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Abstract—Aggregating data is fundamental to data analytics,
data exploration, and OLAP. Approximate query processing (AQP)
techniques are often used to accelerate computation of aggregates
using samples, for which confidence intervals (CIs) are widely used
to quantify the associated error. CIs used in practice fall into two
categories: techniques that are tight but not correct, i.e., they yield tight
intervalsbutonlyofferasymptoticguarantees,makingthemunreliable,
or techniques that are correct but not tight, i.e., they offer rigorous
guarantees, but are overly conservative, leading to confidence intervals
that are too loose to be useful. In this paper, we develop a CI technique
that is both correct and tighter than traditional approaches. Starting
fromconservativeCIs,we identify two issues theyoften face:pessimistic
mass allocation (PMA) and phantom outlier sensitivity (PHOS). By
developing a novel range-trimming technique for eliminating PHOS
and pairing it with known CI techniques without PMA, we develop
a technique for computing CIs with strong guarantees that requires
fewer samples for the same width. We implement our techniques
underneath a sampling-optimized in-memory column store and show
how they accelerate queries involving aggregates on real datasets with
typical speedups on the order of 10� over both traditional AQP-with-
guarantees and exact methods, all while obeying accuracy constraints.

I. Introduction
Primitives for aggregation like AVG, SUM, and COUNT are key

to making sense of and drawing insights from large volumes of
data, powering applications in OLAP, exploratory data analysis, and
visual analytics. Accelerating their computation is therefore of great
importance. Approximate Query Processing (AQP) is commonly used
to accelerate computation of these aggregates by estimating them on
a subset or sample of the full data. Reasoning about the error of the
estimates as introduced by approximation is crucial: consumers of
approximate answers—ranging from human decision makers to auto-
mated processes—rely on confidence intervals (CIs) or error bounds as
the foundation for understanding the quality of the approximate answer.
Therefore, many AQP techniques come with CIs to allow for more
confident or informed decisions made using approximate estimates.
Error bounding, or CI computation techniques take a confidence

parameter ı 2 Œ0;1�, with the semantics that the returned intervals
Œg`;gr � fail to enclose the true aggregate g? at most ı of the time. One
can tune ı to be as small as needed at the cost of requiringmore samples
to achieve the same interval width .gr�g`/. Likewise, for a given ı,
taking more samples typically causes the error bounding procedure to
return a narrower confidence interval. Since ı is typically small, we use
the phrase “with high probability” (w.h.p.) as shorthand for “with prob-
ability greater than .1�ı/”. CI computation techniques need to satisfy
two goals: (i) compactness: by minimizing the interval width gr�g`,
and (ii) correctness: by ensuring thatg?2 Œg`;gr �with high probabil-
ity. However, achieving both compactness and correctness is difficult.
Existing techniques either prefer compactness over correctness

(asymptotic techniques) or vice versa (conservative techniques):

SELECT Origin , AVG(DepDelay) FROM flights
GROUP BY Origin HAVING AVG(DepDelay) < 0

Fig. 1: Origin airports with negative average delay. In this query, the AVG aggregates are
consumed both by the user and by the system.

Compactness without Correctness. Asymptotic error bounding
techniques such as bootstrap CIs [1, 2] or central limit theorem
(CLT)-based CIs [3, 4] make assumptions about the distribution
taken by the data given a “large enough” sample size. These
procedures typically give CIs that are much tighter (and therefore
more useful for drawing inferences about the query results), and
have enjoyed numerous applications in database and visual analytics
systems [5, 6, 7, 8, 9, 10], including Aqua [11], BlinkDB [12, 13],
DBO [14], and online aggregation [15], and have furthermore seen
a number of DBMS-specific extensions [2, 16].

However, these asymptotic techniques result in intervals that only
enclose the true aggregate w.h.p. in the limit as the size of the sample
grows to infinity; i.e., theyprovideno real guarantees for anygiven finite
instance, potentially leading to failures downstream. For example, con-
sider the query in Figure 1, which determines origin airports whose de-
parting flights are ahead-of-schedule, onaverage.AnAQPsystemcould
use CIs to facilitate early stopping by using them to infer on which side
of the HAVING threshold the various groups appear. If such a system
relies on asymptoticCIs, it is prone to serious types of error [6]whereby
certain tuples may be missing, and other tuples may appear spuriously.

Correctness without Compactness. Recognizing the downsides
of asymptotic approaches, recent work [17, 18, 19, 20, 21] has begun
to adopt conservative error bounders, which leverage concentration
inequalities to compute CIs. These procedures return bounds that
follow probably approximately correct (PAC) [22] semantics: given
ı2 Œ0;1�, the probability that the procedure returns lower and upper
bounds Œg`;gr � around the approximate aggregate Og that fail to
enclose the true aggregate g? should be at most ı for any sample
size (in contrast with asymptotic techniques, for which the probability
converges to ı given a large enough sample). These techniques have
been used in online aggregation [15, 23] and more recently in work
on visual analytics [18, 19, 20, 21].

In general, conservativemethods such as those based onHoeffding’s
inequality [24] or on the Hoeffding-Serfling inequality [25] rely on
a-priori knowledge of range bounds a and b between which the data
fall (typically inferred during data loading). Although they achieve the
correctness goal of error bounders, when used for AVG, the CI width
for Hoeffding-based error bounders scales with the range size .b�a/,
creating at least two major issues in the context of a relational database,
illustrated in Figure 2. (i) First, the presence of a very few outliers
can significantly widen the range Œa;b� (and therefore the CI width),
even though most of the data may lie in a much smaller range. (ii)
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Fig. 2: Few points may lie near the range bounds a and b, and with filters applied, the true
range could be significantly smaller than .b�a/.

Second, predicates and groupings may be applied during data ex-
ploration, so that the filtered data lies in a smaller range than Œa;b�.
KeyResearchChallenges andContributions.We aim to preserve
correctness (or safety) of conservative error bounders for AVG,
SUM, and COUNT aggregates while also providing compactness
(for speed). We encounter a number of challenges toward this end:
1. Identifying conservative error bounder pathologies. To improve
the viability of approaches with strict correctness guarantees, we must
first determine the circumstances under which conservative error
bounders are too conservative.
Our contribution: We identify two issues in range-based concentration
inequalities that cause unnecessary looseness when used to compute
conservative error bounds for AVG. The first, pessimistic mass
allocation (PMA), refers to the unnecessary placement of unseen
probability mass at endpoints a and b of the range enclosing the
data. The second, phantom outlier sensitivity (PHOS), occurs when
computation of the lower confidence bound g` depends on the upper
range bound b even without observed samples near b, and vice versa
for a dependency from a to gr . PHOS captures the intuition that
unobserved large (small) values should not loosen g` (gr).
2. Correcting error bounder pathologies. After identifying correctable
issues with existing conservative error bounders, we need to develop
novel techniques that address these issues, while ensuring that these
techniques are efficient in terms of computation and memory.
Our contribution: We develop a simple and general error bounding
technique, range trimming, that corrects PHOS without sacrificing
desirable PAC semantics. At a high level, range trimming operates by
making error boundersasymmetric, so thatg` depends onlyon theMAX
value seen (and not on b), and gr depends only on the MIN value seen,
yielding tighter intervals when .MAX�MIN/ is smaller than .b�a/.
Range trimmingcanbeusedwith anyexisting conservative range-based
error bounder (i.e., an error bounderwhose only assumption is that data
falls in Œa;b�). We show how range trimming can be used to develop an
error bounder for AVG (and by extension SUM) with neither PHOS nor
PMA by using it alongside a bounder based on Bernstein’s inequality.
3. Minimizing sampling overhead. In order to enjoy the benefits of early
termination for querieswithmultiple aggregates, we need to ensure that
termination is not bottlenecked on any single aggregate, allowing query
processing to adaptively sample from the most informative locations
on physical storage while simultaneously minimizing overhead.
Our contribution: We show how to couple our approach with a
sampling-optimized column store that takes without-replacement
samples in a locality-aware manner, and that leverages bitmap indexes
to prioritize samples that enable earlier termination for GROUP BYs.
Impact.We develop error bounding techniques that more effectively
leverage distributional information of the underlying data, and

Symbols / Terms Descriptions

D;N;S;m
Dataset, num. points in dataset (i.e. jDj), sample, num.
points in sample (i.e. jSj)

g?; Og;g`;gr True aggregate, estimate, error bounds

a;b;�2;b�2 ı;" Range bounds, variance, empirical variance, error
probability upper bound, error

Lbound, Rbound Confidence lower (resp. upper) bounding routines
parameterized on a;b;N , and other sample state.

SSI, PMA, PHOS Sample-size-independent, pessimistic mass allocation,
phantom outlier sensitivity

TABLE I: Glossary of terms / notation.

that therefore often lead to tighter error bounds as compared with
those yielded by typical conservative error bounders. When used in
conjunction with a sampling-optimized column store for in-memory
analytics, we demonstrate typical speedups on the order of 10�
over both exact techniques and traditional conservative approximate
techniques, all without sacrificing strong correctness guarantees.
Extensibility.While our presentation focuses on confidence intervals
for queries over a single table with simple AVG aggregates, we note
that our techniques are more general and can be used to facilitate SUM
and COUNT aggregates, queries over views formed from joins in a
snowflake schema, and queries with general UDFs—we discuss these
extensions in Section IV-A and in our extended technical report [26].
Outline. The rest of this paper is organized as follows. Section II
discusses existing conservative error bounders and their prior usage
in the DBMS literature, and develops a conceptual framework for
identifying issues with these error bounders. In Section III we develop
the theory behind our RangeTrim technique, and show how to fix
issues with previous error bounders in Section II. Section IV addresses
systems issues that appear when sampling without replacement and
develops FastFrame, our sampling-optimized column store, and
Section V empirically evaluates our techniques in the context of this
system. We survey additional related work in Section VI.

