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Abstract

We show that in an ultraproduct of finite fields, the mod-n nonstandard size of
definable sets varies definably in families. Moreover, if K is any pseudofinite field, then
one can assign “nonstandard sizes mod n” to definable sets in K. As n varies, these
nonstandard sizes assemble into a definable strong Euler characteristic on K, taking
values in the profinite completion Ẑ of the integers. The strong Euler characteristic is
not canonical, but depends on the choice of a nonstandard Frobenius. When Abs(K)
is finite, the Euler characteristic has some funny properties for two choices of the
nonstandard Frobenius.

Additionally, we show that the theory of finite fields remains decidable when first-
order logic is expanded with parity quantifiers. However, the proof depends on a
computational algebraic geometry statement whose proof is deferred to a later paper.

1 Introduction

1.1 Euler characteristics

Let M be a structure and R be a ring. Let Def(M) denote the collection of (parametrically)
definable sets in M . Recall the following definitions from [18] and [19]. An R-valued Euler
characteristic is a function χ : Def(M)→ R such that

� χ(∅) = 0
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� χ(X) = 1 if X is a singleton

� χ(X) = χ(Y ) if X and Y are in definable bijection.

� χ(X × Y ) = χ(X) · χ(Y )

� χ(X ∪ Y ) = χ(X) + χ(Y ) if X and Y are disjoint.

If the following additional property holds, then χ is called a strong Euler characteristic:

� If f : X → Y is a definable function and there is an r ∈ R such that χ(f−1(y)) = r for
all y, then

χ(X) = r · χ(Y ).

For A ⊆M , we say that χ is A-definable if the following holds:

� For any B-definable function f : X → Y , let Yr = {y ∈ Y : χ(f−1(y)) = r}. Then
each Yr is AB-definable, and all but finitely many Yr are empty.1

We say that χ is definable if it is M -definable. For examples of Euler characteristics, see [18,
§3,§5].

1.2 Pseudofinite Euler characteristics

A structure is pseudofinite if it is infinite, yet elementarily equivalent to an ultraproduct
of finite structures. Pseudofinite structures have strong Euler characteristics arising from
counting mod n. More precisely, if M is an ultraproduct of finite structures, there is a
canonical strong Euler characteristic χn : Def(M)→ Z/nZ defined in the following way. Let
M be the ultraproduct

∏︁
i∈I Mi/U , and X = ϕ(M ; a) be a definable set. Choose a tuple

⟨ai⟩i∈I ∈
∏︁

i∈I Mi representing a. Then define χn(X) ∈ Z/nZ to be the ultralimit along U
of the sequence

⟨|ϕ(Mi; ai)|+ nZ⟩i∈I
This ultralimit exists because Z/nZ is finite. The resulting χn is a Z/nZ-valued strong Euler
characteristic, not necessarily definable.

On an ultraproduct M of finite structures, these χn maps are compatible in the sense
that the following diagram commutes when n divides m:

Def(M)
χm →→

χn

↘↘

Z/mZ

↓↓
Z/nZ

Consequently, they assemble into a map

χ̂ : Def(M)→ Ẑ,
1This latter condition is automatic when M is |R|+-saturated.
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where Ẑ is the ring lim←−n∈N Z/nZ. Morally, χ̂ is a strong Ẑ-valued Euler characteristic. If M

is any structure, we will say that a map χ : Def(M)→ Ẑ is

1. an Euler characteristic if all the compositions Def(M) → Ẑ → Z/nZ are Euler char-
acteristics

2. a strong Euler characteristic if all the compositions Def(M) → Ẑ → Z/nZ are strong
Euler characteristics

3. a definable Euler characteristic if all the compositions Def(M) → Ẑ → Z/nZ are
definable Euler characteristics.

For 2 and 3, this is an abuse of terminology.
We can repeat the discusison above with the p-adics Zp = lim←−k

Z/pkZ instead of Ẑ. Recall
that

Ẑ ∼=
∏︂
p

Zp

by the Chinese remainder theorem. Giving an Euler characteristic χ̂ : Def(M)→ Ẑ is there-
fore equivalent to giving an Euler characteristic χp : Def(M)→ Zp for every p. Moreover, χ̂
is strong or definable if and only if every χp is strong or definable, respectively.

1.3 Main results for pseudofinite fields

By a theorem of Ax [2], a field K is pseudofinite if and only if K satsifies the following three
conditions:

� K is perfect

� K is pseudo-algebraically closed: every geometrically integral variety over K has a
K-point.

� Gal(K) ∼= Ẑ, or equivalently, K has a unique field extension of degree n for each n.

Our first main result can be phrased purely in terms of pseudofinite fields.

Theorem 1.1.

1. Let K =
∏︁

iKi/U be an ultraproduct of finite fields. Then the nonstandard counting
functions χn are acleq(∅)-definable.

2. Every pseudofinite field admits an acleq(∅)-definable Ẑ-valued strong Euler character-
istic.

We make several remarks:

1. In Part 1, the acleq(∅) is necessary: the nonstandard counting function is known to not
be ∅-definable [18, Theorem 7.3].
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2. In Part 2, the Euler characteristic is not canonical, but depends on a choice of a
topological generator σ ∈ Gal(K).

One approach to proving Theorem 1.1 would be to use étale cohomology. (See Conjecture 6.3
and the following discussion.) We will give a more elementary proof using abelian varieties
and jacobians of curves.

Aside from Theorem 1.1, there is also a decidability theorem in terms of generalized
parity quantifiers. For any n ∈ N and k ∈ Z/nZ, let µn

kx be a new quantifier. Interpret
µn
kx : ϕ(x) in finite structures as

The number of x such that ϕ(x) holds is congruent to k mod n.

In other words,(︂
M |= µn

k x⃗ : ϕ(x⃗, b⃗)
)︂
⇐⇒

(︂
|{a⃗ :M |= ϕ(a⃗, b⃗)}| ≡ k (mod n)

)︂
.

For example, µ2
1x means “there are an odd number of x such that . . . ” We call µn

k a
generalized parity quantifier.

Let Lµ
rings be the language of rings expanded with generalized parity quantifiers.

Theorem 1.2. Assuming Conjecture 5.2, the Lµ
rings-theory of finite fields is decidable.

Unfortunately, this result is conditional on Conjecture 5.2, a technical statement about
definability in algebraic geometry. While the conjecture is certainly true, it is hard to give
a sane proof. A complete proof will (hopefully) appear in future work [16].

1.4 Main results for periodic difference fields

The results of §1.3 can be stated more precisely in terms of difference fields. Recall that a
difference field is a pair (K, σ) where K is a field and σ is an automorphism of K.

Definition 1.3. A difference field (K, σ) is periodic if every element of K has finite orbit
under σ.

Periodic difference fields are not an elementary class in the language of difference fields.
However, they constitute an elementary class when regarded as multi-sorted structures
(K1, K2, . . .) where Ki is the fixed field of σi, with the following structure:

� The difference-field structure on each Ki

� The inclusion map Kn → Km for each pair n,m with n dividing m

These multi-sorted structures were considered by Hrushovski in [14], and we will give an
overview of their basic properties in §3 below.
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To highlight the fact that we are no longer working in the language of difference fields,
we will call these structures periodic fields. If (K1, K2, . . .) is a periodic field, we let K∞
denote the associated periodic difference field

K∞ = lim−→
n

Kn.

We will abuse notation and write (K∞, σ) when we really mean the associated periodic field
(K1, K2, . . .).

For any q, let Frq denote (Falg
q , ϕq), where ϕq is the qth power Frobenius. Thus (Frq)n =

(Fqn , ϕq). We will call the Frq’s Frobenius periodic fields. Frobenius periodic fields are
“essentially finite” (every sort is finite). Consequently, ultraproducts of Frobenius periodic
fields admit Z/nZ-valued strong Euler characteristics χn.

There is a theory ACPF whose class of models can be described in several ways:

1. The existentially closed periodic fields.

2. The non-Frobenius periodic fields satisfying the theory of Frobenius periodic fields.

3. The periodic fields of the form (Kalg, σ), where K is pseudofinite and σ is a topological
generator of Gal(K).

(See Propositions 3.2, 3.15, and 3.4, respectively.) In particular, ACPF is the model com-
panion of periodic fields, and non-principal ultraproducts of Frobenius periodic fields are
models of ACPF.2

Theorem 1.1 has the following analogue for periodic fields:

Theorem 1.4. Let C be the class of Frobenius periodic fields and existentially closed periodic
fields. There is a Ẑ-valued strong Euler characteristic χ on (K, σ) in C with the following
properties:

� χ is uniformly ∅-definable across C.

� If (K, σ) is a Frobenius periodic field, then χ is the counting Euler characteristic:

χ(X) = |X|.

� If (K, σ) is an ultraproduct of Frobenius periodic fields, then χ is the nonstandard
counting Euler characteristic.

There are also statements in terms of parity quantifiers. Let Lpf be the first-order
language of periodic fields, and let Lµ

pf be its expansion by generalized parity quantifiers.

Theorem 1.5.

2The situation is analogous to, but much simpler than, the situation with ACFA [15].
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1. Generalized parity quantifiers are uniformly eliminated on the class of Frobenius peri-
odic fields.

2. Assuming Conjecture 5.2, the Lµ
pf -theory of Frobenius periodic fields is decidable.

This statement is stronger than what we can say about finite and pseudofinite fields. In
fact, generalized parity quantifiers are not uniformly eliminated on finite fields (Lemma 6.8).

1.5 A special case

If p is a prime, let Z¬p be the prime-to-p completion of Z:

Z¬p = lim←−
(n,p)=1

Z/nZ =
∏︂
ℓ ̸=p

Zℓ.

If K is a field, let Abs(K) denote the subfield of absolute numbers, i.e., the relative algebraic
closure of the prime field. Say that a field K is a mock-Fq if K is pseudofinite and Abs(K) ∼=
Fq. For each prime power q, there is a unique mock-Fq up to elementary equivalence, by
work of Ax [2, Theorems 4 and 6].

