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Evaluation of a Predictor Based Framework in
High-Speed Teleoperated Military UGV
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Abstract—Mobility of teleoperated unmanned ground vehicles
can be significantly compromised under large communication
delays, if the delays are not compensated. This paper considers
a recently developed delay compensation theory and presents its
first empirical evaluation in improving mobility and drivability
of a high-speed teleoperated vehicle under large delays. The
said delay compensation theory is a predictor based framework.
Two realizations of this framework are considered; a model-
free realization that relies only on model-free predictors, and
a blended realization where the heading predictions from the
model-free predictor are blended with those from a steering-
model based feedforward predictor for a more accurate pre-
diction of the vehicle heading. A teleoperated track following
task is designed in a human-in-the-loop simulation platform. This
platform is used to compare the teleoperation performance with
and without the predictor based framework under both constant
and varying delays. Through repeated measurement analysis of
variance, it is concluded that the predictor based framework
is effective in achieving a higher vehicle speed, more accurate
lateral control and better drivability as indicated by the three
performance metrics of track completion time, track keeping
error, and steering control effort, respectively. In addition, it
is shown that the blended architecture can lead to further
improvements in these metrics compared to using the model-
free predictors alone. The analysis also shows that there is no
statistically significant difference between constant and varying
delay cases in the designed experiment, nor there is any direct
relation between drivers’ skill level and level of improvement in
metrics.

Index Terms—Teleoperation, unmanned ground vehicles, delay
compensation, predictor based framework, human-in-the-loop
experiment

I. INTRODUCTION

A teleoperated unmanned ground vehicle (UGV) is a vehicle
that is remotely driven by an off-board human operator.
The control commands of the human operator and vehicle
response such as vehicle states and on-board camera view
are transmitted between the driver station and the vehicle
via communication networks. One of the main challenges
of teleoperated UGVs is that large communication delays in
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the networks degrade vehicle mobility. This is due to delays
causing noticeable asynchrony between the human operator’s
commands to the vehicle and observations of its response.
This degradation becomes more pronounced at higher vehicle
speeds. At high speeds, the vehicle dynamics become more
critical and there is less time for the operator to respond
to errors in vehicle control and sudden changes in the en-
vironment. For example, in a simulated driving task, in which
human operators were asked to control the vehicle in a lane
while maintaining a speed of 55 mph, driving performance
was found to be significantly degraded with delays of 170 ms
[1].

The literature presents many human-in-the-loop studies of
teleoperated driving under delays; see [2, 3] for comprehensive
reviews and see [4—6] for quantified teleoperated driving per-
formance under delays in terms of vehicle mobility. Of partic-
ular interest for this work are those studies that consider delay
compensation methods to improve performance under delays
[1, 7-19]. Common practical delay compensation methods are
passivity based methods and predictive displays. The former
are mostly applied in those experimental setups where drivers
operate arm-like manipulators to drive small mobile robots
[8—11]. Passivity based methods have been shown to improve
the teleoperation performance in terms of transparency. Trans-
parency is defined as the degree of how well human operators
feel the environment when teleoperating compared to when
they directly interact with it [20]. Hence, transparency is
mostly in the sense of haptics. However, driving teleoperated
vehicles especially at high speeds relies more on vision than
haptic feedback [21]. Therefore, it is unknown how improving
haptic transparency helps with improving vehicle mobility in
high-speed vehicle teleoperation with delays [3]. Furthermore,
since mobile robots are usually operated at low speeds, vehicle
mobility is less sensitive to delays as mentioned above.

The second category of methods, namely, predictive dis-
plays, have been proven effective to compensate delays and
improve vehicle mobility in human-in-the-loop experiments
[12-19]. However, only a few were conducted in the scope
of high-speed teleoperated UGVs with large delays [16-19].
Predictive displays simulate the vehicle response that is likely
to result from the current actions of the operator. Then they
visually display to the operator either the predicted virtual
vehicle in the delayed view [13] or directly the predicted
view [13, 18]. Thus they reduce the asynchrony between the
human’s control actions and the subsequent vehicle response.
A full vehicle model is required to predict the vehicle response,
and the prediction accuracy depends on the accuracy of the
vehicle model. Such high accuracy models, however, may not



always be available.

In light of the limitations of the state of the art identified
above, and with a focus on high-speed teleoperated driving,
here we pursue a delay compensation method that does not
require knowledge of the full vehicle model to improve teleop-
erated driving performance. A predictor based framework has
been developed previously in [22-25]. Within the framework,
two model-free predictors are implemented to predict the
control commands and vehicle states, respectively, without
requiring to know the governing dynamics of the vehicles
or human operators. The framework with two predictors has
been tested in a pilot study in [26] and showed the potential
of improving the teleoperated UGV mobility performance
under constant round-trip delays of 0.9 s. This predictor
based framework is developed further in [27] to include a
blended architecture for a more accurate heading prediction.
In particular, this architecture combines the feedback heading
prediction of the model-free predictor with the feedforward
heading prediction based on a simple steering model. Only
partial information of the vehicle steering response is needed
to generate the steering model in this blended architecture,
which is in contrast to the full vehicle model used in predictive
displays. The heading prediction accuracy has been evaluated
in open loop in [27], indicating that adding the blended
architecture helps predict the vehicle heading under delays
more accurately compared to using the model-free predictor
alone.

However, in previous work [22-27], the developed pre-
diction methods have not been evaluated with a thorough
human-in-the-loop user study. The analyses have been mostly
theoretical, the only user study being the one in [26] with a
very small number of subjects as a pilot study, without any
blending, and for only constant delays. Performance of the
predictors and the blended architecture under varying delays or
driver skills has not been studied before. This paper addresses
these gaps through the following original contributions:

1) Human-in-the-loop evaluation of the performance of the
predictor based framework in a high-speed teleoperated
UGV setting with large delays.

2) Human-in-the-loop evaluation of the performance of the
predictor based framework without and with the blended
architecture.

3) Analysis of factors of delay type (constant or varying
delays) and different driver skills when teleoperating
with the said predictor based framework without and
with blended architecture.

