment of Ti, plus the field axioms.
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� T 0 will denote the theory
⋃︁n
i=1(Ti)∀.

� T will denote the model companion of T 0.

1.3 Outline

In Section 2, we recall some elementary facts about ACVF, pCF, and RCF which will be
needed later. In Section 3, we quickly reprove the main facts needed from Chapters II and III
of van den Dries’s thesis, arriving at a slightly different way of expressing the axioms of the
model companion, and handling the case of positive characteristic, which was not explicitly
considered by van den Dries. Section 4 is a digression aimed at proving Theorem 4.1, which
drastically simplifies the axioms of the model companions in some cases. Theorem 4.1 is
probably known to experts, but we include a proof here for lack of a reference. In Section 5,
we construct some Keisler measures that will be used in the later sections. In Section 6,
we determine where the model companion lies in terms of various classification theoretic
boundaries, proving that it is NTP2 and strong, but not NSOP and usually not NIP. In
Section 7, we show that forking and dividing agree over sets in the home sort, and we
characterize forking in terms of forking in the Ti’s.

2 Various facts about ACVF, pCF, and RCF

Let T be one of ACVF, RCF, or pCF. Work in the usual one-sorted languages with quantifier
elimination:

� For ACVF, work in the language of fields with a binary predicate for val(x) ≥ val(y).

� For RCF, work in the language of ordered rings.

� For pCF, work in the Macintyre language with unary predicates for nth powers [14].

Quantifier-elimination implies the following:

Fact 2.1. Let M be a model of T , and K be a subfield. Every K-definable set is a positive
boolean combination of topologically open sets and affine varieties defined over K. In partic-
ular, any K-definable subset of Mn has non-empty interior or is contained in a K-definable
proper closed subvariety of An.

Let M be a monster model of T .

Definition 2.2. Let K be a subfield of M. Let D ⊆ Mn be a definable set, defined over K.
Define the rank rkK D to be the supremum of tr. deg(α/K) as α ranges over D.

Lemma 2.3.

(a) If D ⊆ Mn, then rkK D = n if and only if D has non-empty interior.
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(b) If D ⊆ Mn and 1 ≤ k ≤ n, then rkK D ≥ k if and only if rkK π(D) = k for one of the
(finitely many) coordinate projections π : Mn ↠ Mk.

(c) The rank of D does not depend on the choice of K, and rank is definable in families.

(d) If D ⊆ V where V is geometrically irreducible, then rkD = dimV if and only if D(M)
is Zariski dense in V (Malg).

Proof. (a) If rkK D < n, then every tuple α from D lives inside an affine K-variety of
dimension less than n. By compactness, D is contained in the union of finitely many
affine K-varieties of dimension less than n. This union contains the Zariski closure of
D, so D is not Zariski dense. This forces D to have no topological interior, because
non-empty polydisks in affine space are Zariski dense. Conversely, if D has no interior,
then by Fact 2.1, D ⊆ V for some proper subvariety V ⊊ An with V defined over K.
Then rkK D ≤ dimV < n.

(b) Clear by properties of rank in pregeometries.

(c) Combine (a) and (b).

(d) If rkD < dimV , then every point in D is contained in an affine K-variety of dimension
less than dimV . By compactness, D is contained in the union of finitely many such
varieties. This finite union contains the Zariski closure of D, and is strictly smaller
than V itself. Conversely, suppose that D is not Zariski dense in V . Let V ′ ⊊ V be the
Zariski closure of D. As V is geometrically irreducible, dimV ′ < dimV . Also, V ′ is
defined over M rather than Malg, because it is the Zariski closure of a set of M-points.
Let L be a small subfield of M over which V ′ and D are defined. Then

rkK D = rkLD ≤ rkL V
′ ≤ dimV ′ < dimV.

Corollary 2.4. If K ≤ L is an inclusion of small subfields of M and α is a finite tuple, we
can find α′ ≡K α with tr. deg(α′/L) = tr. deg(α′/K).

Proof. Let n = tr. deg(α/K). Let Σ(x) be the partial type asserting that x ≡K α and
that x belongs to no L-variety of dimension less than n. We claim that Σ(x) is consistent.
Otherwise, there is some formula ϕ(x) from tp(α/K) and some L-varieties V1, . . . , Vm of
dimension less than n, such that ϕ(M) ⊆

⋃︁m
i=1 Vi. But then

rkK ϕ(M) = rkL ϕ(M) ≤ max
1≤i≤m

dimVi < n,

contradicting the fact that α ∈ ϕ(M) and tr. deg(α/K) ≥ n.
Thus Σ(x) is consistent. If α′ is a realization, then α′ ≡K α and

tr. deg(α′/L) ≥ n = tr. deg(α/K) = tr. deg(α′/K) ≥ tr. deg(α′/L).
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Corollary 2.5. Let L and L′ be two fields satisfying T∀, and suppose they share a common
subfield K. Then L and L′ can be amalgamated over K in a way which makes L and L′ be
algebraically independent over K.

Proof. By quantifier elimination, we may as well assume that L and L′ and K live inside a
monster model M |= T . By Corollary 2.4 and compactness, we can extend tp(L/K) to L′

in such a way that any realization is algebraically independent from L′ over K.

Definition 2.6. Let K ≤ L be an inclusion of fields. Say that K is relatively separably
closed in L if every x ∈ L ∩Kalg is in the perfect closure of K.

This is a generalization of K being relatively algebraically closed in L; in characteristic
zero these two concepts are the same. Note that if we embed L into a monster model M of
ACF, then the following are equivalent:

� K is relatively separably closed in L

� dcl(K) = acl(K) ∩ dcl(L)

� tp(L/K) is stationary

� The restriction map Aut(Lalg/L) → Aut(Kalg/K) is surjective.

From this, one gets

Fact 2.7. Let L ≥ K ≤ L′ be (pure) fields. Suppose that K is relatively separably closed in
L or L′. Then there is only one way to amalgamate L and L′ over K in such a way that L
and L′ are algebraically independent over K.

Fact 2.8. If K is relatively separably closed in L and α is a tuple from L, and V is the
variety over K of which α is the generic point, then V is geometrically irreducible.

2.1 Dense formulas

In this section, T continues to be one of ACVF, RCF, or pCF.

Definition 2.9. Let K be a model of T∀. Let V be a geometrically irreducible affine
variety defined over K. Let ϕ(x) be a quantifier-free formula with parameters from K,
defining a subset of V in any/every model of T extending K. Say that ϕ(x) is V -dense if
rkϕ(M) = dimV . Here M is a monster model of T extending K.

The choice of M is irrelevant by quantifier-elimination in T and by Lemma 2.3(c).

Lemma 2.10. Let K be a model of T∀, L be a model of T extending K, and V be a ge-
ometrically irreducible variety defined over K. For a quantifier-free K-formula ϕ(x) with
ϕ(L) ⊆ V (L), the following are equivalent:

(a) ϕ(x) is V -dense.
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(b) ϕ(L) is Zariski dense in V (Lalg).

(c) We can extend the T∀-structure on K to the function field K(V ) in such a way that the
generic point of V in K(V ) satisfies ϕ(x).

Proof. (a) =⇒ (b) Suppose ϕ(x) is V -dense. Let W be the Zariski closure of ϕ(L) in
V (Lalg). Then W is defined over L rather than Lalg, because W is the Zariski closure
of some L-points. Therefore it makes sense to think of W as a definable set. If M is
a monster model of T extending L, then dimV = rkϕ(M) ≤ rkW ≤ dimW ≤ dimV .
Therefore dimW = dimV . As V is geometrically irreducible, W = V .

(b) =⇒ (a) Let M be a monster model of T extending L, and let n = dimV . If ϕ(x) is
not V -dense, then every element of ϕ(M) has transcendence degree less than n over
K. By compactness, ϕ(M) is contained in a finite union of K-definable varieties of
dimension less than n. We may assume these varieties are closed subvarieties of V .
Of course ϕ(L) is also contained in this union, which is clearly a Zariski closed proper
subset of V . So ϕ(L) is not Zariski dense.

(a) =⇒ (c) Embed K into a monster model M. Let α be a point in ϕ(M) ⊆ V (M) with
tr. deg(α/K) = rkϕ(M) = dimV . Then α is a generic point on V , i.e., K(α) ∼= K(V ).
And α satisfies ϕ(x).

(c) =⇒ (a) Embed K(V ) into a monster model M. Let α denote the generic point of
V , so that M |= ϕ(α) holds. Clearly tr. deg(α/K) = dimV . Thus rkK ϕ(M) ≥
tr. deg(α/K) = dimV , implying V -density of ϕ(x).

Lemma 2.11. Let L be a model of ACVF, and let V ⊆ An be an irreducible affine variety
over L. Suppose 0 ∈ V . Let On

L be the closed unit polydisk in An. Then On
L ∩ V is Zariski

dense in V .

This Lemma is essentially Lemma 1.1 in [6], but we will give give a more elementary
proof based on the proof of Proposition 4.2.1 in [7].

Proof. Let L(α) be the function field of V , obtained by adding a generic point α of V to the
field L. By the implication (c) =⇒ (b) of Lemma 2.10 applied in the case where ϕ(x) is
the formula defining On

L ∩ V , it suffices to extend the valuation on L to L(α) in such a way
that every coordinate of α has nonnegative valuation.

Now L[α] is the coordinate ring of V , so the fact that 0 ∈ V implies that there is an
L-algebra homomorphism L[α] → L sending every coordinate of α to zero. This yields an
OL-algebra homomorphism f : OL[α] → OL sending every coordinate of α to 0. Let m be
the maximal ideal of OL, and let p = f−1(m). Then p is a prime ideal, and p ∩ OL = m.
Also, as f kills the coordinates of α, the coordinates of α live in p.

Since OL[α] is a domain, there is a valuation v′ on L(α), the fraction field of OL[α], with
the following properties:
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� Every element of p has positive valuation. In particular, the elements of m and the
coordinates of α have positive valuation.

� Every element of OL[α] \ p has valuation zero. In particular, the elements of O×
L =

OL \m have valuation zero.

(Indeed, it is a general fact that if S is a domain and p is a prime ideal, then there is a
valuation on the fraction field of S which assigns a positive valuation to elements of p and a
vanishing valuation to elements of S \ p. To find such a valuation, take a valuation ring in
Frac(S) dominating the local ring Sp.)

The resulting valuation on L(α) extends the valuation on L, because it assigns positive
valuation to elements in m, and zero valuation to elements in OL \m. Also, the valuation of
any coordinate of α is positive, hence non-negative, so α lives in the closed unit polydisk.

Lemma 2.12. Let V be a geometrically irreducible affine variety over K |= T∀, and let ϕ(x)
be a quantifier-free K-formula. Let L be a model of T extending K. Suppose ϕ(x) defines
an open subset of V (L).

(a) If T is ACVF, then ϕ(x) is V -dense if and only if ϕ(L) is non-empty.

(b) In general, ϕ(x) is V -dense if ϕ(L) contains a smooth point of V .

Proof. (a) If ϕ(x) is V -dense, then certainly ϕ(L) is non-empty. Conversely, suppose ϕ(L)
is non-empty. Let p be a point in ϕ(L) and let U be an open neighborhood of p, with
U ∩ V ⊆ ϕ(L). There is some L-definable affine transformation f which sends p to
the origin and moves U so as to contain the closed unit polydisk. Then f(U ∩ V ) =
f(U) ∩ f(V ) is Zariski dense in f(V ), by Lemma 2.11. So ϕ(L) ⊇ U ∩ V is Zariski
dense in V . Thus ϕ(x) is V -dense, by Lemma 2.10.

(b) If ϕ(x) is V -dense, then ϕ(L) contains a smooth point of V , because the smooth locus
of V is a non-empty Zariski open. Conversely, suppose ϕ(L) contains a smooth point
p. Note that L is perfect. In the field Lalg, the tangent space TpV is L-definable. By
Hilbert’s Theorem 90, there is an L-definable basis of TpV . Therefore, after applying an
L-definable change of coordinates, we may assume TpV is horizontal. By the implicit
function theorem, V then looks locally around p like the graph of a function. In
particular, the coordinate projection maps a neighborhood of p homeomorphically to
an open subset of affine n-space, where n = dimV . By Lemma 2.3, this ensures that
any neighborhood of p, such as ϕ(L), has rank at least n. So ϕ(x) is V -dense.

Remark 2.13. Here, and in Lemma 4.3 below, we are using the model-theoretic version
of Hilbert’s theorem 90. This folk theorem says that if M |= ACF, if K is a subfield of
M , and if V is a K-definable M -vector space, then V admits a K-definable basis. For
completeness, we recall the proof. Because Kalg ⪯ M , we may replace M with Kalg and
assume M = Kalg. Because dcl(K) = dcl(Kperf ) = Kperf , we may replace K with Kperf

and assume K is perfect. Then M/K is (infinite) Galois. Take a basis {b1, b2, . . . , bn} ∈ V .
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For every σ ∈ Gal(M/K), there is a matrix µσ ∈ GLn(M) such that µσ · b⃗ = σ(b⃗). For
σ, τ ∈ GLn(M), we have

µστ · b⃗ = σ(τ(b⃗)) = σ(µτ · b⃗)
= σ(µτ ) · σ(b⃗) = σ(µτ ) · µσ · b⃗.

Therefore µστ = σ(µτ ) · µσ for all σ, τ . Therefore {µσ}σ∈Gal(M/K) is a cocycle, and de-
termines a cohomology class in H1(Gal(M/K), GLn(M)). By Hilbert’s Theorem 90 [15,
Lemma III.4.10], the set H1(Gal(M/K), GLn(M)) is trivial. Therefore, {µσ}σ∈Gal(M/K) is a
coboundary. So there is some ν ∈ GLn(M) such that µσ = σ(ν) · ν−1 for all σ ∈ Gal(M/K).

Let c⃗ = ν−1 · b⃗. Note that c1, . . . , cn is a basis of V . For any σ ∈ Gal(M/K), we have

σ(c⃗) = σ(ν−1) · σ(b⃗) = σ(ν−1) · µσ · b⃗
= σ(ν−1) · σ(ν) · ν−1 · b⃗ = ν−1 · b⃗ = c⃗.