The nonstandard Euler characteristics behave in a funny way on mock-Fq’s:

Theorem 1.6. Let K be a mock-Fq, for some prime power q = pk. There are two Z¬p-valued
∅-definable strong Euler characteristics χ and χ† on K, such that

1. If V is a smooth projective variety over Fq, then

χ(V (K)) = |V (Fq)|
χ†(V (K)) = |V (Fq)|/qdimV .

2. If X is any Fq-definable set, then

χ(X) = |X ∩ dcl(Fq)|.

In particular, χ(X) ∈ Z.

3. If X is any Fq-definable set, then χ†(X) ∈ Q.

1.6 Related work

Many people have considered non-standard sizes of definable sets in pseudofinite fields [1,
5, 8, 18, 19]. Non-standard sizes modulo p were considered by Kraj́ıček, who used them
to prove the existence of non-trivial strong Euler characteristics on pseudofinite fields [18].
However, most research has focused on ordered Euler characteristics ([1, 19]) and the real
standard part of non-standard sizes ([5, 8]). These topics can be seen as “non-standard sizes
modulo the infinite prime.”
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Dwork [7] and Kiefe [17] consider the behavior of |ϕ(Fq)| as q varies. Their work can be
used to calculate the non-standard mod-n sizes of ∅-definable sets in pseudofinite fields of
positive characteristic.

There are several variations on the notion of an Euler characteristic. One can consider
an Euler characteristic χ(D) defined only for ∅-definable sets D. (In this setting, it no
longer makes sense to talk about strong or definable Euler characteristics.) More generally,
if T is an incomplete theory, one can consider Euler characteristics defined on the class of
definable functors (i.e., formulas up to logical equivalence). If k is a field of characteristic
0 and T is the theory of pseudofinite fields extending k, then Denef and Loeser define such
an Euler characteristic on formulas, taking values in K0(Motk,Qalg)⊗Q, where K0(Motk,Qalg)
is a certain Grothendieck group of Chow motives [6, Proposition 3.4.4]. The Denef-Loeser
Euler characteristic should be closely related to ours; see Remark 6.4.

Almost everything in §3 is well-known to experts. The results specific to periodic fields
appear in Hrushovski’s paper [14].

1.7 Notation

If K is a field, then Kalg (resp. Ksep) denotes the algebraic (resp. separable) closure, and
Gal(K) denotes the absolute Galois group Gal(Ksep/K) = Aut(Ksep/K). We let

Ẑ = lim←−
n

Z/nZ

denote the profinite completion of Z. The finite field with q elements is denoted Fq.
A variety over K is a finite-type separated reduced scheme over K, not necessarily

irreducible or quasi-projective. If V is a variety, then V (K) denotes the set of K-points of
V . A scheme X over K is geometrically integral or geometrically irreducible if X ×K Kalg

is integral or irreducible. A curve over K is a geometrically integral 1-dimensional smooth
projective variety over K.

Remark 1.7. If K is a perfect field and V is a variety, then geometrically irreducible is
equivalent to geometrically integral.

2 Review of abelian varieties

Let A be an abelian variety over some field K. For any n ∈ N, let A[n] denote the group of
n-torsion in A(Kalg), viewed as an abelian group with Gal(K)-action. Let TℓA denote the
ℓth Tate module [21, §18]. If g = dimA, then there are non-canonical isomorphisms

TℓA ≈ Z2g
ℓ

for all ℓ ̸= char(K). In particular, TℓA is a free Zℓ-module of rank 2g. If p = char(K), then

TpA ≈ Zr
p
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for some r known as the p-rank of A. The p-rank is at most g. Similar statements hold for
the torsion subgroups:

A[ℓk] ≈ (Z/ℓk)2g ℓ ̸= char(K)

A[pk] ≈ (Z/pk)r p = char(K).

An isogeny on A is a surjective endomorphism f : A→ A. An isogeny f has a well-defined
degree deg(f), which can be described in two ways:

� The length of the scheme-theoretic kernel of f (a finite group scheme over K).

� The degree of the fraction field extension.

If f : A→ A is a non-surjective endomorphism, then deg(f) is defined to be 0.
Any endomorphism f : A → A induces an endomorphism Tℓ(f) on the Tate modules.

We can talk about the determinant and trace of this endomorphism.

Fact 2.1 (cf. [21, Theorem 19.4] or [20, Proposition I.10.20]). If f : A → A is any endo-
morphism, and ℓ ̸= char(K), then deg(f) = detTℓ(f).

Corollary 2.2. If α1, . . . , α2g denote the eigenvalues of Tℓ(f), then for any polynomial
P (X) ∈ Z[X],

deg(P (f)) =

2g∏︂
i=1

P (αi).

Because the left hand side is an integer independent of ℓ, it follows that the αi are algebraic
numbers which do not depend on ℓ.

The numbers α1, . . . , α2g are called the characteristic roots of the endomorphism f . The
characteristic roots govern the counting of points on curves over finite fields:

Fact 2.3 (= [20, Theorem III.11.1]). Let C be a curve over a finite field Fq, and let J be its
Jacobian. Then

|C(Fq)| = 1−

(︄
2g∑︂
i=1

αi

)︄
+ q

where the αi are the characteristic roots of the qth power Frobenius endomorphism ϕq : J →
J .

Corollary 2.4. In the setting of Theorem 2.3, if ℓ is prime to q, then

|C(Fq)| ≡ 1− Tr(ϕq|J [ℓk]) + Tr(ϕq|Gm[ℓ
k]) (mod ℓk)

where Gm denotes the multiplicative group, Gm[ℓ
k] denotes the group of ℓkth roots of unity

(in Falg
q ), and Tr(σ|M) denotes the trace of an endomorphism σ of some free Z/ℓk-module

M .
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2.1 Bad characteristic

We would like an analogue of Corollary 2.4 in the case of bad characteristic ℓ = p.

Lemma 2.5. Let P (x) and Q(x) be two monic polynomials in Qp[x]. Let β1, . . . , βm ∈ Qalg
p

be the roots of P (x), and α1, . . . , αn ∈ Qalg
p be the roots of Q(x). Suppose that

vp

(︄
m∏︂
i=1

F (βi)

)︄
≤ vp

(︄
n∏︂

i=1

F (αi)

)︄
(1)

holds for every F (x) ∈ Z[x]. Then {β1, . . . , βm} is a submultiset of {α1, . . . , αm}, i.e., P (x)
divides Q(x).

Proof. This follows by a similar argument to [20, Lemma I.10.21]. We leave the necessary
modifications as an exercise to the reader.

Recall that the degree of an isogeny f : A→ A is equal to the degree of the fraction field
extension, and therefore factors into separable and inseparable parts:

deg(f) = degs(f) · degi(f).

Moreover, degs(f) is the size of the set-theoretic kernel of f [21, §6, Application 3].

Fact 2.6. For any ℓ (possibly ℓ = p),

vℓ(detTℓ(ϕ)) = vℓ(| kerϕ|) = vℓ(degs(ϕ))

Fact 2.6 is implicit in the proof of [21, Theorem 19.4] or [20, Theorem I.10.20].

Lemma 2.7. Let A be an abelian variety over Fq for q = pk. Let β1, . . . , βr be the eigenvalues
of Tp(ϕq), for ϕq the qth power Frobenius on A.

1. {β1, . . . , βr} is a submultiset of the characteristic roots {α1, . . . , αr} of ϕq.

2. Each βi has valuation zero in Qalg
p .

Proof. By Corollary 2.2 and Fact 2.6, the following holds for any polynomial F (x) ∈ Z[x]:

vp

(︄
r∏︂

i=1

F (βi)

)︄
= vp(detTp(F (ϕq))) = vp(degs(F (ϕq)))

≤ vp(deg(F (ϕq))) = vp

(︄
2g∏︂
i=1

F (αi)

)︄
.

Then (1) follows by Lemma 2.5. For (2), note that the βi are integral over Zp because they
are the eigenvalues of a linear map Zr

p → Zr
p. Integrality implies that vp(βi) ≥ 0. Moreover,

the map Zr
p → Zr

p is invertible, because the qth power Frobenius is a bijection on points.

Therefore, the β−1
i are also integral, of nonnegative valuation.
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Lemma 2.8. There is a computable function h1(d, d
′, p, s) with the following property. Let

(K, v) be an algebraically closed valued field of mixed characteristic (0, p). Let Q(x) be
a monic polynomial of degree d, with roots α1, . . . , αd. Suppose d′ ≤ d and suppose that
v(Q(pi)) ≥ v(pid

′
) for 1 ≤ i ≤ h1(d, d

′, p, s). Then at least d′ of the αi satisfy v(αi) ≥ v(ps).

Proof. Because ACVF is recursively enumerable, it suffices to prove that h1(d, d
′, p, s) exists

for fixed d, d′, p, s. If h1(d, d
′, p, s) fails to exist, then by compactness there is (K, v) |=

ACVF0,p and a monic polynomial Q(x) of degree d such that

∀i ∈ N : v(Q(pi)) ≥ v(pid
′
),

but fewer than d′ of the roots of Q(x) have valuation greater than v(ps). Let Q(x) =
adx

d + ad−1x
d−1 + · · ·+ a1x+ a0. Then for all but finitely many i, we have

id′ = v(pid
′
) ≤ v(Q(pi)) = min

0≤j≤d
v(ajp

ij) = min
0≤j≤d

(v(aj) + ij).

Therefore, v(aj) ≥ N for j < d′. By Newton polygons, at most d − d′ of the roots of Q(x)
have valuation less than v(ps), a contradiction.

Lemma 2.9. Let G be a finite connected commutative group scheme of length n over Fq. If
n < q then the qth-power Frobenius morphism G→ G is the zero endomorphism.

Proof. Well-known (and easy).

Fact 2.10. Let G be a commutative finite group scheme over a field K.

� Let G′ be a finite subgroup scheme. Then the length of G′ divides the length of G.

� Let G0 denote the connected component of G. Then ℓ(G0) = ℓ(G)/|G(Kalg)|.

The first point follows from [22, Theorems 10.5-10.7]. The second point follows by the
proof of [22, Proposition 15.3].