In the experiments, 19 human drivers controlled a simulated
vehicle in a virtual environment to complete a track following
task under the following conditions: (1) without any delays as
a baseline for teleoperated driving performance; (2) with either
constant or varying round-trip delays, but without predictor
based framework, to quantify performance degradation due
to delays; and (3) with the same amount of delays and
the predictor based framework without and with the blended
architecture to evaluate the changes in performance caused
by the framework. Three metrics, namely, track completion
time, track keeping error and steering control effort, are used
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Fig. 1. Generic paradigm of teleoperated UGV systems. Bilateral delays

cause asynchrony between operators’ control action at the driver station and
the corresponding remote vehicle response.

to quantify vehicle mobility in terms of vehicle’s longitudinal
performance, lateral performance and drivability, respectively.
Through repeated measurement Analysis of Variance (RM-
ANOVA) and t-tests, the metrics based on drivers’ data are
analyzed and changes in vehicle mobility and drivability are
tested for their statistical significance for all the conditions.

The rest of the paper is organized as follows. Sec. II
summarizes the background of the predictor based framework
applied to a teleoperated UGV system. The simulation plat-
form developed for human-in-the-loop experiments to test the
predictor based framework is described in Sec. III. Details of
the design of the human-in-the-loop experiments, including
the test task, test scenarios, selected design parameters and
analysis methods are explained in Sec. IV. Sec. V discusses
the results based on the experimental data and conclusions are
given in Sec. VL.

II. A TELEOPERATED UGV SYSTEM WITH PREDICTOR
BASED FRAMEWORK

A generic teleoperated UGV system is shown in Fig. 1.
Human operators are located at the Driver Station instead of
being on-board the vehicle. They drive the remote Vehicle
Platform by sending the control vector y,(t) that includes
steering 6, throttle T'h, and brake Br commands, while
monitoring the vehicle response based on the received camera
view and vehicle state vector y,(t) that includes heading ),
speed u and location in X,Y. All these signals and camera
view are transmitted over communication channels and there
exist control delays 71(t) and sensor delays 72(t) during
transmission. The round trip delays of 71(t) + 72(t) cause
asynchrony in time between operators’ control actions and
their observation of the corresponding vehicle responses. This
asynchrony can make teleoperated driving very challenging
and significantly deteriorate the vehicle mobility performance
as found in [1].

To reduce this asynchrony, a predictor based framework
developed previously in [27] is integrated into the teleoperated
UGV system to compensate delays and predict the undelayed
signals, as shown in Fig. 2. One modification to the teleoper-
ated UGV system in Fig. 1 is that in addition to the vectors
y,(t) and y,(¢), their derivatives, ¥, (t) and 9, (), as well as
the send-time stamp need to be included in the communication
packets. A Driver Predictor and Vehicle Predictor are placed at
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Fig. 2. A predictor based framework with two model-free predictors and a
blended architecture for heading is applied to the teleoperated UGV system
to predict and recover the undelayed signals that are transmitted through the
communication channel.

opposite sides of the communication channel. These predictors
receive the delayed vectors and their derivatives, and perform
a separate prediction on each signal in the vectors. Thus they
generate corresponding predicted outputs ¥, (¢) and ().
Both predictors have the same dynamics:

yi(t) = 9t = () + Nily(t = 7a(1) = gt — (1)) (D)

for i € {1,2}, where g,(t) are the predictor states as well
as the outputs, and @,(t — 7;(t)) are the retarded states
that are delayed by the same amount as the measured one-
way delay 7;(¢). By synchronizing the clocks at the Driver
Station and Vehicle Platform, 7;(¢) can be determined as the
difference between the send-time stamp included in the packets
and the local receive time. A; is a square matrix with non-
zero terms A; (j = 1,2,---,n) on the diagonal only, as
individual predictor gains to predict the ;" signal in the n-
dimensional vector y,(t). Predictor stability and performance
have been well studied in [25] and a design procedure about
how to select the predictor gain has been developed in [27].
Note that both predictors are model-free in the sense that
predictor dynamics in (1) does not involve any information
about the governing equations or parameters of the remote
system, where the delayed signals originate. Being model-
free, predictors are robust to modeling errors and can be
applied to general teleoperated UGV systems regardless of the
vehicle platform or different operators with minimal parameter
retuning. However, the prediction accuracy — i.e., how close
the predicted ¢, (t) is to the undelayed signal y;(t) — may
be lower than model-based approaches if accurate models are
available.

To balance robustness with prediction accuracy, the blended
architecture that was developed in [27] is included to generate
a blended heading output ¢ 5(t), which linearly combines the
heading 1/, (¢) in the Vehicle Predictor output ¢,(¢) with a
feedforward heading ¢ p (). The blending law is

Yp(t) = (1 — a)rr(t) + ay(t) )

with a blending weight o between 0 and 1. Note that a steering
model is included in the blended architecture to convert the
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Fig. 3. Human-in-the-loop simulation platform for teleoperated UGV systems
with predictor based framework.

operators’ steering commands 0(¢) to vehicle yaw rate and to
generate ¢ (t) by integrating the yaw rate. Since the steering
gains are usually related to vehicle speed, gains are scheduled
depending on the predicted speed signal u,(t) from @,(t).
Compared to the predictive display methods where a full
vehicle model is required to perform prediction, the blended
architecture only requires identification and modeling of the
steering subsystem of the vehicle platform. Thus, a minimum
amount of information about the vehicle is used, benefiting
robustness to modeling errors. Only the prediction of vehicle
heading involves blending to achieve higher accuracy. This is
due to the observation from the pilot study in [26] that, among
all the predicted signals, human subjects are most sensitive to
the prediction errors in heading.

With Driver Predictor, Vehicle Predictor, and the blended ar-
chitecture, the final predicted vehicle response vector includes
the blended heading 15 (t) as well as the predicted speed and
location in the Vehicle Predictor output g, ().

Based on the predicted vehicle response, the delayed camera
view can be processed in two different ways [13]. Specifically,
either the predicted shadow vehicle can be overlaid onto the
delayed camera view, or the view captured from the predicted
vehicle position can be directly displayed. The latter approach
is used in this simulation platform.

The effectiveness of this predictor based framework on
vehicle mobility performance is evaluated through a driver-
in-the-loop experiment in a simulation-based test platform
introduced in the following sections.

III. SIMULATION PLATFORM

A real-time driver-in-the-loop simulation test platform is
developed in MATLAB Simulink to emulate a teleoperated
UGV system as shown in Fig. 3.