Therefore c⃗ is fixed by Gal(M/K), and the ci are K-definable.

Lemma 2.14. Let V be a geometrically irreducible affine variety over K |= T∀, and let ϕ(x)
be a quantifier-free K-formula that is V -dense. (In particular, ϕ(x) defines a subset of V
in any/every model of T extending K.) Then there is a quantifier-free K-formula ψ(x) that
is also V -dense, such that in any/every L |= T extending K, ψ(L) is a topologically open
subset of V (L), and ψ(L) ⊆ ϕ(L).

Proof. Choose some monster model M |= T extending K and let ψ(M) pick out the topo-
logical interior of ϕ(M) inside V (M). By quantifier-elimination, we can take ψ(x) to be
quantifier-free with parameters from K. It remains to show that ψ(M) is V -dense. Let
α ∈ ϕ(M) have transcendence degree n over K, where n = dimV . By Fact 2.1, ϕ(M) can
be written as a finite union of finite intersections of K-definable opens and varieties. Let X
be one of these finite intersections, containing α. So X = W ∩U for some K-variety W and
some K-definable open U . As α ∈ W and α is a generic point on V , we must have V ⊆ W .
Then

α ∈ V ∩ U ⊆ W ∩ U ⊆ ϕ(M).

But V ∩U is a relative open in V (M), so it must be part of ψ(M). In particular, α ∈ ψ(M).
As tr. deg(α/K) = n, we conclude that ψ(x) is V -dense.

2.2 Forking and Dividing

We continue to work in one of ACVF, RCF, or pCF. Recall that RCF and pCF have definable
Skolem functions in the home sort. Thus if S is a subset of the home sort, then acl(S) =
dcl(S) is a model. In ACVF, acl(S) is the algebraic closure of S, which is a model unless
acl(S) is trivially valued.

We will always be working in the home sort, rather than working with imaginaries.
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Lemma 2.15. Let S be a set (in the home sort) and let ϕ(x; b) be a formula. Then ϕ(x; b)
forks over S if and only if it divides over S.

Proof. Indiscernibility over S is the same thing as indiscernibility over acl(S), so ϕ(x; b)
divides over S if and only if it divides over acl(S). Similarly, ϕ(x; b) forks over S if and only
if it forks over acl(S). So we may assme S = acl(S). If T is RCF or pCF, then S is a model,
and therefore forking and dividing agree over S by [3, Theorem 1.1]. If T is ACVF, then
forking and dividing agree over all sets, by [3, Corollary 1.3].

We use |⌣ to denote non-forking or non-dividing, and |⌣
ACF

to denote algebraic inde-
pendence.

Lemma 2.16. Let M be a monster model of T , and let B,C be small subsets of M, with B
finite. Then we can find a sequence B0, B1, B2, . . . in M that is C-indiscernible, such that

B0 = B and Bi |⌣
ACF

C
B<i for every i.

Proof. We may assume that B is ordered as a tuple in such a way that the first k elements
of B are a transcendence basis of B over C. Construct a sequence D0, D1, . . . of realizations

of tp(B/C) such that Di |⌣
ACF

C
D<i for every i. This is possible by using Corollary 2.4 to

extend tp(B/C) to a type over CD<i having the same transcendence degree over CD<i as
over C. Let B0, B1, B2, . . . be a C-indiscernible sequence modeled on D0, D1, . . .. Let π(X)
pick out the first k elements of a tupleX. Then π(D0)

⌒π(D1)
⌒π(D2)

⌒ · · · is an algebraically
independent sequence of singletons over C. This is part of the EM-type of the Di over C,
so it is also true that π(B0)

⌒π(B1)
⌒π(B2)

⌒ · · · is an algebraically independent sequence of
singletons over C. Since Di ≡C B for every i, we also have Bi ≡C B for every i. Thus

π(Bi) is a transcendence basis for Bi over C, and we conclude that Bi |⌣
ACF

C
B<i for every i.

Finally, moving the Bi by an automorphism over C, we may assume that B0 = B.

Lemma 2.17. A |⌣C
B implies A |⌣

ACF

C
B.

Proof. Assume A |⌣C
B. By Lemma 2.16, we can find a sequence B0, B1, B2, . . . of realiza-

tions of tp(B/C), indiscernible over C, and satisfying Bi |⌣
ACF

C
B<i for every i. Suppose for

the sake of contradiction that in some ambient model of ACF, tp(A/BC) contains a formula
ϕ(X;Y ) which divides (in the ACF sense) over C. By quantifier elimination in ACF, we
may assume ϕ is quantifier-free. In stable theories such as ACF, dividing is witnessed in any
Morley sequence. In particular ⋀︂

i

ϕ(X;Bi)

is inconsistent in the ambient model of ACF, hence inconsistent in the original smaller
structure. Thus ϕ(X;B) forks and divides over C in the original structure, a contradiction.

Lastly, we show that dividing is always witnessed by an algebraically independent se-
quence.
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Lemma 2.18. If a formula ϕ(x; a) divides over a set A, then the dividing is witnessed by

an A-indiscernible sequence a = a0, a1, a2, . . . such that ai |⌣
ACF

A
a<i for every i.

Proof. Apply Lemma 3.12 of [3] with the abstract independence relation taken to be |⌣ (non-
forking). Non-forking satisfies (1)–(4) of [3, Definition 2.4] by [3, Remark 2.14]. Non-forking
preserves indiscernibility over A by [3, Remark 2.20, Claim 2.24]. And A is an extension base
for non-forking by Lemma 2.15 above and [3, Theorem 1.2]. So [3, Lemma 3.12] is applicable.
Consequently we get a model M containing A, a global type p extending tp(a/M), |⌣-free
over A, such that any/every Morley sequence generated by p over M witnesses the dividing
of ϕ(x; a). Because |⌣ is stronger than Lascar invariance, any such Morley sequence will be
M -indiscernible, hence A-indiscernible. Because |⌣ is stronger than algebraic independence
(Lemma 2.17), and p is |⌣-free over A, any Morley sequence a0, a1, . . . generated by p will
be algebraically independent over A. Specifically, ai |= p|Ma<i

, so as p is |⌣-free over A,

ai |⌣A
Ma<i, and hence ai |⌣

ACF

A
a<i.

3 The Model Companion

Now we turn our attention to fields with several valuations, several orderings, and several
p-valuations. For 1 ≤ i ≤ n, let Ti be one of ACVF, RCF, or pCF (in the same languages as
in the previous section). Let Li denote the language of Ti; assume that Li ∩ Lj = Lrings for
i ̸= j. Let T 0 be

⋃︁n
i=1(Ti)∀, the theory that would be denoted ((T1)∀, (T2)∀, . . . , (Tn)∀) in van

den Dries’s notation. Technically speaking, models of T 0 should be allowed to be domains,
rather than fields. However, we will assume that T 0 also includes the field axioms, sweeping
domains under the rug.

One essentially knows that T 0 has a model companion T by Chapter III of van den Dries’s
thesis [20]. We will quickly reprove the existence of T in this section, expressing the axioms
of the model companion in a more geometric and less syntactic form, and also including the
case of positive characteristic explicitly.

3.1 The Axioms

Consider the following axioms that a model K of T 0 could satisfy:

A1: K is existentially closed with respect to finite extensions, i.e., if L/K is a finite algebraic
extension and L |= T 0, then L = K.

A1’: For every irreducible polynomial P (X) ∈ K[X] of degree greater than 1, there is some
1 ≤ i ≤ n such that P (x) = 0 has no solution in any/every model of Ti extending
K ↾ Li.

A2(m): Let V be an m-dimensional geometrically irreducible variety over K. For 1 ≤ i ≤
n, let ϕi(x) be a V -dense quantifier-free Li-formula with parameters from K. Then⋂︁n
i=1 ϕi(K) ̸= ∅.
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A2(≤ m): A2(m′) holds for all m′ ≤ m.

A2: A2(m) holds, for all m

Remark 3.1. For K |= T 0, A1 and A1’ are equivalent.

Proof. Suppose K satisfies A1, and P (X) ∈ K[X] is irreducible of degree greater than 1.
Suppose that for every 1 ≤ i ≤ n, there is a solution αi of P (x) = 0 in a model Mi |= Ti
extending K ↾ Li. Then we can extend the Li-structure from K to K(α) ∼= K[X]/P (X).
Because this holds for every i, we can endow K[X]/P (X) with the structure of a model of
T 0. By A1, K[X]/P (X) must be K, so P (X) has degree 1.

Conversely, suppose K satisfies A1’ but not A1. Let L/K be a counterexample to A1,
and take some α ∈ L \ K. Let P (X) be the irreducible polynomial of α over K. This
polynomial must have degree greater than 1. For each i let Mi be a model of Ti extending
L ↾ Li. Then P (x) = 0 has a solution in L, hence in Mi, which is a model of Ti extending
K. This contradicts A1’.

Lemma 3.2. Let K be a model of T 0, and m ≥ 1. The following are equivalent:

(a) For every model L of T 0 extending K, for every tuple α from L with tr. deg(α/K) ≤ m,
the quantifier-free type qftp(α/K) is finitely satisfiable in K.

(b) K satisfies A1 and A2(≤ m).

Proof. (a) =⇒ (b) For A1, suppose that L/K is a finite extension, and L |= T . If α ∈ L,
then α is algebraic over K, so tr. deg(α/K) = 0 ≤ m. By (a), the quantifier-free type of α is
realized in K. So the irreducible polynomial of α over K has a zero in K, implying α ∈ K.
As α ∈ L was arbitrary, L = K.

For A2(m′), let V be an m′-dimensional geometrically irreducible variety over K. For
1 ≤ i ≤ n, let ϕi(x) be a V -dense quantifier-free Li-formula with parameters from K. By
Lemma 2.10(c), we can extend the Li-structure to K(V ) in such a way that the generic point
satisfies ϕi(x). Doing this for all i, we make K(V ) be a model of T 0 extending K, such that if
α ∈ K(V ) denotes the generic point, then

⋀︁n
i=1 ϕi(α) holds. Now tr. deg(α/K) = dimV ≤ m,

so by (a), qftp(α/K) is finitely satisfiable in K. In particular, the formula
⋀︁n
i=1 ϕ(x) is

satisfiable in K, which is the conclusion of A2(m′).
(b) =⇒ (a). Suppose L is a model of T 0 extending K and α is a tuple from L, with

tr. deg(α/K) ≤ m. By A1, K is relatively algebraically closed in L. Let V be the K-
variety of which α is a generic point. Then V is geometrically irreducible, by Fact 2.8. Also,
m′ := dimV = tr. deg(α/K) ≤ m. Let ψ(x) be any formula in qftp(α/K). We want to show
that ψ is satisfied by an element of K. We may assume that ψ(x) includes the statement
that x ∈ V . By Fact 2.1, ψ(x) is a positive boolean combination of statements of the form

� x ∈ W , for some K-definable affine variety W . Since we intersected ψ(x) with V , we
may assume W ⊆ V .

� θ(x), where θ(x) is a quantifier-free Li-formula for some i, such that θ(L) is an open
subset of the ambient affine space, for any/every L |= Ti extending K ↾ Li.
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Writing ψ(x) as a disjunction of conjunctions of such statements, and replacing ψ(x) by
whichever disjunct α satisfies, we may assume that ψ(x) is a conjunction of such statements.
An intersection of K-varieties is a K-variety, and an intersection of open subsets of affine
space is an open subset of affine space, so we may assume

ψ(x) ≡ “x ∈ W” ∧
n⋀︂
i=1

ϕi(x),

where W is some K-variety contained in V , and where ϕi(x) is a quantifier-free Li-formula
defining an open subset of the ambient affine space, when interpreted in any/every model of
Ti extending K ↾ Li.

Because α satisfies ψ(x), and α is a generic point of V , W must be V . Rewrite ψ as⋀︁n
i=1 ϕ

′
i(x), where each ϕ′

i(x) asserts that x ∈ V and ϕi(x) holds. Because K satisfies axiom
A2(m′), ψ(x) will be satisfiable in K as long as ϕ′

i(x) is V -dense for each i. But note that L
provides a way of extending the Li-structure from K to K(α) ∼= K(V ) in such a way that
ϕ′
i(α) holds, so ϕ

′
i is V -dense by Lemma 2.10(c).

Theorem 3.3. The theory T 0 has a model companion T , whose models are exactly the
K |= T 0 satisfying A1 and A2.

Proof. It is well known that a model K is existentially closed if and only if for every model
L extending K and for every tuple α from L, the quantifier-free type qftp(α/K) is finitely
satisfiable in K. So by Lemma 3.2, a model of T 0 is existentially closed if and only if it
satisfies A1 and A2. By basic facts about model companions of ∀∃-theories, it remains to
show that A1 and A2 are first order. For A1, this comes from Remark 3.1, because A1’ is first
order by quantifier-elimination in the Ti. Axiom A2 is first order by quantifier-elimination
in the Ti, by Lemma 2.3(c), and by the fact that geometric irreducibility is definable by a
quantifier-free formula in the language of fields (this is well-known and proven in Chapter
IV of [20]).

Henceforth, we will use T to denote the model companion. Also, we will write T∀ for T 0,
sweeping the distinction between domains and fields under the rug.

We make several remarks about the axioms:

Remark 3.4. In the case where Ti is ACVF for i > 1, axiom A1 merely says that K is
algebraically closed, real closed, or p-adically closed, according to whether T1 is ACVF, RCF,
or pCF, respectively.

Remark 3.5. In Axiom A2(m), it suffices to consider the case of smooth V . If V is not
smooth, one can find an open subvariety V ′ of V which is smooth, and which is isomorphic
to an affine variety. (Use the facts that the smooth locus of an irreducible variety is a Zariski
dense Zariski open, and that the affine open subsets of a scheme form a basis for its topology.)
If ϕi(x) is V -dense, then ϕi(x) ∧ “x ∈ V ′” is V ′-dense, essentially by Lemma 2.10(b). Then
applying the smooth case of A2(m) to V ′ yields a point in V ′ satisfying

⋀︁n
i=1 ϕi(x).
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Remark 3.6. In Axiom A2, it suffices to consider V -dense formulas ϕi(x) such that ϕi(L)
defines an open subset of V (L) for any/every L |= Ti extending K ↾ Li. This follows by
Lemma 2.14.