II. DBMS Error Bound Integration

In this section, we first describe applications of confidence intervals
for facilitating query processing in a database system (§II-A). Next,
we survey methods for computing error bounds with guarantees
applicable to DBMS aggregates (§II-B) identify their shortcomings
(§II-C) and conclude with a formal problem statement (§II-D).

A. DBMS CI Applications
Consider the query in Figure 1. In this query, AVG aggregates are

both displayed as output in the query results, and are also used to filter
the set of tuples in the output. This reflects two major applications
of confidence intervals in a DBMS setting: CIs that are explicitly
used downstream, i.e., by an analyst, or CIs that are implicitly used
by automated processes.
Explicit Use of Downstream CIs.When approximating aggregates
in a DBMS, CIs can be included in the output displayed to users.
For example, the AVG aggregates belonging to the groups output
by the query in Figure 1 are augmented with CIs and included in the
output. Such CIs help users reason about uncertainty in approximate
answers during analysis [9, 15].
Implicit Use of Downstream CIs. Confidence intervals have been
applied towards various downstream applications, for example,
to enable early stopping. Example applications include high-level
accuracy contracts [7, 16] (i.e., guaranteeing query results are within
" of the correct), ranking query results [19, 21], and bounding relative
error [18]. In all cases, the user need not ever observe the interval:
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the goal is to provide early stopping while ensuring correct results.
We consider these applications later in our experiments in Section V.
Goal. In this paper, we are primarily concerned with enabling
CI compactness (to reduce query latency) without sacrificing CI
correctness (thereby ensuring safety), for both explicit and implicit
applications of CIs. The major goal is therefore to develop CI
techniques that are as tight as possible, while always enclosing the
quantity in question. Throughout this section and Section III, we will
focus our discussion on CIs for AVG aggregates; we will cover SUM
and COUNT aggregates in Section IV.

B. Computing CIs in a DBMS
We now describe methods for computing error bounds with

accuracy guarantees in a database system, along with any assumptions
required. Relevant notation is summarized in Table I. We begin by
defining error bounders, bounds, and confidence intervals.
Definition 1 [.1�ı/ error bounders and bounds]. A procedureP that
returns error bounds Œg`;gr � for some aggregateg? given a sample is a
.1�ı/ error bounder if, across all possible samples,P.g?… Œg`;gr �/<
ı. Œg`;gr � is called the .1�ı/ confidence interval for g?, and g` and
gr are collectively referred to as .1�ı/ error or confidence bounds.
In contrast with asymptotic error bounders that only satisfy

P.g?… Œg`;gr �/�ı for large-enough sample sizes, the .1�ı/ error
bounders from Definition 1 always satisfy P.g?… Œg`;gr �/< ı for
any sample size, so we call them sample-size-independent (SSI).
1) Assumptions Applicable to Data in a DBMS: In the case of AVG ag-
gregates, all error bounding procedures require some prior knowledge
about the data over which they operate – otherwise, outliers can have
arbitrarily strong effects on the aggregate in question. Weaker assump-
tions are more general, but typically yield more conservative bounds.
In this paper, we make two assumptions about the data D over

which queries operate: first, that every datapoint x2D lies in some
interval Œa;b�; second, that datapoints can be effectively sampled
without replacement from D. We now discuss these assumptions
in the context of prior work and show that they can be implemented
effectively within real systems.
Known Range Bounds. As in prior work [15], we assume that the
database catalog maintains range bounds a and b for the MIN and
MAX of each continuous column, inferred, for example, during data
loading. (Note that we do not require Œa;b�D ŒMIN;MAX�, but only
that Œa;b�� ŒMIN;MAX�.)We refer to bounders that assume knowledge
of a and b as range-based error bounders throughout this paper.
Sampling Without Replacement. Estimates for AVG aggregates
generally converge faster for samples taken without replacement than
samples taken with replacement [25, 27]. In the context of a DBMS,
sampling with replacement has traditionally been considered easier
than sampling without replacement, since the system does not need to
“remember” the samples already taken [19, 28]. Sampling as tradition-
ally implemented, however, also has poor locality properties, as nearly
every read operation results in a cachemiss. Another approach taken in
prior work [21, 29, 30, 31] is to materialize samples ahead-of-time by
performing a single up-front shuffle of the entire relation, so that sam-
pling without replacement can be implemented via a scan of the data
regardless of any applied filters or other transformations. Since this ap-
proach is valid formultiple queries executed during ad-hoc, exploratory
workloads (in contrast with approaches that use workload assumptions
to pre-materialize stratified samples [12, 32]), we design our system ar-
chitecture around this approach, described in more detail in Section IV.

Error Bounder PMA PHOS Sampling Memory
Hoeffding(-Serfling) X X R* (NR) O.1/
Berstein(-Serfling) X R* (NR) O.1/
Anderson/DKW [26] X R, NR O.m/

TABLE II: Bounder properties. R = sampling with replacement, NR = without. A * indicates
that the non-Serfling variant also holds for NR sampling.

2) Error Bounds for Finite and Bounded Data: In this section, we
review some techniques for computing confidence intervals that
leverage only the assumptions discussed previously: that samples
are taken without-replacement from data bounded in some a
priori-known range Œa;b�. . Further details about these bounders,
such as implementation pseudocode and full restatements of relevant
theorems, are available in our extended technical report [26].
Hoeffding-Serfling-based Bounder.An error bounder based on the
Hoeffding-Serfling inequality [25] computesCIswhosewidths depend
only on the range .b�a/ and the number of samplesm, and that have
size O

�
.b�a/=

p
m
�
. While asymptotically optimal for worst-case

data distributed with half of the points at a and the other half at b,
it is needlessly wide in practice, when few points occur near a or b.
Empirical Bernstein-Serfling-based Bounder. The empirical
Bernstein-Serfling inequality is another concentration inequality for
sampling without replacement [27]. A corresponding error bounder
yields .1�ı/ CIs whose widths have size O

�b�=pmC.b�a/=m�,
whereb�2D 1

m

Pm
tD1.Xt�

NX/2 is the maximum likelihood estimator
for VAR.D/. Althoughb� is a random quantity, it concentrates near
�; thus, we see that error bounds derived from the Bernstein-Serfling
inequality can be significantly tighter than those derived from
Hoeffding-Serfling (which has widths of size O

�
.b�a/=

p
m
�
) when

� is small compared to .b�a/. In fact, we will see shortly (§II-C)
that Bernstein-based bounders do not suffer from one of the problems
that causes Hoeffding-based bounders to be overly-conservative.
Applications in PriorDBLiterature.To our knowledge, Hoeffding
and Hoeffding-Serfling-based bounders are the only SSI bounders that
have seen extensive use in theDB literature for computing error bounds
for AVG [15, 18, 19, 23]. We are aware of one incorrect application of
the empirical Bernstein-Serfling inequality [33] (incorrect because the
procedure given in [33] continuously recomputes confidence .1�ı/
intervals as more samples are taken, so that the overall procedure
is no longer guaranteed to fail with probability at most ı). Overall it
is somewhat surprising that error bounders derived from the empirical
Bernstein-Serfling inequality [27] have not seen more widespread
usage, as they are nearly as simple to compute as those derived from
the Hoeffding-Serfling inequality and typically yield error bounds
that are much tighter.

C. Error Bounder Pathologies
We identify two problems that cause SSI error bounders to be too

conservative. These pathologies, which we refer to as pessimistic
mass allocation (PMA) and phantom outlier sensitivity (PHOS), are
based on simple intuitions about how error bounders should behave:
namely, they should return tighter bounds when observing samples
with fewer extreme values, and error lower bounds (respectively error
upper bounds) should only be looser due to potential large values
(resp. small values) if such values are actually observed.
1) Pessimistic Mass Allocation: PMA captures the intuition that error
bounders should be sensitive to the observed sample values:
Definition 2 [PMA]. An error bounding procedure P exhibits
pessimistic mass allocation (PMA) if there exists a dataset D bounded
in Œa;b�, a value a0 with a<a0<b, and a set S�D with values in
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Œa;a0/ such that, for S 0Dfmax.x;a0/ Wx2Sg,P returns a confidence
interval of the same width for both S and S 0. P likewise exhibits
PMA if there exists some b0 with a<b0<b and an S with values in
.b0;b� such that, for S 0Dfmin.x;b0/ Wx2Sg, P returns a confidence
interval of the same width for both S and S 0.
That is, for an error bounder P with PMA, we can replace the

