

1 **1. Introduction**

2 In Hawai‘i, floods contributed to the largest economic loss and the second largest cause
3 of death from natural hazards between 1996 and 2018 (Data sources: hazards reported from the
4 Storm Event Database (National Centers for Environmental Information (NCEI), 2019a).
5 Flooding is associated with erosion that scours stream beds, abrades bedrock, and moves large
6 amounts of sediment and debris downstream, and downcutting channels. Improving our
7 understanding of changes in flooding will inform watershed planning and develop potential
8 mitigation strategies, especially as climate warming continues to alter precipitation patterns and
9 hydrological processes. In theory, increasing global temperature results in increased water vapor
10 in the air with its greater water holding capacity that lead to larger and more frequent extreme
11 precipitation events (Held et al., 2006; Knutson and Manabe, 1995). Extreme precipitation events
12 have increased in magnitude and frequency with warming temperature in many regions
13 (Alexander et al., 2006; Beck et al., 2015; Donat et al., 2013; Easterling et al., 2017; Groisman et
14 al., 2005; Wentz et al., 2007; Westra et al., 2013). Nevertheless, an analysis using 390 watersheds
15 across the U.S. found the 99th percentile precipitation does not totally contribute to 99th
16 percentile streamflow, and the contributions varied with soil moisture condition (Ivancic and
17 Shaw, 2015). Unlike rainfall, streamflow and flooding are scale-dependent based on local
18 watershed characteristics (Wasko and Sharma, 2017). Therefore, extreme rainfall trends might
19 not fully describe the observed patterns in extreme streamflow trends, and their linkage needs to
20 be studied locally.

21

22 Previous studies have shown various trends in extreme streamflow across the world, such
23 as in North America (Cunderlik and Ouarda, 2009; Groisman et al., 2001), Europe (Blöschl et

24 al., 2019; Hannaford and Marsh, 2008; Mediero et al., 2014; Renard et al., 2008), and Australia
25 (Ishak et al., 2013; Zhang et al., 2016). The annual maximum peak flow in Canada decreased
26 (Cunderlik and Ouarda, 2009), whereas the high discharge in the eastern U.S. increased
27 (Groisman et al., 2001). In Europe, the annual 10-day streamflow and annual maximum peak
28 flow between 1969 and 2003 in the U.K. increased (Hannaford and Marsh, 2008), but decreased
29 in France between 1968 and 1998 (Renard, 2008). The magnitude and frequency of annual peak
30 flow in Spain generally decreased from 1942 to 2009 (Mediero et al., 2014). In Australia, the
31 annual peak flow decreased in the south but increased in the north (Ishak et al., 2013; Zhang et
32 al., 2016). In addition to changes in the frequency and duration of extreme streamflow events, the
33 timing of flooding has also shifted in Europe, including earlier spring snowmelt floods in
34 northern areas, later winter floods along the Mediterranean coast, and earlier winter floods in
35 western Europe (Blöschl et al., 2017). As trends in extreme streamflow are geographically
36 heterogeneous, it is critical to study the trends of extreme streamflow locally. Most trend
37 analyses of extreme streamflow events have been conducted in continental systems, and little has
38 been discussed in tropical regions, which are sensitive to changes in large climate patterns.

39

40 Extreme events in the tropics, including Hawai‘i, are influenced by large-scale climate
41 variability, including the El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation
42 (PDO), and the Pacific North America teleconnection pattern (PNA) (Beck et al., 2015; Chu et
43 al., 1993; Chu and Chen, 2005; Elison Timm et al., 2011; Lyons, 1982; Mantua et al., 1997).
44 Recent evidence indicates that climate change has affected the ENSO’s behavior across the
45 tropics (Diaz and Giambelluca, 2012; O’Connor et al., 2015; Trenberth and Hoar, 1997) and
46 changed El Niño properties, including its earlier starting time (Wang et al., 2019). In Singapore,

47 both daily and hourly maximum rainfall were found to increase between 1981 and 2010 with
48 ENSO-related changes in their intensity and timing (Beck et al., 2015). With global warming, the
49 intensity and longevity of tropical cyclones (TCs) in the Northeast Pacific has slightly decreased
50 between 1986 and 2005 (Klotzbach, 2006); however, the frequency of TCs around the Pacific are
51 expected to occur more frequently in the future (Li et al., 2010; Murakami et al., 2013).

52

53 In Hawai‘i, there are two seasons, dry (May – Sep.) and wet (Oct. – Apr.) seasons. In the
54 dry season, an extreme precipitation is often attributed to hurricanes or TCs (e.g., Nugent et al.,
55 2020). The TC activity is more favorable under El Niño conditions (Chu and Wang, 1997; Jin et
56 al., 2014) and associates with the Western North Pacific (WNP) biennial oscillations (Luo et al.,
57 2020). In the wet season, winter storms contribute the most to extreme rainfall. A combination of
58 PNA, ENSO, and PDO contributes to the rainfall variability in the wet season (Frazier et al.,
59 2017). During El Niño conditions, the wet season months often become drier in Hawai‘i and
60 wetter during La Niña conditions. In addition, negative periods of PDO that align with La Niña,
61 typically strengthen the intensity, and lengthen the wetter period (Chen and Chu, 2014). Streams
62 in Hawai‘i respond to rainfall rapidly (within hours), as majority of streams are first order
63 streams with small drainage areas, steep slopes, and short time of concentration. The low-
64 permeable volcanic geology of all islands combined with high intensity rainfall simultaneously
65 produces runoff, generating flashy hydrographs (Oki, 2003). Besides, the coastal areas of
66 Hawaiian watersheds are often urbanized with impervious surface and channelized streams,
67 which contribute to the fast rising and falling hydrograph. In Hawai‘i, we expect extreme
68 streamflow to highly correspond to its rainfall.

69

70 Although we anticipate a close relationship between extreme streamflow and rainfall in
71 Hawai‘i, previous studies investigated their trends separately. Chu et al. (2010) and Chen and
72 Chu (2014) showed that extreme precipitation between the 1950s and 2007 became more
73 common on the largest island, Hawai‘i Island, but not on other islands, with the indices of the
74 annual count of days when the precipitation over 25.4 mm, annual maximum consecutive 5-day
75 precipitation, and the normalized 95th percentile precipitation. Bassiouni and Oki (2013)
76 investigated streamflow trends in Hawai‘i and found that 16 out of 26 gauges of peak flow
77 decreased between 1943 and 2008. Furthermore, Clilverd et al. (2019) assessed streamflow
78 records for 23 unregulated streams from 1967 to 2016 across the Hawaiian Islands and found
79 significant declines in baseflow and surface runoff. They also discovered significant declines in
80 peak flow on Hawai‘i Island. However, in some cases, peak flow showed opposite trends from
81 extreme precipitation (e.g., Chen and Chu, 2014; Chu et al., 2010; Clilverd et al., 2019). Because
82 extreme rainfall and streamflow trends have been investigated separately, the linkages between
83 these extreme events are not clear. To better understand their associations, we need a joined
84 examination of extreme rainfall and peak flow trends.

85

86 This study aims to characterize local changes in the annual maximum daily rainfall
87 (RF_{max}) and the annual peak flow (PF_{max}) by examining their spatial and temporal trends with
88 their associations across five major Hawaiian Islands. We investigated the trends in RF_{max} and
89 PF_{max} to determine possible relationships between the meteorological and hydrologic response to
90 climate change, by studying: 1) the spatial distribution of trends in RF_{max} and PF_{max} in Hawai‘i
91 from 1970 to 2005; 2) the association between peak rainfall and peak flow by pairing
92 representative rain gauges to crest gauges; and 3) the temporal shifts of RF_{max} and PF_{max} ,

93 respectively.

94

95 **2. Materials and methods**

96 **2.1 Study area**

97 Among the eight major Islands, we focus on the five largest islands, from west to east,
98 Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i Island, spanning from 18.9°N, 154.8°W to
99 22.24°N, 159.8°W, where have most and long-term rainfall and peak flow records. The climate
100 in Hawai‘i is strongly affected by the Hadley cell atmospheric circulation patterns in the Pacific.
101 These patterns generate the typical northeast trade winds in the northern hemisphere, which
102 induces orographic rainfall when moist air encounters the steep island topography (Lyons, 1982).
103 Thus, these islands’ windward facing sides experience more frequent rain and higher annual
104 rainfall below trade wind inversion (TWI; approximate mean elevation at 2,000 m; Cao et al.
105 2007), while the leeward sides are much drier. In addition, widespread and intense precipitation
106 may be attributed to four other types of atmosphere conditions – (i) Kona storms, the low-
107 pressure systems that usually develop on the west of the islands accompanied with southern
108 winds, (ii) cold fronts, (iii) upper-level trough, or (iv) tropical cyclones (Caruso and Businger,
109 2006; Kodama and Barnes, 1997). The wide range of terrain across the Hawaiian Islands with the
110 large scale atmospheric systems results in highly heterogeneous climate patterns, and therefore
111 steep rainfall gradients (mean annual rainfall from 200 mm to 10,000 mm; Giambelluca et al.,
112 2013). Further, watersheds in Hawai‘i are typically characterized by young volcanic geology,
113 small drainage size, steep topography, and limited channel storage (Craig, 2003). Thus, streams
114 frequently experience flash flooding where water levels rise and fall rapidly within hours of
115 locally intense rainfall events (Oki, 2003; Sahoo et al., 2006).

116

117 2.2 *Data*

118 The locations of rain and crest (annual peak flow) gauges across the Hawaiian Islands
119 and their physiographical regions (windward vs. leeward) are shown in Figure 1. We sought crest
120 gauges with the longest period of record and greatest overlap with rainfall records, which
121 resulted in a study period of 1970 to 2005 (by water year). Daily rainfall data were obtained from
122 the National Centers for Environmental Information (NCEI) and the U.S. Geological Survey
123 (USGS). Eighty-four rain gauges (Kaua‘i, n=17; O‘ahu, n=25; Moloka‘i, n=3; Maui, n=20, and
124 Hawai‘i Island, n=19), with data records longer than half of the study period, were used in this
125 study (Figure 1). Most rain gauges were located at low elevations and only a few were above the
126 average TWI ($> 2,000$ m). The rain gauges were not evenly distributed across the islands, except
127 for Kaua‘i. For O‘ahu and Moloka‘i, most of rain gauges were located on the leeward side,
128 whereas for Maui and Hawaii island, rain gauges were located mostly on the windward side and
129 along the coast. Annual records of peak flow were obtained for 111 long-term crest gauges
130 (circles in Figure 1; Kaua‘i, n=18; O‘ahu, n=45; Moloka‘i, n=7; Maui, n=25, and Hawai‘i Island,
131 n=16) from the water years 1970 to 2005, maintained by the USGS. Compared with the
132 distribution of rain gauges, crest gauges have a more even spatial distribution, except on Hawai‘i
133 Island, where crest gauges were predominantly located on the windward side. Peak flow values of
134 each gauge were standardized by the watershed area and converted to a daily scale (mm/day) that
135 is comparable to the daily rainfall values (mm/day).

136 We used two climate indices to examine shifts in the seasonality of peak events, the
137 Oceanic Niño Index (ONI) and the Pacific Decadal Oscillation (PDO) index. The ONI is one of
138 the primary indices for monitoring ENSO. It is calculated by averaging sea surface temperature

139 monthly anomalies of the east-central equatorial Pacific Ocean, Niño-3.4 region. We retrieved
140 monthly ONI from the Climate Prediction Center (CPC) (2019). The PDO index is defined by
141 ocean temperature anomalies in the northeast and the tropical Pacific Ocean. The PDO index is
142 downloaded from NCEI (2019b).