Remark 3.7. We can combine the previous two remarks. Then Lemma 2.12(b), yields the
following restatement of A2(m): if V is a geometrically irreducible m-dimensional smooth
affine variety defined over K, and if ϕi(x) is a quantifier-free Li-formula over K for each
1 ≤ i ≤ n, and if ϕi(Ki) is a non-empty open subset of V (Ki) for any/every Ki |= Ti
extending K ↾ Li, then

⋂︁n
i=1 ϕi(K) ̸= ∅.

Remark 3.8. When every Ti is ACVF, T has the following simpler axiomatization:

1. K is algebraically closed.

2. For 1 ≤ i ≤ n, the ith valuation vi(x) is non-trivial.

3. If V is a smooth irreducible m-dimensional affine variety, and ϕi(x) is a quantifier-free
Li-formula defining a non-empty open subset of V for 1 ≤ i ≤ n, then

⋂︁n
i=1 ϕi(K) is

non-empty.

Indeed, (1) is equivalent to A1 by Remark 3.4. Axiom A2(1) implies (2), because the formula
vi(x) > 0 is A1-dense. If (1) and (2) hold, then K ↾ Li |= ACVF for all i, so we can take
Ki = K in Remark 3.7. Then (3) is equivalent to A2(m) by Remark 3.7.

Condition (3) can be restated even more concisely as follows: for every smooth m-
dimensional variety V , the diagonal map V (K) →

∏︁n
i=1 V (K) has dense image in the product

topology, using the topology from the ith valuation for the ith entry in the product. In fact,
in Section 4, we will see that it suffices to check the case of V = A1, the affine line(!)

3.2 Quantifier-Elimination up to Algebraic Covers

As in the previous section, T∀ is the theory of fields with (Ti)∀ structure for each 1 ≤ i ≤ n,
and T is the model companion of T∀.

Lemma 3.9. Let K be a model of T∀. Let L and L′ be two models of T∀ extending K.
Suppose that K is relatively separably closed in L or L′ (Definition 2.6). Then L and L′ can
be amalgamated over K, and this can be done in such a way that L and L′ are algebraically
independent over K.

Proof. For each 1 ≤ i ≤ n, we can find some amalgam Mi |= (Ti)∀ of L ↾ Li and L′ ↾ Li over
K ↾ Li, by Corollary 2.5. The resulting compositums LL′ must be isomorphic on the level of
fields, by Fact 2.7. Consequently, we can endow the canonical field LL′ with a (Ti)∀-structure
extending those on L and L′, for each i. This gives LL′ the structure of a T∀-model. And L
and L′ are algebraically independent inside LL′.

Corollary 3.10. Let K be a model of T∀ and let L be a model of T extending K. Then K
is relatively algebraically closed in L if and only if K satisfies axiom A1. (In particular, this
does not depend on L.)
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Proof. If K satisfies axiom A1, then obviously K is relatively algebraically closed in L.
Conversely, suppose that K is relatively algebraically closed in L but does not satisfy A1.
Then there is some model L′ of T∀ extendingK, with L′/K finite and L′ ̸= K. By Lemma 3.9,
we can amalgamate L and L′ over K. Embed the resulting compositum LL′ in a model M
of T . Because T is model-complete, L ⪯ M . Now choose some α ∈ L′ \K. The irreducible
polynomial of α over K has a root in M , and hence has a root in L, contradicting the fact
that K is relatively algebraically closed in L.

Corollary 3.11. Let K be model of T∀, and suppose K satisfies A1. Then the type of K is
determined, i.e., if L and L′ are two models of T extending K, then K has the same type in
L and L′. Equivalently, the diagram of K implies the elementary diagram of K, modulo the
axioms of T .

Proof. By Corollary 3.10, K is relatively algebraically closed in L and L′. So we can amal-
gamate L and L′ over K, by Lemma 3.9. IfM is a model of T extending LL′, then by model
completeness L ⪯M ⪰ L′, ensuring that K has the same type in each.

Corollary 3.12. In models of T , field-theoretic algebraic closure agrees with model-theoretic
algebraic closure.

Proof. Let M be a model of T . Let S be a subset of M . Let K be the field-theoretic
algebraic closure of S, i.e., the relative algebraic closure of S in M . By Lemma 3.9, we can
amalgamate M and a copy M ′ of M over K in a way that makes M and M ′ be algebraically
independent over K. Embedding MM ′ into a model N of T , and using model completeness,
we getM ⪯ N ⪰M ′. Now acl(S) is the same when computed inM , N , orM ′. In particular,
acl(S) ⊆M ∩M ′. Since M and M ′ are algebraically independent over K and K is relatively
algebraically closed in each, M ∩M ′ = K. Thus acl(S) ⊆ K. Obviously K ⊆ acl(S).

For K a field, let Abs(K) denote the algebraic closure of the prime field in K.

Corollary 3.13. Two modelsM1,M2 |= T are elementarily equivalent if and only if Abs(M1)
and Abs(M2) are isomorphic as models of T∀.

Proof. If M1 and M2 are elementarily equivalent, we can embed them as elementary sub-
structures into a third model M3 |= T . Then Abs(M1) = Abs(M3) = Abs(M2), so certainly
Abs(M1) is isomorphic to Abs(M2).

Conversely, suppose Abs(M1) ∼= Abs(M2). Then, as Abs(M1) is relatively algebraically
closed in M1 and in M2, it follows by Corollaries 3.10 and 3.11 that we can amalgamate M1

and M2 over Abs(M1). Embedding the resulting compositum into a model of T and using
model completeness, we get M1 ≡M2.

Corollary 3.14. Suppose T1 ̸= ACVF and Ti is ACVF for i > 1. Consider the expanded
theory where we add in symbols for every zero-definable T1-definable function. (This makes
sense because if M |= T , then M ↾ L1 |= T1, by Remark 3.4.) Then T has quantifier-
elimination.
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Proof. After adding in these new symbols, a substructure is the same as a subfield K closed
under all T1-definable functions. As RCF and pCF have definable Skolem functions, this is
equivalent to K ↾ L1 being a model of T1, which is equivalent to K satisfying axiom A1, as
noted in Remark 3.4. Now apply Corollary 3.11 to get substructure completeness, which is
the same thing as quantifier-elimination.

This probably also holds if Ti ̸= ACVF for more than one i, though the extra functions
would become partial functions.

Without adding in extra symbols, quantifier elimination fails. But we still get quantifier-
elimination up to algebraic covers, in a certain sense.

Theorem 3.15. In T , every formula ϕ(x⃗) is equivalent to one of the form

∃y : (P (y, x⃗) = 0 ∧ ψ(y, x⃗)) , (1)

where y is a singleton, ψ(y, x⃗) is quantifier-free, and P (y, x) is a polynomial in Z[x⃗, y], monic
as a polynomial in y.

Proof. Let Σ(x⃗) be the set of all formulas of the form (1). First we observe that Σ(x⃗) is
closed under disjunction, because

(∃y : P (y, x⃗) = 0 ∧ ψ(y, x⃗)) ∨ (∃y : Q(y, x⃗) = 0 ∧ ψ′(y, x⃗))

is equivalent to
∃y : P (y, x⃗)Q(y, x⃗) = 0 ∧ ψ′′(y, x⃗),

where ψ′′(y, x⃗) is the quantifier-free formula

(P (y, x⃗) = 0 ∧ ψ(y, x⃗)) ∨ (Q(y, x⃗) = 0 ∧ ψ′(y, x⃗)) .

Now given a formula ϕ(x⃗), not quantifier-free, let Σ0(x⃗) be the set of formulas in Σ(x⃗)
which imply ϕ(x⃗), i.e.,

Σ0(x⃗) = {σ(x⃗) ∈ Σ(x⃗) | T ⊢ ∀x⃗ : (σ(x⃗) → ϕ(x⃗))}.

Of couse Σ0(x⃗) is closed under disjunction. It suffices to show that ϕ(x⃗) implies a finite
disjunction of formulas in Σ0(x⃗), because then ϕ(x⃗) implies and is implied by a formula in
Σ0(x⃗).

Suppose for the sake of contradiction that ϕ(x⃗) does not imply a finite disjunction of
formulas in Σ0(x⃗). Then the partial type

{ϕ(x⃗)} ∪ {¬σ(x⃗) : σ(x⃗) ∈ Σ0(x⃗)}

is consistent with T . Let M be a model of T containing a tuple α⃗ realizing this partial type.
So ϕ(α⃗) holds in M , but not because of any formula of the form (1).

Let R be the ring Z[α⃗] ⊆ M . Let K ⊆ M be the smallest perfect field containing R;
note that M itself is perfect so this makes sense. Indeed, if every Ti is ACVF, then M is
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algebraically closed by Remark 3.4. Otherwise, one of the Ti’s is RCF or pCF, making M
be characteristic zero.

Let K be the relative algebraic closure of K (or equivalently, α⃗) insideM . By Corollaries
3.10 and 3.11, the diagram of K implies the elementary diagram of K. In particular, the
diagram of K implies ϕ(α⃗). By compactness, the diagram of L implies ϕ(α⃗), for some finite
extension L of K. Because K is perfect, L = K(β) for some singleton β. Multiplying β by
an appropriate element from R, we may assume that β is integral over R. Note that L is
perfect, because it is an algebraic extension of a perfect field, and in fact L is the smallest
perfect field containing α⃗ and β.

As the diagram of L implies ϕ(α⃗), so does the diagram of Z[α⃗, β], by Lemma 3.16 below.
By compactness, there is some quantifier-free formula ψ(y, x⃗) which is true of (β, α⃗) such
that

T ⊢ ∀y ∀x⃗ : ψ(y, x⃗) → ϕ(x⃗).

Let P (y, x⃗) be the polynomial witnessing integrality of β over R. Then clearly

T ⊢ ∀x⃗ : (∃y : P (y, x⃗) = 0 ∧ ψ(y, x⃗)) → ϕ(x⃗),

so ∃y : P (y, x⃗) = 0 ∧ ψ(y, x⃗) is in Σ0(x⃗), contradicting the fact that it holds of α⃗ in M .

Lemma 3.16. Let M be a model of T and R be a subring of M . Let K ⊆ M be the
smallest perfect field containing R. Let α be a tuple from R, and ϕ(x) be a formula such
that M |= ϕ(α). If T and the diagram of K imply ϕ(α), then T and the diagram of R imply
ϕ(α).

Proof. If not, then there is a model N of T extending R, in which ϕ(α) fails to hold. This
model N must not satisfy the diagram of K. Now N certainly contains a copy of the pure
field K, because the fraction field and perfect closure of a domain are unique. Consequently,
there must be at least two ways to extend the T -structure from R to K, one coming from M
and one coming from N . But this is absurd, because each valuation/ordering/p-valuation
on R extends uniquely to K, by quantifier elimination in the Ti.

3.3 Simplifying the axioms down to curves

Lemma 3.17. Let K be an ℵ1-saturated and ℵ1-strongly homogeneous model of T∀ satisfying
axioms A1 and A2(1). Let M be a monster model of T extending K. Let S be a countable
subset of K and α be a countable tuple from M. Then tp(α/S) is realized in K.

Proof. Consider the following statements:

� Ak: if α is a finite tuple from M, with tr. deg(α/S) ≤ k, then qftp(α/S) is realized in
K.

� Bk: if α is a countable tuple from M, with tr. deg(α/S) ≤ k, then qftp(α/S) is realized
in K.
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� Ck: if α is a countable tuple from M, with tr. deg(α/S) ≤ k, then tp(α/S) is realized
in K.

There are several implications between these statements:

� For each k, Ak implies Bk, by compactness.

� For each k, Bk implies Ck. Indeed, if α is as in Ck, apply Bk to α′ := acl(αS) and use
Corollary 3.11.

� Ck for all k implies the statement of the Lemma, by compactness.

Finally, observe that Ck and Cj imply Ck+j: if α has transcendence degree k + j over
S, let β be a subtuple of α with transcendence degree k. Then tr. deg(β/S) ≤ k and
tr. deg(α/βS) ≤ j. By Ck, we can apply an automorphism over S to move β inside K. By
Cj applied to tp(α/βS), we can then find a further automorphism moving α inside K.

Lemma 3.2 and ℵ1-saturation of K imply A1. By the above comments, this implies C1,
which in turn implies C1+1, C3, C4, . . .. By compactness, the Lemma is true.

Theorem 3.18. A field K |= T∀ is existentially closed, i.e., a model of T , if and only if it
satisfies A1 and A2(1).

Proof. If K is existentially closed, then certainly K satisfies A1 and A2(1). Conversely,
suppose K satisfies A1 and A2(1). Let K ′ be an ℵ1-saturated ℵ1-strongly homogeneous
elementary extension of K. As K ≡ K ′, it suffices to show that K ′ |= T . Let M be a
monster model of T , extending K ′. It suffices to show that K ′ ⪯ M. It suffices to show that
if D is a non-empty K ′-definable subset of M, then D intersects K ′. Let S be a finite subset
of K ′ that D is defined over, and let α be a point in D. By Lemma 3.17, tp(α/S) is realized
in K ′. Such a realization must live in D.

Consequently, in checking the axioms one only needs to consider curves. In fact, one only
needs to consider smooth curves, by Remark 3.5.

4 A Special Case

In the case where almost every Ti is ACVF, the axioms can be drastically simplified.

Theorem 4.1. Suppose T2, . . . Tn are all ACVF. A model K |= T∀ is existentially closed
(i.e., a model of T ) if and only if the following three conditions hold:

� K ↾ L1 |= T1

� Each valuation v2, . . . , vn is non-trivial.