smallest (largest) elements in a sample with something larger (resp.
smaller) without shrinking the width of P ’s returned confidence
interval. For example, for data known to lie in Œ0;1�, P might yield an
interval of the samewidth for both a sample split evenlybetween0and1
aswell as a sample split evenly between 0:25 and 0:75, even though the
latter sample should clearly give rise to a tighter interval. Intuitively,P
is overly-pessimistic about howmass in the distribution fromwhich it is
sampling is allocated, despite contrary evidence observed in the sample.
2) Phantom Outlier Sensitivity: PHOS captures the intuition that
unobserved extreme values should not affect both the lower and the
upper error bounds computed by some error bounder P :
Definition 3 [PHOS]. An error bounding procedure P exhibits
phantom outlier sensitivity (PHOS) if, for data falling in Œa;b�, P ’s
returned confidence lower bound g` depends on the value of b, and
similarly if the gr returned by P depends on a.
To understand PHOS intuitively, consider the case of computing

a confidence lower bound. Given a sample S , the worse P “believes”
S could be shifted (on average) toward larger values as compared
to D, the smaller of a confidence lower bound it should return. In
what ways could S be shifted toward higher values? One possibility is
if small elements are underrepresented in S . The other possibility, and
the one we are interested in, is if large elements are overrepresented in
S . For this reason, a confidence lower bound should only be affected
by datapoints near the upper range bound b if it actually observes
them, and the appearance of b in the computation of a confidence
lower bound is a potential source of unnecessary conservativeness.
3) Examples of PMA and PHOS in Error Bounders: In this
section, we give examples of PMA and PHOS in the context of
previously-discussed error bounders. Table II summarizes pathologies
exhibited by various SSI error bounders.
Hoeffding-based. Hoeffding-based error bounders suffer from both
PMA and PHOS. They have PMA since their returned CIs have widths
depending only on the range of the data, .b�a/, and the number
of samples. As such, replacing values in the sample with larger or
smaller values does not affect the width of the returned error bounds.
Such bounders also have PHOS since they have symmetric error,
with both ends of the confidence interval depending on both a and b.
Berstein-based. Bernstein-based error bounders do not suffer from
PMA. To see this, notice that increasing the smallest values in some
sample will also reduce the sample variance, affecting the width
of the returned confidence interval, and likewise for decreasing the
largest values in the sample. These bounders do, however, suffer
from PHOS. Like Hoeffding-based bounders, they return confidence
intervals with symmetric error, so that each end of the confidence
interval is affected by both ends of the data range a and b.

In our extended technical report, we also consider one other error
bounder based on theDKWinequality,which interestingly suffers from
PMA but not PHOS; please see [26] for details. Because it requires
storing the sample in memory, we do not consider it subsequently.

D. Problem Statement
We are now ready to give a formal problem statement.

a
<latexit sha1_base64="eYrhQu1fyNEgt/0lZW+/+AqersU=">AAAClHicbVHbTttAEF2bXiC9BSrx0pdVA1JfGtm0EqjqQ1qoxFMFogGkOIrGm3FYsRezu0ZElr+of9O3/g1rYyRIGGmlM+ecmZ2dTXPBrYui/0G48uz5i5era51Xr9+8fddd3zi1ujAMh0wLbc5TsCi4wqHjTuB5bhBkKvAsvdyv9bNrNJZr9cfNcxxLmCmecQbOU5Pu3+1EgrtgIMqDalImAq88cVOeVBX9TJOyTZKqs2Cc1UauHhibpDEqzdUUlaNbJ41232PrG00SakHmAmlmtHzK27ZZ9sKk24v6URN0GcQt6JE2jibdf8lUs0L69kyAtaM4yt24BOM4E1h1ksJiDuwSZjjyUIFEOy6bpVZ02zNTmmnjjx+vYR9WlCCtncvUO+vF2EWtJp/SRoXL9sYlV3nhULG7i7JCUKdp/UN0yg0yJ+YeADPcz0rZBRhgzv9jxy8hXnzyMjjd6cdf+jvHX3uDn+06VskH8pF8IjHZJQNySI7IkLBgPdgNBsGPcDP8Hu6Hv+6sYdDWvCePIvx9Cwvpx4w=</latexit>

b
<latexit sha1_base64="jugEVuXIU67YS32RF3FTWeNuWJc="></latexit>

maxS
<latexit sha1_base64="Orp9jhHueZMY7AIUO/CUGHGmOy8="></latexit>

minS
<latexit sha1_base64="LhqWD+2YTvWoK3eIUp8JWrL0O5E=">AAACnXicbZHfTtswFMadAAM6Nsq4GxdYK5W4WZUAEmhXlcYkQAiBoBSpqSrHPSkW/hNsB62K8lZ7kt3xNjghF7RwJEvf+c7PPvZxnHJmbBA8e/7C4tKn5ZXVxue1L1/Xmxvfbo3KNIUeVVzpu5gY4ExCzzLL4S7VQETMoR8//C7r/SfQhil5Y6cpDAWZSJYwSqyzRs1/7UgQe08Jz4+LUR5xeHTG3/y6KPBPHOV1EhWNOXBSgky+AaukAqVicgzS4p3r2UN2fuEowoaIlANuJ1qJD+n6pBm6guvSqNkKOkEV+L0Ia9FCdVyOmv+jsaKZcF0oJ8YMwiC1w5xoyyiHohFlBlJCH8gEBk5KIsAM82q6BW47Z4wTpd1yt6zctztyIoyZitiR5YTMfK00P6oNMpscDXMm08yCpK+Nkoxjq3D5VXjMNFDLp04Qqpm7K6b3RBNq3Yc23BDC+Se/F7d7nXC/s3d10Ooe1eNYQVvoB9pFITpEXXSCLlEPUe+71/VOvTN/2//jn/sXr6jv1Xs20Uz4/Re1DstD</latexit>

Dataset D
<latexit sha1_base64="riGcafz8wGHRvF/8FccN+TxqwVU=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM9gKrkpSF7pwUbALlxXsA9pQJtNJO3QyCTM3QgkFf8WNC0Xc+h3u/BsnbRbaemDgcO493DPHjwXX4DjfVmFtfWNzq7hd2tnd2z+wD4/aOkoUZS0aiUh1faKZ4JK1gINg3VgxEvqCdfzJbTbvPDKleSQfYBozLyQjyQNOCRhpYJ80CBg74Eo/JDCmRKSNWWVgl52qMwdeJW5OyihHc2B/9YcRTUImgQqidc91YvBSooBTwWalfqJZTOiEjFjPUElCpr10Hn+Gz40yxEGkzJOA5+pvR0pCraehbzazjHp5lon/zXoJBNdeymWcAJN0cShIBIYIZ13gIVeMgpgaQqjiJiumY6IIBdNYyZTgLn95lbRrVfeyWruvles3eR1FdIrO0AVy0RWqozvURC1EUYqe0St6s56sF+vd+lisFqzcc4z+wPr8AWaolRk=</latexit>

Sample S
<latexit sha1_base64="QImFTtUbRRFurcV7+g9fOfxL/Sw=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstLAgsbHEIEiEC9lb5mDD3t5ld8+EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxLBtXHdbye3tr6xuZXfLuzs7u0fFA+PWjpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNA4EMwupn5D0+oNI/lvRkn6Ed0IHnIGTVWemzQKBFIyo1yr1hyK+4cZJV4GSlBhnqv+NXtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/nFU3JmlT4JY2VLGjJXf09MaKT1OApsZ0TNUC97M/E/r5Oa8MqfcJmkBiVbLApTQUxMZu+TPlfIjBhbQpni9lbChlRRZmxIBRuCt/zyKmlVK95FpXpXLdWuszjycAKncA4eXEINbqEOTWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBEDI/3</latexit>

S � {maxS}:
sample from

<latexit sha1_base64="pnq4fd6vwJCQxooYYTMCwcKu/dM="></latexit>

D<maxS
<latexit sha1_base64="++79/4JsmXbYsBkbmYBgwhbaJ+8=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQKuuiioAuXFe0DmlAmk0k7dPJg5kYsIV/hxl9x40IRt+LOv3HSRtDWAwOHc+6de+9xY84kmOaXtrC4tLyyWlorr29sbm3rO7ttGSWC0BaJeCS6LpaUs5C2gAGn3VhQHLicdtzRRe537qiQLApvYRxTJ8CDkPmMYFBSXz+2PerbHgb1B6R2gGFIME8vs6z8o/bTutLv05ss6+sVs2pOYMwTqyAVVKDZ1z9tLyJJQEMgHEvZs8wYnBQLYIRTNSORNMZkhAe0p2iIAyqddHJWZhwqxTP8SKgXgjFRf3ekOJByHLiqMt9bznq5+J/XS8A/d1IWxgnQkEwH+Qk3IDLyjAyPCUqAjxXBRDC1q0GGWGACKsmyCsGaPXmetGtV66Rauz6tNOpFHCW0jw7QEbLQGWqgK9RELUTQA3pCL+hVe9SetTftfVq6oBU9e+gPtI9v4cmgbg==</latexit>

S � {minS}:
sample from

<latexit sha1_base64="+G9nlNMes8/nTInuAJkV7P5bAKU=">AAACknicbVFNT9wwEHVSSiHlYyncuFhdkHphlSxCRRxaEBw4cADRBaTNauV4J4uFP4LtVF1F+UH8HW78G5wQEOx2JEtv3nszHo+TjDNjw/DJ8z/NfZ7/srAYfF1aXlltrX27MirXFHpUcaVvEmKAMwk9yyyHm0wDEQmH6+TuuNKv/4I2TMk/dpLBQJCxZCmjxDpq2HrYjgWxt5Tw4qQcFjGHe0f8Ky7LEu/guGiSuAymjOPKyOQ7Y53URqmYHIG0eOuy1l57bB3gOMaGiIwDTrUSwYz1rc2Md9hqh52wDjwLoga0URPnw9ZjPFI0F6475cSYfhRmdlAQbRnlUAZxbiAj9I6Moe+gJALMoKhXWuJtx4xwqrQ7brqafV9REGHMRCTOWa3FTGsV+T+tn9t0f1AwmeUWJH25KM05tgpX/4NHTAO1fOIAoZq5WTG9JZpQ634xcEuIpp88C666nWi3073otg/3m3UsoE30Hf1AEfqJDtEpOkc9RL1Vb8/75f32N/wD/8g/frH6XlOzjj6Ef/YM+7HHOA==</latexit>

D>minS
<latexit sha1_base64="E1agMr0nUJRd5W6T7fm1s/AOxRw="></latexit>

max {D<maxS}
<latexit sha1_base64="/HlN4+nvLZGHgA8hi0vqkCkURJE="></latexit>

min {D>minS}
<latexit sha1_base64="TGYQ3aUl0bnkoqESpGPBZ8/oARA="></latexit>

Fig. 3: Range trimming eliminates PHOS for range-based error bounders.