143

144 2.3 *Trend analysis*

145 Trends in the magnitude of RF_{max} and PF_{max} were analyzed using the non-parametric
146 Mann-Kendall test (Hirsch and Slack, 1984; Mann, 1945); a p-value < 0.05 was used to indicate
147 the significant trends. Changes of the magnitude were evaluated using Sen's slope (Sen, 1968).
148 Then, the change of values per year were divided by the mean value of the study period to
149 generate percent change in the value per year. These two trend analysis methods are

150 recommended for analyzing environmental time series data that are not normally distributed,
151 with no data distribution assumptions required (Hirsch and Slack, 1984; Mann, 1945).

152 Additionally, evaluation with Sen's slope is not sensitive to outliers. These trend analyses have
153 been widely applied to quantifying and testing the significance of streamflow trend (Bassiouni
154 and Oki, 2013; Clilverd et al., 2019; Oki, 2004; Small et al., 2006) and rainfall (Chen and Chu,
155 2014; Frazier and Giambelluca, 2016). The R package, 'trends' (Pohlert et al., 2018), was
156 applied in this analysis.

157

158 2.4 *Analysis of paired rainfall gauges and stream crest gauges*

159 In addition to examining data from 84 rain gauges and 111 crest gauges, we paired crest
160 gauges with rain gauges that most likely represent the rainfall received from upstream
161 watersheds to better understand the associations between rainfall and peak flow. We paired them

162 geographically with following criteria, ranked in order of preference:

163 1) The rain gauge was located upstream of the crest gauge in the same watershed; if
 164 multiple rain gauges existed in the same watershed, we chose the gauge with the highest
 165 elevation but below the TWI.

166 2) The rain gauge was upstream from the crest gauge in the neighboring watershed.

167 3) The rain gauge was close to the crest gauge (within a 5 km radius).

168 4) The rain gauge best represented the rainfall of the upstream watershed of the crest gauge,
 169 despite being in different watersheds. For example, three crest gauges on the windward
 170 side of East Maui were paired with one rainfall gauge at Hana, Maui, that represents the
 171 windward rainfall.

172

173 Subsequently, we extracted daily rainfall on the same day of the PF_{max} of these paired
 174 gauges. Additionally, 2-day and 5-day accumulated rainfall were examined to consider
 175 antecedent conditions and rainfall events that lasted more than one day.

176

177 2.5 *Examination of temporal shifts in annual maximum rainfall and peak flow*

178 We examined the temporal shifts of RF_{max} and PF_{max} with circular statistics (Zar, 1999)
 179 by using the R package, “circular” (Lund et al., 2017). Circular statistics is powerful when
 180 applying to the data with unit radius or degree on a circumference (Pewsey et al., 2013). We
 181 applied a circular analysis to the occurrence time of RF_{max} and PF_{max} for the study period by
 182 converting the occurrence date (d_y) of RF_{max} and PF_{max} into angular values for each year, y :

$$\vartheta_y = 2\pi * \frac{d_y}{D_y} \quad 0 \leq \vartheta_y \leq 2\pi \quad \text{Eq. 1}$$

183 Where $d_y = 1$ corresponds to January 1st and $d_y = D_y$ to December 31st with D_y is the

184 number of days in that year (i.e., 365 or 366). Then, the Sen's slope, z , is adjusted for estimating
 185 trends in the timing:

$$z = \text{median} \left(\frac{\vartheta_j - \vartheta_i + c}{j - i} \right) \quad \text{with } c = \begin{cases} -\pi & \text{if } \vartheta_j - \vartheta_i > \pi \\ \pi & \text{if } \vartheta_j - \vartheta_i < -\pi \\ 0 & \text{otherwise} \end{cases} \quad \text{Eq. 2}$$

186

187 Where i and j indicate the year covering all possible pairs of years within the study
 188 period, and $i < j$. The adjustment factor, c , aims to represent the shifting trend (i.e., to earlier or
 189 later) based on the occurrence time at the i th year, when the differences between ϑ_i and ϑ_j are
 190 larger than π . Finally, we analyzed the temporal shifts by different physiographic zones (i.e.,
 191 windward and leeward), to examine the effects of different rainfall forming mechanisms.

192

193 **3. Results**

194 **3.1 Changes in maximum rainfall magnitudes**

195 Out of 84 rain gauges, the majority (67%) of rain gauges exhibited decreasing RF_{\max}
 196 magnitude (Kaua'i, $n=9$; O'ahu, $n=19$; Moloka'i, $n=1$; Maui, $n=15$, and Hawai'i Island, $n=12$).
 197 The magnitude of RF_{\max} significantly decreased at seven rain gauges: one on O'ahu ($p = 0.021$;
 198 changed -1.5% per year; mean = 195.2 mm), five on Maui ($p < 0.01$; changed from -2% to
 199 -4% ; mean: 22.5 mm to 70 mm), and one on Hawai'i Island ($p = 0.046$; changed -1.6% ; mean
 200 = 171.6 mm) (Figure 2). The remaining 33% of rain gauges showed increasing RF_{\max} trends
 201 (Kaua'i, $n=8$; O'ahu, $n=6$; Moloka'i, $n=2$; Maui, $n=5$, and Hawai'i Island, $n=7$) (Figure 2).
 202 Significant increasing trends only occurred at one gauge on Hawai'i Island ($p = 0.047$) and
 203 changed 2.7% per year with a mean of 151.4 mm. On Kaua'i, increasing RF_{\max} trends were

204 primarily located on the windward side, whereas there were no discernable differences in RF_{max}
205 between leeward and windward on the other islands. Decreasing trends in RF_{max} dominated on
206 Oahu, Maui, and Hawai‘i Island, while no particular trend direction prevailed on Kauai and
207 Moloka‘i. However, there are too few rain gauges on Moloka‘i to address the spatial distribution
208 in RF_{max} trends.

209

210 3.2 *Changes in peak flow magnitudes*

211 Decreasing magnitude in PF_{max} occurred at 60% of the crest gauges (Kaua‘i, n=8; O‘ahu,
212 n=29; Moloka‘i, n=3; Maui, n=16, and Hawai‘i, n=11), predominantly on O‘ahu, Maui, and
213 Hawai‘i islands (Figure 3). Statistically significant decreasing trends occurred at a single gauge
214 on O‘ahu ($p < 0.002$; decreased 6.5%; mean = 195.8 mm/day) and two on Maui ($p < 0.011$;
215 decreased 4.2%; means = 224.8 mm/day and 107.8 mm/day, respectively). Although decreasing
216 PF_{max} trends dominated across O‘ahu, some crest gauges still showed increasing trends, with two
217 statistically significant ($p < 0.05$) peak flow trends that rose 5.8% and 3.4% with means of 302
218 mm/day and 80 mm/day, respectively. There was a general pattern of increasing PF_{max} on the
219 windward sides of Kaua‘i, Moloka‘i, and East Maui (Figure 3). Compared with RF_{max}, PF_{max}
220 shows a greater physiographic division (i.e., windward and leeward) in trend directions.

221

222 3.3 *Associations between peak flow, annual maximum rainfall and paired rainfall*

223 When pairing rainfall and crest gauges, there are 18 pairs identified following the first
224 criterion, and there are nine, eight, and four pairs found in the subsequent criteria, respectively.
225 This resulted in a total of 39 pairs across islands (2 on Kaua‘i, 15 on O‘ahu, 1 on Moloka‘i, 14
226 on Maui, and 17 on Hawai‘i Island). Some rain gauges were paired with multiple crest gauges as

227 they were the most representative rainfall of the given watersheds of crest gauges. This applied at
228 13 crest gauges on O‘ahu (5 at Poamoho, 2 at Waiāhole, 4 at Pauoa Flats, 2 at Palolo valley);
229 seven crest gauges on Maui (4 at Haleakala and 3 at Hana); and at four crest gauges on Hawai‘i
230 Island (2 at Waiakea and 2 at Mauna Kea) (Figure 4).

231 The timing of RF_{max} rarely coincided with the timing of PF_{max} . Out of the 39 pairs of
232 rainfall and crest gauges, almost half (46%) of the pairs have different trend directions between
233 RF_{max} and PF_{max} (Figure 4). Within the study period, when we extracted the same date rainfall
234 with PF_{max} , 67% of the paired rainfall and PF_{max} records had consistent trends (increasing or
235 decreasing). However, when we extracted the 2-day and 5-day accumulated rainfall with PF_{max} ,
236 the percent of consistency decrease (Table 1).

237 Among the pairs having consistent trends, 56% of them showed decreasing trends,
238 whereas the remaining 44% exhibited increasing trends (Figure 4). There was no clear leeward
239 versus windward patterns in trend direction across the islands. Paired decreasing trends occurred
240 on both windward and leeward sides of O‘ahu and Maui, and on windward Hawai‘i Island.
241 Consistent increasing trends occurred on the leeward side of O‘ahu, windward side of Maui, and
242 north of Hawai‘i Island.

243

244 3.4 *Changes in the timing of annual maximum rainfall and peak flow*

245 RF_{max} and PF_{max} often occurred during the wet season (Oct. – Apr.) with the median
246 occurrence time of RF_{max} in earlier January and the median occurrence time of PF_{max} in mid-
247 January for all gauges during the study period (Figure 5a, b). From 1970 to 2005, the occurrence
248 time of both RF_{max} and PF_{max} shifted to an earlier time in the wet season, from late January to
249 late December (Figure 5c, d). Yet, the occurrence time oscillated between earlier and later

250 throughout the four sub-periods (Figure 5c, d). The Sen's slope statistics also supported the
251 temporal shifts in the study period. The Sen's slope estimator for the timing of the RF_{max} and the
252 PF_{max} were -1.34° (~ 1.5 days earlier) and -1.24° (~ 1.5 days earlier with p-value < 0.05) in
253 leeward regions, respectively; -0.404° (\sim half day with p-value < 0.05) and 0.231° (~ 6 hours
254 later with p-value < 0.05) in windward areas, respectively.

255

256 *3.5 The relationships of annual maximum rainfall and peak flow to large-scale climate
257 variability*

258 The magnitude of RF_{max} and PF_{max} showed no clear relationships to either the strength of
259 ENSO (**Error! Reference source not found.**) or PDO (**Error! Reference source not found.**)
260 indices. On the other hand, the median occurrence times of both RF_{max} and PF_{max} shifted earlier
261 with a two to seven years cycle, regardless in windward or leeward areas (Figure 6 and 7), which
262 were correlated to the cycle of ENSO. Specifically, the median occurrence times of RF_{max} and
263 PF_{max} shifted to earlier during warm phase of ENSO (shaded in red in Figures 6 and 7). The
264 ENSO's impact on median occurrence times was more pronounced in leeward regions, i.e., with
265 12(8) recognized El Niño(La Niña) events, 9(5) RF_{max} and 9(6) PF_{max} occurred earlier(later) in a
266 water year (Figure 6). However, there is no correlation between the strength of ENSO (i.e.,
267 higher values of index) and the amount of shifting in occurrence times of RF_{max} and PF_{max}, with
268 a correlation coefficient -0.15. Besides, the magnitude and occurrence time of RF_{max} and PF_{max}
269 were not directly correlated to PDO (Figure B2).