� Ti and Tj do not induce the same topology on K, for i ̸= j.
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For example, if we are considering the theory of ordered valued fields, this says that
a model is existentially closed if and only if the field is real closed, the valuation is non-
trivial, and the ordering and valuation induce different topologies on K. A field with n
valuations is existentially closed if and only if it is algebraically closed and the valuations
induce distinct non-discrete topologies on the field. Using this, we can easily see that Qalg

with n distinct valuations is an existentially closed field with n valuations. This surprised
me, since I expected the Rumely Local-Global principle (Theorem 1 of [18]) to be necessary
in the proof.

Theorem 4.1 is not model theoretic, and is presumably known to experts in algebraic
geometry or field theory.

In the proof of Theorem 4.1, we will use A. L. Stone’s Approximation Theorem ([19],
Theorem 3.4):

Fact 4.2. Let K be a field. Let t1, . . . , tn be topologies on K arising from orderings and
non-trivial valuations. Suppose that ti ̸= tj for i ̸= j. Then the {ti} are independent, i.e., if
Ui is a non-empty ti-open subset of K for each i, then

⋂︁n
i=1 Ui is non-empty. Equivalently,

the diagonal map K →
∏︁n

i=1K has dense image with respect to the product topology, using
the topology ti for the ith term in the product.

Note that Fact 4.2 does not contradict the existence of valuations which refine each other,
because two non-trivial valuations which refine each other always induce the same topology.
A self-contained model-theoretic proof of Stone Approximation is given in [17], Theorem 4.1.

Also, we will need the following straightforward lemma.

Lemma 4.3. Let K be a model of T . Let C be an affine smooth curve over K, geometrically
irreducible. Let C be the canonical smooth projective model (as an abstract variety). For each
i, let ϕi(x) be a C-dense quantifier-free Li-formula with parameters from K. Then we can
find a K-definable rational function f : C → P1 which is non-constant, and has the property
that the divisor f−1(0) is a sum of distinct points in

⋂︁n
i=1 ϕi(K), with no multipliticities. (In

particular, the support of the divisor contains no points from C(Kalg) \C(K) and no points
from C \ C.)

Proof. Let g be the genus of C.

Claim 4.4. We can find g + 1 distinct points p1, . . . , pg+1 in
⋂︁n
i=1 ϕi(K) ⊆ C(K).

Proof. By Axiom A2, there is some p1 ∈
⋂︁n
i=1 ϕi(K). Replace each ϕi(x) with ϕi(x)∧x ̸= p1

and repeat. This gives p2 ∈
⋂︁n
i=1 ϕi(K) with p2 ̸= p1. Repeat g − 1 more times. □Claim

Now letD be the divisor
∑︁

j pj on the curve C. By Riemann-Roch, l(D) ≥ degD+1−g =
2. The space of global sections of O(D) is a K-definable1 vector space of dimension at least
2. By Hilbert’s Theorem 90, this vector space has a K-definable basis (see Remark 2.13).

1If M is a monster model of ACF and M extends K, then the space of global sections Γ(C,O(D))
is M -definable and Aut(M/K)-invariant, hence K-definable. This can be made precise by choosing some
Aut(M/K)-invariant coding of rational functions on C by tuples in M .
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Thinking of the sections of O(D) as functions with poles no worse than D, we can find a
non-constant K-definable meromorphic function h, with (h) − D ≥ 0. Then the divisor of
poles of h is a subset of D, so every pole of h has multiplicity 1 and is in

⋂︁n
i=1 ψi(K). Take

f = 1/h.

Proof (of Theorem 4.1). If K |= T , then K satisfies Axioms A1 and A2. Axiom A1 implies
that K is algebraically closed or real closed or p-adically closed (Remark 3.4). As K is
existentially closed, it is also reasonably clear that all the named valuations must be non-
trivial. Consequently K ↾ L1 |= T1 and v2, . . . , vn are non-trivial. Lastly, suppose Ti and
Tj induce the same topology on K for some i. For notational simplicity assume i = 1 and
j = 2. As the topologies are Hausdorff, we can find non-empty U1 and U2 with U1 a T1-open,
U2 a T2-open, and U1 ∩ U2 = ∅. Since the topologies from T1 and T2 have a basis of open
sets consisting of quantifier-free definable sets, we can shrink U1 and U2 a little, and assume
U1 is quantifier-free definable in L1 and U2 is quantifier-free definable in L2. Now U1 and U2

are both Zariski dense in the affine line, so the formulas defining U1 and U2 are A1-dense.
Hence, by Axiom A2, U1 must intersect U2, a contradiction.

The other direction of the theorem is harder. We proceed by induction on n, the number
of orderings and valuations. The base case where n = 1 is easy/trivial, so suppose n > 1.
Suppose K satisfies the assumptions of the Theorem. By Fact 4.2, we know that the n
different topologies on K1 are independent. The first bullet point ensures that K satisfies
axiom A1. By Theorem 3.18, it suffices to prove axiom A2(1). By Remark 3.7, we merely
need to prove the following:

Let C be a geometrically irreducible smooth affine curve defined over K. Let
ϕ1(x) be a quantifier-free L1-formula with parameters from K such that ϕ1(K)
is a non-empty open subset of C. For 2 ≤ i ≤ n, let ϕi(x) be a quantifier-free
Li-formula with parameters from K such that ϕi(x) defines a non-empty open
subset of C(Kalg) with respect to any/every extension of the ith valuation vi
from K to Kalg. THEN

⋂︁n
i=1 ϕi(K) is non-empty.

Here we are using the facts that K ↾ L1 is already a model of T1, and that for i > 1, the
field Kalg with any extension of vi will be a model of Ti = ACVF.

For 1 < i ≤ n, choose some extension v′i of the valuation vi to K
alg. The valuations

v′2, . . . , v
′
n are independent on Kalg.

Claim 4.5. K is dense in Kalg with respect to the v′i-adic topology on Kalg.

Proof. The claim is trivial if all the Ti are ACVF, in which caseK = Kalg. So we may assume
characteristic zero. It suffices to show that K is dense in every finite Galois extension of K.2

Let L/K be a finite Galois extension. We can write L as K(ζ) for some singleton ζ. Let
P (X) ∈ K[X] be the minimal polynomial of ζ over K. The function x ↦→ P (x) from K to K
is finite-to-one, so it has infinite image. As K is a model of ACVF, pCF, or RCF, we see by

2Note that the value group v′i(K) is cofinal in v′i(K
alg), so e.g. the vi-adic topology on K is the restriction

of the v′i-adic topology on Kalg to K. Various pathologies are thus avoided.
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Fact 2.1 that the image P (K) of this map contains an open subset of K with respect to the
T1-topology. Because the vi-adic topology on K is independent from the T1-topology on K,
we can find elements of P (K) of arbitrarily high vi-valuation. By the cofinality of the value
groups, for every γ ∈ v′i(K

alg), we can find an x ∈ K with vi(P (x)) > γ. Let ζ1, . . . , ζm ∈ L
be the conjugates of ζ over K. Then we have just seen that for any γ ∈ v′i(K

alg), we can
find an x ∈ K with

γ < v′i(P (x)) =
n∑︂

i=m

v′i(x− ζi).

This implies that at least one of the ζi’s is in the topological closure of K with respect to
v′i. Consequently, the v′i-topological closure of K in L must contain K[ζi] for some i. But
K[ζi] = L, so K is v′i-dense in L. □Claim

Now suppose we are given a geometrically irreducible smooth affine curve C defined over
K, and we have quantifier-free Li-formulas ϕi(x) with parameters from K, such that ϕ1(K)
is a non-empty open subset of C(K), and for 1 < i ≤ n, ϕi(K

alg) is a non-empty v′i-open
subset of C(Kalg). (Here we are interpreting ϕi(K

alg) using v′i.) By the inductive hypothesis,
K ↾

⋃︁
i<n Li is an existentially closed model of

⋃︁
i<n(Ti)∀. Applying Lemma 4.3 to it, we can

find a K-definable rational function f : C → P1, whose divisor of zeros has no multiplicities
and consists entirely of points in

⋂︁
i<n ϕi(K) (and no points at infinity and no points in

C(Kalg) \ C(K)). Write this divisor as
∑︁m

j=1(Pj), where the Pj are m distinct points in⋂︁
i<n ϕi(K). Note that m is the degree of f .

Claim 4.6. There is a T1-open neighborhood U ⊆ K of zero such that for every y ∈ U , the
divisor f−1(y) consists of m distinct points in ϕ1(K). In particular, it contains no points in
C(Kalg) \ C(K) and no points in C \ C.

Proof. Because the Pj are distinct, they have multiplicity one, so f does not have a critical
point at any of the Pj’s. Consequently, by the implicit function theorem there is a T1-open
neighborhood Wj ⊆ C(K) of Pj such that f induces a T1-homeomorphism from Wj to an
open neighborhood of 0. By shrinking Wj if necessary, we may assume that Wj ⊆ ϕ1(K),
and that Wj ∩Wj′ = ∅ for j ̸= j′. Now let U =

⋂︁m
j=1 f(Wj). This is an open neighborhood

of 0 in the affine line K1. And if y ∈ U , then f−1(y) contains at least one point in each Wj.
Since the Wj are disjoint, these points are distinct. Since f is a degree-m map, this exhausts
the divisor f−1(y). □Claim

Claim 4.7. For 1 < i < n, there is a γi ∈ vi(K) such that if y ∈ Kalg and v′i(y) > γi, then
f−1(y) are all in ϕi(K

alg).

Proof. Use the same argument as Claim 4.6. □Claim

By Claim 4.5, K is dense in Kalg with respect to the v′n-adic topology. Also, by assump-
tion, ϕn(x) interpreted in (Kalg, v′n) yields a non-empty v′n-open subset W ⊆ C(Kalg). Since
f is finite-to-one, the image f(W ) is an infinite subset of P1(Kalg), hence it has non-empty
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v′n-interior. Let V be a v′n-open subset of P1(Kalg) contained in f(W ). Now, as K is v′n-
adically dense in Kalg, V must intersect K. In particular, V ∩ K is a non-empty vn-adic
open subset of K. By independence of the topologies, we can find a y in A1(K) such that

� y is in U , the T1-open neighborhood of 0 from Claim 4.6.

� vi(y) > γi, for 1 < i < n, where the γi are from Claim 4.7

� y is in V ∩K.

Having chosen such a y, we know by Claim 4.6 that f−1(y) consists of m distinct points in
ϕ1(K). In particular, each point in f−1(y) is a point of C(K). And by Claim 4.7, each of
these points also belongs to ϕi(K

alg), hence satisfies ϕi(−), for i < n. Finally, because y is
in V ∩ K, y is in the image of ϕn(K

alg) under f . So there is some x ∈ ϕn(K
alg) mapping

to y. But we said that every point in C(Kalg) mapping to y is already in C(K) and even in⋂︁
i<n ϕi(K). Thus

x ∈ ϕn(K
alg) ∩

⋂︂
i<n

ϕi(K) =
n⋂︂
i=1

ϕi(K).

In particular some point in C(K) satisfies
⋀︁n
i=1 ϕi(x), and the theorem is proven.

5 Keisler Measures

To establish NTP2 and analyze forking and dividing in T , we need the following tool.

Theorem 5.1. Let T be one of the model companions from §3. For each K |= T∀ that
is a perfect field, each formula ϕ(x) and each tuple a from K, we can assign a number
P (ϕ(a), K) ∈ [0, 1] such that the following conditions hold:

� If K is held fixed, the function P (−, K) is a Keisler measure on the space of completions
of the quantifier-free type of K. Thus

P (ϕ(a), K) + P (ψ(b), K) = P (ϕ(a) ∧ ψ(b), K) + P (ϕ(a) ∨ ψ(b), K)

P (¬ϕ(a), K) = 1− P (ϕ(a), K)

for sentences ϕ(a) and ψ(b) over K. And if ϕ(a) holds in every model of T extending
K, then P (ϕ(a), K) = 1. For example, if ϕ(x) is quantifier-free, then P (ϕ(a), K) is 1
or 0 according to whether or not K |= ϕ(a). And if K satisfies axiom A1 of §3.1, then
P (ϕ(a), K) ∈ {0, 1} for every ϕ(a), by Corollary 3.11.

� Isomorphism invariance: if K,L are two perfect fields satisfying T∀, and f : K → L is
an isomorphism of structures, then P (ϕ(a), K) = P (ϕ(f(a)), L) for every K-sentence
ϕ(a).
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� Extension invariance: if K0 ⊆ K are perfect fields satisfying T∀, and K0 is rela-
tively algebraically closed in K, and ϕ(a) is a formula with parameters from K0, then
P (ϕ(a), K0) = P (ϕ(a), K).

� Density: if K |= T∀ is a perfect field and ϕ(a) is a K-formula, and if M |= ϕ(a) for
at least one M |= T extending K, then P (ϕ(a), K) > 0. In other words, the associ-
ated Keisler measure is spread out throughout the entire Stone space of completions of
qftp(K).

5.1 The Algebraically Closed Case

We first prove Theorem 5.1 in the case where every Ti is a model of ACVF, i.e., the case of
existentially closed fields with n valuations. Define P (ϕ(a), K) as follows. Fix some algebraic
closure Kalg of K. For each 1 ≤ i ≤ n, let v′i be an extension to Kalg of the ith valuation
vi on K. Choose automorphisms σ1, . . . , σn ∈ Gal(Kalg/K) randomly with respect to Haar
measure on Gal(Kalg/K). Then

Kσ1,...,σn := (Kalg, v′1 ◦ σ1, v′2 ◦ σ2, . . . , v′n ◦ σn)

is a model of T∀ satisfying axiom A1 of §3.1. In particular, whether or not ϕ(a) holds in a
model of T extending Kσ1,...,σn does not depend on the choice of the model, by Corollary 3.11.
Define P (ϕ(a), K) to be the probability that ϕ(a) holds in any/every model of T extending
Kσ1,...,σn . This probability exists, i.e., the relevant event is measurable, because whether or
not ϕ(a) holds is determined by the behavior of the valuations on some finite Galois extension
L/K, by virtue of Theorem 3.15.