Lemma 2.11. Suppose A is a g-dimensional abelian variety over Fq. Suppose q > p2gi. Let
r be the p-rank of A. Let ϕq denote the qth power Frobenius endomorphism of A. Then
deg(ϕq − pi) is divisible by pi(2g−r).

Proof. Take ℓ ̸= p. By Fact 2.1, deg(pi) = p2gi because TℓA is a free Zℓ-module of rank
2g. Let G denote the scheme-theoretic kernel of the the multiplication-by-pi endomorphism
of A. Then G is a finite group scheme of length deg(pi) = p2gi. By definition of p-rank,
G(Falg

q ) ≈ (Z/pi)r, so G(Falg
q ) has size pir. Therefore, the connected component G0 of G has

length p2gi/pir = pi(2g−r), by Fact 2.10.
The endomorphism ϕq : A → A restricts to the qth-power Frobenius endomorphism on

G and G0. By assumption, q > p2ig ≥ pi(2g−r), and so ϕq annihilates G
0 by Lemma 2.9.

Let G′ denote the kernel of ϕq − pi. Then G0 is a closed subgroup scheme of G′. By
Fact 2.10, ℓ(G0) = pi(2g−r) divides ℓ(G) = deg(ϕq − pi).
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Proposition 2.12. There is a computable function h2(p, s, g) with the following property.
Let A be a g-dimensional abelian variety over Fq, with q = pk > h2(p, s, g). Let ϕq denote
the qth power Frobenius on A. Let r be the p-rank of A. Then we can write the characteristic
roots of ϕq as α1, . . . , α2g, where

� α1, . . . , αr are the eigenvalues of Tp(ϕq) : TpA→ TpA.

� vp(αi) > vp(p
s) for i ∈ {r + 1, r + 2, . . . , 2g}.

Proof. Define
h2(p, s, g) = max{p2g·h1(2g,d′,p,s) : 0 ≤ d′ ≤ 2g},

where h1 is as in Lemma 2.8. Suppose the assumptions hold. Then for any 1 ≤ i ≤
h1(2g, 2g − r, p, s), we have

q = pk > h2(p, s, g) ≥ p2g·h1(2g,2g−r,p,s) ≥ p2gi.

By Lemma 2.11,

vp(deg(ϕq − pi)) ≥ vp(p
i(2g−r)) for i ≤ h1(2g, 2g − r, p, s).

Let Q(x) be the rational polynomial whose roots are the αi. By Corollary 2.2,

deg(ϕq − pi) =
2g∏︂
i=1

(αi − pi) = Q(pi).

Thus
vp(Q(p

i)) ≥ vp(p
i(2g−r)) for i ≤ h1(2g, 2g − r, p, s).

By definition of h1 (Lemma 2.8), it follows that at least 2g − r of the roots of Q(x) have
p-adic valuation at least vp(p

s). Meanwhile, Lemma 2.7 gives r roots β1, . . . , βr, coming from
the eigenvalues of Tp(ϕq). Each of these roots has valuation zero. There can be no overlap
between the 2g− r roots of valuation at least vp(p

s), and the r roots coming from Tp(ϕq), so
these together account for all 2g roots of Q(x).

Corollary 2.13. There is a computable function h(p, s, g) with the following property. Let
C be a curve of genus g over a finite field Fq, and let J be its Jacobian. Suppose q is a power
of p, and q > h(p, s, g). Then

|C(Fq)| ≡ 1− Tr(ϕq|J [ps]) + Tr(ϕq|Gm[p
s]) (mod ps),

where the notation is as in Corollary 2.4.

Proof. Take h(p, s, g) to be the maximum of h2(p, s, g) and p
s. Suppose q > h(p, s, g). By

Fact 2.3,

|C(Fq)| = 1 + q −
2g∑︂
i=1

αi.

Working modulo ps, the term q vanishes, because q > h(p, s, g) ≥ ps. Also, q > h2(p, s, g),
so by Proposition 2.12, we may assume that
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� α1, . . . , αr are the eigenvalues of Tp(ϕq)

� αr+1, . . . , α2g have valuation at least vp(p
s).

Working modulo ps, we can therefore ignore αr+1, . . . , α2g. Thus

|C(Fq)| ≡ 1−
r∑︂

i=1

αi (mod ps).

The right hand side is 1−Tr(ϕq|J [ps]). Finally, observe that Tr(ϕq|Gm[p
s]) vanishes, because

Gm[p
s] is free of rank 0. (There is no p-torsion in the multiplicative group.)

3 Review of periodic difference fields

In this section, we review the basic facts about periodic fields. The original source for these
results is Hrushovski’s [14]. We will follow an approach that mimics the closely related case
of ACFA [4, 15].

Recall from §1.4 that a periodic field (K∞, σ) is regarded as a multi-sorted structure
(K1, K2, . . .) where Kn is the fixed field of σn on K∞.

3.1 Existentially closed periodic fields

If (K∞, σ) is a periodic field, then Kn/K1 is a cyclic Galois extension of degree at most
n. Say that (K∞, σ) is non-degenerate if Gal(Kn/K1) ∼= Z/nZ for each n. Equivalently,
Kn ̸⊆ Km for any m < n.

Lemma 3.1. If (K∞, σ) is a non-degenerate periodic field and (L∞, σ) extends (K∞, σ),
then the natural map

ψn : L1 ⊗K1 Kn → Ln

is an isomorphism of difference rings for all n ∈ N ∪ {∞}.

Proof. The n = ∞ case follows by taking the limit, so we may assume n < ∞. The image
of ψn is the compositum KnL1. This is an intermediate field in the Galois extension Ln/L1,
so it must be Lm for some m dividing n. By non-degeneracy, Kn ̸⊆ Lm for any m < n.
Thus KnL1 = Ln and the map is surjective. Non-degeneracy of K∞ implies non-degeneracy
of L∞, and so

[Kn : K1] = n = [Ln : L1].

Counting dimensions, ψn must be injective.

Recall that a field extension L/K is regular if L⊗K Kalg is a domain, or equivalently, a
field. A field K is pseudo algebraically closed (PAC) if K is relatively existentially closed in
every regular extension. An equivalent condition is that V (K) ̸= ∅ for every geometrically
integral variety V over K. This property is first-order [11, Proposition 10.9].
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Proposition 3.2. A periodic field (K∞, σ) is existentially closed if and only if

1. K∞ |= ACF,

2. (K∞, σ) is non-degenerate, and

3. K1 is PAC.

Proof. Suppose (1) fails. Extend σ to an automorphism σ′ of Kalg
∞ . Then (K∞, σ) fails to

be existentially closed in (Kalg
∞ , σ′).

Suppose (2) fails, so that Kn = Km for some m < n. Let σ′ be the automorphism of
K ′

∞ := K∞(x1, . . . , xn) extending σ and mapping

x1 ↦→ x2 ↦→ · · · ↦→ xn ↦→ x1.

Then (K∞, σ) is not existentially closed in (K ′
∞, σ

′). Indeed, the equation σn(x) = x ̸= σm(x)
has a solution in K ′

n but not Kn.
Suppose (3) fails, so K1 is not existentially closed in some regular extension L/K1. The

difference ring L∞ := L ⊗K1 K∞ is a field by regularity of L/K1. Then L∞ is a periodic
field extending K∞, and K∞ is not existentially closed in L∞ because K1 is not existentially
closed in L1.

Finally, suppose (1-3) all hold. Let L∞ be a periodic field extending K∞. Let K∗
∞ be a

big ultrapower of K∞ (in the language of periodic fields, not difference fields). It suffices to
embed L∞ into K∗

∞ over K∞. Note that

K∗
∞ = K∗

1 ⊗K1 K∞ = K∗
1 ⊗K1 K

alg
1 .

The first equality holds by Lemma 3.1 and (2); the second equality holds by (1) and the
general fact that K∞/K1 is algebraic. Similarly

L∞ = L1 ⊗K1 K∞ = L1 ⊗K1 K
alg
1 .

Then L1/K1 is regular, so K1 is existentially closed in L1 by (3). It follows that L1 embeds
into K∗

1 over K1. Tensoring with K∞, this gives the desired embedding of periodic fields:

L∞ = L1 ⊗K1 K∞ ↪→ K∗
1 ⊗K1 K∞ = K∗

∞.

The conditions of Proposition 3.2 are first order, in spite of appearances to the contrary.

Definition 3.3. ACPF is the theory of existentially closed periodic fields. In other words,
ACPF is the model companion of periodic fields.

The name “ACPF” is not standard, but is chosen by analogy with ACFA. Recall that a
field is pseudofinite if it perfect, PAC, and has absolute Galois group Ẑ. Models of ACPF
are essentially pseudofinite fields with a choice of a generator of the Galois group:

13



Proposition 3.4. If K is pseudofinite and σ is a topological generator of Gal(K), then
(Kalg, σ) |= ACPF. The periodic field (Kalg, σ) and the pseudofinite field K are bi-interpretable
after naming parameters. All models of ACPF arise in this way from pseudofinite fields.

Proof. Except for bi-interpretability, this follows from Proposition 3.2. Note that “(Kalg, σ)”
is really the multisorted structure (K1, K2, . . .) where Kn is the degree n extension of K.
This can be interpreted in K by choosing a basis for each Kn and interpreting Kn as Kn.
Conversely, K is K1.

If (K, σ) is a periodic field, let Abs(K) denote the “absolute numbers,” the relative
algebraic closure of the prime field in K. We can regard Abs(K) as a substructure of K.
The field Abs(K) is algebraically closed whenever K is.

Lemma 3.5. Two models K1, K2 |= ACPF are elementarily equivalent if and only if Abs(K1) ∼=
Abs(K2). More generally, if F is a substructure of K1 and F = F alg, then any embedding of
F into K2 is a partial elementary map from K1 to K2.

The proof is the same as for ACFA [4, Theorem 1.3]. Lemma 3.5 generalizes (and implies)
the analogous statements for pseudofinite fields [2, Theorem 4].

3.2 Definable sets

The following standard fact is an easy application of compactness:

Fact 3.6. Let M be a monster model. Let A ⊆ M be small. Let P be a collection of A-
definable subsets of Mn closed under positive boolean combinations. Suppose the following
holds:

For every a, b ∈Mn, if

∀X ∈ P : a ∈ X =⇒ b ∈ X,

then tp(a/A) = tp(b/A).