270

271

272 **4. Discussion**

273 **4.1 Overview**

274 Changes in the extreme events are driven by complex atmospheric conditions and
275 antecedent hydrological conditions, and it is unclear whether observed changes in rainfall and
276 streamflow are due to natural atmospheric variability or global warming. Climate models have
277 projected more intense rainfall under a warming climate and led to more severe flooding
278 (Trenberth, 2011). The dataset presented here extends our knowledge of changes in both
279 magnitude and occurrence time of RF_{max} and PF_{max} and their relationships to physiography and
280 atmospheric circulation across the Hawaiian Islands. We analyzed temporal and spatial trends in
281 RF_{max} and PF_{max} , examined the association between RF_{max} and PF_{max} , and inspected the temporal
282 shifts of RF_{max} and PF_{max} . Five key findings of this study were: 1) decreasing RF_{max} trends in
283 more than half of gauges, particularly on O‘ahu and Maui; 2) decreasing PF_{max} trends in most
284 gauges on O‘ahu, Maui and Hawai‘i Island, and more physiographic patterns in PF_{max} trends
285 than RF_{max} trends; 3) different timing between the PF_{max} and the RF_{max} ; 4) shifting in the
286 occurrence times of RF_{max} and PF_{max} to earlier, except for PF_{max} in windward areas, and 5) an
287 effect of ENSO on the occurrence time of RF_{max} and PF_{max} . Our results highlight that changes in
288 RF_{max} are not sufficient to explain the observed trends in PF_{max} . In addition, the observed shifts
289 in the occurrence time of RF_{max} and PF_{max} are important for flood risk and environmental
290 management.

291

292

293 **4.2 Comparing trends in the Hawaiian Islands to other studies**

294 The predominantly decreasing trends of RF_{max} and PF_{max} shown in this study are

295 consistent with previous findings in Hawai‘i (Bassiouni and Oki, 2013; Chu et al., 2010; Clilverd
296 et al., 2019). However, we did not find increasing RF_{max} trends on Hawai‘i Island as suggested
297 by Chu et al. (2010). This difference may be in part due to the differences in the examined period
298 (1970-2005 vs. 1950-2007), and it highlights cautiously using fixed periods of record as
299 statistical significances of long-term trends (Frazier and Giambelluca, 2016). The majority of
300 PF_{max} stations showed declining trends across the state of Hawai‘i during our study period,
301 particularly on O‘ahu and Hawai‘i Island. Changes in the magnitude of PF_{max} range from -6.5%
302 to 5.8% per year.

303 In general, the Hawaiian Islands are experiencing decreasing RF_{max} and PF_{max} , whereas
304 extreme rainfall has increased in some continental regions globally (Changnon and Kunkep,
305 1995; Groisman et al., 2004; Hannaford and Marsh, 2008; Lins and Slack, 1999; Petrow and
306 Merz, 2009). Madsen et al. (2014) indicated the trends of extreme precipitation and floods in
307 Europe are heterogeneous. Beside regional factor, trends of extreme hydrological events may
308 vary due to different definitions or methodologies to detect the trend, e.g., the maximum value
309 over a period, count of precipitation days over a threshold, the percentile values, frequency, etc.
310 (Cunderlik and Ouarda, 2009; Do et al., 2017; Douglas et al., 2000; Hannaford and Marsh, 2008;
311 Ishak et al., 2013; Lins and Slack, 1999; Madsen et al., 2014; Petrow and Merz, 2009). Further,
312 variation in the observed peak flow trends may be due to different causes or mechanisms that
313 generate peak flow, such as intense rainfall, saturated soil, or snow melt (Blöschl et al., 2017;
314 Cunderlik and Ouarda, 2009). Studies in tropical regions (i.e., Singapore (Beck et al., 2015) and
315 India (Pingale et al., 2014)) only showed an increase in annual maximum daily precipitation but
316 little has been done in examining the changes of peak flow and in other tropical islands. In
317 Hawai‘i, decreasing PF_{max} may be related to decreased RF_{max} ; however, little research has

318 examined higher temporal resolution (i.e., subdaily) rainfall and its changes. Subdaily rainfall
319 could better associate with peak flow as streamflow responds to rainfall within hours in Hawai‘i
320 streams. In addition, the currently increasing drought condition across the Hawaiian Islands
321 (Frazier et al., 2019) may also contribute to decreasing PF_{max} (decreasing the opportunity of
322 saturation excess overland flow). This study adds to the knowledge of peak flow changes in
323 tropical regions, especially on those tropical islands that are often frontline to the impact of
324 changing climate and are likely vulnerable to the change in the precipitation patterns.
325 Nevertheless, further studies with long-term data recording of peak flows and high-resolution
326 rainfall will assist future assessments of their relationships and the mechanisms driving the
327 observed across the islands.

328

329 4.3 *The inconsistency between annual peak flow and paired rainfall trends*

330 We found that PF_{max} rarely occurred at the same time as or soon after RF_{max} , and only
331 64% of paired gauges showed consistent trend directions between daily rainfall and the peak
332 flow. The pairs with inconsistent trends may be an artifact of the limited availability of paired
333 rain gauges, as pairs showing inconsistent trends were mainly located in different watersheds or
334 sub-watersheds to each other. However, some of the inconsistency cannot be explained by the
335 spatial mismatch, for example, the Poamoho rain gauge on O‘ahu best represented the rainfall on
336 Ko‘olau Mountain for nearby watersheds, but interestingly three out of four nearby crest gauges
337 were inconsistent with its rainfall trend. The inconsistency between PF_{max} and the paired rainfall
338 may be due to that rainfall does not always lead to the peak flow, and additional factors in the
339 runoff processes need further investigation. These watersheds and their associated hydrological
340 characteristics may have local-scale patterns that vary the peak flow generation. Wasko and

341 Sharma (2017) suggested that disagreement between extreme rainfall and streamflow may be
342 attributed to antecedent soil moisture conditions for larger watersheds. In contrast, in our
343 analysis, we found only small differences when considering antecedent rainfall (as indication of
344 antecedent soil moisture conditions) and annual maximum peak flow. In our study, it was
345 challenging to demonstrate how sensitive the PF_{max} is to antecedent soil moisture in Hawai‘i by
346 comparing with paired 1-day, 2-day, or 5-day accumulated rainfall. There are two possible
347 reasons for this: 1) the PF_{max} is not sensitive to antecedent soil moisture likely due to the small
348 watersheds with shorter concentration time in Hawai‘i, or 2) the 5-day accumulated rainfall is
349 insufficient to indicate the soil moisture maximum. The pairing methods adopted in this study
350 have improved our understanding and representation of rainfall events that cause peak flows.
351 However, it remains unclear why some of the pairs exhibit negative trend relationships, and thus
352 further investigation is required. The change in RF_{max} cannot be conclusively applied as a proxy
353 for the change in PF_{max} , and we must be cautious in predicting changes in extreme streamflow
354 based on changes in extreme rainfall alone.

355

356 4.4 *The shifts in seasonality of annual maximum rainfall and annual peak flow*

357 The occurrence time of RF_{max} and PF_{max} has receded from late January to December in
358 Hawai‘i (Figure 5). In addition to the timing of winter storms, these temporal shifts in peak flow
359 may be due to the soil moisture conditions. In continental or large watersheds ($> 2000 \text{ km}^2$),
360 changes in antecedent soil moisture play a notable part in temporal shifts of floods (Blöschl et
361 al., 2017; Merz and Blöschl, 2003; Wasko and Sharma, 2017). Frazer and Gaimbelluca (2016)
362 showed that Hawai‘i had experienced drying trends from 1920-2012. However, it is unclear how
363 drying conditions have impacted the timing of maximum soil moisture and the occurrence time

364 of PF_{max} . Shifting climate patterns may also have altered atmospheric circulations and the timing
365 of winter rainfall (Blöschl et al., 2017; Diaz et al., 2016, 2001), which would change the timing
366 of RF_{max} and then PF_{max} . To our knowledge, no other studies have addressed temporal shifts of
367 RF_{max} and PF_{max} in Hawai‘i; hence this study provides an important contribution to our
368 understanding of shifting hydrological regimes in Hawai‘i. It also adds further information and
369 raises the awareness of temporal shifts in both RF_{max} and PF_{max} .

370 The occurrence time of RF_{max} in both windward and leeward regions exhibited 2 to 7
371 years oscillations (Figures 5–7). These oscillations may be caused by ENSO or other large
372 atmospheric cycles. Previous running trend analyses of the magnitude of monthly rainfall,
373 extreme precipitation, and streamflow have also identified distinct associations with atmospheric
374 oscillations (Chu et al., 2010; Clilverd et al., 2019; Frazier and Giambelluca, 2016). These
375 oscillations are most likely due to natural coupled oceanic and atmospheric cycles, such as the
376 ENSO. Chu et al. (2010) suggested that more extreme precipitation in the Hawaiian Islands
377 occur during La Niña years, while fewer extreme precipitation events happen during El Niño
378 years. However, we found no pronounced relationship between ENSO and the magnitude of
379 RF_{max} and PF_{max} , with possible bias due to different methods and study periods. Instead, we
380 discovered that the occurrence time of both RF_{max} and PF_{max} likely depends on the ENSO phase
381 regardless of its strength. It is unsurprising that ENSO impacted the occurrence time of both
382 RF_{max} and PF_{max} . Studies show that ENSO events delayed the starting time of monsoon in Asia
383 (e.g., Joseph et al., 1994; Wang et al., 2013). Different El Niño properties might have led to
384 different starting time of El Niño and thus on the timing of rainfall (Xin Wang et al., 2013; Bin
385 Wang et al., 2019). Different mechanisms in occurrences of El Niño (e.g., the El Niño that had
386 earlier starting time and occurred more frequent from 1901 to 2017 (Wang et al., 2019)) possibly

387 contribute to the shift of occurrence time of RF_{max} and PF_{max} . The shifts in occurrence time have
388 important ecological implications – for instance, the timing of flash floods triggers the migration
389 of native freshwater fish, o‘opu, from their coastal nursery grounds to core stream habitats where
390 they mature and reproduce (Fitzsimons and Nishimoto, 1995; Radtke and Kinzie, 1996).
391 Therefore, shifts in the timing of these migratory cues could have consequences for the dispersal
392 and life cycles of native stream species across the Hawaiian Islands. We need further research on
393 the sensitivity of peak flow to natural climate oscillations and climate change, and the influence
394 on the magnitude and seasonality of RF_{max} and PF_{max} . This could be addressed with new stream
395 gauges in watersheds, a more extensive rainfall gauge network, and support for long-term
396 records, that would provide more effective streams and rainfall pairs needed to further our
397 understanding of the association between peak flow and rainfall. These would improve our
398 understanding of the drivers of observed changes in seasonal peak flow and improve our ability
399 to predict future flooding events across the Hawaiian Islands, and the potential impacts on
400 humans and the ecosystem.

401

402 *4.5 Conclusions*

403 We have gained an improved understanding of local changes in peak streamflow and
404 responses to changes in rainfall. Despite limitations in the availability of long-term data, our
405 study demonstrated that both annual maximum rainfall and annual peak flow have declined;
406 local responses of both extreme rainfall and streamflow were varied, and changes in peak
407 streamflow do not necessarily follow the changes in maximum rainfall. In addition, we conclude
408 that spatial linkages between rainfall and streamflow gauges are important when studying the
409 relationship between peak streamflow and maximum rainfall. Also, the temporal shifts in peak

410 streamflow and rainfall should be considered in understanding changes in extreme events.