Note that the choice of the v′i does not matter. If v is a valuation on K and w1 and w2

are two extensions of v to Kalg, then there is a τ in Gal(Kalg/K) such that w1 = w2 ◦ τ .
Thus, if σ is a randomly chosen element of Gal(Kalg/K), then w1 ◦ σ and w2 ◦ σ have the
same distribution. Consequently the choice of the valuations v′i does not effect the resulting
value of P (ϕ(a), K).

So we have a well-defined number P (ϕ(a), K), and it is defined canonically. The first two
bullet points of Theorem 5.1 are therefore clear. The density part can be seen as follows:
suppose M |= ϕ(a) for some M |= T extending K. Let Kalg be the algebraic closure of K
in M . For the v′i’s, take the restrictions of the valuations on M to Kalg. By Theorem 3.15,
there is a field K ≤ L ≤ Kalg with L/K a finite Galois extension, such that ϕ(a) is implied
by T and the diagram of L. Specifically, write ϕ(a) as ∃y : Q(y; a) = 0 ∧ ψ(y; a), and let L
be the splitting field of the polynomial Q(X; a) ∈ K[X]. Now with probability 1/[L : K]n,
every σi will restrict to the identity on L. Consequently, Kσ1,...,σn will be a model of T∀
extending L, so in any model M of T extending Kσ1,...,σn , ϕ(a) will hold. So ϕ(a) holds with
probability at least 1/[L : K]n, and consequently P (ϕ(a), K) ≥ 1/[L : K]n.

It remains to verify the extension invariance part of Theorem 5.1. Let K0 ≤ K be
an inclusion of perfect fields, with K0 relatively algebraically closed in K. Let ϕ(a) be
a formula with parameters a from K0. As in the previous paragraph, write ϕ(a) as ∃y :
Q(y; a) = 0 ∧ ψ(y; a) and let L0 be the splitting field of Q(y; a) over K0. At present L0 is
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nothing but a pure field. Write L0 = K0(β) for some singleton β ∈ L0, and let Q(X) be
the irreducible polynomial of β over K0. Let L = L0K = K(β); this is a Galois extension
of K. There are only finitely many ways of factoring Q(X) in Kalg, so in each way of
factoring Q(X), the coefficients come from Kalg

0 . In particular, if Q(X) can be factored
over K, the coefficients would belong to Kalg

0 ∩ K = K0. So Q(X) is still irreducible over
K. Consequently [L : K] = degQ(X) = [L0 : K0]. Now there is a natural restriction map
Gal(L/K) → Gal(L0/K0). It is injective because an element of Gal(K(β)/K) is determined
by what it does to β. Since Gal(L/K) has the same size as Gal(L0/K0), the restriction
map must be an isomorphism. Consequently, if τ is chosen from Gal(L/K) randomly, its
restriction to L0 is a random element of Gal(L0/K0). Consequently, if σ is a random element
of Gal(Kalg/K) and σ0 is a random element of Gal(Kalg

0 /K0), then σ ↾ L0 and σ0 ↾ L0 have
the same distribution, namely, the uniform distribution on Gal(L0/K0). From this, it follows
easily that P (ϕ(a), K) = P (ϕ(a), K0).

This completes the proof of Theorem 5.1 when every Ti is ACVF. The other cases are
more complicated, though as a consolation all fields are characteristic zero, hence perfect.

A first attempt at defining P (ϕ(a), K) is as follows: fix some algebraic closure Kalg of
K. For each i such that Ti is RCF, let Ki be a real closure of (K,<i) inside Kalg. For
each i such that Ti is pCF, let Ki be a p-adic closure of (K, vi) inside Kalg. For each i
such that Ti is ACVF, let Ki be K

alg with some valuation extending vi. In each case, there
is a choice, but any two choices are related by an element of Gal(Kalg/K). Now choose
σ1, . . . , σn ∈ Gal(Kalg/K) randomly. For each i, consider σi(Ki), which is (usually) a model
of Ti extending K. Let K ′ be the field

K ′ =
n⋂︂
i=1

σi(Ki).

There is an obvious way to give K ′ the structure of a T∀-model. If we knew that K ′ satisfies
condition A1 of §3.1 with high probability, we could define P (ϕ(a), K) to be the probability
that ϕ(a) holds in any/every model of T extending K ′. Unfortunately, K ′ usually satisfies
condition A1 with probability zero. Instead, we will proceed by repeating the above proce-
dure with K ′ in place of K, getting a third field K ′′. Iterating this, we get an increasing
sequence K ⊆ K ′ ⊆ K ′′ ⊆ · · · ⊆ K(n) ⊆ · · · of T∀-structures on subfields of Kalg. The union
K∞ =

⋃︁∞
n=1K

(n) does actually turn out to satisfy axiom A1 with probability 1, and we let
P (ϕ(a), K) be the probability that ϕ(a) holds in any/every model of T extending K∞.

The rest of this section will make this construction more precise, and verify that it satisfies
the requirements of Theorem 5.1.

5.2 The General Case

All fields will be perfect, unless stated otherwise. All models of T∀ and (Ti)∀ will be (perfect)
fields, unless stated otherwise. Galois extensions need not be finite Galois extensions.

We start off with some easy but confusing facts that will be needed later.
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Lemma 5.2. Let L/K be a Galois extension of fields, and suppose K has the structure of a
(Ti)∀ model (but L does not). The following are equivalent

(a) For every F , if F is a model of (Ti)∀ extending K, and F is a subfield of L, then F = K.

(b) There is a model M |= Ti extending K, such that M ∩ L = K.

(c) For every model M |= Ti extending K, M ∩ L = K.

Note that it makes sense to talk about whether M ∩ L = K, because L/K is Galois.

Proof. The equivalence of (b) and (c) follows from quantifier elimination in Ti. Indeed, the
statement that M ∩ L = K is equivalent to the statement that for each x ∈ L \ K, the
irreducible polynomial of x over K has no zeros in M . This is a conjunction of first order
statements about K, so it holds in one choice of M if and only if it holds in another choice
of M .

Suppose (a) holds. Let M be a model of Ti extending K. Taking F =M ∩L, (a) implies
that M ∩ L = K. So (a) implies (c).

Conversely, suppose (a) does not hold. Let F witness a contradiction to (a), so K ⊊ F ⊆
L, and F is a model of (Ti)∀ extending K. Let M be a model of Ti extending F and hence
K. Then M ∩ L contains F , contradicting (c).

Definition 5.3. Say that K is locally Ti-closed in L if it satisfies the equivalent conditions
of the previous lemma.

Definition 5.4. Let L/K be a Galois extension of fields, and suppose K has the structure
of a (Ti)∀-model (but L does not). Let Ci(L/K) denote the set of models of (Ti)∀ which
extend K, are subfields of L, and are locally Ti-closed in L.

The subscript on Ci is present so that Ci(L/K) will be unambiguous when K is a model
of T∀, in addition to being a model of (Ti)∀.

There is a natural action of Gal(L/K) on Ci(L/K).

Lemma 5.5. Suppose L/K is a Galois extension of fields, and K |= (Ti)∀.

(a) The action of Gal(L/K) on Ci(L/K) has exactly one orbit.

(b) Suppose K ′ is a model of (Ti)∀ extending K, and L′ is a field extension of L and K ′,
with L′ Galois over K ′. If F ∈ Ci(L

′/K ′), then F ∩ L ∈ Ci(L/L ∩K ′).

Proof. (a) Note that Ci(L/K) is non-empty by a Zorn’s lemma argument and condition (a)
of Lemma 5.2. Now suppose F and F ′ are two elements of Ci(L/K). By quantifier
elimination in Ti, we can amalgamate F and F ′ over K. Thus, we can find a model
M |= T extending F , and an embedding ι : F ′ → M which is the identity on K.
Choosing some way of amalgamating M and L as fields, we get that ι(F ′) ⊆ L ⊇ F ,
because of L/K being Galois. The compositum ι(F ′)F is a subfield of L with a (Ti)∀-
structure extending that on F and ι(F ′), so by local Ti-closedness of ι(F ′) and F
in L, ι(F ′) = ι(F ′)F = F . It follows that F ′ and F are isomorphic over K. This
isomorphism must extend to an automorphism of L, because L/K is Galois. So some
automorphism on L/K maps F ′ to F (as (Ti)∀-structures).
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(b) Let M be a model of Ti extending F . Choose some way of amalgamating M with L′.
ThenM ∩L′ = F by (c) of Lemma 5.2. Therefore, M ∩L =M ∩L′∩L = F ∩L. So by
(b) of Lemma 5.2, F ∩ L is locally Ti-closed in L. Therefore it is in Ci(L/L ∩K ′).

Now we turn our attention from Ti to T .

Definition 5.6. Let K |= T∀ and let L be a pure field that is a Galois extension of K. Let
S(L/K) be the set of all K ′ |= T∀ extending K, with K ′ a subfield of L. In other words, an
element of S(L/K) is a subfield F of L, endowed with a T∀-structure, such that F ⊇ K and
the structure on F extends the structure on K.

There is a natural partial order on S(L/K) coming from inclusion of substructures.
There is also a natural action of Gal(L/K) on S(L/K). One should think of S(L/K) as
the set of states in a Markov chain, specifically the random process described at the end of
the previous section.

Definition 5.7. SupposeK |= T∀ and L/K is a Galois extension ofK. For 1 ≤ i ≤ n, choose
some Li ∈ Ci(L/K). Choose σ1, . . . , σn ∈ Gal(L/K) independently and randomly, using
Haar measure on Gal(L/K). Let F be

⋂︁n
i=1 σi(Li), with the obvious choice of a T∀ structure.

So F is a random variable with values in S(L/K). Let µ1
L/K be the probability distribution

on S(L/K) obtained in this way. The choice of the Li’s is irrelevant, by Lemma 5.5(a).

The superscript 1 is to indicate that this is the first step of the Markov chain.

Lemma 5.8. Suppose L/K is finite. Then every event (subset of S(L/K)) which has
positive probability with respect to µ1

L/K has probability at least 1/mn, where m = [L : K].

Proof. The only randomness comes from the σi’s. Each element of Gal(L/K) has an equal
probability under Haar measure, and this probability is 1/m. Since the σi’s are chosen
independently, each choice of the σi’s has probability 1/mn of occurring.

Lemma 5.9. Suppose L/K is finite, and F is a maximal element of S(L/K). Then
µ1
L/K({F}) > 0.

Proof. For each i, let Mi be a model of Ti extending F ↾ Li, and choose some way of
amalgamating Mi and L as fields over F . Let Fi = L ∩ Mi. Of course Fi ⊇ F . By
Lemma 5.2(b), Fi ∈ Ci(L/K). Let F ′ =

⋂︁n
i=1 Fi. Then F ′ ∈ S(L/K) and F ′ extends

F , so F = F ′ by maximality of F . Now if we choose σ1, . . . , σn ∈ Gal(L/K) randomly,
then

⋂︁n
i=1 σi(Fi) is distributed according to µ1

L/K . Since L/K is finite, there is a positive

probability that σi = 1 for every i, in which case
⋂︁n
i=1 σi(Fi) = F ′ = F .

Lemma 5.10. Let L/K be a Galois extension, and K be a model of T∀. Let K ′ be a
model of T∀ extending K. Let L′ be a field extending L and K ′, with L′ Galois over K ′. If
F ∈ S(L′/K ′) is distributed randomly according to µ1

L′/K′, then F ∩L is distributed randomly

according to µ1
L/L∩K′.
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Proof. For 1 ≤ i ≤ n, choose some Fi ∈ Ci(L
′/K ′). By Lemma 5.5(b), Fi ∩L is in Ci(L/L∩

K ′).

Claim 5.11. If we choose σ from Gal(L′/K ′) randomly using Haar measure, then σ ↾ L is
also randomly distributed in Gal(L/L ∩K ′) with respect to Haar measure.

Proof. If Π denotes the image of the restriction homomorphism Gal(L′/K ′) → Gal(L/L ∩
K ′), then the fixed field of Π is clearly L ∩ dcl(K ′) = L ∩ K ′ (all fields are perfect). By
Galois theory, Π = Gal(L/L ∩K ′), and the restriction homomorphism is surjective. □Claim

From the Claim, we conclude that if the σi are distributed randomly from Gal(L′/K ′),
then σi ↾ L are distributed randomly from Gal(L/L ∩K ′). Taking F =

⋂︁n
i=1 σi(Fi), we get

F distributed according to µ1
L′/K′ . But

F ∩ L =
n⋂︂
i=1

(σi ↾ L)(Fi ∩ L)

is then distributed according to µ1
L/L∩K′ , because Fi ∩ L ∈ Ci(L/(K

′ ∩ L)) and σi ↾ L is

distributed according to Haar measure on Gal(L/L ∩K ′).

Definition 5.12. Let L/K be a Galois extension, and K be a model of T∀. Define a series
of distributions {µiL/K}i<ω on S(L/K) as follows:

� µ0
L/K assigns probability 1 to {K} ⊆ S(L/K).

� µ1
L/K is as above.

� For i > 0, if we choose F ∈ S(L/K) randomly according to µiL/K , and then choose

F ′ ∈ S(L/F ) ⊆ S(L/K) randomly according to µ1
L/F , then F

′ is distributed according

to µi+1
L/K .

In other words, we are running some kind of Markov chain whose states are the elements
of S(L/K). The transition probabilities out of the state F are given by µ1

L/F , and µ
n
L/K is

the distribution of the Markov chain after n steps.

Lemma 5.13. Let L/K be a finite Galois extension, and K be a model of T∀. Then
limi→∞ µiL/K exists, and the corresponding distribution on S(L/K) is concentrated on the

maximal elements of S(L/K).

Proof. Our finite Markov chain is an absorbing Markov chain, so the limit distribution exists
and is concentrated on the set of absorbing states [13, Theorem 3.1.1]. By Lemma 5.9,
the absorbing states are the maximal elements of S(L/K). Indeed, if F ∈ S(L/K) is not
maximal, then µ1

L/F is not concentrated on {F} by Lemma 5.9, and so F is not an absorbing
state.

We let µ∞
L/K denote the limit distribution on S(L/K).
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Lemma 5.14. Let L/K be a finite Galois extension, and K be a model of T∀. Then every
maximal element of S(L/K) has a positive probability with respect to µ∞

L/K.