The driver station contains a set of Logitech G27 steering
wheel and pedals to generate control commands, as well as
a monitor to provide visual feedback. The physical steering
wheel and pedals are connected as a joystick to the computer
that runs the simulation platform. The encoder reading of the
steering wheel along with the throttle and brake pedal positions
are measured and scaled as the control commands. Also, due
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Fig. 4. The monitor displays the camera view and current vehicle speed. The
hook on the vehicle’s hood serves as a reference of the vehicle’s center.

to the observation that the steering commands generated by a
human do not exceed a frequency of 1 Hz in a majority of
normal driving scenarios [28], a first-order low pass filter with
cutoff frequency of 1 Hz is applied to the steering commands
to reduce measurement noise. Throttle and brake signals are
scaled between 0 and 1 to generate feasible commands for
vehicle powertrain dynamics. The visual driving interface has a
resolution of 1420x800 pixels (i.e., an aspect ratio of 16:9) and
is updated at 20 frame per second (FPS), which is within the
typical frame rate range used for teleoperated vehicles [29, 30].

An example of the visual driving interface is shown in
Fig. 4. Tt contains the current vehicle longitudinal speed
information and a first-person view that is captured from a
camera placed above the driver’s seat within the vehicle model
in the 3D environment. The camera has a horizontal and
vertical field of view (FOV) of 55 deg and 33 deg, respectively,
and the environment viewed through the left-half of the vehicle
windshield at the driver’s side is captured. The FOVs of the
camera are set within the common values used for teleoperated
navigation tasks [31, 32].

On the vehicle side, a typical military truck, namely,
a notional High Mobility Multipurpose Wheeled Vehicle
(HMMWYV), is chosen as the vehicle platform. The hook on
this vehicle’s hood serves as a reference of the vehicle’s center,
i.e., if the vehicle is driven on a dashed straight line and the
hook aligns with the closest strip as shown in Fig. 4, the center
of the vehicle is exactly on the line. The vehicle is simulated
using the same model as in [27], including the 14 DoF vehicle
dynamics and Pacejka tire model that were integrated in [33],
and the powertrain model from [34] with a 6L V8 diesel engine
map, drivetrain and automatic transmission. The vehicle is
animated in the virtual environment using the MATLAB
Simulink 3D Animation Toolbox.

The simulation model is run using the ODE4 solver, with
a fixed time step of 0.01 s. The Simulink Execution Control
block is included to slow down the simulation to real time. The
signals transmitted between the Driver side and the Vehicle
side are control commands (including steering, throttle and
brake), vehicle states (including heading angle, global position
and vehicle speed) and their derivatives as required by the
predictors. While the derivative of all the vehicle states are
directly available within the simulated vehicle model, numer-
ical differentiations are performed on the control commands,
because only the measurements of commands are available
from the Logitech G27 gaming set. This simulation platform is

not set for distributed simulation. Instead, both the driver side
and vehicle side are simulated in the same Simulink model on
one computer and signals are transmitted internally without a
physical communication network. Therefore, simulated delays,
either constant or varying, are added optionally to simulate a
teleoperated vehicle system with the delays of interest. This is
further explained in detail in Sec. IV-B. Control delays 7 (t)
and sensor delays 72() can be specified independently, either
as a predefined time sequence or as a random process. Also,
the same one-way delay values for each packet are directly
provided to the predictors instead of through measurement,
thus zero measurement error on the delays is assumed.

The simulation platform also has the general option to
activate or deactivate the predictor based framework without
any structural change. When all the terms of the predictor
parameters A in the Driver Predictor and Vehicle Predictor
are set to zero, there is no prediction of control commands
and vehicle states using model-free predictors. As for the
vehicle heading prediction, blended architecture is optional
to use, as well. A transfer function based steering model is
developed based on the lateral response of the same HMMWV
vehicle platform as in [27] and implemented in the blended
architecture. The blending weight o can be adjusted to gen-
erate different blendings of heading. When a = 1, blended
heading completely relies on the predictor outputs and thus
the predictor based framework is model-free, emphasizing
robustness to modeling error. When « is set between 0 and 1,
blended heading is a linear combination of outputs from the
Vehicle Predictor and feedforward heading, and can improve
the prediction accuracy of heading even more than the former
case of using the Vehicle Predictor only (i.e., a = 1), as
studied in [27].

Note that in Fig. 3, when the teleoperated UGV is simu-
lated in the virtual environment, there exists one difference
compared to Fig. 2: the camera view is not transmitted as
video frames. Instead, it is directly available from the virtual
environment by placing the vehicle to the required position.
By moving the vehicle to the position that is specified by the
predicted location and heading, the predicted view is readily
displayed in the visual interface.

IV. HUMAN-IN-THE-LOOP EXPERIMENTS

Human-in-the-loop experiments were performed using the
aforementioned test platform to evaluate the performance of
teleoperated UGVs when using the predictor based framework
under both constant and varying delays. The experiment design
including the test task and scenarios, test setup, test procedures
and analysis methods are described in detail in this section.

A. Experiment Design

A test track is generated in the virtual environment as shown
in Fig. 5. The track (in gray) is 810 meters long and 10 meters
wide with three left turns, three right turns, and a dashed, white
centerline. Shoulders of 6 meters width (in dark green) are
located on either side of the track. The safe speed at each turn
is determined prior to the test as the maximum allowable speed
when the vehicle can successfully be driven on the centerline
without causing any tire lift-off. The safe speed is displayed
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Fig. 5. Designated track, vehicle and landmarks in the virtual environment.

on a traffic sign that is placed several meters before each turn
to warn test subjects about the upcoming turn. Trees at the
turns and other landmarks such as mountains, houses, corn
fields and water ponds serve as visual cues to aid the drivers
on speed and distance assessment. In the training session of
the experiment a reversed version of the track is used. During
the testing session, the original track and its mirrored version
are considered as two tracks for testing.

The task of the experiment is designed to be related to
real-world military applications. Military vehicles may need to
drive with minimum time-to-goal targets to minimize exposure
time. Similarly, they may need to follow the tracks left by
another vehicle to minimize visual signature. Hence, the task
for test subjects is to operate the vehicle to complete the track
as fast as possible while following the track’s centerline as
closely as possible.

Three performance metrics are considered as the dependent
variables of the experiment: track completion time, track
keeping error and steering control effort. Track completion
time captures how fast the vehicle is driven along the track
from start line to finish line. Track keeping error is calculated
as the area between the trajectory of the vehicle and track’s
centerline, indicating how close the vehicle follows the cen-
terline. These two metrics reflect the longitudinal and lateral
mobility performance of the vehicle, respectively. Smaller met-
rics lead to better teleoperated driving performance and thus
higher mobility. Steering effort is determined as the average
magnitude of the steering wheel angle in degrees, aiming to
capture the drivability of the vehicle. In a teleoperated driving
task with delays, overactuation in the form of oversteering
and repeated corrections is expected [35]. Smaller steering
effort reflects that subjects feel easier and more comfortable
to control the vehicle to complete the task. The above three
metrics are referred to as Time, Error and Effort, respectively.