411 Examining the inconsistency between the timing of peak streamflow and annual maximum

412 rainfall is much needed, and investigating the mechanisms that cause annual maximum rainfall

413 or heavy rainfall could shed light on the subsequent results in temporal shifts in peak streamflow.

414

415 **Acknowledgement**

416 The authors acknowledge the support by the United States Department of Agriculture (USDA)

417 National Institute of Food and Agriculture, McIntire Stennis project 1140M, and by National

418 Science Foundation (NSF) Office of International and Integrative Activities (IIA), RII Track-4:

419 Building the Next Generation Meteo-Hydrological Model for Hawaii (OIA-1929155).

420

421 **References**

422 Alexander, L. V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G.,
423 Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K.,
424 Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E., Brunet, M.,
425 Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez-Aguirre, J.L., 2006. Global observed
426 changes in daily climate extremes of temperature and precipitation. *J. Geophys. Res. Atmos.*
427 111, 1–22. <https://doi.org/10.1029/2005JD006290>

428 Bassiouni, M., Oki, D.S., 2013. Trends and shifts in streamflow in Hawai'i, 1913–2008. *Hydrol.*
429 *Process.* 27, 1484–1500. <https://doi.org/10.1002/hyp.9298>

430 Beck, F., Bárdossy, A., Seidel, J., Müller, T., Fernandez Sanchis, E., Hauser, A., 2015. Statistical
431 analysis of sub-daily precipitation extremes in Singapore. *J. Hydrol. Reg. Stud.* 3, 337–358.
432 <https://doi.org/10.1016/j.ejrh.2015.02.001>

433 Blöschl, G., Hall, J., Parajka, J., Perdigão, R.A.P., Merz, B., Arheimer, B., Aronica, G.T.,
434 Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G.B., Claps, P.,
435 Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M.,
436 Kiss, A., Kjeldsen, T.R., Kohnová, S., Koskela, J.J., Ledvinka, O., Macdonald, N.,
437 Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C.,
438 Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J.L., Sauquet, E., Šraj, M.,
439 Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., Živković, N., 2017. Changing
440 climate shifts timing of European floods. *Science* 357, 588–590.
441 <https://doi.org/10.1126/science.aan2506>

442 Blöschl, G., Hall, J., Viglione, A., Perdigão, R.A.P., Parajka, J., Merz, B., Lun, D., Arheimer, B.,
443 Aronica, G.T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin,

444 A., Chirico, G.B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford,
445 J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T.R., Kohnová, S., Koskela, J.J., Ledvinka,
446 O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P.,
447 Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J.L., Sauquet,
448 E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., Živković, N., 2019. Changing
449 climate both increases and decreases European river floods. *Nature* 573, 108–111.
450 <https://doi.org/10.1038/s41586-019-1495-6>

451 Cao, G., Giambelluca, T.W., Stevens, D.E., Schroeder, T.A., 2007. Inversion Variability in the
452 Hawaiian Trade Wind Regime. *J. Clim.* 20, 1145–1160. <https://doi.org/10.1175/JCLI4033.1>

453 Caruso, S.J., Businger, S., 2006. Subtropical cyclogenesis over the central North Pacific. *Weather*
454 *Forecast.* 21, 193–205. <https://doi.org/10.1175/WAF914.1>

455 Changnon, B.S.A., Kunkep, K.E., 1995. Climate-related fluctuations in midwestern floods
456 during 1921–1985. *121*, 326–334.

457 Chen, Y.R., Chu, P.S., 2014. Trends in precipitation extremes and return levels in the Hawaiian
458 Islands under a changing climate. *Int. J. Climatol.* 34, 3913–3925.
459 <https://doi.org/10.1002/joc.3950>

460 Chu, P.-S., Nash, A.J., Porter, F.-Y., 1993. Diagnostic studies of two contrasting rainfall episodes
461 in Hawaii: dry 1981 and wet 1982. *J. Clim.* 6, 1457–1462.

462 Chu, P.-S., Wang, J., 1997. Tropical cyclone occurrences in the vicinity of Hawaii: Are the
463 differences between El Niño and non-El Niño years significant? *J. Clim.* 10, 2683–2689.

464 Chu, P.S., Chen, H., 2005. Interannual and interdecadal rainfall variations in the Hawaiian
465 Islands. *J. Clim.* 18, 4796–4813. <https://doi.org/10.1175/JCLI3578.1>

466 Chu, P.S., Chen, Y.R., Schroeder, T.A., 2010. Changes in precipitation extremes in the Hawaiian

467 Islands in a warming climate. *J. Clim.* 23, 4881–4900.

468 <https://doi.org/10.1175/2010JCLI3484.1>

469 Clilverd, H.M., Tsang, Y.-P., Infante, D.M., Lynch, A.J., Strauch, A.M., 2019. Long-term
470 streamflow trends in Hawai‘i and implications for native stream fauna. *Hydrol. Process.* 33,
471 699–719. <https://doi.org/10.1002/hyp.13356>

472 Climate Prediction Center (CPC), 2019. El Niño-Southern Oscillation (ENSO) Oceanic Niño
473 Index (ONI) from ERSSTv5) [WWW Document]. URL
474 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
475 (accessed 9.22.20).

476 Craig, D.A., 2003. Geomorphology, development of running water habitats, and evolution of
477 black flies on Polynesian Islands. *Bioscience* 53, 1079–1093. [https://doi.org/10.1641/0006-3568\(2003\)053\[1079:GDORWH\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2003)053[1079:GDORWH]2.0.CO;2)

479 Cunderlik, J.M., Ouarda, T.B.M.J., 2009. Trends in the timing and magnitude of floods in
480 Canada. *J. Hydrol.* 375, 471–480. <https://doi.org/10.1016/j.jhydrol.2009.06.050>

481 Diaz, H.F., Giambelluca, T.W., 2012. Changes in atmospheric circulation patterns associated
482 with high and low rainfall regimes in the Hawaiian Islands region on multiple time scales.
483 *Glob. Planet. Change* 98–99, 97–108. <https://doi.org/10.1016/j.gloplacha.2012.08.011>

484 Diaz, H.F., Hoerling, M.P., Eischeid, J.K., 2001. ENSO variability, teleconnections and climate
485 change. *Int. J. Climatol.* 21, 1845–1862. <https://doi.org/10.1002/joc.631>

486 Diaz, H.F., Wahl, E.R., Zorita, E., Giambelluca, T.W., Eischeid, J.K., 2016. A five-century
487 reconstruction of Hawaiian Islands winter rainfall. *J. Clim.* 29, 5661–5674.
488 <https://doi.org/10.1175/JCLI-D-15-0815.1>

489 Do, H.X., Westra, S., Leonard, M., 2017. A global-scale investigation of trends in annual

490 maximum streamflow. *J. Hydrol.* 552, 28–43. <https://doi.org/10.1016/j.jhydrol.2017.06.015>

491 Donat, M.G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R.J.H., Willett, K.M.,

492 Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein Tank, A.M.G., Kruger,

493 A.C., Marengo, J., Peterson, T.C., Renom, M., Oria Rojas, C., Rusticucci, M., Salinger, J.,

494 Elrayah, A.S., Sekele, S.S., Srivastava, A.K., Trewin, B., Villarroel, C., Vincent, L.A., Zhai,

495 P., Zhang, X., Kitching, S., 2013. Updated analyses of temperature and precipitation

496 extreme indices since the beginning of the twentieth century: The HadEX2 dataset. *J.*

497 *Geophys. Res. Atmos.* 118, 2098–2118. <https://doi.org/10.1002/jgrd.50150>

498 Douglas, E.M., Vogel, R.M., Kroll, C.N., 2000. Trends in floods and low flows in the United

499 States: Impact of spatial correlation. *J. Hydrol.* 240, 90–105. <https://doi.org/10.1016/S0022->

500 1694(00)00336-X

501 Easterling, D.R., Kunkel, K.E., Arnold, J.R., Knutson, T.R., LeGrande, A.N., Leung, L.R., Vose,

502 R.S., Waliser, D.E., Wehner, M., 2017. Precipitation change in the United States. *Clim. Sci.*

503 *Spec. Rep. Fourth Natl. Clim. Assessment*, Vol. I I, 207–230.

504 <https://doi.org/10.7930/J0H993CC.U.S.>

505 Elison Timm, O., Diaz, H.F., Giambelluca, T.W., Takahashi, M., 2011. Projection of changes in

506 the frequency of heavy rain events over Hawaii based on leading Pacific climate modes. *J.*

507 *Geophys. Res. Atmos.* 116, 1–12. <https://doi.org/10.1029/2010JD014923>

508 Fitzsimons, J.M., Nishimoto, R.T., 1995. Use of fish behavior in assessing the effects of

509 Hurricane Iniki on the Hawaiian island of Kaua’i. *Environ. Biol. Fishes* 43, 39–50.

510 <https://doi.org/10.1007/BF00001816>

511 Frazier, A.G., Deenik, J.L., Fujii, N.D., Funderburk, G.R., Giambelluca, T.W., Giardina, C.P.,

512 Helweg, D.A., Keener, V.W., Mair, A., Marra, John J, McDaniel, S., Ohye, L.N., Oki, D.S.,

513 Parsons, E.W., Strauch, A.M., Trauernicht, C., Marra, J J, 2019. Drought in Hawai'i and
514 U.S. affiliated Pacific Islands, general technical report: Effects of drought on range lands
515 and forests in the United States.

516 Frazier, A.G., Giambelluca, T.W., 2016. Spatial trend analysis of Hawaiian rainfall from 1920 to
517 2012. *Int. J. Climatol.* <https://doi.org/10.1002/joc.4862>

518 Frazier, A.G.A.G., Elison Timm, O., Giambelluca, T.W.T.W., Diaz, H.F.H.F., 2017. The influence
519 of ENSO, PDO and PNA on secular rainfall variations in Hawai'i. *Clim. Dyn.* 0, 0.
520 <https://doi.org/10.1007/s00382-017-4003-4>

521 Giambelluca, T.W., Chen, Q., Frazier, A.G., Price, J.P., Chen, Y.-L., Chu, P.-S., Eischeid, J.K.,
522 Delparte, D.M., 2013. Online rainfall atlas of Hawai'i. *Bull. Am. Meteorol. Soc.* 94, 313–
523 316. <https://doi.org/10.1175/BAMS-D-11-00228.1>

524 Groisman, P.Y., Knight, R.W., Easterling, D.R., Karl, T.R., Hegerl, G.C., Razuvayev, V.N., 2005.
525 Trends in intense precipitation in the climate record. *J. Clim.* 18, 1326–1350.
526 <https://doi.org/10.1175/JCLI3339.1>

527 Groisman, P.Y., Knight, R.W., Karl, T.R., 2001. Heavy precipitation and high streamflow in the
528 contiguous United States: trends in the twentieth century. *Bull. Am. Meteorol. Soc.* 82, 219–
529 246. [https://doi.org/10.1175/1520-0477\(2001\)082<0219:HPAHSI>2.3.CO;2](https://doi.org/10.1175/1520-0477(2001)082<0219:HPAHSI>2.3.CO;2)