Proof. This follows immediately from Lemma 5.9, and the fact that once the Markov chain
reaches a maximal element of S(L/K), it must remain there.

Lemma 5.15. Let L/K be a Galois extension, with K a model of T∀. Let K ′ be a model
of T∀ extending K. Let L′ be a field extending K ′ and L, Galois over K ′. If F is a random
element of S(L′/K ′) distributed according to µiL′/K′, then F ∩ L is distributed according to

µiL/L∩K′.

Proof. We proceed by induction on i. For i = 0, F is guaranteed to be K ′, and F ∩ L is
guaranteed to be K ′ ∩ L, which agrees with µ0

L/L∩K′ .

For the inductive step, suppose we know the statement of the lemma for µi, and prove
it for µi+1. If we let F0 ∈ S(L′/K ′) be chosen according to µiL′/K′ , and we then choose

F ∈ S(L′/F0) ⊆ S(L′/K ′) according to µ1
L′/F0

, then F is randomly distributed according to

µi+1
L′/K′ , by definition of µi+1. Also, F0∩L is distributed according to µiL/L∩K′ , by the inductive

hypothesis. By Lemma 5.10 we know that F ∩ L is distributed according to µ1
L/L∩F0

. In
particular, the distribution of F ∩L only depends on F0∩L. So if we want to sample F ∩L,
we can simply choose F0 ∩ L using µiL/L∩K′ , and can then choose F ∩ L using µ1

L/F0∩L. This

is the recipe for sampling the distribution µi+1
L/K′∩L. So F ∩L is indeed distributed according

to µi+1
L/K′∩L.

Corollary 5.16. When L/K and L′/K ′ are finite Galois extension, Lemma 5.15 holds for
i = ∞.

Definition 5.17. Let K |= T∀ be a perfect field, ϕ(a) be a formula in the language of T
with parameters a from K. Say that a finite Galois extension L/K determines the truth of
ϕ(a) if the following holds: whenever M and M ′ are two models of T extending K, if M ∩L
is isomorphic as a model of T∀ to M ′ ∩ L, then [M |= ϕ(a)] ⇐⇒ [M ′ |= ϕ(a)]. (Note that
the isomorphism class of M ∩L does not depend on how we choose to form the compositum
ML.)

For every formula ϕ(a), there is some finite Galois extension L/K which determines the
truth of ϕ(a). Namely, use Theorem 3.15 to write ϕ(a) in the form ∃y : Q(y; a) = 0∧ψ(y; a),
and take L to be the splitting field over K of Q(X; a) ∈ K[X].

Lemma 5.18. Let K be a model of T∀, M be a model of T extending K, and let L/K be a
Galois extension of K. Assume M and L are embedded over K into some bigger field. Then
M ∩ L is a maximal element of S(L/K).

Proof. Suppose not. Let F be an element of S(L/K), strictly bigger than M ∩ L, and
finitely generated over M ∩ L. Let x be a generator of F over M ∩ L. If S denotes the set
of algebraic conjugates of x over M , then the code for the finite set S is in M , and also in L
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because S ⊆ L. So the code for S is in M ∩ L, implying that S is also the set of algebraic
conjugates of x over M ∩ L. Since we are assuming that all fields are perfect, this implies
that the degree of x over M is the same as the degree of x over M ∩ L. In particular, the
irreducible polynomial Q(X) of x over M ∩ L remains irreducible over M . For 1 ≤ i ≤ n,
let Mi be a model of Ti extending M ↾ Li. Let Ni be a model of Ti extending F ↾ Li. The
polynomial Q(X) has a zero in F , namely x. Hence it has a zero in Ni ⊇ F . As Mi and
Ni are two models of Ti extending M ∩ L and Q(X) is defined over M ∩ L, it follows from
quantifier-elimination in Ti that Q(X) also has a zero in Mi.

Now we have a polynomial Q(X) of degree > 1, irreducible over M , such that Q(X) has
a root in Mi for every i. This contradicts condition A1’ of §3.1.

Definition 5.19. Let L/K be a Galois extension, with K a model of T∀. Let F(L/K) be
the set of maximal elements of S(L/K).

By Zorn’s lemma, it is clear that every element of S(L/K) is bounded above by an
element of F(L/K), even if L/K is infinite. When L/K is a finite extension, µ∞

L/K induces

a probability distribution on F(L/K).

Remark 5.20. F(L/K) is exactly the set of F of the form L∩M , where M is a model of T
extending K. One inclusion is Lemma 5.18. The other inclusion is obvious: if F is a maximal
element of S(L/K), then letting M be a model of T extending F , and combining M and L
into a bigger field in any way we like, we have F ⊆ M ∩ L ∈ S(L/K), so maximality of F
forces M ∩ L = F .

Suppose that L/K determines the truth of ϕ(a). Then by Remark 5.20, there must
be a uniquely determined map fϕ(a),L from F(L/K) to {⊥,⊤} such that for every M |= T
extending K, and every way of forming the compositumML, the truth ofM |= ϕ(a) is given
by fϕ(a),L(M ∩ L).

Another corollary of Remark 5.20 is that if K ≤ L ≤ L′, with L′ and L Galois extensions
of K |= T∀, and if F ∈ F(L′/K), then F = M ∩ L′ for some model M , and hence F ∩ L =
M ∩ L′ ∩ L =M ∩ L is in F(L/K).

Finally, we define P (ϕ(a), K) to be µ∞
L/K({F : fϕ(a),L(F ) = ⊤}).

Lemma 5.21. The choice of L does not matter.

Proof. If L and L′ are two finite Galois extensions of K which determine the truth of ϕ(a),
then so does their compositum LL′. So we may assume L′ ⊆ L. Let r : F(L/K) → F(L′/K)
be the restriction map, F ↦→ F ∩ L′.

Claim 5.22. fϕ(a),L = fϕ(a),L′ ◦ r.

Proof. For F ∈ F(L/K), we will show fϕ(a),L(F ) = fϕ(a),L′(r(F )). Write F asM ∩L, withM
a model of T extending F . Then fϕ(a),L(M ∩L) = fϕ(a),L(F ) is the truth value of M |= ϕ(a).
But M ∩ L′ = F ∩ L′, so by definition of fϕ(a),L′ , we also know that fϕ(a),L′(M ∩ L′) =
fϕ(a),L′(r(F )) is the truth value of M |= ϕ(a), which is the same thing. So fϕ(a),L′(r(F )) =
fϕ(a),L(F ). □Claim
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By Corollary 5.16 applied in theK = K ′ case, if F is a random element of F(L/K) chosen
according to µ∞

L/K , then r(F ) = F ∩ L′ is distributed according to µ∞
L′/K . In particular, the

probability of fϕ(a),L(F ) or equivalently of fϕ(a),L′(r(F )) is the same as the probability of
fϕ(a),L′(F ′), with F ′ chosen directly from µ∞

L′/K . But the former probability is P (ϕ(a), K)

computed using L, while the latter is P (ϕ(a), K) computed using L′.

So P (ϕ(a), K) is at least a well-defined number. The “isomorphism invariance” part
of Theorem 5.1 is clear from the definitions. We need to prove the other conditions of
Theorem 5.1.

Lemma 5.23. For any fixed K, the function P (−, K) is a Keisler measure on the space of
completions of the quantifier-free type of K.

Proof. It suffices to prove the following:

� If ϕ(a) and ψ(b) are forced to be logically equivalent by T and the diagram of K, then
P (ϕ(a), K) = P (ψ(b), K). This is easy/trivial, because if we choose a finite Galois
extension L determining the truth of both ϕ(a) and ψ(b), we see that fϕ(a),L = fψ(b),L
by unwinding the definitions.

� P (ϕ(a), K) = 1 − P (¬ϕ(a), K), which follows similarly, though it uses the fact that
µ∞
L/K is concentrated on F(L/K).

� If ϕ(a) ∧ ψ(b) contradicts T ∪ diag(K), then P (ϕ(a) ∨ ψ(b), K) = P (ϕ(a), K) +
P (ψ(b), K). Again, this is not difficult: if L is a field determining the truth of both
ϕ(a) and ψ(b), then it is clear that

fϕ(a),L ∧ fψ(b),L = fϕ(a)∧ψ(b),L = ⊥

fϕ(a),L ∨ fψ(b),L = fϕ(a)∨ψ(b),L.

Consequently, {F : fϕ(a)∨ψ(b),L(F ) = ⊤} is a disjoint union of {F : fϕ(a),L(F ) = ⊤} and
{F : fψ(b),L(F ) = ⊤}, so we reduce to the fact that µ∞ is a probability distribution.

� 0 ≤ P (ϕ(a), K) ≤ 1, which is clear from the definition.

Lemma 5.24. If K ⊆ K ′ are models of T∀ and K is relatively algebraically closed in K ′,
and ϕ(a) is a formula with parameters from K, then P (ϕ(a), K) = P (ϕ(a), K ′).

(This is the “extension invariance” part of Theorem 5.1.)

Proof. Let L be a finite Galois extension of K determining the truth of ϕ(a). Let L′ be a
finite Galois extension of K ′ determining the truth of ϕ(a); we may assume L′ ⊇ L. (In fact,
we can take L′ = LK ′.) Because K is relatively algebraically closed in K ′, L ∩ K ′ = K.
So by Corollary 5.16, if F ∈ F(L′/K ′) is distributed according to µ∞

L′/K′ , then F ∩ L is

distributed according to µ∞
L/K . Using Lemma 5.14, this implies that F ∩ L ∈ F(L/K) for

any F ∈ F(L′/K ′). Let r : F(L′/K ′) → F(L/K) be the map F ↦→ F ∩ L. By unwinding the
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definitions (as in the claim in the proof of Lemma 5.21), one sees that fϕ(a),L′/K′ = fϕ(a),L/K◦r.
As in the proof of Lemma 5.21, we see that for F ′ chosen randomly from F(L′/K ′) and F
chosen randomly from F(L/K), the distribution of F and r(F ′) is the same, and therefore
so too is the distribution of

fϕ(a),L′/K′(F ′) = fϕ(a),L/K(r(F
′))

and
fϕ(a),L/K(F ).

This ensures that P (ϕ(a), K) = P (ϕ(a), K ′).

Lemma 5.25. If K |= T∀ and ϕ(a) is a K-formula which holds in some model of T extending
K, then P (ϕ(a), K) > 0.

(This is the “density” part of Theorem 5.1.)

Proof. Let M be the model where ϕ(a) holds. Let L be a finite Galois extension of K
determining the truth of ϕ(a). Then L ∩ M ∈ F(L/K) and fϕ(a),L(L ∩ M) = ⊤. By
Lemma 5.14, P (ϕ(a), K) > 0.

We have verified each condition of Theorem 5.1, which is now proven.

6 NTP2 and the Independence Property

We show that the model companion T (usually) fails to be NIP, but is always NTP2, the
next best possibility.

6.1 Failure of NIP

If n = 1, then T = Ti is one of ACVF, RCF, or pCF, which are all known to be NIP. On the
other hand,

Theorem 6.1. Suppose n > 1. Then T has the independence property.

Proof. We give a proof which works in characteristic ̸= 2. It is not hard to modify it to work
in characteristic 2, replacing square roots with Artin-Schreier roots.

Claim 6.2. For each i, we can produce quantifier-free Li-formulas ϕi(x, y) and χi(y) without
parameters such that x, y are singletons, and such that if Ki |= Ti, then χi(Ki) is a non-
empty open set and for every b ∈ χi(Ki), both square roots of b are present in Ki, and
exactly one of them satisfies ϕi(x, b).
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Proof. If Ti is RCF, let χi(y) say that y > 0 and ϕi(x, y) say that x > 0. If Ti is ACVF, let
χi(y) say that v(y−1/4) > 0, and ϕi(x, y) say that v(x−1/2) > 0. Note that if v(y−1/4) > 0
and x2 = y, then t = x− 1/2 satisfies

t2 + t+ 1/4− y = (t+ 1/2)2 − y = 0.

By Newton polygons, one of the possibilities for t has valuation zero, and the other has
valuation v(y − 1/4) > 0. If Ti is pCF, the same formulas work as in the case of ACVF.
The only thing to check is that if v(y − 1/4) > 0 for some y ∈ K |= pCF, then the two
roots of T 2 + T + (1/4 − y) = 0 are present in K. If not, then since the two roots have
different valuations (in an ambient model of ACVF), there are two different ways to extend
the valuation from K to K[T ]/(T 2 + T + (1/4− y)), contradicting Henselianity of K. □Claim

Given the ϕi and χi from the Claim, let χ(y) =
⋀︁n
i=1 χi(y). Note that χ(y) defines an

infinite subset of any model of T , by condition A2 of §3.1. (Each χi(−) is A1-dense.) If
K |= T and b ∈ χ(K), then X2 − b has roots in K by choice of χi(−) and condition A1’ of
§3.1. So each element of χ(K) is a square.

Let ψ(y) assert that χ(y) holds and there is a square root of y which satisfies exactly one
of ϕ1 and ϕ2. Note that if χ(b) holds, then both square roots of b are present in K, exactly
one of them satisfies ϕ1, and exactly one of them satisfies ϕ2. Letting, ⊕ denote exclusive-or,
we can write ψ(y) as ϕ1(

√
y)⊕ ϕ2(

√
y), where the choice of

√
y is unimportant.

Let K be a model of T . We will show that ψ(x + y) has the independence property in
K. Let a1, . . . , am be any m elements in χ(K), which as we noted above is an infinite set.
We will show that for any subset S0 ⊆ {1, . . . ,m}, there is a b in K such that j ∈ S0 ⇐⇒
K |= ψ(b + aj). It suffices to find such a b in an elementary extension of K, rather than K
itself. Let K ′ ⪰ K be an elementary extension containing an element ϵ which is infinitesimal
compared to K, with respect to every one of the valuations. That is, for each i such that Ti is
valuative, we want vi(ϵ) > vi(K), and for each i such that Ti is RCF, we want −α <i ϵ <i α
for every α >i 0 in K. The fact that such an ϵ exists follows by our axiom A2, and can be
shown directly.