Two independent variables that may affect the dependent
variables are studied: Delay Type and Prediction Method.
Delay Type can be chosen from {CD,VD}, where CD or
VD refer to the setups with non-zero bilateral constant delays
or varying delays, respectively. Prediction Method is among
{NoPred, Pred, PredBlend}, where NoPred represents the
setup with non-zero delays, but without any prediction. The
only difference between the method of Pred and PredBlend
is the o value. For Pred, « = 1 so that only the two
model-free predictors are activated, whereas for PredBlend,

a is selected to be 0.5 and a resultant blended heading
prediction is generated with both the predictors and blended
architecture included in the setup. The parameter « is chosen
using the optimization approach in [27]. Specifically, o« = 0.5
leads to the most accurate vehicle heading prediction in open
loop under the configured delay values and predictors in this
experiment. This open-loop optimization is employed only as
a design guideline, as the open-loop optimal value may not
be the optimal one for closed loop. Finding the latter is not
critical for the purposes of this work and is thus left for future
work. The detailed delay values and predictor parameters used
in the test are presented in Section IV-B and Section IV-C,
respectively.

In summary, the experiment follows a 2 (Delay Type with
two levels) x 3 (Prediction Method with three levels) within-
subjects factorial design. The goal of the experiment is to study
how the Delay Type and Prediction Method affect the vehicle
mobility and drivability in teleoperated UGVs at high speed.
Seven scenarios with three repetitions in each scenario are
tested. Seven scenarios include one NoDelay scenario with
zero delays used as the baseline performance of human drivers
to handle this track-following driving task, as well as six
scenarios with non-zero delays and different combinations of
Delay Type and Prediction Method. Thus, a total of 21 test
runs need to be completed by each test subject. Each run has
a different setup, combining one of the scenarios with one
of the test tracks. The order of the runs is randomized in an
evenly distributed manner to reduce the learning effects on a
single scenario or one track. Specifically, no single scenario
or the same track is tested twice in a row and one scenario is
not tested more than the others.

B. Test Setup: Delays

In the setups for the scenarios except NoDelay, constant
delays or varying delay sequences are generated based on real
network data. This procedure is described in detail below.

Round-trip time (RTT) delays for teleoperated UGV sys-
tems generally vary from around 0.1 s to more than 1 s,
depending on the types of communication connections (e.g.,
radio/WLAN, cellular network, satellite, etc.), communication
distance and bandwidth. Longer distance and lower bandwidth
generally lead to larger RTT. Some RTT values were reported
in teleoperated UGV systems with physical communication
networks [36-38]. In [36], an average of 0.121 s RTT was
measured based on a teleoperated vehicle road test with 3G
cellular network, while the peak delays were more than 1 s. In
[37], RTT delays were measured as a summation of a one-way
delay of 0.33 s through a low-bandwidth radio link and another
one-way delay of 0.55 s through a high-bandwidth WLAN
video link. In [38], RTT delays in a ViaSat satellite link were
around 0.75 s, when the Driver Station and Vehicle Platform
were located in Washington DC and California, respectively.
This RTT range is also aligned with the RTT values used
in most of the simulation based experiments in the literature
[1, 17, 18, 39, 40].

To simulate a representative teleoperated UGV system, large
round-trip delays of around 0.9 s are tested. Specifically, they
are distributed in the two ways of communication as control
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Fig. 6. Simulated varying delay sequences of (a) control delays and (b) sensor

delays, generated by the corresponding fitted GEV models. Mean values are
represented with white, dashed lines.

Table I. Simulated varying control and sensor delays generated by the fitted

GEV models.
Fitted GEV Mean (s) Standard
& m o deviation (s)
Control delays | 0.475 | 0.278 | 0.0007 0.288 0.024
Sensor delays | 0.386 | 0.617 | 0.0014 0.632 0.037

delays of around 0.3 s and sensor delays of around 0.6 s.
This choice reflects the general knowledge that sensor delays
are typically higher than control delays due to the larger
packet size and conversions associated with video feeds. For
each scenario involving CD, control commands and vehicle
response are delayed by constant values of 0.3 s and 0.6
s, respectively. For scenarios with VD, delay sequences are
generated based on data collected in [22] using an actual
network between Ann Arbor, Michigan (MI) and Palo Alto,
California (CA). This network is referred to as the MI-CA
network in the rest of the paper.

A Generalized Extreme Value (GEV) distribution is used
to represent the MI-CA network as a probability distribution
delay model. Its probability density function is expressed as

1
Jezopo = —(1+57H) 7 oexp(—(1 4+ €574)15)

?.— T—p T—p (3)
femtmo = e expl-e*F)

where x is the random variable of delay value and &, u, o are
the shape, location and scale parameters, respectively. When
& > 0, a heavy tailed distribution can be represented that has a
lower bound . — % based on the extreme value theory. A GEV
distribution model, denoted as GEV(¢, p, o), with £ = 0.707,
© = 0.0546, o = 0.0012 fits well with the delay distribution
of MI-CA network, whose mean and standard deviation are
0.058 s and 0.006 s. 5 and 9 independent randomly generated
sequences using GEV(0.707, 0.0546, 0.0012) are summed
respectively to simulate sequences of varying control and
sensor delays that have mean values close to the corresponding
constant values of 0.3 s and 0.6 s.

The histograms of summed sequences are fitted again using
GEV distributions. Then new sets of sequences are randomly
generated based on the fitted distributions for 150 s and are

used as the simulated control and sensor delays in the tests, as
shown in Fig. 6. They meet the assumption that delays can be
modeled using a two-time-scale Markov Chain and thus the
predictor stability with varying delay can be established as in
[25]. The fitted parameters of the resulting GEV distributions
as well as means and standard deviations of the simulated
delays are listed in Table I. The mean control and sensor delays
are 0.288 s and 0.632 s, respectively, and thus for the varying
delay case, the round-trip delays have a mean of 0.920 s.