530 Groisman, P.Y., Knight, R.W., Karl, T.R., Easterling, D.R., Sun, B., Lawrimore, J.H., 2004.
531 Contemporary changes of the hydrological cycle over the contiguous United States: trends
532 derived from in situ observations. *J. Hydrometeorol.* 5, 64–85. [https://doi.org/10.1175/1525-7541\(2004\)005<0064:CCOTHC>2.0.CO;2](https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2)

533 Hannaford, J., Marsh, T.J., 2008. High-flow and flood trends in a network of undisturbed
534 catchments in the UK. *Int. J. Climatol.* 28, 1325–1338. <https://doi.org/10.1002/joc.1643>

536 Held, I.M., Soden, B.J., Held, I.M., Soden, B.J., 2006. Robust Responses of the Hydrological
537 Cycle to Global Warming. *J. Clim.* 19, 5686–5699. <https://doi.org/10.1175/JCLI3990.1>

538 Hirsch, R.M., Slack, J.R., 1984. A nonparametric trend test for seasonal data with serial
539 dependence. *Water Resour. Res.* 20, 727–732. <https://doi.org/10.1029/WR020i006p00727>

540 Ishak, E.H., Rahman, A., Westra, S., Sharma, A., Kuczera, G., 2013. Evaluating the non-
541 stationarity of australian annual maximum flood. *J. Hydrol.* 494, 134–145.
542 <https://doi.org/10.1016/j.jhydrol.2013.04.021>

543 Ivancic, T.J., Shaw, S.B., 2015. Examining why trends in very heavy precipitation should not be
544 mistaken for trends in very high river discharge. *Clim. Change* 133, 681–693.
545 <https://doi.org/10.1007/s10584-015-1476-1>

546 Jin, F.-F., Boucharel, J., Lin, I.-I., 2014. Eastern Pacific tropical cyclones intensified by El Niño
547 delivery of subsurface ocean heat. *Nature* 516, 82–85. <https://doi.org/10.1038/nature13958>

548 Joseph, P. V., Eischeid, J.K., Pyle, R.J., 1994. Interannual Variability of the Onset of the Indian
549 Summer Monsoon and Its Association with Atmospheric Features, El Niño, and Sea Surface
550 Temperature Anomalies. *J. Clim.* 7, 81–105. [https://doi.org/10.1175/1520-0442\(1994\)007<0081:IVOTOO>2.0.CO;2](https://doi.org/10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2)

551 Klotzbach, P.J., 2006. Trends in global tropical cyclone activity over the past twenty years (1986–
552 2005). *Geophys. Res. Lett.* 33, 1984–1987. <https://doi.org/10.1029/2006GL025881>

553 Kodama, K., Barnes, G.M., 1997. Heavy rain events over the south-facing slopes of Hawaii:
554 Attendant conditions. *Weather Forecast.* 12, 347–367. [https://doi.org/10.1175/1520-0434\(1997\)012<0347:HREOTS>2.0.CO;2](https://doi.org/10.1175/1520-0434(1997)012<0347:HREOTS>2.0.CO;2)

555 Knutson, T.R., Manabe, S., 1995. Time-mean response over the tropical Pacific to increased CO₂
556 in a coupled ocean-atmosphere model. *J. Clim.* 8, 2181–2199.

559 Li, T., Kwon, M., Zhao, M., Kug, J.S., Luo, J.J., Yu, W., 2010. Global warming shifts Pacific
560 tropical cyclone location. *Geophys. Res. Lett.* 37, 1–5.
561 <https://doi.org/10.1029/2010GL045124>

562 Lins, H.F., Slack, J.R., 1999. Streamflow trends in the United States. *Geophys. Res. Lett.* 26,
563 227–230. <https://doi.org/10.1029/1998GL900291>

564 Lund, U., Agostinelli, C., Agostinelli, M.C., 2017. Package ‘circular.’ *Repos. CRAN*.

565 Luo, X., Wang, B., Frazier, A.G., Giambelluca, T.W., 2020. Distinguishing Variability Regimes
566 of Hawaiian Summer Rainfall: Quasi-Biennial and Interdecadal Oscillations. *Geophys. Res.*
567 *Lett.* 47. <https://doi.org/10.1029/2020GL091260>

568 Lyons, S.W., 1982. Empirical orthogonal function analysis of Hawaiian rainfall. *J. Appl.*
569 *Meteorol.* 21, 1713–1729. [https://doi.org/10.1175/1520-0450\(1982\)021<1713:EOFAOH>2.0.CO;2](https://doi.org/10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2)

571 Madsen, H., Lawrence, D., Lang, M., Martinkova, M., Kjeldsen, T.R., 2014. Review of trend
572 analysis and climate change projections of extreme precipitation and floods in Europe. *J.*
573 *Hydrol.* 519, 3634–3650. <https://doi.org/10.1016/j.jhydrol.2014.11.003>

574 Mann, H.B., 1945. Nonparametric tests against trend. *Econometrica* 13, 245.
575 <https://doi.org/10.2307/1907187>

576 Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C., 1997. A Pacific interdecadal
577 climate oscillation with impacts on salmon production. *Bull. Am. Meteorol. Soc.* 78, 1069–
578 1079. [https://doi.org/10.1175/1520-0477\(1997\)078<1069:APICOW>2.0.CO;2](https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2)

579 Mediero, L., Santillán, D., Garrote, L., Granados, A., 2014. Detection and attribution of trends in
580 magnitude, frequency and timing of floods in Spain. *J. Hydrol.* 517, 1072–1088.

581 Merz, R., Blöschl, G., 2003. A process typology of regional floods. *Water Resour. Res.* 39.

582 <https://doi.org/10.1029/2002WR001952>

583 Murakami, H., Wang, B., Li, T., Kitoh, A., 2013. Projected increase in tropical cyclones near
584 Hawaii. *Nat. Clim. Chang.* 3, 749–754. <https://doi.org/10.1038/nclimate1890>

585 National Centers for Environmental Information (NCEI), 2019a. Storm events database [WWW
586 Document]. URL <https://www.ncdc.noaa.gov/stormevents/> (accessed 9.22.20).

587 National Centers for Environmental Information (NCEI), 2019b. Pacific decadal oscillation
588 (PDO) [WWW Document]. URL <https://www.ncdc.noaa.gov/teleconnections/pdo/>
589 (accessed 9.22.20).

590 Nugent, A.D., Longman, R.J., Trauernicht, C., Lucas, M.P., Diaz, H.F., Giambelluca, T.W., 2020.
591 Fire and Rain: The Legacy of Hurricane Lane in Hawai‘i. *Bull. Am. Meteorol. Soc.* 101,
592 E954–E967. <https://doi.org/10.1175/BAMS-D-19-0104.1> O’Connor, C.F., Chu, P.-S., Hsu,
593 P.-C., Kodama, K., 2015. Variability of Hawaiian Winter Rainfall during La Niña Events
594 since 1956. *J. Clim.* 28, 7809–7823. <https://doi.org/10.1175/JCLI-D-14-00638.1>

595 Oki, D.S., 2004. Trends in streamflow characteristics in Hawaii, 1913-2002. U.S. Geol. Surv.
596 Fact Sheet 2004-3104 4 p.

597 Oki, D.S., 2003. Surface water in Hawaii. U.S. Geol. Surv. Fact Sheet 045-03 6 p. (2-sided 3–
598 part fold).

599 Petrow, T., Merz, B., 2009. Trends in flood magnitude, frequency and seasonality in Germany in
600 the period 1951-2002. *J. Hydrol.* 371, 129–141.
601 <https://doi.org/10.1016/j.jhydrol.2009.03.024>

602 Pewsey, A., Neuhäuser, M., Ruxton, G.D., 2013. Circular statistics in R. Oxford University
603 Press.

604 Pingale, S.M., Khare, D., Jat, M.K., Adamowski, J., 2014. Spatial and temporal trends of mean

605 and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state
606 of Rajasthan, India. *Atmos. Res.* 138, 73–90. <https://doi.org/10.1016/j.atmosres.2013.10.024>

607 Pohlert, T., Pohlert, M.T., Test, M.-K.T., Test, B.U., Test, S.N.H., 2018. Package ‘trend.’

608 Radtke, R.L., Kinzie, R.A., 1996. Evidence of a marine larval stage in endemic Hawaiian stream
609 gobies from isolated high-elevation locations. *Trans. Am. Fish. Soc.* 125, 613–621.
610 [https://doi.org/10.1577/1548-8659\(1996\)125<0613:EOAMLS>2.3.CO;2](https://doi.org/10.1577/1548-8659(1996)125<0613:EOAMLS>2.3.CO;2)

611 Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H., Sauquet, E., Prudhomme, C.,
612 Parey, S., Paquet, E., Neppel, L., Gailhard, J., 2008. Regional methods for trend detection:
613 Assessing field significance and regional consistency. *Water Resour. Res.* 44.
614 <https://doi.org/10.1029/2007WR006268>

615 Sahoo, G.B., Ray, C., De Carlo, E.H., 2006. Use of neural network to predict flash flood and
616 attendant water qualities of a mountainous stream on Oahu, Hawaii. *J. Hydrol.* 327, 525–
617 538. <https://doi.org/10.1016/j.jhydrol.2005.11.059>

618 Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s Tau. *J. Am. Stat.
619 Assoc.* 63, 1379–1389. <https://doi.org/10.1080/01621459.1968.10480934>

620 Small, D., Islam, S., Vogel, R.M., 2006. Trends in precipitation and streamflow in the eastern
621 U.S.: Paradox or perception? *Geophys. Res. Lett.* 33, 2–5.
622 <https://doi.org/10.1029/2005GL024995>

623 Trenberth, K., 2011. Changes in precipitation with climate change. *Clim. Res.* 47, 123–138.
624 <https://doi.org/10.3354/cr00953>

625 Trenberth, K.E., Hoar, T.J., 1997. El Niño and climate change. *Geophys. Res. Lett.* 24, 3057–
626 3060. <https://doi.org/10.1029/97GL03092>

627 Wang, B., Luo, X., Yang, Y.M., Sun, W., Cane, M.A., Cai, W., Yeh, S.W., Liu, J., 2019. Historical

628 change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl.
629 Acad. Sci. U. S. A. 116, 22512–22517. <https://doi.org/10.1073/pnas.1911130116>

630 Wang, X., Jiang, X., Yang, S., Li, Y., 2013. Different impacts of the two types of El Niño on
631 Asian summer monsoon onset. Environ. Res. Lett. 8. <https://doi.org/10.1088/1748-9326/8/4/044053>

633 Wasko, C., Sharma, A., 2017. Global assessment of flood and storm extremes with increased
634 temperatures. Sci. Rep. 7, 1–8. <https://doi.org/10.1038/s41598-017-08481-1>

635 Wentz, F.J., Ricciardulli, L., Hilburn, K., Mears, C., 2007. How much more rain will global
636 warming bring? Science 317, 233–235. <https://doi.org/10.1126/science.1140746>

637 Westra, S., Alexander, L. V., Zwiers, F.W., 2013. Global increasing trends in annual maximum
638 daily precipitation. J. Clim. 26, 3904–3918. <https://doi.org/10.1175/JCLI-D-12-00502.1>