Then every A-definable subset of Mn is in P.

We shall need the following geometric form of almost quantifier elimination. Recall that
a morphism f : V1 → V2 of K-varieties is quasi-finite if the fibers of the map V1(K

alg) →
V2(K

alg) are finite.

Proposition 3.7. Let (M, σ) be a model of ACPF. Let (K∞, σ) be a non-degenerate sub-
structure, with K1 perfect. Let X be a K∞-definable subset of Mn

1 . Then X is the image of
V (M1)→ An(M1) for some quasi-finite morphism V → An of K1-varieties.

14



Proof. Replacing M with an elementary extension, we may assume M is |K∞|+-saturated.
Let P be the class of definable subsets of Mn

1 of the specified form. We need to show that P
contains every K∞-definable subset of Mn

1 .
Note that P is closed under finite unions, because we can form coproducts V1 ⊔ V2 in the

category of K1-varieties. Similarly, P is closed under finite intersections, because of fiber
products V1 ×An V2. Therefore, we can use Fact 3.6. Let a, b be two points in Mn

1 . Suppose
that for every X ∈ P ,

a ∈ X =⇒ b ∈ X.

We must show tp(a/K∞) = tp(b/K∞). Let (K1(a)
alg)1 denote the fixed field of the periodic

difference field K1(a)
alg ⊆M∞.

Claim 3.8. Let c be an m-tuple from (K1(a)
alg)1 and ϕ(x; y) be a quantifier-free Lrings(K1)-

formula such that ϕ(a; c) holds. Then there is an m-tuple d from M1 such that ϕ(b; d)
holds.

Proof. Strengthening ϕ(x; y), we may assume that

� ϕ(x; y) witnesses that y ∈ K1(x)
alg.

� ϕ(M∞) defines a locally closed subvariety W of An+m.

Then the projection W → An is a quasi-finite morphism of varieties over K1. Let X ∈ P be
the image of W (M1)→ An(M1). Then

(a; c) ∈ W (M1) =⇒ a ∈ X =⇒ b ∈ X =⇒ (b; d) ∈ W (M1)

for some m-tuple d ∈M1. □Claim

By saturation, the Claim holds even when c is an infinite tuple and ϕ(x; y) is a type.
Letting c enumerate (K1(a)

alg)1 and ϕ(x; y) be the complete type of (a, c) over K1, we obtain
an embedding of fields

(K1(a)
alg)1 ↪→M1

mapping a to b and K1 to K1 pointwise. By Lemma 3.1, we can apply the functor −⊗K1K∞
and obtain an embedding of periodic fields

K1(a)
alg ↪→M∞

sending a to b, and K∞ to K∞ pointwise. By Lemma 3.5, this is a partial elementary map,
so tp(a/K∞) = tp(b/K∞).

Proposition 3.7 is similar in spirit to Kiefe’s quantifier elimination [17, §3], but stronger
in that we are restricting to positive boolean combinations of images. It is also quite similar
to the quantifier elimination using Galois stratifications (e.g., [6, Theorem 2.3.1]).

In Proposition 3.7, note that dim(V ) ≤ n, because the geometric fibers of V → An are
finite. In the 1-dimensional case, V is essentially a collection of curves:
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Fact 3.9. Let K be a perfect field, and V be a 1-dimensional variety over K. In other words,
V (Kalg) is 1-dimensional as a definable set in Kalg. Then there exist curves3 C1, C2, . . . , Cn

and a definable bijection between a cofinite subset of V (K) and a cofinite subset of
∐︁n

i=1Ci(K).

3.3 The theory of Frobenius periodic fields

Recall the Frobenius periodic fields Frq = (Falg
q , ϕq), where ϕq is the qth power Frobenius.

There is an analogy

finite fields : pseudofinite fields :: Frobenius periodic fields : e.c. periodic fields.

Ax showed that a field K is pseudofinite if and only if it is elementarily equivalent to a
non-principal ultraproduct of finite fields. The analogous thing happens here.

Definition 3.10. ˜︂ACPF is the theory of periodic fields K∞ such that

1. K∞ |= ACF

2. K∞ is non-degenerate

3. K1 is a model of the theory Tfin of finite fields.

4. If K1 has size q <∞, then σ acts as the qth power Frobenius on K∞.

Ax showed that the models of Tfin are exactly the finite and pseudofinite fields.

Lemma 3.11. The models of ˜︂ACPF are exactly the models of ACPF and the Frobenius
periodic fields.

Proof. If (K∞, σ) |= ACPF, then Axioms (1) and (2) hold by definition, (3) holds because
K1 is pseudofinite by Proposition 3.4, and (4) is vacuous, as pseudofinite fields are infinite.
If (K, σ) is the qth Frobenius periodic field Frq, then all the axioms are trivial. Conversely,

suppose (K∞, σ) |= ˜︂ACPF. If |K1| = q < ∞, then Axiom (1) forces K∞ ∼= Falg
q and Axiom

(4) forces (K∞, σ) ∼= Frq. If K1 is infinite, then (3) forces K1 to be pseudofinite, hence PAC.
Then (1) and (2) ensure (K∞, σ) |= ACPF.

Corollary 3.12. If (K∞, σ) is a non-principal ultraproduct of Frobenius periodic fields, then
(K∞, σ) |= ACPF.

Lemma 3.13. If (K∞, σ) |= ACPF and K∞ has characteristic 0, then (K∞, σ) is elemen-
tarily equivalent to an ultraproduct of Frobenius periodic fields Frp with p prime.

3Geometrically irreducible, smooth, and projective as always.
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Proof. For each prime p, let F̃ p be the periodic field (Qun
p , σ), where Qun

p is the maximal
unramified algebraic extension of Qp, and σ induces the pth power Frobenius on the residue

field. By the Chebotarev density theorem, there is a non-principal ultraproduct (F̃
∗
, σ) of

F̃ p such that

(Abs(F̃
∗
), σ) ∼= (Abs(K), σ).

Now F̃
∗
has a σ-invariant valuation whose residue field is an ultraproduct F ∗ of Frobenius

periodic fields Frp. Then F ∗ has characteristic 0, the valuation is equicharacteristic 0, and
the residue map gives an isomorphism

(Abs(F̃
∗
), σ) ∼= (Abs(F ∗), σ).

By Lemma 3.5 and Corollary 3.12, (K, σ) ≡ (F ∗, σ).

Lemma 3.14. If (K∞, σ) |= ACPF and K has characteristic p > 0, then K is elementarily
equivalent to a non-principal ultraproduct of Frobenius periodic fields Frq, with q ranging over
powers of p.

Proof. Similar to Lemma 3.13, but easier (no valuations or Chebotarev).

Proposition 3.15.

1. A periodic field (K, σ) is existentially closed if and only if it is elementarily equivalent
to a non-principal ultraproduct of Frobenius periodic fields.

2. The elementary class generated by Frobenius periodic fields consists of the Frobenius
periodic fields and existentially closed periodic fields.

3. ˜︂ACPF is the theory of Frobenius periodic fields.

Let Tprime be the theory of finite prime fields Fp. Ax showed that the models of Tprime

are exactly the finite prime fields and the pseudofinite fields of characteristic 0. Analogously,
one can show:

Proposition 3.16.

1. A periodic field (K, σ) is existentially closed of characteristic 0 if and only if it is ele-
mentarily equivalent to a non-principal ultraproduct of prime Frobenius periodic fields.

2. The elementary class generated by prime Frobenius periodic fields consists of:

� Prime Frobenius periodic fields

� Existentially closed periodic fields of characteristic 0

3. The theory of prime Frobenius periodic fields is axiomatized by ˜︂ACPF and the statement
that K1 |= Tprim.
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4 Proof of the main theorem

4.1 The implicit definition

Using Beth implicit definability, Kraj́ıček proves that if a theory admits a unique R-valued
strong Euler characteristic χ, then χ is definable [18, Theorem 7.2]. We will use a similar
strategy to define our strong Ẑ-valued Euler characteristic. We will use the following two
variants of Beth implicit definability:

Fact 4.1 (= [13, Theorem 6.6.4]). Let L+ ⊇ L− be languages. Let T− be an L− theory
and T+ be an L+ theory extending T−. Let ϕ(x) be an L+ formula. Suppose that whenever
N |= T−, andM+

1 andM+
2 are two expansions of N to a model of T+, that ϕ(M+

1 ) = ϕ(M+
2 ).

Then there is an L−-formula ψ(x) such that T+ ⊢ ϕ↔ ψ.

Corollary 4.2. Let L+ ⊇ L− be languages. Let T− be an L− theory and T+ be an L+ theory
extending T−. Suppose that

� T− is the theory of some (non-elementary) class C of L−-structures.

� Every model of T− has at most one expansion to a model of T+.

� Every model in C has at least one expansion to a model of T+.

Then every model of T− has a unique expansion to a model of T+, and T+ is a definitional
expansion of T−.

Proof. If M |= T−, then M is elementarily equivalent to an ultraproduct

M ≡M ′ =
∏︂
i∈I

Mi/U

of structures Mi ∈ C. Each Mi can be expanded to a model of T+, so the same holds
for the ultraproduct M ′. By Fact 4.1 and the assumptions, the T+-structure on M ′ is ∅-
definable from the T−-structure. Therefore the T+-structure transfers along the elementary
equivalenceM ′ ≡M , giving a T+-structure onM . So every model of T− expands to a model
of T+ in a unique way. By Fact 4.1, T+ is a definitional expansion of T−.

We will apply both versions of implicit definability in the following context:

� The language L− is the language of periodic fields.

� The theory T− is ˜︂ACPF, the theory of Frobenius periodic fields as in §3.3.

� C is the class of Frobenius periodic fields.