No physical network is included in the simulator and factors
like packet reordering and dropping are not considered based
on the negligible values observed in the tested networks [22,
34]. Only the simulated communication delays are considered
for compensation. Other than that, mechanical delays related to
the vehicle such as the delays in the steering and brake systems
are captured in the simulated 14 DoF vehicle dynamics. Based
on the time constants of the vehicle model, mechanical delays
are on the order of 0.1 s. Computational delay of applying
the predictors with or without the blended architecture is
negligible due to the simple structure of the predictors and
blended architecture. Delays of rendering the virtual interface
are also negligible in this simulation environment.

C. Test Setup: Predictor Based Framework Parameters

The design parameters in the predictor based framework
include the A terms in both the Driver Predictor and Vehicle
Predictor to predict each of the transmitted signals.

Predictor parameters \ are chosen independently for each
transmitted signal type and based on the design procedure
developed in [27] considering both predictor stability and
performance. The values are listed in Table II. Firstly, all A
are between 0 and the maximum allowable range to ensure
predictor’s asymptotic stability. The maximum values are
denoted as Apax(7) for constant delay 7 and Ay (7(t)) for
varying delay 7(¢) and are calculated as follows [25]. For

constant delays,
T

T 2r

and for varying delays 7(t) that can be modeled using a two-
time-scale Markov Chain,

Amax (7 (2))

Amax (T) “4)

_ 3
o 2Tave (1)

where T,,(t) is the average value of 7(t). Pilot test data
collected in [26] under the same test task and scenario
are analyzed to provide some insights into each transmitted
signal y(¢) with constant measured delays 7,,. One relevant
information is the dominant frequency components within the
coupling error ¢(t). ¢(t) is defined as the difference between
an undelayed and delayed signal, i.e.,

C(t) = y(t) - y(t - Tnl) (6)

To achieve good steady state prediction performance, it is
recommended that the predictor bandwidth w), is greater than
the coupling error bandwidth w, [27]. Here, the coupling error
bandwidth w,. is estimated as the frequency until which the
signal power of ¢(t) is accumulated to reach 90% of the total
power within the Nyquist frequency of c¢(¢). The predictor

&)



Table II. Predictor settings for individual signals of interest

Predicted Measured We N [571 ] Sat. & wp
Signal Delay 7y, [s] [rad/s] Reset. [rad/s]
Throttle 11.5 0.30Amax (0.3) No 1.65
Brake 0.3 19.4 | 0.30Amax(0.3) No 1.65
Steering 537 | 0.10Amax(0.3) Yes 0.94
Speed 3.35 Yes

Global X 0.6 L8 040 (0.3) | YO | 192

Global Y 1.30 No

Heading 1.86 Yes

bandwidth w), is related to the selection of A and is the smallest
positive value that satisfies

A = 2w, sin(wp) (7)

where 7, is the amount of delay to be compensated by the
predictor. Larger A\ and smaller 7, result in larger w,. To
achieve good transient prediction performance, larger A\ leads
to faster transient, but causes greater magnitude of overshoot
in §(t). Applying the saturation & resetting scheme developed
in [27] could help reduce the overshoot when the transmitted
signal y(¢) has change of direction. A detailed analysis of
A’s effect on the predictor’s overall performance in terms of
steady state and transient with respect to the constant delays
has been addressed in [27]. The A values for scenarios with
varying delays are chosen to be the same as the A\ values for
constant delays.

Taking into account the trade-off in A\ between steady
state and transient performance, A for each transmitted signal
is designed as shown in Table II. Note that for control
commands of throttle, brake and steering, it is unlikely that
the predictor bandwidth w,, can cover all the frequencies up
to w.. Thus, smaller \ values are chosen to minimize the
potentially significant degradation of steady state performance.
On the contrary, w,. for the vehicle states of speed, position
and heading are relatively small. Therefore, partial delays of
0.3 s (i.e., 7, = 0.3) out of 0.6 s measured (i.e., 7,, = 0.6)
are compensated with the selected A\ values to satisfy the
expectation of w, > w., as much as possible. Since frequent
direction changes in steering, vehicle speed and heading are
observed, saturation and resetting scheme is applied when
predicting these three signals to reduce the effect of overshoot
on transient performance. The predictor outputs for throttle
and brake commands are saturated between 0 and 1, as well.

D. Test Procedure

Prior to the test, subjects were asked to fill out an informed
consent form and answered some basic background questions
about their age, proficiency of driving a vehicle in the real
world, and proficiency of driving in a virtual environment with
a gaming steering wheel and pedals.

The whole test process lasted no more than 2 hours and was
divided into a training session (1 hour) and a testing session
(45 minutes). The training session was necessary to help
subjects adapt to driving in a simulation based teleoperation
setup under large delays. Subjects were verbally instructed
on the test details, including the track-following driving task,
the performance goals, as well as the seven scenarios to test.
They were informed that driving as fast and as close to the

centerline as possible were equally important. However, the
subjects were not told how the performance metrics were
specifically measured and were allowed to adopt a driving
behavior suitable for themselves to meet the performance goals
according to their own priorities.

The remaining time in the training session was left for
subjects to adapt to the teleoperated driving setup and practice
all seven test scenarios one by one. The current scenario to
practice was visually displayed on the visual driving interface
and the three performance metrics were calculated each time
the subjects completed the driving task to monitor their
performance under training. A scenario would be practiced
until metrics between the successive trials indicated consistent
performance and subjects felt confident about driving in such
a scenario. Subjects also could ask for more time to be
distributed on the scenarios with which they were not familiar.

In the testing session, each subject was asked to complete
a total of 21 valid runs in randomized order, with three
repetitions in each scenario. The subjects were aware of the
scenario in each run before testing. The run was considered
valid if none of the following conditions were observed:

o Vehicle was off track for more than 5 s or did not pass

the finish line of the track.

e At least two tires lifted off in the vehicle model.

o Average vehicle speed was less than 25 mph.

A warning was displayed on the visual driving interface when
one of the tires lifted off the ground. The 25 mph speed
bound was determined based on the driving data of the beta
test. In the beta test, a human driver with rich experience of
performing teleoperated driving under delays went through the
training session and became well-trained to generate replicates
of test run data with consistent performance. In the most chal-
lenging scenarios with varying delay and without prediction
(i.e., VD x NoPred), the driver was able to complete the
task with an average vehicle speed of 30 mph. Up to 5 mph
reduction in speed compared to the beta test was then allowed
in the experiments, resulting in the 25 mph minimum bound
on average speed. A run with average speed lower than 25
mph meant that the subject did not push the vehicle dynamics
to the limit to complete the driving task in this run. An average
speed of more than 25 mph is considered as high speed in this
experiment, given that other vehicles or ground robot platforms
are usually tested in speeds of only several m/s [41]. After
all test runs were completed, subjects were thanked for their
participation and received a compensation.