639 Zar, J.H., 1999. Biostatistical analysis. Pearson Education India.

640 Zhang, X.S., Amirthanathan, G.E., Bari, M.A., Laugesen, R.M., Shin, D., Kent, D.M.,
641 MacDonald, A.M., Turner, M.E., Tuteja, N.K., 2016. How streamflow has changed across
642 Australia since the 1950s: evidence from the network of hydrologic reference stations.
643 Hydrol. Earth Syst. Sci. 20, 3947–3965. <https://doi.org/10.5194/hess-20-3947-2016>

644

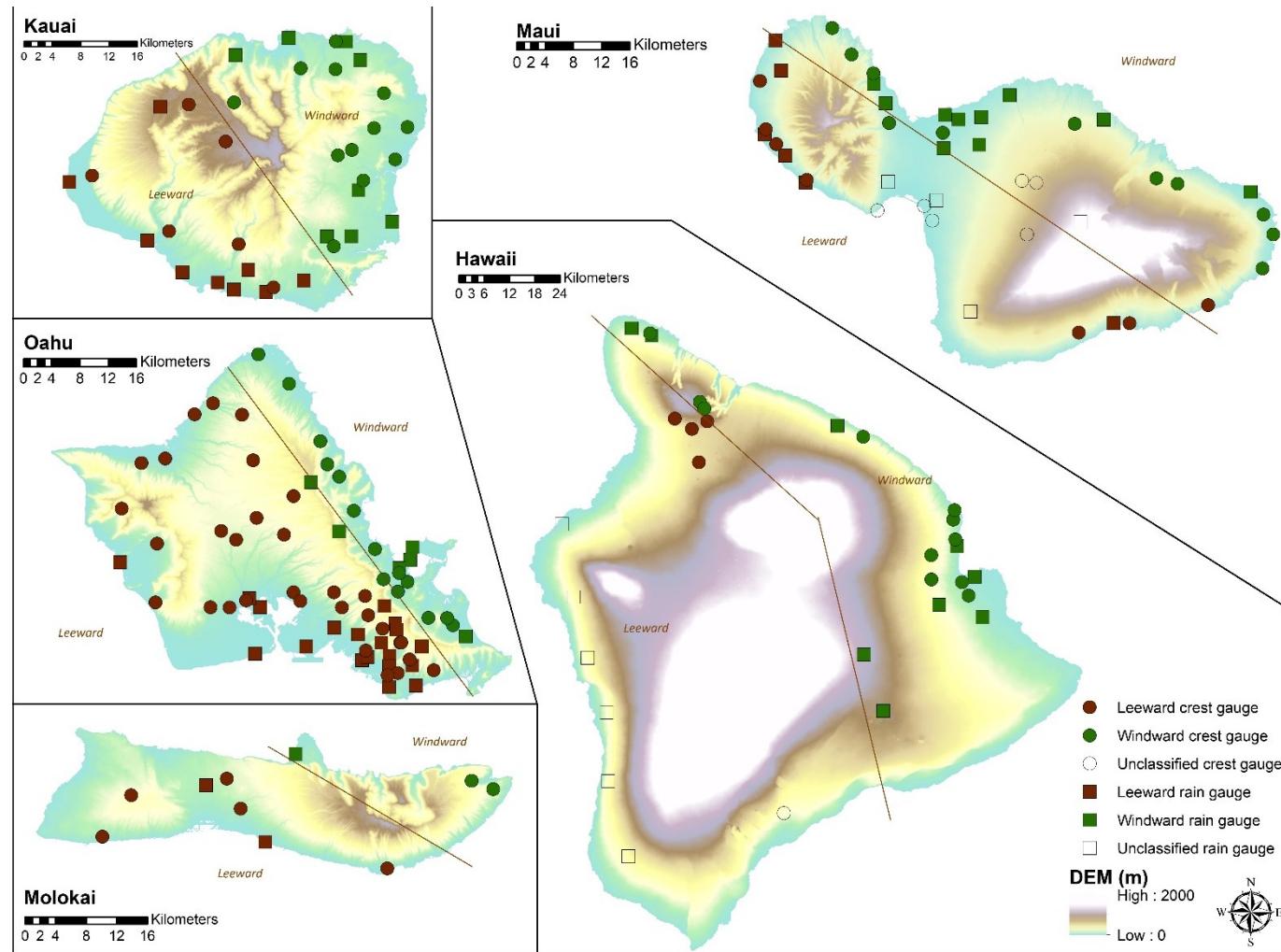
645 Table 1 Trends of annual peak flow and trends of 1-day, 2-day, and 5-day accumulated rainfall of the same date as the annual peak flow for each pair (see figure 4
 646 for the spatial distribution) between 1970 and 2005. Trends are shown in percent change per year, and the consistent trends (with the same sign) between peak
 647 flow and paired rainfall are shaded in grey. (OA = O‘ahu, KA = Kaua‘i, MO = Moloka‘i, MA = Maui, HA = Hawai‘i, and ‘*’: p-value < 0.05, ‘**’: p-value <
 648 0.01, ‘***’: p-value < 0.00)

Island	Rain Gauge	Crest gauge	peak flow (%)	1-day rainfall (%)	2-day rainfall (%)	5-day rainfall (%)
KA	USC00515560	16060000	0.38	-4.48*	-5.87	27.01
KA	USC00514561	16097900	-0.3	-1.41	-4.21	-1.8
OA	X213215157552800	16200000	0	-1.73	-1.17	-1.17
OA	X213215157552800	16208000	-0.43	-2.55	-2.45	-2.45
OA	X213215157552800	16212700	1.28	-0.94	-1.12	-1.12
OA	USC00518964	16212800	0.6	1.29	1.14	1.14
OA	USC00517810	16232000	0.57	0.04	-0.23	-0.23
OA	USC00517810	16237500	-1.48	-1.66	-2.56	-2.56
OA	USC00517810	16238500	2.45	1.03	0.34	0.34
OA	USC00517810	16240500	0.12	0.15	-0.07	-0.07
OA	USC00517664	16244000	5.77*	2.57	1.79	1.79
OA	USC00517664	16247100	0.26	0.11	-0.34	-0.34
OA	USC00519523	16249000	-0.6	-0.57	-1.13	-1.13
OA	USC00513117	16274499	-0.91	-3.2	-3.07	-3.07
OA	USC00518964	16294900	-0.77	0.63	4.84	4.84
OA	X213215157552800	16296500	0.77	-1.65	-1.17	-1.17
OA	X213215157552800	16301050	0.67	-0.13	0	0
MO	USW00022534	16411800	-6.54	18.74	19.13	13.55
MA	USC00511125	16502400	0.4	0.22	0.62	-0.36
MA	USC00511125	16502800	1.41	-0.55	-0.5	0.08
MA	USC00511125	16502900	1.25	1.05	1.23	1
MA	USC00511004	16587000	0.59	-1.07	-0.44	-1.73
MA	USC00511004	16603700	-4.58*	-1.13	-0.69	-1.22
MA	USC00511004	16603800	-1.59	-1.54	-1.94	-1.69

MA	USC00518543	16603850	2.41	2.41	2.9	-2.36
MA	USC00515715	16630200	-0.21	-5.49*	-8.23	-11.49
MA	USC00515177	16638500	1.75	-2.67	-0.83	0
MA	USC00515408	16643300	-0.13	-3.78	-5.19	-4.89
MA	USC00517059	16646200	-0.28	-3.66	-2.24	-1.92
MA	USC00518060	16647500	-0.04	-0.56	-1.49	-0.55
MA	USC00511004	16658500	2.69	2.34	2.15	-3.11
MA	USC00514489	16659000	-0.85	6.02	8.83	7.88
HA	USC00519025	16701300	1.61	-0.83	1.18	-2.1
HA	USC00519025	16701400	-8.15	-6.45	-1.86	-8.75
HA	USC00511065	16704000	-1.08	-3.81	-0.22	0.63
HA	USC00519025	16717000	-0.46	1.51	1.45	1.06
HA	USC00517312	16717850	-33.11	-24.6	-9.9	-5.39
HA	USC00514680	16752600	9.16	1.26	11.95	17.78
HA	USC00513300	16770500	0.99	-3.74	3.54	2.03

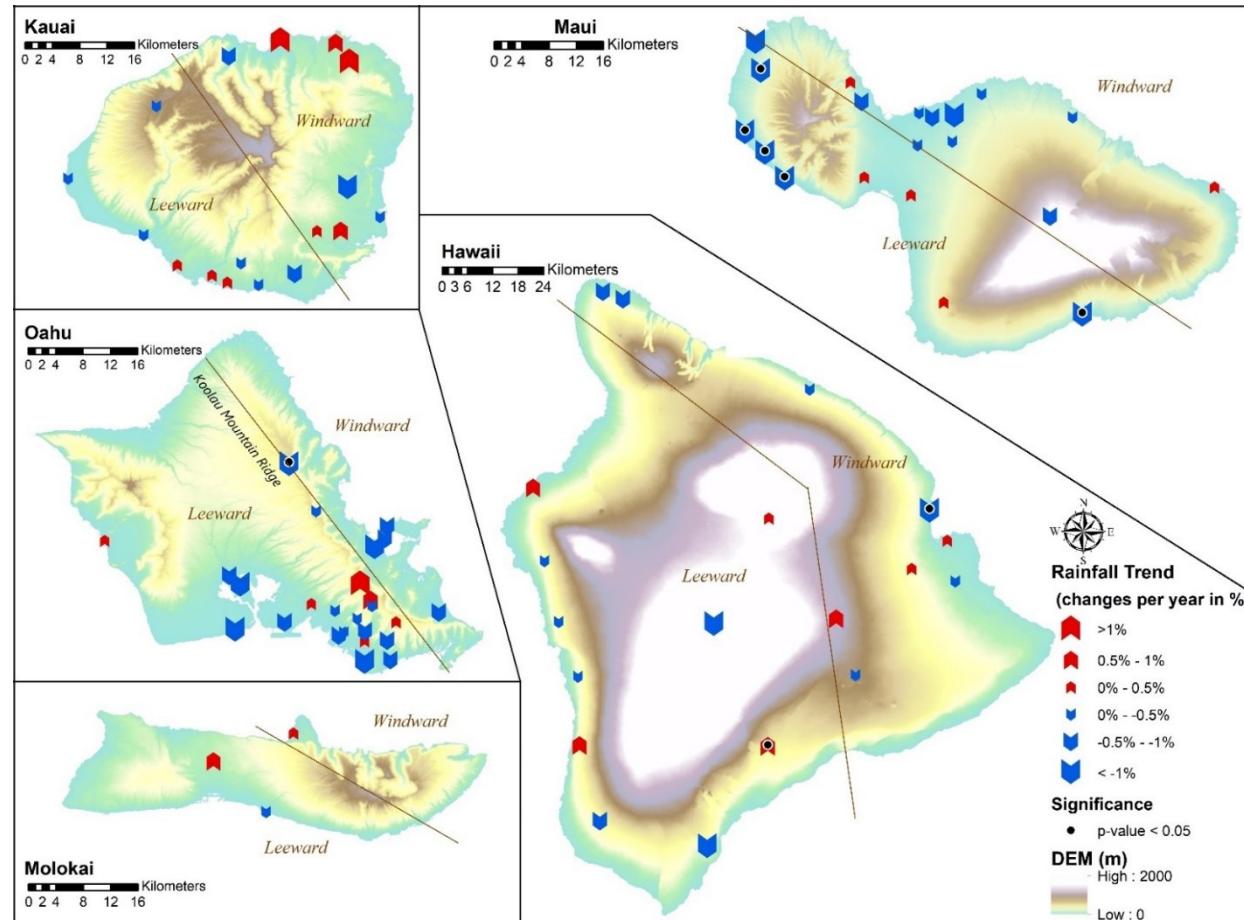
650 **Figures**

651 Figure 1 Map of crest (circles) and rain (squares) gauges in different physiographic zones –
652 windward (green), leeward (brown), and unclassified (transparent) superimposed on the
653 digital elevation model (DEM) obtained from the U.S. Geological Survey across five major
654 Hawaiian Islands; the brown line indicates the physiographic division of windward
655 (northeast) and leeward (southwest) regions on the islands. 35