Problem 1. Design an SSI error bounder that, given a without-
replacement sample from any D with elements from Œa;b��R, suffers
from neither PMA nor PHOS when computing .1�ı/ error bounds
for AVG.D/, for any 0<ı<1.
Our solution to Problem 1 is given in Section III and relies on a

technique we call range trimming in order to systematically eliminate
PHOS from any range-based error bounder.

III. Fixing Bounder Pathologies
From our discussion in Section II-C, we see that there do exist

error bounders without one of either PMA or PHOS, but not without
both. We first argue that error bounders without PHOS must be
asymmetric; that is, they cannot compute bounds of the form Og˙",
where the same " is both added and subtracted to the sample average
Og in order to compute bounds. Next, we describe how to use a process
we call range trimming to convert any symmetric, ranged-based error
bounder to an asymmetric one without PHOS.

A. Decoupling Lower and Upper Bounds
Excepting an error bounder based on DKW, all of the error

bounders surveyed suffer from PHOS. This is because all the other
error bounders are based on concentration inequalities with symmetric
error — that is, they return confidence intervals Œg`;gr � of the
form Œ Og� "; OgC "�. At a high level, it is precisely this symmetry
that causes PHOS. Although a confidence lower bound should
not have any dependency on b, it is intuitively unavoidable that it
has some dependency on a. Reiterating, an estimate Og could be an
overestimate because of (i) not enough observed values near a, or (ii)
too many observed values near b. A similar statement holds regarding
confidence upper bounds, with the roles of a and b reversed.

We hypothesize that it is impossible for any confidence lower bound
(resp. upper bound) to completely eliminate the dependency on a (resp.
b), since it is always possible that the confidence bounding procedure
got “unlucky” and operated on a sample in which values near a (resp.
b) were underrepresented. Taking this hypothesis as given, this means
that any symmetric confidence bounding procedure that returns bounds
of the form Œ Og�"; OgC"�will have " dependent on both a and b—that
is, any symmetric confidence bounding procedure will have PHOS. As
such, the first step to eliminating PHOS from range-based confidence
bounders is to accept asymmetric error as a hard requirement: that is,we
must consider confidence bounding procedures that return bounds of
the form Œ Og�"`; OgC"r � for which "` and "r are not necessarily equal.

B. Range Trimming
Our approach to deriving an error bounder with neither PMA nor

PHOS is to start with a symmetric bounder without PMA (such as
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Algorithm 1: The RangeTrim meta-algorithm
Input :DatasetD ofN values in Œa;b�, error prob. ı, sample sizem
Output :Error bounds that fail to enclose AVG.D/ with probability<ı

1 S` init_state();
2 Sr init_state();
3 a0 sample_without_replacement(D);
4 b0 a0;
5 for iD1 tom�1 do
6 v sample_without_replacement(D);
7 S` update_state(S`;min.v;b0/);
8 Sr update_state(Sr ;max.v;a0/);
9 a0 min.a0;v/;
10 b0 max.b0;v/;
11 end
12 return

�
Lbound(S`;a;b

0;N�1; ı
2
), Rbound(Sr ;a0;b;N�1; ı2)

�
;

a Bernstein-based bounder) and “asymmetrize” it so that Lbound
becomes independent of b, and Rbound becomes independent of a,
thereby eliminating PHOS. The result, given inAlgorithm 1, composes
any range-based error bounder that exposes the following interface:
Ê init_state(): Initializes state needed for error bounds.
Ë update_state(S;v): Given the current state S and a newly-seen
value v, compute new state S 0.

Ì Lbound(S;a;b;N;ı): Return a confidence lower bound for a
sample whose relevant statistics are captured in state S , assuming
the sample came from a finite datasetD ofN values in Œa;b�. The
probability that the sample leads to this function returning a value
greater than AVG.D/ is<ı.

Í Rbound(S;a;b;N;ı): Symmetric to Lbound for the confidence
upper bound. Can typically be implemented in terms of Lbound
after a suitable transformation of S.

The state S captures information such as the count of tuples examined
and the current running average, as well as anything else required
by Lbound and Rbound. The state initialization and update logic
is analogous to state maintenance logic for aggregate functions as
implemented in existing commercial database systems [34].

Besides the memory required to maintain state for the left and right
error bounders, S` and Sr , Algorithm 1 requires O.1/ extra memory
to maintain the MIN and MAX element seen so far (which replace
a and b when computing Rbound and Lbound, respectively).
When D contains unique elements, Algorithm 1 conceptually

performs the following steps:
1) Sample S without replacement fromD.
2) Use Lbound to compute a 1� ı

2
lower confidence bound for

AVG.D<maxS/, with S�fmaxSg as the sample, and with a and
maxS in place of the normal range bounds a and b, respectively.

3) Use Rbound to compute a 1� ı
2
upper confidence bound for

AVG.D>minS/, with S�fminSg as the sample, and with minS
substituted for the range bound lower bound a.

Note that we use D<x and D>x as shorthand for D\ .�1;x/
andD\.x;1/, respectively. The primary difference between these
high-level steps and the pseudocode presented in Algorithm 1 is
that Algorithm 1 maintains minS and maxS in an online, streaming
fashion (so that the sample S does not need to be stored in memory),
and that the confidence interval returned by Algorithm 1 is valid
even whenD contains duplicates (although the returned confidence
bounds will bound the AVG of sets that differ slightly fromD<maxS
and D>minS). That said, we restrict our discussion and analysis to
the case whereD contains unique elements, for simplicity.

Correctness of Algorithm 1 crucially depends on the fact that, con-
ditioned on the value of maxS (and for any such value), the remaining

elements in S (namely S�fmaxSg) constitute a uniform without-
replacement sample fromD<maxS , with a symmetric statement for
minS and S�fminSg. At a high level, this means that a confidence
lower bound computed over S�fmaxSg is a valid confidence lower
bound for AVG.D<maxS/, and since AVG.D<maxS/�AVG.D/, it is
also a valid confidence lower bound for AVG.D/, with symmetric
statements holding for the confidence upper bound, S�fminSg, and
D>minS . These core ideas are illustrated in Figure 3.
Tradeoffs. When either of the range bounds a or b are actually
observed in a sample, Algorithm 1 will compute CIs that are looser
than necessary. For example, suppose that, for Œa;b�D Œ0;1�, a sample
with a single 0 is observed. When computing the upper confidence
bound, Algorithm 1 sets a0D0, which is the same as the original a;
however, it also throws away this 0 point which would have pulled the
upper confidence bound lower. The upper confidence bound actually
computed will end up being larger than necessary, corresponding
to an unnecessarily loose interval. Fortunately, we have found that,
in practice, losing this single sample does not significantly increase
the number of samples needed to achieve some desired CI width.

C. Proof of Correctness
In this section, we prove correctness of Algorithm 1 (that is, that

it returns intervals that fail to enclose AVG.D/ with probability less
than ı). For the sake of simplicity, our analysis assumes that D
contains no duplicate values, although it is possible to remove this
assumption. To begin, we first prove a crucial lemma about the
sampling distribution of S �fmaxSg, given that S was sampled
uniformly without-replacement fromD.

Lemma 1. Given a dataset D of N unique real values in Œa;b�
and a uniform without-replacement sample S ofm values from D,
if we denote b0DmaxS, the set S�fb0g takes the distribution of
a uniform without-replacement sample from D<b0DD\Œa;b0/, for
any applicable value of b02D.