E. Analysis Methods

2-way repeated measures analysis of variance (RM-
ANOVA) was used to study the effect of the two independent
variables (i.e., Delay Type and Prediction Method) on each of
the dependent variables (i.e., performance metrics Time, Error
and Effort). Applying RM-ANOVA requires that data meet
two assumptions: normality (whether metrics follow normal
distribution) and sphericity (whether variance of metrics within
each group are equal). For each metric, normality was checked
using the Anderson-Darling test and sphericity was checked
by comparing variances across the six test conditions of Delay
Type x Prediction Method based on Levene’s test. Processing



such as performing log scale transformation on data was done
when needed to satisfy the assumption of normality.

Two null hypotheses for each metric were tested using an
F-test based on Type III sums of squares with 95% confidence
level. These null hypotheses were:

1) There does not exist a significant difference in perfor-
mance metrics when different prediction methods are
applied to compensate delays.

2) There does not exist a significant difference in perfor-
mance metrics between the constant and varying delays
used for testing.

If the F-test indicated that at least one mean is different from
the rest (i.e., P < 0.05), Fisher’s least significant difference
(LSD) method was used to identify the groups with pairwise
significant differences in the means.

Another dimension to study was whether there was any
correlation between drivers’ skill level and performance in this
teleoperated driving task with large delays. Metrics of Time
and Error were normalized to their mean values among all
drivers’ data. An overall performance metric Peomp combining
normalized Time and Error was defined:

Promy = 0527 | .5 L7107 ®)

Timeyyg Errorayg

The smaller P.,mp was, the better a driver’s overall per-
formance was. The two metrics were combined with equal
weights, because the drivers were informed before the test that
driving fast and accurately would be evaluated equally. P.omp
in scenarios (CD x NoPred) and (VD x NoPred) was used
as the criterion to distinguish driver skill level. All drivers
were divided into 2 skill groups, SKILLED and NOVICE,
via 2-means clustering.
The following null hypotheses were tested using two-sample
t-tests with 95% confidence level:
1) Means of metrics for SKILLED drivers are equal to
those of NOVICE drivers under the same scenario.
2) Means of level of improvement in metrics for SKILLED
drivers and NOVICE drivers after applying the predictor
based framework are equal.

V. RESULTS AND DISCUSSION

The simulation was run in a Dell Z210 Desktop computer
with CPU core frequency of 3.4 GHz. The experiments were
approved by the University of Michigan Health Sciences and
Behavioral Sciences Institutional Review Board (UM IRB
#HUMOO0112376). Drivers at all skill levels were welcomed
and were recruited publicly through email announcements and
flyers. A total of 22 test subjects participated in the experi-
ments. 2 of them were observed to still struggle with com-
pleting the driving task especially in the delayed conditions
without any prediction after 1 hour of training session. The
background information collected revealed that they reported
to have only 1-6 months of experience on driving vehicles in
the real world and no experience of driving virtual vehicles at
all. Another subject did not push the vehicle to its limits as
instructed. Therefore, these three subjects could not complete
the experiments successfully and their data are not included
in the analysis.

2000 2000

NoDelay
NoPred, CD
Pred, CD
PredBlend, CD
Exp Driver

NoDelay
NoPred, VD
Pred, VD
PredBlend, VD
Exp Driver

1800 1800

*D>OOe

* >0

1600 1600

£ 1400 e 1400

1200 1200

1000 1000

Track keeping error (|

@
3
3

800

Track keeping error (

600 600

52 54 56 58 60 62 64 66 68 52 54 56 58 60 62 64 66 68
Track completion time (s) Track completion time (s)

Fig. 7. Distribution of performance metrics of track completion time and
track following error for various scenarios among all test subjects. Exp Driver
denotes the expert teleoperator in the beta test.

The remaining 19 subjects had an average age of 22.7 years
old with standard deviation of 2.6 years. Majority of them
were familiar with doing daily driving in the real world: 18
subjects reported to own driver licenses and 15 of them had
more than 2 years of driving experience. However, only 6
subjects were familiar with driving in a virtual environment
such as playing racing games. In terms of the situation most
similar to this experiment, where humans drive the vehicle in
simulated environment using steering wheel and pedals, only
3 of them had prior experience. Given the general lack of
experience among the test subjects on driving in the used test
setup, the importance of training session is emphasized again
to help them adapt to the test setup and become familiar with
the scenarios especially when large round trip delays of around
0.9 s were added into the system.

The three performance metrics are calculated based on
19 subjects’ data. Averaging the three repeated runs within
the same scenario, metrics of track completion time (Zime)
and track following error (Error) from each driver’s data are
plotted in Fig. 7. NoPred, Pred and PredBlend represent
the scenarios with different prediction methods. Delay type
CD and VD stands for the constant and varying bilateral
delays. Each ellipse encloses all the data points under the
same scenario with minimum volume and represents the
distribution of subjects’ driving performance. The numbers
marked in scenario (NoPred x CD or VD) represent the n
driver’s metric. As mentioned in Sec. IV-E, P, for each
driver is calculated. Drivers 3, 4, 6, 7, 8, 10, 13 and 14
are classified into the group of SKILLED and the remaining
drivers comprise the NOVICE skill group. The performance
of the aforementioned experienced driver in the beta test is
marked in asterisk. Despite the performance variation among
drivers, metrics of 7ime and Error are reduced in the scenarios
of Pred and PredBlend compared to the scenario of NoPred,
which indicates better performance. Similar trends are seen
when tested with either constant delays or varying delays.

The means and standard deviations of 19 subjects’ data
are reported in Table III. For each metric, the first row with
parentheses and the second row with brackets represent the
results of SKILLED and NOVICE driver group, respectively.
NoDelay is considered as the baseline of performance metrics.



Table III. Comparison of means and standard deviations of metrics under different scenarios. Numbers in parentheses and brackets are for the SKILLED
and NOVICE group, respectively.