� The language L+ is the expansion of L− by a new predicate Pϕ,n,k(y⃗) for every formula
ϕ(x⃗; y⃗) ∈ L−, every n ∈ N, and every k ∈ Z/nZ. (Compare with the proof of [18,
Theorem 7.2].)
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The theory T+ is T− plus the following axioms:

1. For every ϕ, n, and b, there is a unique k ∈ Z/nZ such that Pϕ,n,k(b) holds.

2. If ϕ(K; b) = ϕ′(K; b′), then

Pϕ,n,k(b) ⇐⇒ Pϕ′,n,k(b
′).

3. If X is a definable set ϕ(K; b), let χn(X) denote the unique k such that Pϕ,n,k(b) holds.
(This is well-defined by (1) and (2).) Then χn is a strong Euler characteristic for each
n.

4. The diagram

Def(M)
χn →→

χm

↘↘

Z/nZ

↓↓
Z/mZ

commutes when m divides n.

5. Let C be a genus-g curve over K1, and let J be its Jacobian. Let pk be a prime power.
Let h be the function from Corollary 2.13. If char(K) ̸= p or if |K1| > h(g, p, k), then
χpk(C(K1)) is given by the formula

χpk(C(K1)) = 1− Tr(σ|J [pk]) + Tr(σ|Gm[p
k]).

Here, if G is a commutative group variety over K1, then Tr(σ|G[n]) denotes the trace
of the action of σ on the group of n-torsion in G(K∞).

Axioms 1-4 encode the statement that χ is a Ẑ-valued strong Euler characteristic, and Axiom
5 determines its value on curves over K1. We discuss why Axiom 5 is first-order in §5.

4.2 Uniqueness

The “existence” part of Corollary 4.2 has already been verified:

Proposition 4.3. If Frq is a Frobenius periodic field, and χ is the counting Euler charac-
teristic, then χ satisfies T+. In particular, Frq admits an expansion to a model of T+.

Proof. Examining the definition of T+, Axioms (1)-(4) merely say that χ is a Ẑ-valued strong
Euler characteristic, which is trivial. Axiom (5) holds by Corollaries 2.4 and 2.13.

Therefore, it remains to prove the “uniqueness” part. Our goal is to show that on any

(K, σ) |= ˜︂ACPF, there is at most one Ẑ-valued Euler characteristic satisfying the axioms of
T+. Until Proposition 4.7, we will restrict our attention to models of ACPF.
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Remark 4.4. In Axiom 5 of T+, the condition “|K1| > h(g, p, k)” is automatic when K1

is infinite, i.e., when (K∞, σ) |= ACPF. Therefore, for models of ACPF, Axiom 5 says the
following: for any curve C over K1 with Jacobian J ,

χpk(C(K1)) = 1− Tr(σ|J [pk]) + Tr(σ|Gm[p
k]).

By the Chinese remainder theorem, this formula determines χn(C) for any n.

Lemma 4.5. Let (K∞, σ) be a model of ACPF, admitting two expansions to a model of T+.
Let χ and χ′ be the corresponding Ẑ-valued strong Euler characteristics. Then χ(X) = χ′(X)
for every unary definable set X ⊆ K1.

Proof. Say that a definable set is good if χ(X) = χ′(X). Finite sets are good. If X is in
definable bijection with Y and X is good, then so is Y . A disjoint union of two good sets is
good. If S is a cofinite subset of X, then S is good if and only if X is good. Consequently,
if a cofinite subset of X is in definable bijection with a cofinite subset of Y , then X is good
if and only if Y is good.

If C is a curve over K1, then C(K1) is good, by Remark 4.4. Any disjoint union of sets
of this form is also good. By Fact 3.9, the set V (K1) is good for any 1-dimensional variety
X over K1.

Now letX be a definable subset of (K1)
1. By Proposition 3.7, X is the image of V1(K1)→

A1(K1) for some morphism V1 → A1 of K1-varieties with geometrically finite fibers. Let Vn
denote the n-fold fiber product

V1 ×A1 V1 ×A1 · · · ×A1 V1.⏞ ⏟⏟ ⏞
n times

Each of the morphisms Vn → A1 has geometrically finite fibers, so each variety Vn is 1-
dimensional. Hence each set

Yn := Vn(K1)

is good. Note that Yn is the n-fold fiber product of Y1 over X.
Let m be a bound on the size of the fibers of Y1 → X. For 1 ≤ k ≤ m, let Xk denote the

set of a ∈ X such that f−1(a) has size k. Let αk and βk denote χ(Xk) and χ
′(Xk).

Because χ and χ′ are strong Euler characteristics,

χ(Yn) =
m∑︂
k=1

αkk
n

χ′(Yn) =
m∑︂
k=1

βkk
n

for all n. As the Yn’s are good,
m∑︂
k=1

αkk
n =

m∑︂
k=1

βkk
n
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for n = 1, . . . ,m. By invertibility of the Vandermonde matrix ⟨kn⟩1≤k≤m, 1≤n≤m, and the

fact that Ẑ has no Z-torsion, it follows that αk = βk for all k. Consequently,

χ(X) =
m∑︂
k=1

αk =
m∑︂
k=1

βk = χ′(X). (2)

Therefore X is good.

The proof method of Lemma 4.5 is essentially due to Kiefe [17, Proof of Lemma 8].

Lemma 4.6. For any n, the following statements are true:

(Sn) Let (K∞, σ) be a model of ACPF, admitting two expansions to a model of T+. Let χ
and χ′ be the corresponding Ẑ-valued strong Euler characteristics. Then χ(X) = χ′(X)
for every definable subset X ⊆ (K1)

n.

(Tn) If (K∞, σ) is a model of ACPF, admitting an expansion to a model of T+, and χ is
the corresponding Ẑ-valued strong Euler characteristic, then for every definable family
{Xa}a∈Y of subsets of (K1)

n, for every m ∈ N and for every k ∈ Z/mZ, the set

{a ∈ Y (K) : χ(Xa) ≡ k (mod m)}

is definable in the L−-reduct (K∞, σ).

Proof. Statement S1 is Lemma 4.5. The implication Sn =⇒ Tn follow by Beth implicit
definability. It suffices to show

(S1 and Sn and Tn) =⇒ Sn+1.

Assume the left hand side. Let (K∞, σ), χ, χ
′, and X ⊆ K1 × (K1)

n be as in the statement
of Sn+1. Fix m ∈ N; we claim χm(X) = χ′

m(X). For t ∈ K1, let

Xt = {x⃗ ∈ (K1)
n : (t, x⃗) ∈ X}

By statements Sn and Tn, the sets

Yk = {t ∈ K1 : χ(Xt) ≡ k (mod m)}
Y ′
k = {t ∈ K1 : χ

′(Xt) ≡ k (mod m)}

are equal and definable. Because χ and χ′ are strong Euler characteristics,

χm(X) =
∑︂

k∈Z/mZ

k · χm(Yk)

χ′
m(X) =

∑︂
k∈Z/mZ

k · χ′
m(Y

′
k).

Then χm(Yk) = χ′
m(Yk) by statement S1, so putting things together, χm(X) = χ′

m(X). As
m was arbitrary, Sn holds.
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Proposition 4.7. If (K, σ) is a model of ˜︂ACPF, then there is at most one expansion of
(K, σ) to a model of T+.

Proof. If (K, σ) is a Frobenius periodic field, then K∞ is essentially finite and there is at
most one Ẑ-valued Euler characteristic. So assume (K∞, σ) |= ACPF. Let χ, χ′ be two
Ẑ-valued Euler characteristics satisfying T+. Note that the sort Kn is in definable bijection
with (K1)

n. If X is any definable set in K∞, then X is therefore in definable bijection with
a definable subset Y ⊆ (K1)

m for some m. By statement Sm of Lemma 4.6,

χ(X) = χ(Y ) = χ′(Y ) = χ′(X).

By Corollary 4.2 and Proposition 4.3, we conclude

Proposition 4.8. If (K, σ) is a model of ˜︂ACPF, then there is a unique expansion of (K, σ)
to a model of T+.

Theorem (Theorem 1.4). Let C be the class of Frobenius periodic fields and existentially
closed periodic fields. There is a Ẑ-valued strong Euler characteristic χ on (K, σ) in C with
the following properties:

� χ is uniformly ∅-definable across C.

� If (K, σ) is a Frobenius periodic field, then χ is the counting Euler characteristic:

χ(X) = |X|.

� If (K, σ) is an ultraproduct of Frobenius periodic fields, then χ is the nonstandard
counting Euler characteristic.

Definition 4.9. The canonical Euler characteristic on (K, σ) |= ˜︂ACPF is the Ẑ-valued Euler
characteristic of Theorem 1.4.

5 A digression on definability and computability

This section discusses some of the technical issues related to Axiom (5) in the definition of
T+. If one is willing to sweep these issues under the rug, this section can be skipped.

Lemma 5.1. The theory T+ of §4.1 is first-order.

Proof sketch. The difficulty lies in expressing Axiom (5) via first-order axioms. The assertion

J is the Jacobian of C

can be expressed as

J is a smooth projective group variety that is birationally equivalent (over K1)
to Symg C, the gth symmetric product of C.
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Indeed, the Jacobian is a smooth projective group variety because it is an abelian variety,
and it is birationally equivalent to Symg C by the construction of the Jacobian in [23, §V.1].
By Theorem I.3.8 in [20], any birational map between two projective group varieties extends
to an isomorphism.

Even the following statement is rather non-trivial to express:

C is a (smooth projective) curve of genus g

Smoothness can be witnessed by covering projective space with Zariski open patches on
which C is cut out by a system of equations whose matrix of partial derivatives has rank
no higher than the codimension of C. Geometric irreducibility can be witnessed as in the
appendix of [10]. Genus can be determined by counting zeros and poles on a meromorphic
section of the tangent bundle. Alternatively, genus can be calculated by projecting into the
plane, calculating the delta invariants of the singularities, and applying the degree-genus
formula.

Hopefully, everything will be spelled out in greater detail in [16].

Conjecture 5.2. The theory T+ of §4.1 is recursively axiomatizable.

Conjecture 5.2 is almost certainly true, by the method of Lemma 5.1. However, it is
surprisingly difficult to write out a proof that is both rigorous and human-readable. In
future work ([16]), I will develop a toolbox for working with recursively ind-definable sets.
This toolbox enables a smooth proof of Conjecture 5.2 along the lines of Lemma 5.1.