Proof. Because S is drawn uniformly without-replacement from
D, any particular instance satisfies

PDŒSDs�D

 
jDj

jsj

!�1
Ifs�DgD

 
N

m

!�1
Ifs�Dg

where we use the notation PDŒSDs� to denote the probability that s
was drawn uniformly without-replacement fromD, and If�g denotes
the indicator function. We need to show that, for any b02D,

PD

�
SDsjmaxSDb0

�
DPD<b0

�
SDs�fb0g

�
I
˚
max.s/Db0

	
First, letting s0 be any set such that js0jDm�1, we have that

PD<b0

�
SDs0

�
D

 
jD<b0j

m�1

!�1
I
˚
s0�D<b0

	
Next, consider PDŒSDsjmaxSDb0�. Bayes’ rule gives that

PD

�
SDsjmaxSDb0

�
D

PDŒSDs^maxSDb0�
PDŒmaxSDb0�

We have PDŒSDs^maxSDb0�DPDŒSDs�Ifmax.s/Db0gwhich
is a known quantity, so the key is to compute the denominator
PD ŒmaxSDb0�. Using the assumption that D contains unique
elements, we may proceed by analogy with binary strings. The rank of
b0 withinD (starting from the smallest element) is 1CjD<b0j, so we
need to compute the number of binary strings of lengthN containing
m 1’s and .N�m/ 0’s such that position 1CjD<b0j has a 1, and the
remaining .m�1/ 1’s are all at positions less than 1CjD<b0j. This
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is precisely the same as the number of binary strings of length jD<b0j
with .m�1/ 1’s and .jD<b0j�mC1/ 0’s. Putting everything together,

PD

�
SDsjmaxSDb0

�
D

PDŒSDs�Ifmax.s/Db0g
PDŒmaxSDb0�

D

�
N
m

��1
Ifs�D^max.s/Db0g�
jD<b0 j
m�1

�
=
�
N
m

�
D

 
jD<b0j

m�1

!�1
I
˚
s�D^max.s/Db0

	
D

 
jD<b0j

m�1

!�1
I
˚
s�fb0g�D<b0^max.s/Db0

	
D PD<b0

�
SDs�fb0g

�
I
˚
max.s/Db0

	
which is precisely what we wanted to show.

Wrinkle in Lemma 1 and Fix. The proof of Lemma 1 assumes
unique values; please see our extended technical report [26] for how
to remove this assumption without loss of generality.

We next give a symmetric statement for S�fminSg andD>minS
as the below corollary:

Corollary 1. Given a dataset D ofN unique real values in Œa;b� and
a uniform without-replacement sample S ofm values from D such
that minSDa0, the set S�fa0g is a uniform without-replacement
sample from D>a0DD\.a0;b�, for any applicable value of a02D.

We now give a theorem on the correctness of Algorithm 1.

Theorem 1. Given SSI range-based bounders Lbound and
Rbound for computing lower (resp. upper) confidence bounds and a
datasetD ofN unique values known to all fall in the interval Œa;b��R,
Algorithm 1 returns a .1�ı/ confidence interval for AVG.D/.

Proof. Please see our extended technical report [26].

IV. System Considerations
In this section, we address a number of implementation issues

that become pertinent when applying techniques of previous sections
in a real system. Although the techniques presented in this section
are auxiliary to our primary contribution and can be used with any
CI approach, they are developed with SSI error bounders and strong
probabilistic guarantees in mind. First, we describe how to augment
the techniques of Section III, which apply for a fixed sample size
taken without replacement from a finite dataset of known size, with
locality-aware scan-basedwithout-replacement sampling that need not
knowN , and we further describe how to use this layout to facilitate
SUM andCOUNT aggregations (§IV-A).Next, we describe an optional
stopping routine that does not require a sample size to be specified
up-front (§IV-B). Finally, we describe an active scanning architectural
optimization that prioritizes samples that facilitate early termination
(§IV-C), all without losing guarantees proved in Section III.

These system details are implemented within the context of Fast-
Frame, which is our general relational column store for approximate
report generation with guarantees. FastFrame uses the error bounders
fromSection III and pairs themwith a practical architecture forwithout-
replacement sampling. FastFrame uses block-based bitmaps over
categorical attributes (similar to [21]) for efficient processing of queries
with predicates or groups. Furthermore, for continuous attributes, Fast-
Frame stores theminimumandmaximumvalues in a catalog, to beused
as the range bounds a and b for the desired range-based error bounder.

A. Scan-Based Sampling for DB Aggregates
We now describe how FastFrame implements without-replacement

sampling in a locality-aware manner by scanning over pre-shuffled
data, and furthermore how this approach can be used to compute CIs
for COUNT and SUM. The up-front shuffling cost need only be paid
once in order to facilitate many queries, although care must be taken
to set the error probability ı small enough when running multiple
queries to avoid losing error bounder guarantees. This approach is
not new and has been used in prior work [21, 29, 30, 31, 35]. We
begin by introducing scrambles and aggregate views:
Definition 4 [Scramble]. A scramble is an ordered copy of a
relational table that has been permuted randomly, allowing for
scan-based without-replacement sampling.

Note that there exist external shuffling techniques that can handle
data too large to fit in memory [36].

Scanning a continuous column in a scramble is equivalent to sam-
plingwithout replacement. In fact, scanning any subset of data in a con-
tinuous column in a scramble (assuming the subset is chosen without
knowledge of the order of data) is also equivalent to sampling without
replacement, so that scanning a scramble can be used to samplewithout
replacement for any aggregate appearing in a query containing arbitrary
filters or GROUP BY clauses. We call such subsets aggregate views:
Definition 5 [Aggregate View]. An aggregate view for some
aggregate A appearing in a query (possibly belonging to a group
induced by a GROUP BY clause) is the set of values in a scramble
that contribute toward the computation of A.

Choosing ı to Maintain Guarantees. Note that ı must be divided
by the number of aggregate views in a query (or an upper bound) to pre-
serve error guarantees (via a union bound). Furthermore, to guarantee
(via another union bound) that the probability of one ormore queries in
a workload giving incorrect results is at most ı, we must further divide
by (an upper bound on) the number of queries in the workload before
supplying it as a parameter to an error bounder. For this reason, we
choose ıD10�15 when we discuss our empirical study in Section V,
since even for large workloads comprised of, say, 107 queries, the prob-
ability of one or more mistakes will still be at most 10�8. Indeed, our
techniques are specifically targeted toward the case wherein it is known
aheadof time that a large (but possiblyunknown)numberof exploratory
queries will be issued, so that the cost to materialize the scramble is
justified. Note that, provided ı is properly decayed, guarantees hold
when the same scramble is used across an entire query workload; i.e.,
it is not necessary to reshuffle the scramble between queries.
Computing CIs for COUNT. Ensuring that data in a scramble
are permuted randomly makes it easy to compute bounds on the
selectivities of aggregate views, and by extension on the COUNT
of tuples in each aggregate view, using existing techniques [37, 38].
To outline the basic idea, consider that one can conceptually assign
each row of a scramble a 1 if it belongs to the aggregate view of
interest, and a 0 otherwise. The AVG of this “derived” view (over the
whole scramble) is exactly the selectivity of the aggregate view, and
we can use a Hoeffding-Serfling-based bounder to compute a CI for
the selectivity (using range bounds of aD0 and bD1). Multiplying
these bounds by the total number of rows in the scramble then yields
a CI for the COUNT of rows that participate in the aggregate view.
Computing CIs for AVG with unknown COUNT. Recall that the
range-based error bounders we consider in Section V all take as input
the number of tuples in an aggregate viewNi . In fact, an upper bound
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on Ni suffices to preserve correctness. Thus, the same method for
computing CIs for COUNT aggregates can be used in conjunction
with error bounders for AVG by using an upper bound on COUNT
in place of the exact dataset sizeNi .
Computing CIs for SUM. Now that we have established how to
compute CIs for AVG and COUNT, we briefly describe how to
combine these two techniques to compute CIs for SUM.Given a
.1� ı

2
/ confidence interval for COUNT as Œc`;cr � and a .1� ı

2
/

confidence interval for SUM as Œg`; gr �, union bounding gives
Œc` �g`;cr �gr � as a .1�ı/ confidence interval for SUM.
Scramble Use and Maintenance under Updates. There exist
a few ways to leverage the scramble for analytical queries even
for hybrid workloads that additionally involve deletes, updates,
and insertions. First, deletes can be handled by simply writing a
tombstone to any deleted tuples, and (non-insertion) updates can be
handled by simply modifying the updated tuple in-place. In this case,
processing the tuples sequentially while ignoring tombstones will
remain equivalent to sampling without replacement.

For insertions, there are two options: the first is to leave some holes
in the scramble to allow for insertions in random positions, at the cost
of increasing space and query time. The second option is to write all
updates to a separate smaller “insertion table” that is scanned in full
for every query, and then combined with the results of the scramble
in a manner which preserves guarantees. This insertion table can
then be periodically merged with the scramble and reshuffled. Overall,
with some minor extensions inspired from existing big data systems
(such as Bigtable [39]) that handle updates by keeping them separate
and periodically merging them, scrambles can be readily retrofitted
to handle non-read-only workloads.

B. Optional Stopping
The techniques discussed in Section III describe how to compute

high-probability bounds on error given statistics computed from
a particular sample of m datapoints. Fixing a sample size ahead
of time is oftentimes impractical, since it is usually unknown how
many samples are needed to ensure CIs that are “just tight enough”
to facilitate downstream applications on the part of the user or the
system. For example, one approach (e.g. taken by VerdictDB [16])
is to first compute error bounds around an approximate aggregate,
and then run an exact query if these bounds are too loose.
Another approach, which we take in this paper, is to continue

taking samples until a bound on the error is provably small enough.
For this approach, care must be taken to avoid losing guarantees
offered by range-based error bounders, since the tighter of two .1�ı/
confidence intervals for a particular aggregate is itself not necessarily
a .1�ı/ confidence interval. As the technique employed is orthogonal
to the primary contribution of this work, which is to eliminate PMA
and PHOS from range-based error bounders, we omit discussion
here and instead give a treatment in the technical report [26].
Stopping Conditions.We consider several stopping conditions used
in our system implementation:
Ê Sufficient Relative Accuracy (maxfgr�Og

gr
; Og�g`/

g`
g < "): The

interval width is sufficiently small (relative to the possible correct
values implied by the interval).