Means and Stds Delay Type CD VD
NoDelay Prediction Method NoPred Pred PredBlend NoPred Pred PredBlend
(589 + 2.34) e o] (62.1 £ 2.03) | (613 £ 2.08) | (604 £ 2.13) | (625 + 235) | (61.6 + 2.07) | (605 + 2.33)
[60.9 + 2.60] (643 + 2.00] | [63.9 + 1.59] | [62.8 & 1.93] | [64.8 + 2.36] | [64.4 & 2.12] | [62.9 + 2.12]
(578 + 180) Error (7] (1178 + 210) | (1019 £ 205) | (850 + 180) | (1163 + 270) | (1141 £ 197) | (910 + 158)
[662 + 165] [1490 £ 260] | [1155 4+ 159] | [998 + 161] | [1499 4 211] | [1148 + 152] | [1045 + 183]
(367 + L.11) f— (3.9 £2.97) | (392 £ 1.86) | (384 + 1.22) | (43.8 £ 2.95) | (393 = 1.78) | (39.1 £ 1.76)
365 + 1.15] ' ¢ (453 + 3.41] | [39.9 + 1.91] | [39.5 + 1.86] | [45.3 + 3.03] | [40.4 + 243] | [39.3 + 2.21]
Table IV. RM-ANOVA table for the metric Time Table VI. RM-ANOVA table for the metric log(Effort).
Factor | DF | Adjusted SS | Adjusted MS | F P Factor | DF | Adjusted SS | Adjusted MS | F P
Delay T 0.0019 0.0019 271 ] 0.101 Delay ! 0.0001 0.0001 0.39 1 0.531
N 00456 00228 3171 | 0000 Method | 2 0.0811 0.0406 264.31 | 0.000
' ’ ' ’ Delay x
]i/‘[*ft‘}ylog 2 0.0007 0.0007 0.51 | 0.601 Method | 2 0.0001 0.0001 0.20 | 0818
Skill group | 1 0.1277 0.1277 18.99 | 0.000 ii[(ﬂtlhgffuxp ! 0.0034 0.0034 240 | 0.140
etho
é‘ﬁfﬁhgfojp 2 0.0005 0.0003 0.36 | 0.697 Skill group | 2 0.0002 0.0001 0.73 | 0482
Subject | 17 0.1143 0.0067 475 | 0.000 Subject | 17 0.0244 0.0014 8.88 1 0.000
Repetition | 38 0.0538 0.0014 197 | 0.001 Repetition | 38 0.0061 0.0002 105 | 0.394
Error 278 0.2000 0.0007 Error 278 0.0427 0.0002
oot | o545 Total 341 0.1615

Table V. RM-ANOVA table for the metric log(Error).

Factor DF Adjusted SS | Adjusted MS F P
Delay 1 0.0021 0.0021 3.40 0.066
Method 2 0.1263 0.0631 103.33 | 0.000
Delay x
Mett);od 2 0.0013 0.0006 1.04 0.354
Skill group 1 0.0445 0.0445 25.19 0.000
Method > |, 0.0083 0.0041 679 | 0.001
Skill group
Subject 17 0.0300 0.0018 2.57 0.008
Repetition 38 0.0261 0.0007 1.13 0.290
Error 278 0.1699 0.0006
Total 341 0.4171

It is observed that the metrics in scenario NoPred without
any prediction are much worse than the baseline NoDelay.
Applying the predictor based framework either without or
with the blended architecture (Pred or PredBlend) helps
with reducing the means of all three metrics compared to
NoPred. Thus, the predictor framework helps improve vehicle
mobility and drivability as quantified by the three metrics.
Additionally, the SKILLED group outperforms the NOVICE
group in almost all the scenarios and metrics. The detailed
results related to the effect of prediction methods, skill groups,
and delay types are presented in Section V-A, Section V-B and
Section V-C, respectively.

A. Relation between Prediction Methods and Performance

To study whether the improvement is statistically significant,
RM-ANOVA is applied to the data within the six scenarios
with delays only, since the metrics in scenario NoPred are
significantly different than those in other scenarios.

ANOVA is based on the assumption of normality. Hence,
normality of the metrics are checked first using Anderson-
Darling Test and only the calculated metrics of Time follow
normal distribution with 95% confidence. For the remaining
two metrics of Error and Effort, box-cox transformation with
A =0 in Minitab 17 is applied, which is equivalent to taking
the natural logarithm of the metrics. Normality then holds

for the transformed metrics log(Error) and log(Effort) based
on the Anderson-Darling Test with 95% confidence. Through
Levene’s test, the null hypothesis of equal variances of metrics
Time, log(Error) and log(Effort) fails to be rejected with 95%
confidence and therefore the sphericity condition also holds
for the metrics.

Two-way RM-ANOVA on each metric of Time, log(Error)
and log(Effort) is performed individually in Minitab 17 as a
general linear model. The two factors of interest are Delay
Type and Prediction Method. The factor of skill group and
its nested factor of subject and repetition are also included in
the model, but set as random or uncontrolled to set up the
requirement of repeated measures.

The detailed RM-ANOVA tables are shown in Table IV—
VI. With significance level of 0.05, P values of the F-test
with respect to the factor of Prediction Method are close
to 0 and much smaller than 0.05 in all three RM-ANOVA
tables, indicating a significant difference in all three metrics
among different prediction methods. The effect sizes (partial
eta squared) of the factor Prediction Method for the metrics
Time, log(Error) and log(Effort) are 0.085, 0.329 and 0.522,
respectively. Pairwise comparison results are shown in Fig.
8, where the asterisk represents that there exists significant
difference in mean pairwise. In terms of the effect of Delay
Type, the effect sizes are very close to 0 and the P value for the
metrics of Time, Error, Effort in the RM-ANOVA results are
0.101, 0.066 and 0.531, respectively. All P values are greater
than 0.05 and thus the hypothesis of no significant difference
between constant and varying delays tested cannot be rejected
with 95% confidence level.

Define the level of improvement Lol as:

Ty —T
Lol i 12 =7dl ©9)
|7'nd - Td|
where r is the mean of a given transformed metric, with
subscript nd representing NoDelay, subscript p and d rep-

resenting the scenarios with prediction (Pred or PredBlend)



Table VII. The level of improvement in performance metrics with Pred or
PredBlend, compared to NoPred.

Delay Type CD VD
Prediction Method | Pred | PredBlend | Pred | PredBlend
Time 15% 47% 17% 52%
log(Error) 26% 47% 20% 40%
log(Effort) 60% 68% 57% 66%
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Fig. 8. Pairwise ANOVA comparison results on the three performance
metrics Time, log(Error), log(Effort) with different delay types and prediction
methods. There exists significant difference in mean among NoPred, Pred,
PredBlend, indicated by the asterisks.

and without prediction (NoPred), respectively, with the same
type of delays of either CD or VD. The levels of improvement
for the three metrics are shown in Table VIIL. The larger Lol is,
the more improvement in performance subjects benefit from
the predictor based framework without and with the blended
architecture.