Note that for 1 ≤ j ≤ m, aj + ϵ ∈ χ(K ′). (Indeed, for every i, K ′ |= χi(ai + ϵ),
because χi(−) defines an open set in a model of Ti, and ϵ is infinitesimal with respect to
the prime model of Ti over K ↾ Li.) Consequently,

√
aj + ϵ ∈ K ′ for every 1 ≤ j ≤ m.

Let L be K(
√
aj + ϵ : 1 ≤ j ≤ m) ⊆ K ′, as a model of T∀. Since ϵ is transcendental

over K, Gal(L/K(ϵ)) ∼= (Z/2Z)m. In particular, for every S ⊆ {1, . . . ,m}, there is a field
automorphism σS ∈ Gal(L/K(ϵ)) which swaps the square roots of aj+ ϵ if and only if j ∈ S.
Let LS be the T∀-model with underlying field L, with the same Li-structure as L for i > 1,
and with the L1-structure obtained by pulling back the L1-structure of L along σS. If ∆
denotes symmetric difference of sets, then

{j : LS |= ϕ2(
√︁
aj + ϵ)} = {j : L |= ϕ2(

√︁
aj + ϵ)}

{j : LS |= ϕ1(
√︁
aj + ϵ)} = {j : L |= ϕ1(σS(

√︁
aj + ϵ))}

= {j : L |= ϕ1(
√︁
aj + ϵ)} ∆ S,
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where the last equality holds because L |= ϕ1(
√
aj + ϵ) ⇐⇒ ¬ϕ1(−

√
aj + ϵ). Now let KS

be a model of T extending LS. Since LS is a model of T∀ extending K, KS ⪰ K. Also,

{j : KS |= ψ(aj + ϵ)} = {j : LS |= ϕ1(
√︁
aj + ϵ)}∆{j : LS |= ϕ2(

√︁
aj + ϵ)}

= {j : L |= ϕ1(
√︁
aj + ϵ)}∆{j : L |= ϕ2(

√︁
aj + ϵ)}∆S

= {j : K ′ |= ψ(aj + ϵ)}∆S

Therefore, by choosing S = S0 ∆ {j : K ′ |= ψ(aj + ϵ)}, we can arrange that

{j : KS |= ψ(aj + ϵ)} = S0,

i.e., KS |= ψ(aj + ϵ) if and only if j ∈ S0. Taking b to be ϵ ∈ KS, this completes the
proof.

Because T has the independence property and clearly has the strict order property, the
best classification-theoretic property we could hope for T to have is NTP2.

6.2 NTP2 holds

First we make some elementary remarks about relative algebraic closures.

Lemma 6.3. Let M be a pure field. Let K be a subfield of M which is relatively separably
closed in M (in the sense of Definition 2.6). Let a and b be two tuples from M such that

a |⌣
ACF

K
b, i.e., a and b are algebraically independent from each other over K. Then K(a) is

relatively separably closed in K(a, b).

Proof. Embed M into a monster model M |= ACF. By the remarks after Definition 2.6,
tp(a/K) and tp(b/K) are stationary. Since a |⌣K

b, the type of b over acl(K(a)) is K-
definable. Now suppose that some singleton c ∈ K(a, b) is algebraic over K(a). Write c as
f(a, b), for some rational function f(X, Y ) ∈ K(X, Y ). Note that stp(b/K(a)) includes the
statement f(a, x) = c. On the other hand, it does not include f(a, x) = c′ for any conjugate
c′ ̸= c of c over K(a). As stp(b/K(a)) is definable over K, ac and ac′ cannot have the same
type over K. But if c and c′ are conjugate over K(a), then ac and ac′ have the same type.
So c′ does not exist, and c has no other conjugates over K(a). Thus c ∈ dcl(K(a)). So
cp

k ∈ K(a) for some k. As c was an arbitrary element of K(a, b)∩K(a)alg, we see that K(a)
is relatively separably closed in K(a, b).

Lemma 6.4. Let M be a pure field. Suppose K1 ⊆ K2 are two subfields of M , each relatively

separably closed in M . Let c be a tuple from M , possibly infinite. Suppose that c |⌣
ACF

K1
K2,

i.e., K2 and c are algebraically independent over K1. Then K1(c) is relatively separably
closed in K2(c).

Proof. As in the previous lemma, embedM into a monster modelM of ACF. Then c |⌣K1
K2,

and by properties of forking, K1(c) |⌣K1
K2. By the previous lemma, K1(c) is relatively

separably closed in K2K1(c) = K2(c).
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Now we return to existentially closed fields with valuations and orderings. As always, T
is the model companion.

Lemma 6.5. In a monster model of T , let B be a small set of parameters and a1, a2, . . .
be a B-indiscernible sequence. Suppose that B = acl(B) and ai = acl(Bai) for any/every

i. Suppose also that aj |⌣
ACF

B
a<j for every j, i.e., the sequence is algebraically independent

over B. Let c be a finite tuple and suppose that a1, a2, . . . is quantifier-free indiscernible over
cB, i.e., if i1 < · · · < im and j1 < · · · < jm, then

qftp(ai1ai2 · · · aim/cB) = qftp(aj1aj2 · · · ajm/cB).

Let ϕ(x; y) be a formula over B such that ϕ(c; a1) holds. Then
⋀︁∞
j=1 ϕ(x; aj) is consistent.

Proof. Because a1, a2, . . . is B-indiscernible, it suffices to show for each k that {ϕ(x; aj) | j <
ω} is not k-inconsistent.

First observe that whether or not c |⌣
ACF

B
aj holds depends only on the quantifier-free type

of c and aj over B. In particular, it does not depend on j, by quantifier-free indiscernibility
of a1, a2, . . . over cB. If c ̸ |⌣ ACF

B aj for one j, then this holds for all j. As the aj are
an algebraically independent sequence over B, this contradicts the fact that finite tuples

have finite preweight in ACF. So c |⌣
ACF

B
aj for each j. The same argument applied to the

sequence a1a2, a3a4, . . . shows that c |⌣
ACF

B
a1a2. Similarly c |⌣

ACF

B
a1a2a3, and so on, and so

c |⌣
ACF

B
a1a2a3 . . ..

Let M be the monster model of T . Any subset of M closed under acl(−) is relatively
algebraically closed in M , hence relatively separably closed in M . In particular, if we let
K1 = B(aj) = aj and K2 = acl(Ba1a2 . . .), then each of K1, K2 is relatively separably closed

in M , and B ⊆ K1 ⊆ K2. By the previous paragraph and Corollary 3.12, c |⌣
ACF

B
K2, and

therefore c |⌣
ACF

K1
K2. By Lemma 6.4, we conclude that K1(c) is relatively separably closed

in K2(c), i.e., B(aj, c) is relatively separably closed in K2(c). Using bars to denote perfect

closures, this means that B(aj, c) is relatively algebraically closed in K2(c).
Recall the function P (−,−) from Theorem 5.1. By the “extension invariance” part of

that theorem,
P (ϕ(c; aj);B(aj, c)) = P (ϕ(c; aj);K2(c)).

Now by quantifier-free indiscernibility of a1, a2, . . . over cB, we see that B(aj, c) ∼= B(aj′ , c)
for all j, j′. By the isomorphism-invariance part of Theorem 5.1,

P (ϕ(c; aj);B(aj, c)) = P (ϕ(c; aj′);B(aj′ , c))

for all j, j′. Consequently, P (ϕ(c; aj);K2(c)) does not depend on j.

Now M is a model of T extending K2(c), and in M , ϕ(c; a1) holds. So by the “den-
sity” part of Theorem 5.1, P (ϕ(c; a1);K2(c)) is some positive number ϵ > 0. Consequently,
P (ϕ(c; aj);K2(c)) = ϵ > 0 for every j.

Suppose for the sake of contradiction that {ϕ(x; aj) | j < ω} is k-inconsistent for some
k. Let N be big enough that Nϵ > k. Let ψ(x) be the statement over K2 asserting
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that at least k of ϕ(x; a1), . . . , ϕ(x; aN) hold. By the Keisler measure part of Theorem 5.1,
P (ψ(c);K2(c)) > 0, and there is a model M ′ of T extending K2(c) in which ψ holds. In
particular, M ′ |= ∃x : ψ(x). But K2 is relatively algebraically closed in M , hence satisfies
axiom A1 of §3.1 by Corollary 3.10. By Corollary 3.11, the statement ∃x : ψ(x) holds in M
if and only if it holds in M ′. Consequently, it holds in M , and therefore {ϕ(x; aj) | j ≤ N}is
not k-inconsistent.

Recall from [1] or [2] that the burden of a partial type p(x) is the supremum of κ such that
there is an inp-pattern in p(x) of depth κ, that is, an array of formulas ϕi(x; aij) for i < κ
and j < ω, and some ki < ω such that the ith row {ϕi(x; aij) | j < ω} is ki-inconsistent for
each i, and such that for any η : κ→ ω, the corresponding downwards path

⋀︁
i<κ ϕi(x; ai,η(i))

is consistent with p(x). A theory is NTP2 if every partial type has burden less than ∞. A
theory is strong if every partial type has burden less than ℵ0, roughly. (See [1] for a more
precise statement.) At any rate, if every partial type has burden less than ℵ0, then the
theory is strong. By the submultiplicativity of burden (Theorem 11 in [2]), it suffices to
check the burden of the home sort.

Fact 6.6. If D and E are definable sets, bdn(D × E) ≥ bdn(D) + bdn(E).

In fact, we can get an inp-pattern for D × E by vertically concatenating an inp-pattern
for D with an inp-pattern for E.

In NIP theories, burden is the same thing as dp-rank, which is known to be additive
[12]. The theories ACVF, pCF, and RCF are all known to be dp-minimal, i.e., to have
dp-rank 1 [5]. One of the descriptions of dp-rank is that a partial type Σ(x) over a set C has
dp-rank ≥ κ if and only if there are κ-many mutually indiscernible sequences over C and a
realization a of Σ(x) such that each sequence is not indiscernible over Ca. Recall that an
array {aij}i<α,j<β is mutually indiscernible over C if for each i, the ith row {aij : j < β} is
indiscernible over C ∪ {ai′j : i′ < α, j < β, i′ ̸= i}.

Theorem 6.7. The model companion T is NTP2, and strong. In fact, the burden of affine
m-space is exactly mn, where n is the number of valuations and orderings.

Proof. To show that the burden of Am is at least mn, it suffices by Fact 6.6 to show that
bdn(A1) ≥ n. In the case where every Ti is ACVF, one can take ϕi(x; y) to assert that
vi(x) = y, for 1 ≤ i ≤ n, and take ai,0, ai,1, . . . to be an increasing sequence in the ith
valuation group. Variations on this handle the remaining cases. We leave the details as an
exercise to the reader.

For the upper bound, suppose for the sake of contradiction that there is an inp-pattern
{ϕi(x; aij)}i<mn+1; 0≤j<ω of depth mn+ 1, with x a tuple of length m. We may assume that
the aij form a mutually ∅-indiscernible array. Extend the array to the left, i.e., let j range
over negative numbers. Let B be acl(aij : i < mn + 1, j < 0). From stability theory, one

knows that aij |⌣
ACF

B
ai0ai1 · · · ai,j−1 for every j. By mutual indiscernibility, each sequence

ai0, ai1, . . . is indiscernible over {aij : j < 0}, hence over B. In particular, aij ≡B aij′ for
j ̸= j′. For each i < mn + 1, let bi0 be an enumeration of acl(Bai,0). For j > 0, choose
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bi,j such that ai,jbi,j ≡B ai,0bi,0. Then bi,j is an enumeration of acl(Bai,j) for every i and
every j ≥ 0. Let ci,jdi,j be a mutually B-indiscernible array modeled on the array ai,jbi,j.
Then ci,jdi,j ≡B ai,0bi,0, so di,j is an enumeration of acl(Bci,j). Also, because ai,0, ai,1, . . . was
already B-indiscernible, we must have

ci,0ci,1 · · · ≡B ai,0ai,1 · · ·

for each i. Consequently, ci,j |⌣
ACF

B
ci,0 · · · ci,j−1. And since di,j ⊆ acl(Bci,j), we also have

di,j
ACF

|⌣
B

di,0di,1 · · · di,j−1,

using Corollary 3.12. As bi,0 is an enumeration of acl(Bai,0), the elements of ai,0 must actually
appear somewhere in bi,0. Let πi be the coordinate projection such that πi(bi,0) = ai,0. Hence
ci,j = πi(di,j).

Because the aij formed a mutually ∅-indiscernible array, the collective type of all the ci,j’s
must agree with that of all the ai,j’s. Hence ϕi(x; ci,j) is still an inp-pattern of depth mn+1.
Let ψi(x; y) be ϕi(x; πi(y)). Then ψi(x; di,j) is an inp-pattern of depth mn + 1. Let c be a
realization of

⋀︁
i<mn+1 ψi(x; di,0). Note that c is a tuple of length m.

Let M be the ambient monster. For each 1 ≤ k ≤ n, let Mk be a model of Tk extending
M ↾ Lk. By quantifier-elimination, the array {di,j} is still mutually B-indiscernible in
Mi. By additivity of dp-rank and by dp-minimality of the home sort in Mk, we know
that the dp-rank of tp(c/B) in Mk is at most m. In particular, for each 1 ≤ k ≤ n,
at most m of the rows in the array {di,j} can fail to be Bc-indiscernible in Mk. By the
pigeonhole principle, there must be some value of i such that the sequence di,0, di,1, . . . is
Bc-indiscernible in each of M1,M2, . . . ,Mn. Back in M, this means that di,0, di,1, . . . is
quantifier-free Bc-indiscernible. Since di,0, di,1, . . . is also B-indiscernible and B-independent,
Lemma 6.5 applies. Consequently,

⋀︁∞
j=0 ψi(x; di,j) is consistent, because ψi(c; di,0) holds.

This contradicts the fact that {ψi(x; di,j)} is an inp-pattern.