Ë Threshold Side Determined (v… Œg`;gr �): The interval does not
contain some threshold value v, indicating that the true AVG is
w.h.p. either less than or greater than the threshold v.

Dataset Size Tuples Columns Replications
Flights 32 GB 606 mil. 5 5�

Taxi 36 GB 679 mil. 4 4�
Police 12 GB 292 mil. 3 72�

TABLE III: Dataset descriptions.

Ì Top- or Bottom-K Separated: In a query with multiple groups,
the error bounds of the groups with either K smallest or largest
aggregates do not intersect those of any of the remaining groups.

Í Groups Ordered Correctly: In a query with multiple groups,
the error bounds for each group intersect none of the other
groups’ error bounds, indicating that the correct ordering of group
aggregates has been determined [19].

Different stopping conditions apply to different queries. For example,
stopping conditions Ê and Ë might be used for the query in Figure 1.

C. Active Scanning
For queries with GROUP BYs, different groups may require

different numbers of samples to achieve stopping conditions of
the types considered in Section IV-B. For simple scans that simply
read blocks of the scramble in the order in which they appear, it is
impossible to control the relative number of tuples for each group,
leading to potential inefficiencies. For example, consider one of the
queries in our experiments, F-q2, which selects airlines with average
delay above some threshold. This query uses stopping condition Ë
in order to determine when to terminate, since, when this stopping
condition has been achieved, it has been determined w.h.p. whether
each airline has average delay above or below the threshold. Those
groups (airlines) for which the average delay is near $thresh require
more samples than those for which the average delay is far from
$thresh in order to achieve condition Ë. If these groups are sparse
within the scramble, a scan will look at muchmore data than necessary.

For this reason, we process queries that perform GROUP BYs with
an adaptive sampling approach using active scanning. Active scanning
uses block-based bitmap indexes to efficiently check whether a block
contains tuples for any active group — such groups are marked
for processing, and blocks without tuples for any active group are
skipped, since they are unlikely to help achieve early termination.
The notion of an active group depends on the stopping condition, but
in brief, active groups are groups that should be prioritized. Please see
our extended technical report [26] for a description of active groups
for each applicable stopping condition.
We furthermore accelerate active scanning with a lookahead

technique from prior work [21], which we briefly describe here.
Instead of checking each block one by one for whether it contains
tuples for any active group, active scanning with lookahead checks,
for each active group, whether each block in a batch of 1024 blocks
contains any tuples for that group. By iterating over an entire batch
of 1024 blocks for a given active group, bitmaps for the group
tend to be in cache more often, making the index lookup operation
more efficient. We refer the reader to [21] for more details. In our
experiments in Section V, we set the block size to 64 rows, so a batch
of 1024 blocks contains a total of 65536 rows.

V. Empirical Study
In this section, we perform an extensive empirical evaluation of

various error bounders and sampling strategies on real data.

A. Datasets and Queries
We evaluate various error bounding techniques on publicly

available Flights, Taxi, and Police datasets [40, 41, 42]. For
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Query StopWhen Parameters Varied Defaults

F-q1 (Ê) maxfgr�Og
gr

;
Og�g`/

g`
g<"

$airport (Figure 5),
" (Figure 6(a))

$airport=ORD
"=0.5

F-q2 (Ë) $thresh…Œg`;gr �
$thresh

(Figure 6(b)) $thresh=0

F-q3 (Ì) bottom-2 separated $min_dep_time
(Figure 7)

$min_dep_time
=10:50pm

TABLE IV: Summary of stopping conditions and template parameters used for queries
provided in Figure 4. Template variable arguments shown in blue.

# F-q1: avg delay for $airport
SELECT AVG(DepDelay) FROM flights WHERE Origin = $airport

# F-q2: airlines with avg delay above $thresh
SELECT Airline FROM flights
GROUP BY Airline HAVING AVG(DepDelay) > $thresh

# F-q3: 2 airlines with min avg delay after $min_dep_time
SELECT Airline FROM flights WHERE DepTime > $min_dep_time
GROUP BY Airline ORDER BY AVG(DepDelay) ASC LIMIT 2

Fig. 4: SQL for the first three Flights queries. Template parameters are shown in $blue.

Flights, we extract five attributes corresponding to the origin airport,
airline, departure delay, departure time, and day of week. To ensure
sufficient scale of the data, we perform 5 replications, giving a
32 GiB dataset of 606 million tuples in total. For Taxi, we extract
four attributes (for hour of day, passenger count, trip distance, and
fare amount) and perform 4 replications. For Police, we extract 3
attributes (for number of violations, officer race, and driver age) and
perform 72 replications. These datasets are summarized in Table III.
Queries and Query Templates. We evaluate our techniques on a
diverse set of queries that includevarious filters andGROUP BY clauses
and exercise all the stopping conditions described in Section IV-B. The
first3of the13queries in our set are presented in full in Figure 4 and are
additionally parameterized (shown in blue in Figure 4) in order to reveal
interesting data-dependent behavior. The stopping conditions for these
queries are summarized in Table IV. Descriptions of the remaining
10 queries are presented in the technical report [26] to save space.

B. Experimental Setup
The core of our experiments consists of two ablation studies,

intended to evaluate the impact of both our error bounder innovations
and that of our architectural innovations. In particular, we evaluate
various error bounders with and without our RangeTrim technique
developed in Section III, and for the best error bounder (Bernstein+RT),
we furthermore evaluate the impact of leaving out features of our
active scanning sampling strategy described in Section IV.
We set ıD10�15 as the default for all queries unless otherwise

noted, as we expect users of with-guarantees AQP to desire results
that are correct in an effectively deterministic manner.
Approaches. We used the following strategies to bound error when
running queries in Figure 4:
Error Bounders.
� Bernstein+RT. This uses the empirical Bernstein-Serfling error

bounder described in Section II-C, coupled with our RangeTrim
technique described in Section III, which eliminates PHOS.

� Bernstein. Same as the previous, but without RangeTrim. Bernstein
and Bernstein+RT are included to evaluate the impact of an error
bounder without PMA.

� Hoeffding+RT. This uses the Hoeffding-Serfling error bounder
described in Section II-C, coupled with our RangeTrim technique

described in Section III, which eliminates PHOS from Hoeffding
(but does not fix PMA).

� Hoeffding. Same as the previous, but without RangeTrim.
� Exact. This strawman approach eschews approximation and runs

queries exactly, to serve as a simple baseline.
We furthermore used the following strategies for sampling when

running queries in Figure 4:
Sampling Strategies.
� ActivePeek. This uses the active scanning technique to prioritize

groups that are preventing satisfaction of various stopping
conditions, along with cache-efficient queries to bitmaps with
lookahead (see Section IV-C for details).

� ActiveSync. This uses active scanning, but processes each block
synchronously when deciding whether to read it, incurring high
overhead since queries to bitmaps typically result in cache misses.

� Scan. This strategy does not leverage bitmaps in order to decide
whether to read a block for active scanning (but may leverage
bitmaps for evaluation of whether a block contains tuples that satisfy
a fixed predicate, such as the one appearing in F-q1). Without any
predicate, this approach simply processes all blocks in the scramble
sequentially. Note that the Exact baseline described previously
always usesScan, as only approximate approaches can prune groups.

Environment. Experiments were run on single Intel Xeon E5-2630
node with 125 GiB of RAM and with 8 physical cores (16 logical)
each running at 2.40 GHz, although we restrict our experiments to
a single thread, noting that our techniques can be easily parallelized.
The Level 1, Level 2, and Level 3 CPU cache sizes are, respectively:
512 KiB, 2048 KiB, and 20480 KiB. We ran Linux with kernel
version 2.6.32. We report results for data stored in-memory, since the
cost of main memory has decreased to the point that many interactive
workloads can be performed entirely in-core. Each approximate query
was started from a random position in the shuffled data. We found
wall clock time to be stable for all approaches, and report times as
the average of 3 runs for all methods.

C. Metrics
We gather several metrics in order to test two hypothesis: one,

that our error bounding strategies in conjunction with our sampling
strategies lead to speedups over simpler baselines; and two, that they
do so without sacrificing correctness of query results.
Correctness of Query Results. The most important metric is the
fraction of queries run that returned correct results, which we discuss
briefly here. Across all methods, all queries, and all parameter settings,
results either matched the ground truth determined from an Exact
evaluation, or were within error tolerance in the case of F-q1 and
F-q7. This is expected, given that we are consider SSI error bounders
with strong probabilistic guarantees, coupled with the fact that our
RangeTrim technique and system architecture do not compromise
these guarantees. As such, we expect fewer than ıD10�15 fraction
of queries to yield incorrect results, which rounds down to a cool 0.