Consider the constant delay case first. Compared to NoPred,
metrics of Time, log(Error) and log(Effort) are improved
significantly by 15%, 26% and 60%, respectively, in scenario
Pred. With PredBlend, they are all improved significantly
by 47%, 47% and 68%. Track completion time and track
keeping error are improved more using PredBlend than Pred
by 32% and 21%, respectively, and steering control effort is
improved more by 8%. Similar level of improvement can also
be observed in the varying delay case.

B. Relation between Driver Skill and Performance

In Table III, the SKILLED driver group (with means /)
outperforms NOVICE group (with means zi2) in almost all the

scenarios and metrics. 2-sample one-tailed t-tests with 95%
confidence are performed to study whether the difference in
mean of performance between the two groups is statistically
significant. The null hypothesis H and its alternative hypoth-
esis H,; and H,> are defined as:

Ho:pn=p2, Hatpn <po, Ha2:pn >pe  (10)

Error and Effort are transformed to log(Error) and log(Effort)
to meet the normality assumption of t-tests. For each scenario
and each metric Time, log(Error) and log(Effort), pooled
standard deviation of two groups are calculated and t-values
are listed in Table VIII. The sample sizes of the SKILLED
group and NOVICE group are N3 = 24 and Ny = 33,
respectively. The critical value is ?9.0555 = —1.673. Each
cell colored in green indicates that H, can be rejected with
95% confidence and H,; when ¢ < tg.05,55 is accepted. Cells
not colored show no significant evidence for such scenario
and metric. Overall, the SKILLED group has statistically
better performance in terms of 7ime and log(Error) than the
NOVICE group.

Similarly, level of improvements Lol for 7ime, log(Error)
and log(Effort) within each subject are calculated based on
(9). Pooled standard deviation of two groups is calculated and
t-values of Lol for different prediction methods and delay
types are listed in Table IX. Same hypotheses as in (10)
are tested and the critical value is tg. 05,17 = —1.740. Cells
colored indicate that Hy can be rejected with 95% confidence.
Green cells mean H,; when t < %0517 is accepted and
the NOVICE group improves its performance more than the
SKILLED group when predictors are used in the varying
delay scenario. Blue cells mean H,, when ¢t > %9517 is
accepted and the SKILLED group improves its performance
more (larger Lol) when applying predictors under varying
delays as well as predictors with blended architecture under
constant delays. The remaining Lols are not significantly
different due to large variations within each group. There
is no straight conclusion that relatively novice drivers, who
do not perform well in teleoperated driving with delays, will
have more performance improvement than skilled drivers after
applying the predictor based framework.

C. Relation between Delay Types and Performance

Note that means and standard deviations of the metrics with
VD are slightly larger than those with CD in Table III, but
the difference is negligible and not significant. The level of
improvement in metrics between VD and CD shown in Table
VII are also similar with the predictor based framework, as the
same A values in the predictors are used for scenarios with both
constant and varying delays. In the literature, Refs. [17, 40]
reported detectable performance difference between constant
and varying delays (with a delay variation ratio of 0.3 to 0.67
between the standard deviation and mean of delays), while no
significant difference between them was observed in [7], with
a ratio of 0.5. In contrast, the said ratio is less than 0.1 in
our experiment and it is more unlikely to lead to significant
performance difference. However, our delay sequences are
generated based on the measurements of an actual network and
are therefore more realistic to represent an actual network con-
nection than the aforementioned experiments in the literature.



Table VIII. t-values of the 2-sample one-tailed t-tests to compare two skill groups’ mean performance, with significance level of 0.05. Green cells are those
for which the SKILLED group has statistically better performance than the NOVICE group.

t-values Delay Type CD VD
NoDelay | Prediction Method | NoPred Pred PredBlend | NoPred Pred PredBlend
-3.005 Time -4.115 -5.329 -4.381 -3.734 -4.798 -4.077
-1.991 log(Error) -4.852 -2.899 -3.306 -5.382 -0.296 -2.807
0.726 log(Effort) -1.653 -1.426 -2.601 -1.901 -1.978 -0.338
Table IX. t-values of the 2-sample one-tailed t-tests to compare the level of REFERENCES

improvement (Lol) in performance metrics between two skill groups. Green
(blue) cells are those for which the Lol in the NOVICE (SKILLED) group
is statistically significantly larger than that in the SKILLED (NOVICE)

group.
Delay Type CD VD
Prediction Method Pred PredBlend Pred PredBlend
Time 0.823 -0.191 0.013 -0.474
log(Error) -0.920 -0.222 -2.933 -0.464
log(Effort) 0.326 2.317 1.896 -0.683

As shown in Fig. 6, delay values are mostly distributed around
their means and there exist sudden spikes in the sequences.
However, these spikes do not last for a long duration and,
in this closed-loop simulation based experiment, they do not
have a notable effect on the performance. Further experiments
could be conducted to study the effect of variations in the
delay on performance when tested with a network that has a
larger variation of delays.

VI. CONCLUSIONS

This paper presents the first human-in-the-loop evaluation of
the predictor framework of [22-27] in teleoperated UGVs in
terms of its ability to improve vehicle mobility and drivability
in a track following task. Two realizations of the framework
are considered. In the first realization all coupling signals are
predicted in a model-free manner, whereas in the second one
a blended prediction of the heading signal is considered by
linearly combining the model-free prediction with a steering
model based one. The performances of both realizations of the
framework under both constant and varying delays are evalu-
ated with human-in-the-loop simulations, where performance
is measured using three metrics.

Based on the results, four conclusions are drawn: (1)
The predictive framework significantly improves all metrics,
thereby improving vehicle mobility and drivability. (2) The
blended architecture offers more improvement in all three
metrics compared to the purely model-free realization. (3)
There is no direct relation between driver skill level and
level of improvement in metrics when prediction methods are
applied, even though the skilled driver group outperforms the
novice driver group in all the metrics and all the scenarios. (4)
There is no significant difference in any of the metrics under
any conditions between constant and varying delays. These
conclusions encourage further development of the predictor
framework.

Future work includes applying the predictor based frame-
work to actual vehicle platforms, which involves transmitting
packets with actual communication networks, measuring one-
way delays and developing image processing methods to
convert the delayed camera view to the predicted view based
on delayed and predicted vehicle states.
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