Corollary 6.8. If (K, v1, . . . , vn) is an algebraically closed field with n independent non-
trivial valuations, then (K, v1, . . . , vn) is strong of burden n.

Proof. Theorems 4.1 and 6.7.

7 Forking and Dividing

We will make use of the following general fact, which is the implication (ii) =⇒ (i) in
Proposition 4.3 of [9].3

Fact 7.1. Let M be a monster model of some theory, let S ⊆ M be a small set, and let ϕ(x)
be a formula with parameters from M. Suppose there is a global Keisler measure µ which is
Lascar-invariant over S, and suppose µ(ϕ(x)) > 0. Then ϕ(x) does not fork over S.

3Hrushovski and Pillay assume NIP, but the assumption is unused for the implication (ii) =⇒ (i).
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Now we specialize to the theory T under consideration.

Lemma 7.2. Let M be a monster model of T . Let S be a small subset of M, and let p
be a complete quantifier-free type over M which is Lascar-invariant over S. Then there is
a Keisler measure µ on S(M), Lascar-invariant over S, whose support is exactly the set of
completions of p.

This is nothing but a restatement or special case of Theorem 5.1.

Proof. Let a be a realization of p in some bigger model, and consider the structure M[a]
generated by M and a. The structure of M[a] is determined by p. Also, if σ is any Lascar
strong automorphism of M over S, then p = σ(p). This implies that there is a uniquely
determined automorphism σ′ of M[a] extending σ on M and fixing a.

Let M[a] denote the perfect closure of the field of fractions of M[a]. This is uniquely
determined (as a model of T∀) by M[a], and hence is determined by p. Let µ be the Keisler
measure on M which assigns to an M-formula ϕ(x; b) the value

P (ϕ(a; b);M[a]),

where P is as in Theorem 5.1. By the Keisler measure part of Theorem 5.1, this is a Keisler
measure on the space of completions of qftp(M[a]). By model completeness, any extension of
qftp(M[a]) to a complete type must satisfy tp(M), so we have a legitimate Keisler measure
on the space of extensions of p to complete types over M. And if σ is any Lascar strong
automorphism over S, then by the “isomorphism invariance” part of Theorem 5.1,

P (ϕ(a;σ(b));M[a]) = P (ϕ(σ′(a);σ′(b));M[a]) = P (ϕ(a, b);M[a])

where σ′ is the aforementioned automorphism of M[a] extending σ and fixing a. Thus
µ(ϕ(x; b)) = µ(ϕ(x;σ(b))). We conclude that µ(ϕ(x; b)) = µ(ϕ(x; b′)) for any formula ϕ(x; y)
and any b, b′ ∈ M having the same Lascar strong type over S. Finally, if b is a tuple from M
and ϕ(x; b) is a formula which is consistent with p, then ϕ(a; b) is also consistent with the
diagram of M[a], hence has positive probability by the “density” part of Theorem 5.1.

Corollary 7.3. Let M be a monster model of T and S be a small subset of M. Suppose q is
a complete quantifier-free type on M which is Lascar invariant over S. Then every complete
type on M extending q does not fork over S.

Proof. Let p(x) be a complete type extending q(x). Let ϕ(x) be any formula from p(x). Let
µ be the Keisler measure from Lemma 7.2. Then µ is Lascar invariant over S, and µ(ϕ(x))
is positive because ϕ(x) is consistent with q(x). By Fact 7.1, ϕ(x) does not fork over S.

If M is a model of T and A,B,C are subsets of M , let A |⌣
Ti
C
B indicate that A |⌣C

B
holds in any/every model of Ti extending M ↾ Li.

Lemma 7.4. Work in a monster model M of T . Let a be a finite tuple, and B and C be

sets (in the home sort, as always). Suppose C = acl(C). Suppose a |⌣
Ti
C
B holds for every

1 ≤ i ≤ n. Then qftp(a/BC) can be extended to a quantifier-free type q(x) on M which is
Lascar invariant over C.
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Proof. Let V be the variety over C of which a is a generic point. By Fact 2.8, V is geomet-
rically irreducible.

Let Mi be a model of Ti extending M ↾ Li. Within Mi, a |⌣
Ti
C
B. By Adler’s character-

ization of forking in NIP theories (Proposition 2.1 in [9]), there is an Li-type pi(x) on Mi

which extends the type of a over BC and which is Lascar-invariant over C. The restric-
tion of this Li-type to a quantifier-free Lrings-type must say that x lives on V and on no
Mi-definable proper subvarieties of V . This follows from Lemma 2.17. Let qi(x) be the set
of quantifier-free Li-statements in pi(x) with parameters from M. Then qi(x) is a complete
quantifier-free Li-type on M. Let q(x) be

⋃︁n
i=1 qi(x). This is a complete quantifier-free type

on M; it is consistent because the qi(x) all have the same restriction to the language of
rings, namely, the generic type of V . Also, q(x) extends qftp(a/BC), because the Li-part of
qftp(a/BC) is present in pi(x) and qi(x).

To show Lascar-invariance of q(x) over C, it suffices to show that if I is a C-indiscernible
sequence in M, a and a′ are two elements of I, and ϕ(x; y) is a quantifier-free formula, then
ϕ(x; a) ∈ q(x) if and only if ϕ(x; a′) ∈ q(x). In fact, we only need to consider the case where
ϕ(x) is a quantifier-free Li-formula, for some i. But then

ϕ(x; a) ∈ q(x) ⇐⇒ ϕ(x; a) ∈ pi(x) ⇐⇒ ϕ(x; a′) ∈ pi(x) ⇐⇒ ϕ(x; a′) ∈ q(x)

where the middle equivalence follows from the fact that pi(x) is Lascar-invariant, and I is
C-indiscernible within Mi (by quantifier-elimination in Ti). Thus q(x) is Lascar-invariant
over C, as claimed.

Theorem 7.5. Forking and dividing agree over every set (in the home sort).

Proof. First we show that if a is a finite tuple and B is a set, then qftp(a/B) does not fork
over B. By Lemma 7.4, there is a global quantifier-free type q(x) which is Lascar-invariant
over B. By Corollary 7.3, any extension of q(x) to a complete global type does not fork over
B. So qftp(a/B) has a global non-forking extension. Now if a is any small tuple, and B is
a set, then qftp(a/B) does not fork over B, by compactness. Consequently, if a is a small
tuple and B is a (small) set, then qftp(a′/B) does not fork over B, where a′ enumerates
acl(aB). By Corollary 3.11, qftp(a′/B) implies tp(a′/B), so tp(a′/B) does not fork over B.
By monotonicity, tp(a/B) does not fork over B. As a and B are arbitrary, every set in the
home sort is an extension base for forking in the sense of [3], so by Theorem 1.2 in [3], forking
and dividing agree over every set in the home sort.

Lemma 7.6. Let M be a monster model of T and C = acl(C) be a small subset of M.
Suppose p(x) is a complete type on C and q(x) is a complete quantifier-free type on M, with
q(x) extending the quantifier-free part of p(x). Suppose q(x) is Lascar-invariant over C.
Then q(x) ∪ p(x) is consistent.

Proof. Let M[a] be the structure obtained by adjoining a realization a of q(x) to M. Let
W be the variety over M of which a is the generic point. By Fact 2.8, W is geometrically
irreducible. Moreover, the ACF-theoretic code ⌜W⌝ for W must lie in M. By Lascar
invariance of q(x), one sees that W is Lascar invariant over C. Consequently, the finite
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tuple ⌜W⌝ is fixed by every Lascar strong automorphism over C. So ⌜W⌝ ⊆ acl(C) = C.

Consequently, in an ambient model of ACF we have Cb(stp(a/M)) ⊆ C, and so a |⌣
ACF

C
M.

By Lemma 6.3, C[a] is relatively algebraically closed in M[a].
Because the quantifier-free type of a over C is consistent with p(x), there is a model

N |= T extending C[a] such that within N , tp(a/C) = p(x). By Lemma 3.9, we can
amalgamate M[a] and N over C[a]. So there is a model N ′ of T extending N and M[a]. In
N , tp(a/C) = p(x). As N ⪯ N ′, tp(a/C) = p(x) holds in N ′ as well. And as N ′ ⊇ M(a),
qftp(a/M) = q(x). So q(x) ∪ p(x) is consistent.

Lemma 7.7. Work in a monster model M of T . Let a be a finite tuple, and B and C be sets

(in the home sort, as always). Suppose a |⌣
Ti
C
B holds for every 1 ≤ i ≤ n. Then a |⌣C

B.

Proof. A type forks/divides over C if and only if it forks/divides over acl(C), so it suffices
to show that tp(a/BC) does not fork over acl(C). By monotonicity, it suffices to show that
tp(a/ acl(BC)) does not fork over acl(C). By [3, Lemma 3.21(2)] and Lemma 2.15 above,

a |⌣
Ti
acl(C)

acl(CB) for every i. So we may assume that C = acl(C) ⊆ B = acl(B).

Now by Lemma 7.4, there is a global quantifier-free type q(x) extending qftp(a/BC) =
qftp(a/B), with q(x) Lascar-invariant over C. Clearly q(x) is also Lascar-invariant over
B, so by Lemma 7.6, q(x) is consistent with tp(a/B). Let p(x) be a global complete type
extending q(x) ∪ tp(a/B). Then p(x) does not fork over C by Corollary 7.3.

Let qftpi(a/B) denote the quantifier-free Li-type of a over B, and let qftpACF(a/B)
denote the field-theoretic quantifier-free type of a over B.

Lemma 7.8. Let M be a monster model of T , and let C = acl(C) be a small subset. For
each i, let Mi be a model of Ti extending M ↾ Li. For each i, let ai be a tuple in Mi.
Suppose that qftpACF(ai/C) does not depend on i. Then we can find a tuple a in M such
that qftpi(a/C) = qftpi(ai/C) for every i.

Proof. Let C[ai] denote the subring or subfield ofMi generated by C and ai. By assumption,
C[ai] is isomorphic to C[ai′ ] as a ring, for every i and i′. Use these isomorphisms to identify
all the C[ai] with each other, getting a single ring C[a] which is isomorphic to C[ai] for every
i. Use these isomorphisms to move the (Ti)∀ structure from C[ai] to C[a]. Now C[a] is a
model of T∀, and qftpi(a/C) = qftpi(ai/C), for every i. As C = acl(C), C is relatively
separably closed in M, so by Lemma 3.9, one can embed C[a] and M into a bigger model of
T . By model completeness and saturation, tp(a/C) is already realized in M.

Lemma 7.9. Let a,B,C be small subsets of a monster model M |= T . Suppose a ̸ |⌣
T1
C b.

Then a ̸ |⌣ Cb.

Proof. By [3, Lemma 3.21(2)] applied to both T1 and T , we may assume C = acl(C) and
B = acl(BC). By finite character of forking, we may assume a is finite. For every i, let Mi

be an even more monstrous model of Ti extending M ↾ Li. Then a ̸ |⌣ CB holds in M1. By
Lemma 2.15, some L1-formula ϕ(x;B) in tp(a/BC) divides over C. By quantifier-elimination
in T1, we may assume that ϕ(x; y) is a quantifier-free L1-formula. By Lemma 2.18, there

39



is a sequence B = B1
0 , B

1
1 , B

1
2 , . . . in M1 which is indiscernible over C and algebraically

independent over C, and such that {ϕ(x;B1
j ) | j < ω} is k-inconsistent in M1, for some k.

Thus qftp1(B1
j /C) = qftp1(B/C), and in a certain sense

qftpACF(B1
0B

1
1B

1
2 · · · /C) = qftpACF(B/C)⊗ qftpACF(B/C)⊗ · · · .

The right hand side makes sense because C is relatively separably closed in B (Definition 2.6),
so qftpACF(B/C) is stationary.

Meanwhile, for i > 1, we can apply Lemma 2.16 to Mi and tp(B/C), getting a sequence
B = Bi

0, B
i
1, B

i
2, . . . which is indiscernible over C and algebraically independent over C. (Note

that Lemma 2.16 is true even without the restriction that B be finite.) So again, we get
qftpi(Bi

j/C) = qftpi(B/C), and

qftpACF(Bi
0B

i
1B

i
2 · · · /C) = qftpACF(B/C)⊗ qftpACF(B/C)⊗ · · · .

In particular, qftpACF(Bi
0B

i
1B

i
2 · · · /C) does not depend on i, as i ranges from 1 to n. By

Lemma 7.8, we can therefore find a sequence B0, B1, . . . in M such that

qftpi(B0B1 . . . /C) = qftpi(Bi
0B

i
1B

i
2 . . . /C)

for every i. In particular, qftpi(Bj/C) = qftpi(Bi
j/C) = qftpi(B/C). Because this holds

for all i, qftp(Bj/C) = qftp(B/C). Because B = acl(B), qftp(B/C) ⊢ tp(B/C) by Corol-
lary 3.11. So tp(Bj/C) = tp(B/C) for every j. Also,

qftp1(B0B1 . . . /C) = qftp1(B1
0B

1
1 . . . /C)

implies that there is an automorphism σ of M1 sending B
1
0B

1
1 . . . to B0B1 . . .. Consequently,

{ϕ(x;Bj) | j < ω} is k-inconsistent in M1. Clearly it is also k-inconsistent in M, because M
is smaller than M1. Since B0, B1, . . . is a sequence of realizations of tp(B/C), we conclude
that ϕ(x;B) divides over C, in M.

Theorem 7.10. Let M be a model of T , and let A,B,C be subsets of M (in the home sort).
The following are equivalent:

� A |⌣C
B, i.e., the type of A over BC does not fork over C.

� The type of A over BC does not divide over C.

� A |⌣
Ti
C
B for every 1 ≤ i ≤ n.

Proof. The first two bullet points are equivalent by Theorem 7.5. If A |⌣C
B, then by

Lemma 7.9 A |⌣
T1
C
B. Similarly, A |⌣

Ti
C
B for every 1 ≤ i ≤ n. Conversely, if A |⌣

Ti
C
B for

every 1 ≤ i ≤ n, then by Lemma 7.7, a |⌣C
B for every finite subset a ⊆ A. By finite

character of forking, A |⌣C
B.
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