Alternatively, there may be clever algebraic proofs of Conjecture 5.2. But it would be
more conceptually satisfying to explain why the informal argument can be formalized, rather
than cheating and appealing to algebraic tricks.

6 Further results

6.1 Uniform definability of the counting Euler characteristic

Theorem 1.4 implies that the counting Euler characteristic is uniformly definable across all
Frobenius periodic fields. This can be restated more explicitly as follows:

Corollary 6.1. For any formula ϕ(x; y) in the language of periodic fields, any n ∈ N, and
any k ∈ Z/nZ, there is a formula ψϕ,n,k(y) such that for any Frobenius periodic field Frq and
any tuple b from Frq,

Frq |= ψϕ,n,k(b) ⇐⇒ |ϕ(Frq; b)| ≡ k (mod n)

6.2 Evaluation on curves

Proposition 6.2. Let (K∞, σ) be a model of ACPF. Let C be a curve over K1, and J
be the jacobian. For any prime ℓ (possibly the characteristic), the ℓ-adic component of
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χ(C(K1)) is determined by the trace of the action of σ on the ℓ-adic Tate modules of J and
the multiplicative group Gm:

1− Tr(σ|TℓJ) + Tr(σ|TℓGm).

Proof. This follows directly from Axiom 5 of T+, and Remark 4.4.

For ℓ ̸= char(K), there should be a generalization using ℓ-adic étale cohomology with
compact supports:

Conjecture 6.3. Let (K∞, σ) be a model of ACPF, let V be a variety over K1, and let ℓ be
a prime different from the characteristic. Then the ℓ-adic component of χ(V (K1)) is given
by the formula

2 dim(V )∑︂
i=0

(−1)i Tr(σ−1|H i
c(V ;Qℓ)),

where H i
c(V ;Qℓ) denotes the ℓ-adic cohomology with compact supports.

I suspect that Conjecture 6.3 is trivial with the right tools. If I understand correctly,
the conjecture holds for Frobenius periodic fields, because of Grothendieck’s trace formula
[9, Chapter II, Theorem 4.2]. As long as Conjecture 6.3 can be stated as a conjunction of
first-order sentences, it transfers to models of ACPF by Proposition 3.15. Thus, the only
thing needing verification is that the groups H i

c(V ;Z/ℓk) depend definably on V . This should
follow easily from the base change theorem for direct images with proper support [9, Chapter
1, Theorem 8.7(1)].

Remark 6.4. Fix a field k of characteristic 0. Denef and Loeser [6] assign to each formula
ϕ in the language of k-algebras an invariant χc(ϕ) depending only on the realizations of ϕ
in pseudofinite fields extending k. The invariant χc(ϕ) is a virtual motive, i.e., an element
of K0(Motk,Qalg)⊗Q, where K0(Motk,Qalg) is the Grothendieck group of Chow motives over
k with coefficients in Qalg. Let K be a pseudofinite field extending k, let σ be a topological
generator of Gal(K), let χ̂ be the associated Ẑ-valued strong Euler characteristic, and let ℓ
be a prime. Generalizing Conjecture 6.3, one expects the ℓ-adic part of χ̂(ϕ(K)) to be given
by F (χc(ϕ)), where F : K0(Motk,Qalg) ⊗ Q → Qℓ is the ring homomorphism sending (the
class of) a motive M to the trace of σ−1 acting on the ℓ-adic realization of M .

6.3 Pseudofinite fields

Lemma 6.5. Let K be a pseudofinite field and σ be a topological generator of Gal(K). The
canonical Ẑ-valued definable strong Euler characteristic on (Kalg, σ) restricts to an acleq(∅)-
definable strong Euler characteristic on K.

Proof. The structure (Kalg, σ) and the field K have equivalent categories of (parametrically)
definable sets, by the bi-interpretability of Proposition 3.4. Therefore, the definable strong
Euler characteristic on (Kalg, σ) determines a definable strong Euler characteristic χ′ on K.

24



To prove acleq(∅)-definability of χ′, we may pass to an elementary extension and assume
K and (Kalg, σ) are monster models. The Euler characteristic χ′ is not determined in an
Aut(K)-invariant way, because of the choice of σ. However, there are only boundedly many
choices for σ. Therefore χ′ has only boundedly many conjugates under Aut(K), so χ′ is
acleq(∅)-definable.

Theorem (Theorem 1.1).

1. Let K =
∏︁

iKi/U be an ultraproduct of finite fields. Then the nonstandard counting
functions χn are acleq(∅)-definable.

2. Every pseudofinite field admits an acleq(∅)-definable Ẑ-valued strong Euler character-
istic.

Proof. Part 2 is Lemma 6.5. For part 1, given an ultraproduct K =
∏︁

i Fqi/U , let (L, σ) =∏︁
i Fr

qi /U be the corresponding ultraproduct of Frobenius periodic fields. Then K ∼= L1.
The nonstandard counting functions on K are induced by the canonical Euler characteristic
on (L∞, σ). Therefore the nonstandard counting functions on K are acleq(∅)-definable, by
Lemma 6.5.

6.4 Elimination of parity quantifiers

Let µn
kx be a generalized parity quantifier, as in §1.3. Let Lµ

rings and Lµ
pf be the language

of rings and the language of periodic fields, respectively, expanded with generalized parity
quantifiers.

Proposition 6.6 (= Theorem 1.5.1). Frobenius periodic fields uniformly eliminate general-
ized parity quantifiers. If ϕ(x⃗) is a formula in Lµ

pf , then there is a formula ϕ′(x⃗) ∈ Lpf such
that for any Frobenius periodic field Frq and any tuple a⃗,

Frq |= ϕ(a⃗) ⇐⇒ Frq |= ϕ′(a⃗).

Proof. Proceed by induction on the complexity of ϕ(x⃗). We may assume ϕ(x⃗) has the form

µn
k y⃗ : ψ(x⃗, y⃗),

for some formula ψ(x⃗, y⃗) ∈ Lpf . In this case, we can eliminate µn
k by Corollary 6.1.

Example 6.7. The Lµ
pf -sentence

τ
def⇐⇒ µ5

2x ∈ K1 : x = x

is equivalent in Frobenius periodic fields Frq to the Lpf -sentence

τ ′
def⇐⇒ 5 ̸= 0 ∧ ∀x ∈ K4 : (x

5 = 1→ σ(x) = x2).

To see this, break into cases according to the congruence class of q modulo 5. Note that
Frq |= τ ⇐⇒ q ≡ 2 (mod 5).
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� If q ≡ 0 (mod 5), then Frq has characteristic 5, so τ ′ and τ are both false.

� If q ≡ 2 (mod 5), then Frq does not have characteristic 5, and

∀x ∈ K∞ : (x5 = 1→ xq = x2),

so τ and τ ′ are both true.

� If q ≡ j (mod 5) for j ̸= 0, 2, then Frq does not have characteristic 5. Let x be a
primitive fifth root of unity. Then x ∈ K4, because Gal(K1(x)/K1) is a subgroup of
(Z/5Z)× ∼= Z/4Z. Also,

xq = xj ̸= x2,

and so τ ′ is false.

In contrast to Proposition 6.6, generalized parity quantifiers are not eliminated in finite
fields:

Lemma 6.8. There is no Lrings-sentence ρ equivalent to the following Lµ
rings-sentence in

every finite field:
µ5
2x : x = x.

Proof. Suppose ρ exists. Then the following are equivalent for any model (K∞, σ) |= ˜︂ACPF:

� K1 satisfies ρ

� K∞ does not have characteristic 5, and the action of σ on the fifth roots of unity is
given by

σ(ω) = ω2.

Now take (K∞, σ) satisfying ACPF and the two equivalent conditions. (For example, we can
take K∞ to be a non-principal ultraproduct of Frp where p ranges over primes congruent to
2 mod 5. A non-principal ultrafilter exists by Dirichlet’s theorem.) Then K1 satisfies ρ, and
σ acts on the fifth roots of unity by squaring. Consider a dual model

(K†
∞, σ)

∼= (K∞, σ
−1).

From the axioms of ACPF, it is clear that (K†
∞, σ) |= ACPF. Since σ acts on fifth roots by

squaring, σ−1 acts by cubing:
σ−1(ω) = ω3,

as 2 and 3 are multiplicative inverses modulo 5. So (K†
∞, σ) does not satisfy the two equivalent

conditions, and in particular, K†
1 ̸|= ρ. But this is absurd, since K†

1 is isomorphic as a field
to K1.

Remark 6.9. The proof of Lemma 6.8 actually proves something stronger: parity quantifiers
are not eliminated on the class of prime fields Fp. The non-elimination of parity quantifiers
in finite fields was originally proven in [18, Theorem 7.3], using a slightly different method.
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6.5 Decidability

Recall the theory T+ of §4.1. For the rest of this section, we assume Conjecture 5.2.

Lemma 6.10. (Assuming Conjecture 5.2) There is a computable function which takes a
formula ϕ(x⃗) in the language of T+ and outputs a formula ϕ′(x⃗) in the language of periodic
fields, such that T+ ⊢ ϕ↔ ϕ′.

Proof. By Conjecture 5.2, the theory ˜︂ACPF of §3.3 and the theory T+ of §4.1 are recursively
axiomatized.

For each ϕ, an equivalent formula ϕ′ exists by Beth implicit definability (Fact 4.1) and
the existence and uniqueness of the expansion to T+ (Proposition 4.8). An algorithm can
find ϕ′ by searching all consequences of T+ until it finds one of the form

∀x⃗ : ϕ(x⃗)↔ ϕ′(x⃗)

with ϕ′ a formula in the pure language of periodic fields.

Corollary 6.11. (Assuming Conjecture 5.2.)

1. In Corollary 6.1, the formula ψϕ,n,k can be chosen to depend computably on ϕ.

2. In Proposition 6.6, the elimination of generalized parity quantifiers can be carried out
computably—the formula ϕ′ can be chosen to depend computably on ϕ.

Proof.