For the remaining experiments, we focus on the following metrics:
Estimate Error. For a given requested error bound " supplied to
applicable queries, we measure the actual error. The observed error
should always fall within the requested error bound.
Wall-Clock Time. Our primary metric evaluates the end-to-end time
required for various error bounders and various sampling strategies
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Time (s) Avg Speedup over Exact (raw time in (s))
Exact Hoeffding Hoeffding+RT Bernstein Bernstein+RT

F-q1 20:7 58:0� (0.4) 59:6� (0.3) 2129� (0.01) 2160� (0.01)
F-q2 42:2 233� (0.2) 316� (0.1) 2405� (0.02) 4683� (0.01)
F-q3 25:3 1:1� (23.4) 1:7� (15.1) 6:5� (3.9) 13:8� (1.8)
F-q4 20:7 12:8� (1.6) 12:7� (1.6) 922� (0.02) 925� (0.02)
F-q5 47:7 0:7� (68.8) 1:1� (44.4) 2:2� (21.4) 4:2� (11.5)
F-q6 66:4 1:1� (62.4) 1:1� (58.7) 11:2� (6.0) 16:7� (4.0)
F-q7 29:8 1:0� (30.0) 1:0� (29.1) 2:6� (11.6) 2:9� (10.4)
F-q8 47:7 2:0� (23.3) 1:0� (47.6) 9:1� (5.3) 9:5� (5.0)
F-q9 38:2 0:9� (41.0) 1:0� (38.6) 123� (0.3) 130� (0.3)
T-q1 32:4 2:2� (14.6) 3:4� (9.5) 17:8� (1.8) 29:4� (1.1)
T-q2 39:6 1:6� (24.5) 2:1� (19.0) 19:3� (2.0) 27:0� (1.5)
P-q1 20:9 17:8� (1.2) 17:9� (1.2) 311� (0.07) 314� (0.07)
P-q2 22:5 11:7� (1.9) 11:3� (2.0) 18:9� (1.2) 20:8� (1.1)
TABLE V: Summary of average query speedups and latencies for various error bounders.

(where the Exact baseline is included as a “sampling strategy”), across
all the queries considered.
Number of Blocks Fetched.We also measure the number of blocks
fetched from main memory into CPU cache when using various
approaches. This is mainly due to the fact that error bounders incur
additional CPU overhead and therefore wall-clock time, with Bernstein
and Bernstein+RT incurring the highest overhead, so measuring
blocks fetched for these approaches removes this confounding variable
by decoupling performance from CPU attributes.

D. Results
In this section, we present results of our empirical study.

1) Impact of Error Bounder Used:
Summary. Using the Bernstein+RT error bounder resulted in
typical speedups of at least 10� over Exact (for 10 out of 13
queries) and Hoeffding (for 9 out of 13 queries), and additionally
was almost always on par or better than Bernstein (up to 2� faster).

We evaluate Hoeffding+RT and Bernstein+RT error bounders,
along with Hoeffding and Bernstein (to ablate our RangeTrim
technique) and an Exact query processor (to ablate any benefits due to
approximation) against all the queries in Figure 4, with the resulting
time measurements summarized in Table V.
First we note that all error bounders incur additional overhead —

in the case of F-q5 where techniques like Hoeffding and Hoeffding+RT
needed to process all the data in order to terminate (due to PMA), they
actually ran more slowly than Exact. Using Bernstein, which does not
suffer from PMA, yielded significant benefits over Exact, Hoeffding,
and Hoeffding+RT across all queries. In cases where Hoeffding and
Hoeffding+RT showed improvements over Exact, Bernstein amplified
these improvements (F-q1, F-q2).

Using RangeTrim in conjunction with both Hoeffding and Bernstein
typically led to similar performance, with a few queries exhibiting
clearly superior performance (F-q5, F-q6, and F-q3). These queries
have the following in common: they all have sparse groups with low
selectivity (either because of the large number of groups in the case of
F-q5 and F-q3, or because of the restrictive filter in the case of F-q5),
and they are all “easy” to approximate, in that none of the groups
require too many samples in order to achieve the relevant stopping
condition. (F-q8 also has many groups, but some of them require many
samples due to a large number of airports with average delay near
the max.) This is an ideal condition for Bernstein+RT to show benefit:
sparse groups will bottleneck the query, but RangeTrim will achieve
termination faster since these sparse groups tend to have fewer outliers
than do non-sparse groups. For such bottlenecking sparse groups,
the range bounds for the DepDelay column are overly-conservative
and dominate the sampling complexity. In this case, Bernstein, which

Avg Speedup over Scan (time in seconds)
Scan ActiveSync ActivePeek

F-q5 40:1 2:0� (19.6) 3:5� (11.4)
F-q6 4:2 1:1� (3.8) 1:1� (3.9)
F-q7 10:3 1:0� (10.1) 1:0� (10.4)
F-q8 40:4 3:2� (12.7) 8:2� (5.0)
T-q1 1:2 1:2� (1.0) 1:1� (1.1)
T-q2 1:6 1:2� (1.4) 1:1� (1.5)
P-q2 11:3 7:1� (1.6) 10:4� (1.1)

TABLE VI: Summary of query speedups and latencies for various sampling strategies,
restricted to GROUP BY queries that take more than 500ms for Scan with Bernstein+RT.
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Fig. 5: Effect of query selectivity on wall time and blocks fetched, for selectivity determined
by varying the origin airport used to filter F-q1["D:5].

has PHOS, will require twice as many samples for such groups —
and since these groups are the bottleneck, it will require roughly twice
as much time, an intuition reflected in Table V.
2) Impact of Sampling Strategy Used:

Summary. ActiveSync sampling was typically on par or better
than Scan, and ActivePeek sampling was typically on par or
better than ActiveSync. ActiveSync significantly outperformed
Scan on F-q5, F-q8, and P-q1 (by more than 3�), and ActivePeek
significantly outperformed ActiveSync on the same set of queries.

We evaluate the impact of various sampling strategies when used
in conjunction with the Bernstein+RT error bounder, the results of
which are summarized in Table VI. In some cases (F-q5 and F-q8), the
performance of the Scan baseline when used in conjunction with Bern-
stein+RTwasonparwith thatof theExact baseline, indicating that some
form of block skipping can be crucial for queries with GROUP BYs.
When implementing active scanning block by bock as in ActiveSync,
the improvement was most significant for F-q5, F-q8, and P-q1, with
ActivePeek showing even further improvements for these queries. It
is no coincidence that these are the same queries for which Scan
performanceusing approximation is similar toExact performance.This
indicates that there were a few sparse groups preventing termination
when Scan is used, which is the very case for which the greatest benefit
can be derived from (an efficient implementation of) block skipping.
3) Impact of Data and Query Characteristics: Tobetter understand var-
ious data- andquery-dependent aspects of our techniques,wenowstudy
the effect of varying the parameters supplied to F-q1, F-q2, and F-q3.
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Fig. 6: (a): Effect of requested maximum relative error " on actual relative error achieved for
F-q1. (b): Data required for different HAVING thresholds used in F-q2. The group aggregates
for also displayed for comparison.

Selectivity � of filter.
Summary. As the fraction of tuples passing F-q1’s filter increases,
wall clock time and blocks fetched both increase rapidly, then
decrease, with RangeTrim giving the most benefit in the case of
predicates with intermediate selectivity.

DifferentOrigin attribute values used for filtering F-q1 have different
selectivities. By varying the filter attribute value, we reveal interesting
behavior impacted by the selectivity of the filter. (We consider selec-
tivity as a number and not a quality, so that larger proportions of tuples
satisfy predicates with higher selectivity.) For all four error bounding
techniques considered, wall time and blocks fetched are plotted versus
query selectivity in Figure 5. Bernstein and Bernstein+RT are plotted
separately from Hoeffding and Hoeffding+RT for presentation.

For Hoeffding and Hoeffding+RT bounders, as selectivity increases,
bothwall-clock time and number of blocks fetched first increase rapidly,
then decrease, in a strongly correlated fashion. This is likely because
the sparsest filters require examining all the data before terminating,
obviating early stopping benefits. After a certain point, however, early
termination kicks in, happening more quickly as fewer tuples are
filtered. The selectivity threshold for early termination appears to be
much lower for Bernstein and Bernstein+RT bounders, which explains
why wall-clock time and number of blocks fetched appear to be
strictly decreasing with selectivity. The performance gap between
techniques with and without RangeTrim generally decreases with
increasing selectivity— perhaps because filters with higher selectivity
tend to have range bounds that are not as conservative when compared
with the a priori range bounds known to hold for the entire column.

" for stopping condition Ê.
Summary. For different upper bounds on relative error, the actual
relative error in the query result is always within the requested
error, for all error bounders applied to F-q1. The achieved relative
error drops to 0 more quickly for the more conservative bounders
Hoeffding and Hoeffding+RT as the requested error is decreased.

By varying the requested maximum relative error " for query F-q1,
we reveal its impact on the relative error achieved for various error
bounders, shown in Figure 6(a). The main takeaways are that, for
all error bounders, the achieved relative error generally decreases as
the requested error bound decreases, with Hoeffding-based bounders
dropping more quickly, as they are more conservative due to PMA.

HAVING threshold for stopping condition Ë.
Summary. HAVING thresholds that are closer to group aggregates
require more samples in order to achieve stopping condition Ë,
and Hoeffding-based error bounders in particular are more sensitive
than Bernstein-based error bounders for the same threshold.
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Fig. 7: Effect of minimum departure time on blocks fetched for F-q3.