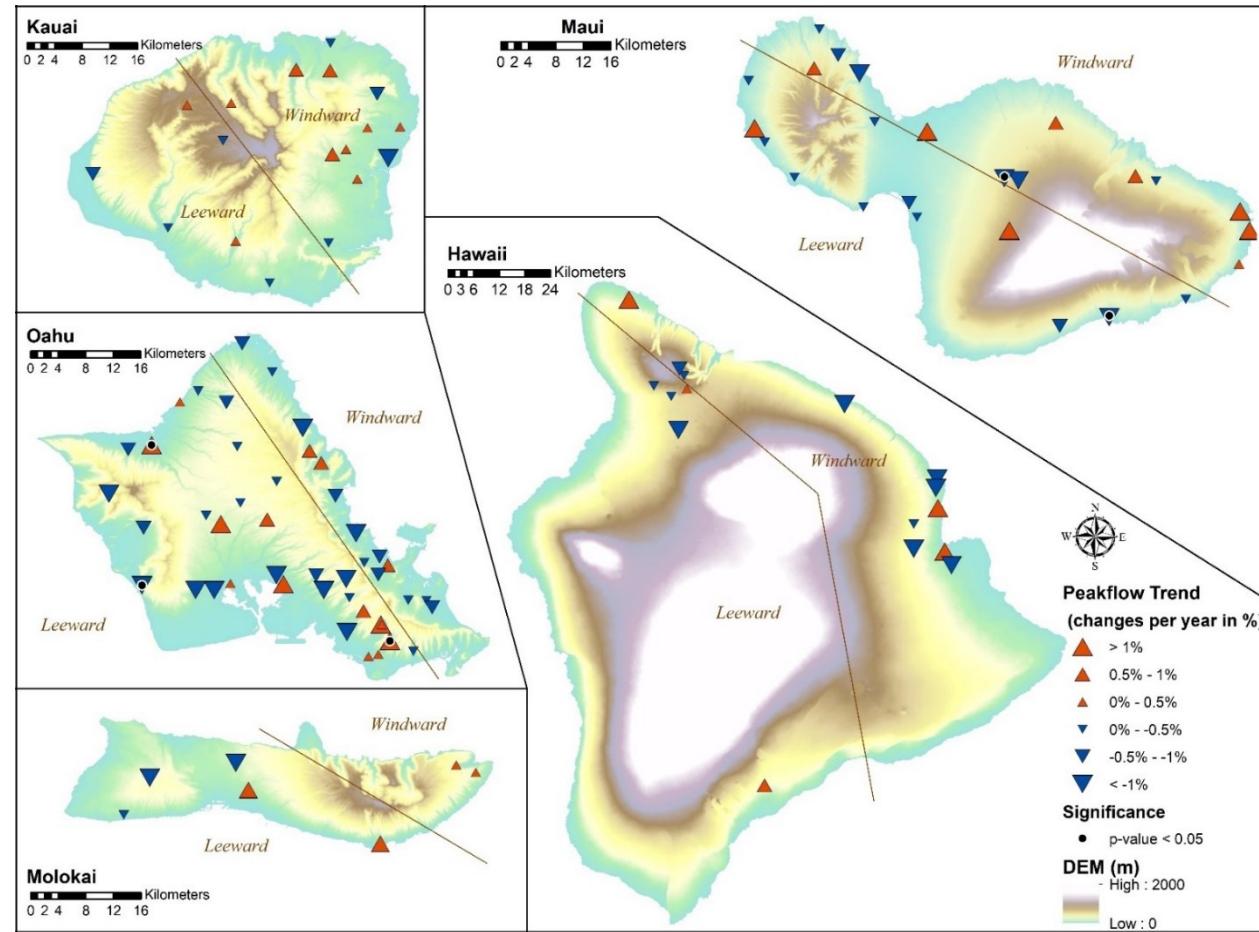

656 Figure 2 Annual maximum daily rainfall trends from water years 1970 to 2005 across five major
657 Hawaiian Islands, superimposed on the DEM obtained from the U.S. Geological Survey.
658 Blue inverted arrows show decreasing trends, red arrows show increasing trends, and black
659 dots indicate significant trends ($p < 0.05$). The trends denote percentage change per year. The
660 brown line indicates the physiographic division of windward (northeast) and leeward
661 (southwest) regions on the islands. 36

662 Figure 3 Annual peak flow trends from the water year 1970 to 2005 for the five main Hawaiian
663 Islands. Blue inverted triangles show decreasing trends, the orange triangles show increasing
664 trends, triangles with a black dot indicate significance ($p < 0.05$). The trends indicate
665 percentage change per year. The color shading is the elevation (m). The brown line indicates
666 the physiographic division of windward (northeast) and leeward (southwest) regions on the
667 islands. 37

668 Figure 4 Paired daily rainfall and annual peak flow trends that showed agreement in the direction
669 of trends from 1970 to 2005 for five major Hawaiian Islands, superimposed on the DEM
670 obtained from the U.S. Geological Survey. Brown lines indicate the watershed boundaries.
671 The paired daily rainfall gauge (black square) and the crest gauge (triangles) exhibit the same
672 trend (peak flow trend with agreement; blue triangle: decreasing peak flow trends and can be

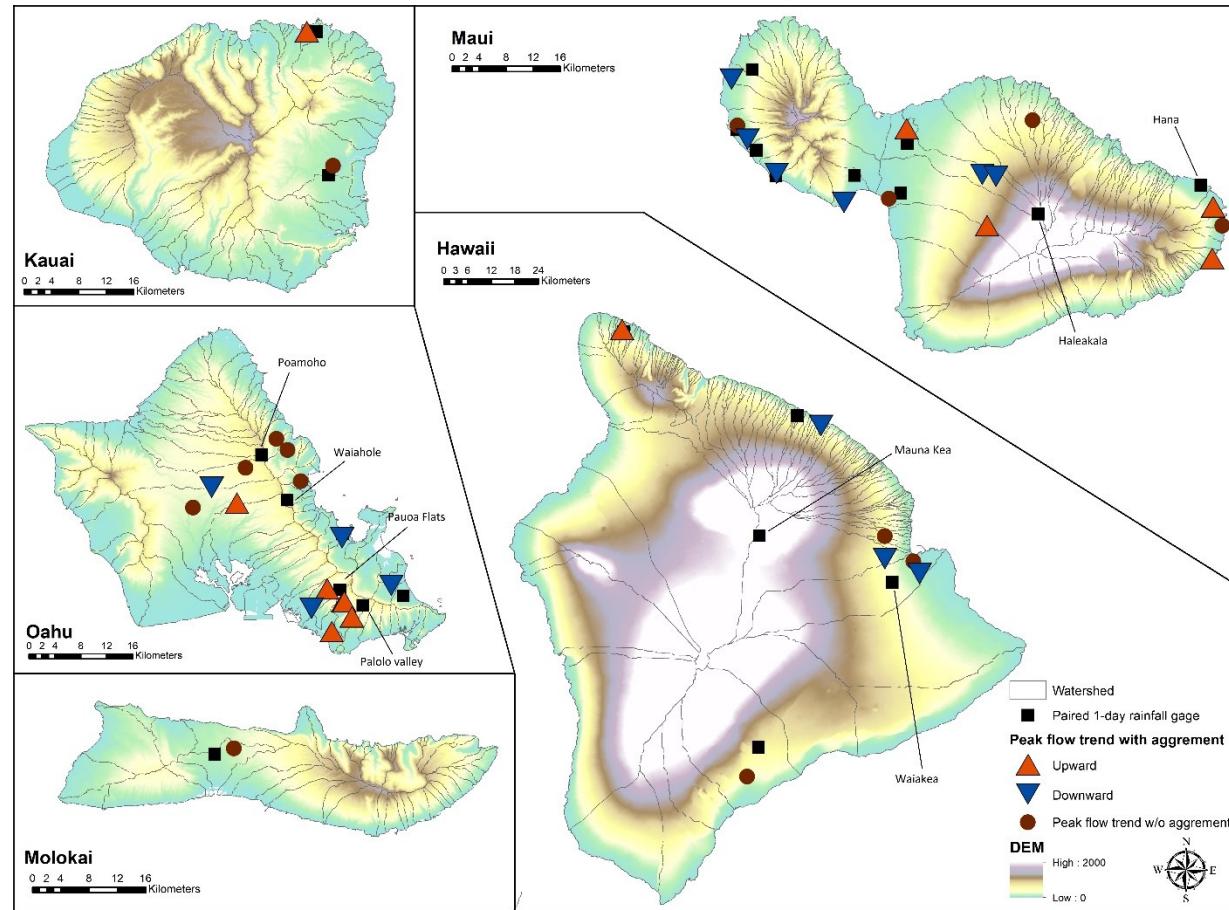

673	referred to paired daily rainfall; orange triangle: increasing trends of peak flow and can be	
674	referred to paired daily rainfall). Brown circles show the crest gauges that did not have	
675	consistent trends with the paired rainfall (peak flow trend w/o agreement).....	38
676	Figure 5 Comparison of the occurrence time of annual maximum daily rainfall (n=85 gauges) for	
677	(a) the analysis period, 1970-2005, and (c) every nine years from 1970-2005, with the	
678	occurrence time of annual peak flow (n=112 gauges) for (b) the analysis period, 1970-2005,	
679	and (d) for every nine years from 1910-2005, across the Hawaiian Islands. The dashed line is	
680	the estimated kernel density, and the arrow points to the median date of occurrence with	
681	mean resultant length. For (a) and (b), the gray dots indicate the frequency of the occurrence	
682	time. For (c) and (d), the colors reflect the time period, and the circles around the clock	
683	indicate the occurrence time.	39
684	Figure 6 The occurrence time (median \pm 0.5 circular deviation) of annual maximum daily rainfall	
685	(green line; n=42) and annual peak flow (black line; n=54) on the leeward side with the	
686	ENSO phase shaded (red: warm phase; blue: cool phase, white: neutral). The y-axis indicates	
687	the months from June through May (bottom to top). Occurrences under ENSO warm phase	
688	are indicated by red squares for annual maximum daily rainfall, and a red circle for annual	
689	peak flow. The Oceanic Nino Index (ONI) on the top indicates the strength of the ENSO	
690	from 1970 to 2005.....	40
691	Figure 7 The occurrence time (median \pm 0.5 circular deviation) of annual maximum daily rainfall	
692	(green line; n=34) and annual peak flow (black line; n=49) on the windward side with the	
693	ENSO phase shaded (red: warm phase; blue: cool phase, white: neutral). The y-axis indicates	
694	the months from June through May (bottom to top). Early occurrences under ENSO warm	
695	phase are indicated by red squares for annual maximum daily rainfall, and a red circle for	

696	annual peak flow. The Oceanic Nino Index (ONI) on the top indicates the strength of the	
697	ENSO from 1970 to 2005.	41
698		