1. Corollary 6.1 is an instance of Lemma 6.10, so the conversion can be done computably.

2. As in the proof of Proposition 6.6, one converts a Lµ
pf -formula into a pure Lpf -formula

by recursion on the formula.

Theorem (Theorems 1.5.2 and 1.2). (Assuming Conjecture 5.2.)

1. The Lµ
pf -theory of Frobenius periodic fields is decidable.

2. The Lµ
rings-theory of finite fields is decidable.

Proof. First note that the (Lpf -)theory of Frobenius periodic fields is decidable. By Propo-

sition 3.15, the theory is completely axiomatized by ˜︂ACPF. Therefore, the theory is com-
putably enumerable. The theory is also co-computably enumerable. Indeed, a sentence τ is
not part of the theory if and only if Frq |= ¬τ for some q. There is an algorithm taking q
and τ and outputting whether or not Frq |= τ , because Frq is essentially finite. So we can
enumerate all the statements that fail in some Frobenius periodic field, which is the comple-
ment of the theory of Frobenius periodic fields. Thus the theory of Frobenius periodic fields
is decidable, as claimed.
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Now given a Lµ
pf -sentence τ , we can computably convert it into an equivalent Lpf -sentence

τ ′, and use the previous paragraph to computably determine whether or not τ ′ holds in every
Frobenius periodic field. This proves the first point.

The second point follows, because there is a computable way to convert an Lµ
rings-sentence

τ into a Lµ
pf -sentence τ

′ such that

(K∞, σ) |= τ ′ ⇐⇒ K1 |= τ

for any essentially finite periodic field (K∞, σ). Taking K∞ to be Frq, we see that

Frq |= τ ′ ⇐⇒ Fq |= τ.

Therefore, τ holds in every finite field if and only if τ ′ holds in every Frobenius periodic field.
Then we can apply the oracle for the first point to τ ′.

7 Mock-finite fields

Recall that Abs(K) denotes the substructure of absolute numbers of K—the elements alge-
braic over the prime field.

Definition 7.1. A field K is mock-finite if K is pseudofinite and Abs(K) is finite.

We will see that mock-finite fields admit particularly nice Euler characteristics.

Definition 7.2. A field K is a mock-Fq if K is pseudofinite and Abs(K) ∼= Fq.

Note that K is mock-finite if and only if K is a mock-Fq for some q. For fixed q, the
theory of mock Fq’s is consistent and complete [2, Theorems 4 and 6].

Lemma 7.3. Let K be a mock-Fq. Then the restriction homomorphism

Gal(K)→ Gal(Fq)

is an isomorphism. Consequently, there is a unique topological generator σ ∈ Gal(K) ex-
tending the qth power Frobenius ϕq ∈ Gal(Fq).

Proof. The restriction homomorphism is surjective because Fq is relatively algebraically

closed in K. Both Galois groups are isomorphic to Ẑ, and any continuous surjective ho-
momorphism Ẑ→ Ẑ is an isomorphism.

Definition 7.4. If K is a mock-Fq, the mock Frobenius automorphism is the unique σ ∈
Gal(K) extending the qth-power Frobenius ϕq ∈ Gal(Fq).

If p is a prime, let Z¬p be the prime-to-p completion of Z:

Z¬p = lim←−
(n,p)=1

Z/nZ =
∏︂
ℓ ̸=p

Zℓ.
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Definition 7.5. Let K be a mock-finite field, and σ be the mock Frobenius automorphism.

1. The principal Euler characteristic on K is the Z¬p-valued Euler characteristic induced
by σ.

2. The dual Euler characteristic on K is the Z¬p-valued Euler characteristic induced by
σ−1.

The reason for the prime-to-p restriction will become clear soon.

Lemma 7.6. The principal and dual Euler characteristics are ∅-definable.

Proof. They are definable by Lemma 6.5, and Aut(K/∅)-invariant by construction.

7.1 Mock-frobenius periodic fields

Definition 7.7. A periodic field (K, σ) is amock-Frq if (K, σ) |= ACPF and Abs(K, σ) ∼= Frq.

Proposition 7.8. Let q be a prime power.

1. The theory of mock-Frq periodic fields is consistent and complete.

2. If K is a mock-Fq and σ is the mock Frobenius, then (Kalg, σ) is a mock-Frq. Every
mock-Frq arises this way.

Proof. 1. Mock-Frq fields exist because we can embed Frq into an existentially closed
periodic field. Any two mock-Frq fields are elementarily equivalent by Lemma 3.5.

2. Clear from Proposition 3.4 and the definitions.

7.2 The principal Euler characteristic

Dwork proved the following part of the Weil conjectures, in [7].

Fact 7.9 (Dwork). If V is a variety over Fq, then there are non-zero algebraic integers
α1, . . . , αm and β1, . . . , βm′ such that for every n,

|V (Fqn)| = αn
1 + · · ·+ αn

m − βn
1 − · · · − βn

m′ .

There is no assumption that V is smooth, proper, or connected.

Fix a copy Qalg of the algebraic numbers. For each prime ℓ, fix an extension of the ℓ-adic
valuation vℓ from Q to Qalg. Note that vℓ is non-negative on the algebraic integers.
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Lemma 7.10. Let V, αi, βj be as in Fact 7.9. Let (K∞, σ) be a mock Frq, and let χℓ be the
ℓ-adic part of the canonical Euler characteristic on K. Then

χℓ(V (K1)) = α′
1 + · · ·+ α′

m − β′
1 − · · · − β′

m′ , (3)

where

α′
i =

{︄
αi vℓ(αi) = 0

0 vℓ(αi) > 0

β′
i =

{︄
βi vℓ(βi) = 0

0 vℓ(βi) > 0

In other words, χℓ(V (K1)) is obtained from |V (Fq)| by dropping the terms of positive
ℓ-adic valuation.

Proof. Take a non-principal ultrafilter U on N, concentrating on the sets 1 + nZ for every
non-zero ideal nZ. It suffices to prove the following two Claims:

Claim 7.11. The ultralimit of |V (Fqn)| in Zℓ is given by the right-hand side of (3).

Claim 7.12. The ultralimit of |V (Fqn)| in Zℓ is given by the left-hand side of (3).

Claim 7.11 follows from a direct calculation. Claim 7.12 holds because the theory of
K is the limit of the theory of Frq

n

as n → U . We leave the details as an exercise to the
reader.

Lemma 7.13. Let (K∞, σ) be a mock-Frq.

1. If C is a curve over Fq, and α1, . . . , α2g are the characteristic roots of the qth-power
Frobenius, then the prime-to-p part of χ(C(K1)) equals |C(Fq)|.

2. If V is a 1-dimensional variety over Fq, then the prime-to-p part of χ(V (K1)) equals
|V (Fq)|.

3. If X is an Frq-definable subset of K1, then the prime-to-p part of χ(X) equals |X ∩Fq|.

Proof.

1. By the Weil conjectures for curves [12, Appendix C, §1], we know that

C(Fqn) = 1− αn
1 − · · · − αn

2g + qn

for all n. Moreover, the Poincare duality part of the Weil conjectures gives an equality
of multi-sets:

{α1, . . . , α2g} = {q/α1, . . . , q/α2g}

It follows that each αi has ℓ-adic valuation 0, for ℓ prime to p. Therefore, by Lemma 7.10,
the ℓ-adic part of χ(C(K1)) agrees with |C(Fq)|.

30



2. An exercise using Part 1 and Fact 3.9 (applied to the field Fq).

3. By Proposition 3.7, there is a quasi-finite morphism V → A1
Fq

of Fq-varieties such that

X is the image of V (K1)→ A1(K1) = K1. For each n, let Vn be the fiber product of n
copies of V over A1. Then Vn → A1

Fq
is still quasi-finite, so Vn has dimension at most

1. By Part 2, χ(Vn(K1)) = |Vn(Fq)|.
Now use the argument of Lemma 4.5. Let f : V (K1) → X be the surjection induced
by V → A1. Let Xk be the definable set of a ∈ X such that the fiber f−1(a) has size
k. Note that if a ∈ X ∩ Fq, then every point in the fiber is field-theoretically algebraic
over a, hence in V (Fq).

The upshot is that the fibers of V (Fq)→ (X ∩ Fq) have size k over Xk ∩ Fq, and more
generally the fibers of Vn(Fq)→ (X ∩ Fq) have size kn over Xk ∩ Fq. Therefore,

|Vn(Fq)| =
∑︂
k

kn · |Xk ∩ Fq|

χ(Vn(K1)) =
∑︂
k

kn · χ(Xk),

where the second line is as in the proof of Lemma 4.5. By Part 2, the left hand sides
agree. By the invertibility of Vandermonde matrices, it follows that χ(Xk) = |Xk∩Fq|.
Summing over k, we see χ(X) = |X ∩ Fq|.

Proposition 7.14. Let K be a mock-Fq. Let χ be the principal Euler characterisic on K.
For any Fq-definable set X ⊆ Kn, we have

χ(X) = |X ∩ Fn
q |.

In particular, χ(X) ∈ Z.
Proof. Proceed by induction on n. For the base case n = 1, expand K to a mock-Frq by
Proposition 7.8.2, and then apply Lemma 7.13.3. Suppose n > 1. For a ∈ K1, let Xa denote
the slice of X over a:

Xa = {b⃗ ∈ (K1)
n−1 : (a, b⃗) ∈ X}.

Fix ℓk, and work with χ modulo ℓk. For i ∈ Z/ℓk, let Si be the set of a ∈ K1 such that
χ(Xa) ≡ i (mod ℓk). Each set Si is Fq-definable, so by induction χ(Si) = |Si ∩ Fq|. Now
for a ∈ Si ∩ Fq, the set Xa is Fq-definable, so by induction χ(Xa) = |Xa ∩ Fn−1

q |. Then the
following holds modulo ℓk:

χ(X) ≡
∑︂

i∈Z/ℓk
i · χ(Si) ≡

∑︂
i∈Z/ℓk

i · |Si ∩ Fq|

≡
∑︂

i∈Z/ℓk

∑︂
a∈Si∩Fq

i ≡
∑︂

i∈Z/ℓk

∑︂
a∈Si∩Fq

χ(Xa)

≡
∑︂
a∈Fq

χ(Xa) ≡
∑︂
a∈Fq

|Xa ∩ Fn−1
q |.