By varying the HAVING threshold used to filter groups / airlines
post-aggregate in F-q2 andmeasuring its effect on the number of blocks
fetched for a particular query, we reveal interesting data-dependent
behavior impacted by the true aggregates for each airline, depicted
in Figure 6(b). This figure also plots the group aggregates using a
horizontal bar chart sharing the same x-axis as the HAVING threshold,
revealing that it is “harder” to determine which side of the HAVING
threshold a given group is if its aggregate is close to the threshold. In-
deed, from Figure 6(b), we see that the initial thresholds near 0 are very
easy for all groups, allowing for very fast termination. The first spike in
number of blocks fetched occurs between 6 and 7, corresponding to the
aggregate for airlineNW. At and after this point, we see spikes in blocks
fetched for both Hoeffding-based and Bernstein-based error bounders
whenever the threshold approaches one or more airline aggregate
values, although we note that Bernstein-based error bounders appear
to be more robust, requiring the threshold to be much closer before
they are adversely affected as compared to Hoeffding-based bounders.
Minimum departure time for F-q3.
Summary. As the minimum departure time is increased, the
spread of average delay between airlines increases, making it
easier to separate the two airlines with the minimum average
delays and achieve stopping condition Ì earlier. At the same time,
termination becomes bottlenecked on sparse airlines, increasing
the gap between similar bounders with and without RangeTrim.

By varying the minimum departure time $min_dep_time in
F-q3, we reveal its impact on the number of blocks fetched for
various error bounders, shown in Figure 7. This plot exhibits two
interesting data-dependent behaviors worth unpacking. First, as the
$min_dep_time increases, the variance in average delay between
different airlines increases, perhaps because some airlines tend to
have flights that are delayed more for later flights as compared with
other airlines. This makes it easier to achieve stopping condition Ì,
since the average delays become more spread out with increasing
minimum departure time, so we observe a decreasing trend in the
number of blocks fetched. At the same time, as $min_dep_time
increases, the selectivity of the various groups decreases. Since all
the groups are sparser, the groups for which stopping condition Ì
is bottlenecked are also sparser. Since we have an “easy” query (due
to the higher variance between groups) for which sparse groups are
bottlenecking termination, we tend to see a bigger performance gap
between bounders with and without our RangeTrim technique.
Impact of " on latency.

Summary. Figure 8 demonstrates that latency increases
super-exponentially as " decreases to 0, across all error bounders
for F-q1[$origin=ORD].

By varying themaximum relative error bound ", we reveal its impact
on latency for various bounders in F-q1[$origin=ORD].As depicted in
Figure 8, latency increases super-exponentially with decreasing relative
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error threshold " (note the log scale on the x-axis). From inspection of
formulas for Hoeffding and Bernstein-style bounds, we would expect
exponential behavior; the super-exponential behavior can be attributed
to the conservative optional stopping procedure, which sacrifices some
statistical efficiency. This figure illustrates the importance of being
able to leverage other stopping conditions besides that of condition Ê
in the case of queries that do not actually need to make use of the
aggregate but merely use it for downstream decision making, since
such queries can sometimes tolerate very large relative errors.

Impact of ı on latency.
Summary. Figure 9 illustrates that latency is robust to small ı’s,
with sublinear slowdowns for exponentially decreasing ı.

By varying ı, we reveal its impact on latency for bounders
Bernstein and Bernstein+RT on F-q1[$origin=ORD] and F-
q1[$origin=MTJ]. In the case of a high-selectivity predicate (i.e.,
that for F-q1[$origin=ORD]), we see virtually no impact of ı
on latency; for this high-selectivity predicate, the query is able to
terminate after the first bounds computation for both Bernstein and
Bernstein+RT. For the sparser predicate in F-q1[$origin=MTJ], ı
does not impact the number of rounds of bounds computation needed
for Bernstein, although a larger ı does gradually decrease this quantity
for Bernstein+RT, albeit insignificantly considering the exponential
increase in ı. Overall, this illustrates that the dependence of each
error bounder on

p
log.1=ı/ translates to query latency that is highly

robust in ı, motivating our choice of 10�15 as the default ı.

Impact of bock size on latency.
Summary. Figure 10 illustrates a quasiconvex relationship
between query latency and block size.

By varying the block size, we reveal its impact on latency for F-q2
and F-q5. For both of these queries, smaller block sizes are associated
with higher latency due to poorer cache locality and more frequent
bounds recomputation.Higherblock sizes, however, loseoutonbenefits
from block skipping. This is not an issue for F-q2, which has relatively
fewgroups (andnoneofwhich are sparse); for F-q5, however, it impacts
latency adversely before leveling off. The level-off in both cases can
be attributed to saturating the bitmap indexes, since larger block sizes
will be more likely to contain tuples passing each group’s filter.

VI. Related Work

In this section, we survey related literature and highlight similarities
and differences with this work.
Approximate Query Processing (AQP). We survey the AQP
literature along two dimensions: first, online versus offline; second,
approaches with strong versus asymptotic guarantees.
Online versus Offline AQP.Online sampling-basedAQPschemes select
samples as queries are issued, contrasted with offline schemes which
compute strata ahead of time. Although our approach does perform
a shuffle offline, it is nevertheless closer to online schemes, as it uses
the scramble to compute samples on the fly as in [21, 29, 30, 31, 35].
Online schemes canuse index structures likebitmaps tomaterialize rele-
vant samples on-the-fly [15, 19, 20, 21], or obey an accuracy constraint
for computing predefined aggregates without indices [43, 44]. Offline
schemes, on the other hand, materialize samples ahead-of-time [12,
13, 17, 32] based off workload assumptions, sometimes tuning the
computed strata as new workload information is available [12, 32].
While we implement our error bounders without PMA or PHOS

in the context of a system for online AQP, our core algorithmic
techniques are orthogonal to the exact approach, and could be paired
with either online or offline schemes.
Sample-size-independent versus Asymptotic Guarantees. Most of the
AQP systems from prior work have traditionally leveraged asymptotic
error bounders [11, 12, 13, 16], though some have mentioned
allowing either approach as an option [15]. Other approaches
have leveraged deterministic [37, 45] or concentration-based error
bounding techniques [17, 18, 19, 20, 21] under range-based or
other very mild assumptions. In some cases, novel asymptotic error
bounding techniques have been developed [2, 16, 37] to be used
in conjunction with existing systems. Our approach is analogous to
these, but instead of basing our techniques on asymptotic methods,
we develop error bounding techniques with guarantees independent
of sample size, starting from existing concentration-based methods
and systematically ameliorating various pathologies.

Of particular note is thework of Agarwal et al. [46], which, as in this
paper, recognizes both the pessimism of SSI techniques and the error-
proneness of asymptotic techniques. They propose to run a diagnostic
procedure in conjunction with asymptotic techniques in order to to
determine when such techniques are unable to yield accurate answers;
however, the diagnostic procedure itself has no guarantees when used
for query processing and can give both false positives and false neg-
atives, which we consider unacceptable for the purposes of this paper.
Access Patterns for Informative Samples.A number of techniques
have been developed to optimize access to relevant data for analytical
queries. Please see the technical report [26] for a more extensive
survey; here we focus on two techniques in particular: outlier indexing
and priority sampling.
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Outlier indexing [47] works by computing approximate aggregates
derived by combining an estimate from the main table and an exact
aggregate from the so-called “outlier index”, which stores all the rows
with outlier values. The benefit of the outlier index is that it shrinks
the range of the data from which samples are taken, allowing for faster
convergence of approximate answers. One could think of the outlier
index as an offline analogy of our own RangeTrim technique. Outlier
indexing has some additional limitations that RangeTrim does not
have; namely, it cannot be used to facilitate queries with aggregates
involving arbitrary expressions, since such expressions can drastically
change the set of outlying values. That said, for simple aggregates
the two approaches are orthogonal, and could be leveraged together.

Priority sampling [48, 49] is also particularly useful for coping with
outliers. While priority sampling applies in the presence of arbitrary
filters and can furthermore be modified to allow for computation
of AVG aggregates in addition to SUM, it has the drawback that the
attribute or expression being aggregated must be known ahead of time
(to say nothing of arbitrary expressions), so that the tuples can be sorted
in descending order of priority, a limitation our techniques do not have.
Statistical Estimators andConfidence Intervals. The well-known
error bounders in statistics and probability leverage asymptotic
techniques [1, 3, 4, 50]. We already surveyed relatively more obscure
SSI bounders in Section II when we discussed the empirical Bernstein-
Serfling error bounder developed by Bardenet et al. [27], which we
adapt for use in a database setting with our RangeTrim technique.

VII. Conclusion and Future Work
We categorized existing conservative error bounders in terms of two

pathologies, PMA and PHOS, and developed a technique, RangeTrim,
for eliminatingPHOS from any range-based error bounder.We showed
how an SSI Bernstein-based bounder without PMA can significantly
accelerate approximate queries, and how our RangeTrim technique,
which eliminates PHOS, leads to an additional 2� speedup in the best
case, without ever hurting performance in the worst case. By imple-
menting our distribution-aware techniques in the context of FastFrame,
which prioritizes groups that require more samples in order to facilitate
early termination, we demonstrate significant speedups (on the order
of 10� over both exact processing and traditional techniques based
on Hoeffding) without losing guarantees. This suggests a viable path
toward practical with-guarantees AQP for workload-agnostic analytics.
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