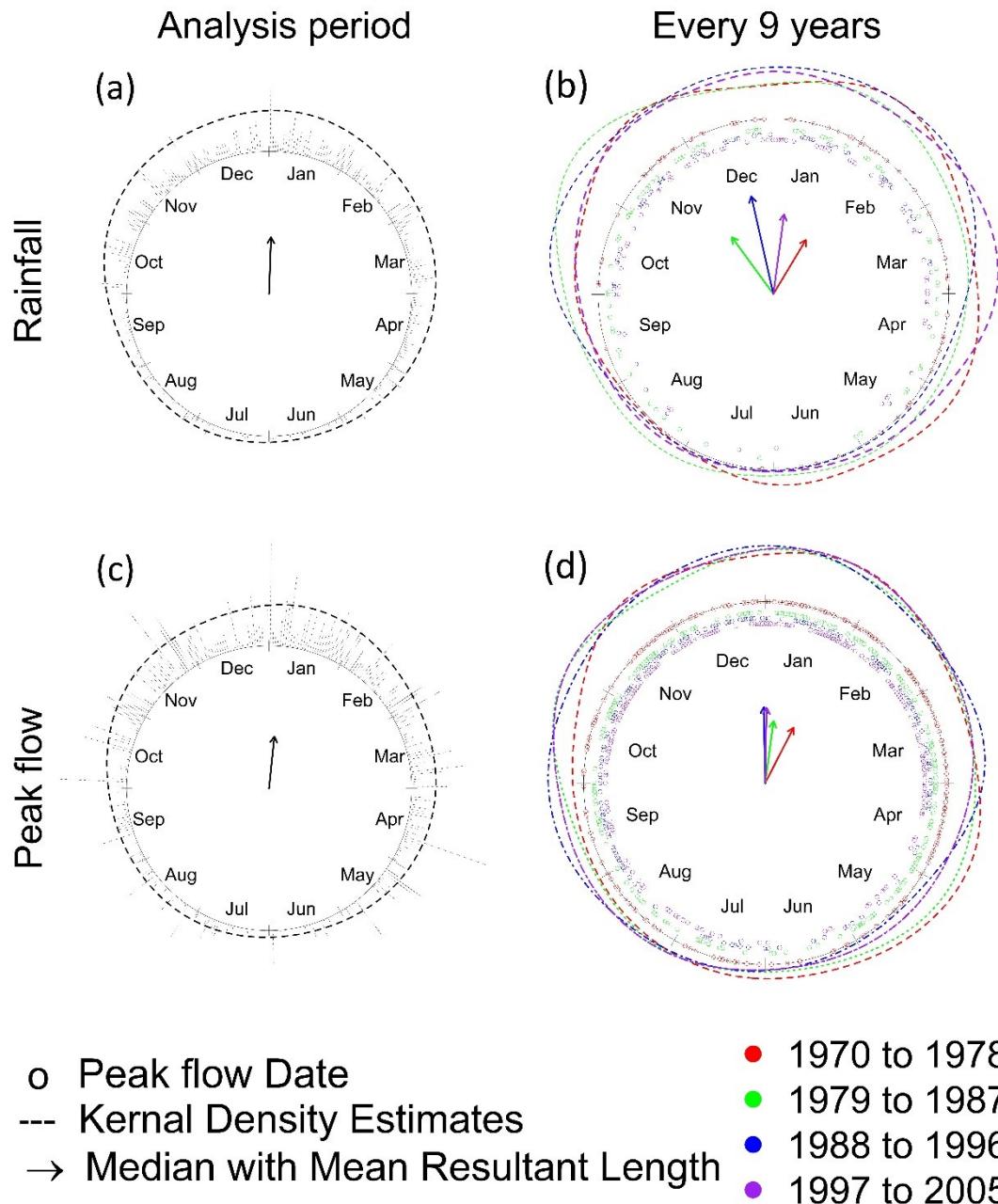


699

700 Figure 1 Map of crest (circles) and rain (squares) gauges in different physiographic zones – windward (green), leeward (brown), and unclassified (transparent)
 701 superimposed on the digital elevation model (DEM) obtained from the U.S. Geological Survey across five major Hawaiian Islands; the brown line indicates the
 702 physiographic division of windward (northeast) and leeward (southwest) regions on the islands.



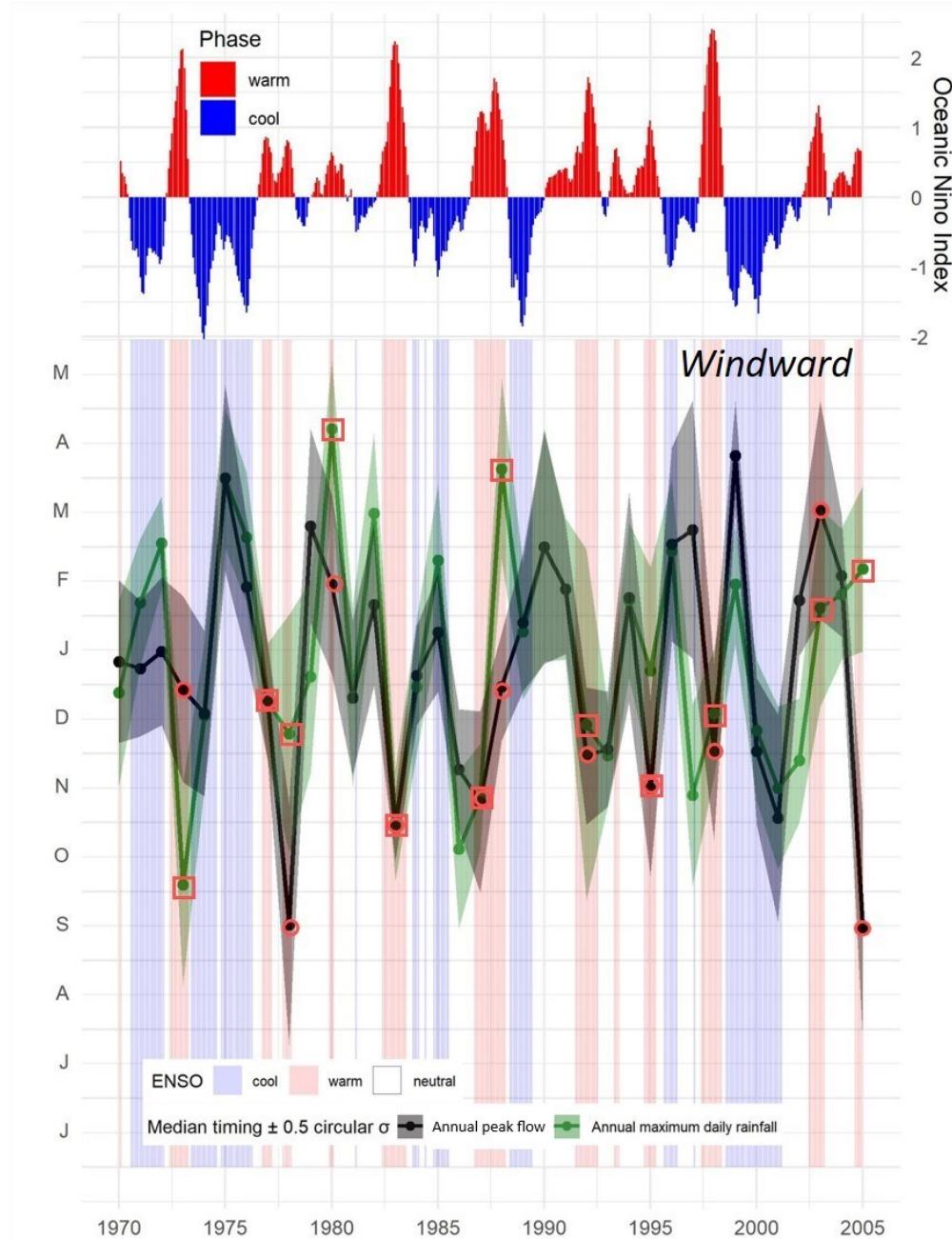
704 Figure 2 Annual maximum daily rainfall trends from water years 1970 to 2005 across five major Hawaiian Islands, superimposed on the DEM obtained from the
 705 U.S. Geological Survey. Blue inverted arrows show decreasing trends, red arrows show increasing trends, and black dots indicate significant trends ($p < 0.05$).
 706 The trends denote percentage change per year. The brown line indicates the physiographic division of windward (northeast) and leeward (southwest) regions on
 707 the islands.


708

709 Figure 3 Annual peak flow trends from the water year 1970 to 2005 for the five main Hawaiian Islands. Blue inverted triangles show decreasing trends, the
 710 orange triangles show increasing trends, triangles with a black dot indicate significance ($p < 0.05$). The trends indicate percentage change per year. The color
 711 shading is the elevation (m). The brown line indicates the physiographic division of windward (northeast) and leeward (southwest) regions on the islands.

712

713 Figure 4 Paired daily rainfall and annual peak flow trends that showed agreement in the direction of trends from 1970 to 2005 for five major Hawaiian Islands,
 714 superimposed on the DEM obtained from the U.S. Geological Survey. Brown lines indicate the watershed boundaries. The paired daily rainfall gauge (black
 715 square) and the crest gauge (triangles) exhibit the same trend (peak flow trend with agreement; blue triangle: decreasing peak flow trends and can be referred to
 716 paired daily rainfall; orange triangle: increasing trends of peak flow and can be referred to paired daily rainfall). Brown circles show the crest gauges that did not
 717 have consistent trends with the paired rainfall (peak flow trend w/o agreement).


718

719 Figure 5 Comparison of the occurrence time of annual maximum daily rainfall (n=85 gauges) for (a) the analysis
720 period, 1970-2005, and (c) every nine years from 1970-2005, with the occurrence time of annual peak flow (n=112
721 gauges) for (b) the analysis period, 1970-2005, and (d) for every nine years from 1910-2005, across the Hawaiian
722 Islands. The dashed line is the estimated kernel density, and the arrow points to the median date of occurrence with
723 mean resultant length. For (a) and (b), the gray dots indicate the frequency of the occurrence time. For (c) and (d),
724 the colors reflect the time period, and the circles around the clock indicate the occurrence time.

725

726 Figure 6 The occurrence time (median ± 0.5 circular deviation) of annual maximum daily rainfall (green line; n=42)
 727 and annual peak flow (black line; n=54) on the leeward side with the ENSO phase shaded (red: warm phase; blue:
 728 cool phase, white: neutral). The y-axis indicates the months from June through May (bottom to top). Occurrences
 729 under ENSO warm phase are indicated by red squares for annual maximum daily rainfall, and a red circle for annual
 730 peak flow. The Oceanic Nino Index (ONI) on the top indicates the strength of the ENSO from 1970 to 2005.

731

732 Figure 7 The occurrence time (median ± 0.5 circular deviation) of annual maximum daily rainfall (green line; n=34)
 733 and annual peak flow (black line; n=49) on the windward side with the ENSO phase shaded (red: warm phase; blue:
 734 cool phase, white: neutral). The y-axis indicates the months from June through May (bottom to top). Early
 735 occurrences under ENSO warm phase are indicated by red squares for annual maximum daily rainfall, and a red
 736 circle for annual peak flow. The Oceanic Niño Index (ONI) on the top indicates the strength of the ENSO from 1970
 737 to 2005.