The final sum is |X ∩ Fn
q |.
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This lets us simplify Lemma 7.10:

Corollary 7.15. Let V, αi, βj be as in Fact 7.9. Let F be a mock Fq, and χ be its principal
Euler characteristic. Then

χ(V (F )) = α1 + · · ·+ αm − β1 − · · · − βm′ .

This implies something about the numbers appearing in Dwork’s theorem.

Corollary 7.16. If V is a variety over Fq, then the αi and βj of Fact 7.9 have ℓ-adic
valuation zero for ℓ prime to q.

Proof. Let α′
i and β

′
i be as in Lemma 7.10. Let F be a mock-Fq, and χℓ be the ℓ-adic part

of the principal Euler characteristic. Comparing Lemma 7.10 and Corollary 7.15, we see

α′
1 + · · ·+ α′

m − β′
1 − · · · − β′

m′ = α1 + · · ·+ αm − β1 − · · · − βm′ .

Replacing Fq with Fqn changes αi to α
n
i and α′

i to (α′
i)
n. Therefore, the following holds for

any n ≥ 1:

(α′
1)

n + · · ·+ (α′
m)

n − (β′
1)

n − · · · − (β′
m′)n = αn

1 + · · ·+ αn
m − βn

1 − · · · − βn
m′ .

Comparing Poincare series, one gets equality of multisets

{α′
1, . . . , α

′
m} = {α1, . . . , αm}

{β′
1, . . . , β

′
m′} = {β1, . . . , βm′}.

Therefore, none of the α′
i or β

′
i are zero, and every αi and βi has ℓ-adic valuation 0.

Remark 7.17. Corollary 7.16 can be proven using ℓ-adic cohomology, but the proof given
here is more elementary.

7.3 The dual Euler characteristic

Let K be a mock-Fq. Recall that the dual Euler characteristic on K is the prime-to-q part
of the canonical Euler characteristic induced by σ−1, where σ is the mock Frobenius.

Lemma 7.18. Let V be a variety over Fq, and let α1, . . . , αm, β1, . . . , βm′ be the algebraic
integers from Fact 7.9. Let K be a mock-Fq and let χ† be the dual Euler characteristic. Then

χ†(V (K)) = α−1
1 + · · ·+ α−1

m − β−1
1 − · · · − β−1

m′ .

Moreover, this value is rational.

Proof. Similar to Lemma 7.10, but using an ultrafilter that concentrates on −1 + nZ for all
n. Corollary 7.16 ensures that vℓ(αi) = 0 for all i, so there is no need for any α′

i’s or β′
i’s.

Rationality is an easy exercise, using the fact that

αn
1 + · · ·+ αn

m − βn
1 − · · · − βn

m′ ∈ Z

for all n ∈ N.
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Proposition 7.19. If K is a mock-Fq and χ† is the dual Euler characteristic on K, then
χ†(X) ∈ Q for every Fq-definable set X.

Proof. If X is the set of K-points in some Fq-definable variety, this follows from Lemma 7.18.
If X is a definable subset of Kn, then Proposition 3.7 yields a quasi-finite morphism

V → An of varieties over Fq, such that X is the image of V (K1) → An(K1). Let Vn be the
n-fold fiber product of V over A1. By the argument of Lemma 4.5, χ†(X) is given by some
rational linear combination of the χ†(Vn(K)).

Example 7.20. If V is a d-dimensional smooth projective variety over Fq, then the following
identities of multisets hold by the Poincare duality part of the Weil conjectures:

{α1, . . . , αm} = {qd/α1, . . . , q
d/αm}

{β1, . . . , βm′} = {qd/β1, . . . , qd/βm′}.

Therefore, for K a mock-Fq with dual Euler characteristic χ†,

χ†(V (K)) = α−1
1 + · · ·+ α−1

m − β−1
1 − · · · − β−1

m′

= (α1 + · · ·+ αm − β1 − · · · − βm′)/qd = |V (Fq)|/qd.

Putting everything together, we have proven:

Theorem (Theorem 1.6). Let K be a mock-Fq, for some prime power q = pk. There are
two Z¬p-valued ∅-definable strong Euler characteristics χ and χ† on K, such that

1. If V is a smooth projective variety over Fq, then

χ(V (K)) = |V (Fq)|
χ†(V (K)) = |V (Fq)|/qdimV .

2. If X is any Fq-definable set, then

χ(X) = |X ∩ dcl(Fq)|.

In particular, χ(X) ∈ Z.

3. If X is any Fq-definable set, then χ†(X) ∈ Q.

Example 7.20 can be generalized to arbitrary pseudofinite fields:

Proposition 7.21. Let K be a pseudofinite field, and σ be a topological generator of Gal(K).
Let χ and χ† be the Ẑ-valued Euler characteristics associated to σ and σ−1, or the prime to
p-parts if char(K) = p > 0. Let V be a smooth projective variety over K. Then χ(K) is
invertible in Ẑ or Z¬p, and

χ†(V (K)) = χ(V (K))χ(K)− dim(V ). (4)

33



Proof. By Axiom 5 in §4.1, χ(K) is given by the trace of σ on torsion in Gm(K
alg). This trace

is invertible, because σ is invertible and the torsion has rank 1 (away from the characteristic).
So χ(K) is invertible in Ẑ or Z¬p. The identity (4) can be expressed by a conjunction of
first-order sentences in the language of (Kalg, σ) |= ACPF. Indeed, this follows by the
definability of χ and χ†, and the fact that the family of smooth projective d-dimensional
varieties is uniformly ind-definable. Now, when (Kalg, σ) is a mock Frobenius periodic field,
(4) holds by Example 7.20. But every model of ACPF is elementarily equivalent to an
ultraproduct of mock Frobenius periodic fields, by an argument similar to Lemma 3.13.

Proposition 7.21 could probably also be derived using Conjecture 6.3.

Remark 7.22. Both Proposition 7.21 and Example 7.20 seem closely related to Bittner’s
duality involution on the Grothendieck group of varieties [3]. When V is a d-dimensional
smooth projective variety, this involution sends [V ] to [V ] · L−d, where L = [A1].

8 Directions for future research

There are several immediate directions for future research. The most important next step
is verifying Conjecture 5.2, completing the proof that the Lµ

rings-theory of finite fields is
decidable (Theorem 1.2). This will hopefully be carried out in [16]. Another key task is to
relate the Zℓ-valued Euler characteristic to ℓ-adic étale cohomology (Conjecture 6.3).

Another interesting direction is the following variant of Theorem 1.2:

Conjecture 8.1. The Lµ
rings-theory of the rings Z/nZ is decidable.

Lastly, it may be possible to generalize the definability of the canonical Euler character-
istic from ACPF to its expansion ACFA. Although ACFA is not pseudofinite, its models are
ultraproducts of Frobenius difference fields [15], and definable sets of finite rank are naturally
pseudofinite.

8.1 Interactions with number theory?

We have relied heavily on algebraic geometry and number theory to prove a relatively simple
model-theoretic fact. One could dream of reversing the process to obtain new results in
number theory. Ultraproducts of finite fields are not the only source of pseudofinite fields.
For example, if σ is chosen randomly in Gal(Q), then (Qalg, σ) |= ACPF with probability 1,
by [11, §16.6]. Perhaps one can prove non-trivial facts by reasoning about nonstandard sizes
of definable sets in these structures.

Unfortunately, we have probably done nothing interesting from a number-theoretic point
of view. The nonstandard “sizes” on pseudofinite fields should be a simple artifact of étale
cohomology, by Conjecture 6.3. Étale cohomology is already well-understood. Combinatorial
facts about sizes correspond to well-known facts about cohomology. The fact that χ(X×Y ) =
χ(X) · χ(Y ) corresponds to the Künneth formula. When f : E → B is a morphism, the
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strong Euler characteristic property allows us to calculate the “size” of E by “integrating”
the “sizes” of the fibers over B. This property corresponds to the Leray spectral sequence.

One tool which might be new on the model-theoretic side is elimination of imaginaries,
which holds in ACPF by work of Hrushovski [14]. When X is interpretable, or definable
with quantifiers, we know that χ(X) is “integral,” lying in Ẑ rather than Ẑ ⊗Z Q. There
may be some number-theoretic content to this.

It feels as if there could be some connection between the canonical Euler characteristic and
p-adic L-functions. The classical L-functions associated to number fields and elliptic curves
are defined in terms of point counting. In some cases, these L-functions can be converted to
p-adic analytic functions by extrapolating the values at negative integers. Insofar as we are
counting points on varieties mod pk, there is a spiritual connection to the p-adic part of the
canonical Euler characteristic.

Moreover, p-adic integration appears in both contexts. If χ is a strong Zp-valued Euler
characteristic, and f : E → B is a definable function, then χ induces a p-adic measure µ on
B, and one can calculate χ(E) by p-adic integration

χ(E) =

∫︂
x∈B

χ(f−1(x)) dµ(x)

This was essentially how χ(X) was calculated in Lemma 4.6. Meanwhile, p-adic integration
plays a key role in the theory of p-adic L-functions. For example, the Riemann zeta function
is given on negative integers by a p-adic Mellin transform: there is some c ∈ Z×

p and p-adic
measure µ on Zp such that for positive integers k,

ζ(−k) = 1

1− ck+1

∫︂
Zp

xk dµ(x). (5)

This Mellin transform is the underlying reason why the Kubota-Leopoldt p-adic zeta function
exists. In some cases, the measure µ can be given a pseudofinite interpretation. For example,
if p is odd and α is a nonstandard integer whose p-adic standard part is −1/2, then ζ(−k)
is given by the p-adic standard part of the sum

1

2− 2−k

α∑︂
n=1

nk.

In other words, (5) holds with c = 1/2 and µ equal to (half) the nonstandard counting
measure on the pseudofinite set {1, 2, . . . , α}.

Thus there are several vague connections between the canonical Euler characteristic on
pseudofinite fields, and p-adic L-functions. I lack the expertise to pursue this connection
further.
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