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Evaluation of a Predictor Based Framework in
High-Speed Teleoperated Military UGVs

Yingshi Zheng, Mark J. Brudnak, Paramsothy Jayakumar, Jeffrey L. Stein, Tulga Ersal*

Abstract—Mobility of teleoperated unmanned ground vehicles
can be significantly compromised under large communication
delays, if the delays are not compensated. This paper considers
a recently developed delay compensation theory and presents its
first empirical evaluation in improving mobility and drivability
of a high-speed teleoperated vehicle under large delays. The
said delay compensation theory is a predictor based framework.
Two realizations of this framework are considered; a model-
free realization that relies only on model-free predictors, and
a blended realization where the heading predictions from the
model-free predictor are blended with those from a steering-
model based feedforward predictor for a more accurate pre-
diction of the vehicle heading. A teleoperated track following
task is designed in a human-in-the-loop simulation platform. This
platform is used to compare the teleoperation performance with
and without the predictor based framework under both constant
and varying delays. Through repeated measurement analysis of
variance, it is concluded that the predictor based framework
is effective in achieving a higher vehicle speed, more accurate
lateral control and better drivability as indicated by the three
performance metrics of track completion time, track keeping
error, and steering control effort, respectively. In addition, it
is shown that the blended architecture can lead to further
improvements in these metrics compared to using the model-
free predictors alone. The analysis also shows that there is no
statistically significant difference between constant and varying
delay cases in the designed experiment, nor there is any direct
relation between drivers’ skill level and level of improvement in
metrics.

Index Terms—Teleoperation, unmanned ground vehicles, delay
compensation, predictor based framework, human-in-the-loop
experiment

I. INTRODUCTION

A teleoperated unmanned ground vehicle (UGV) is a vehicle

that is remotely driven by an off-board human operator.

The control commands of the human operator and vehicle

response such as vehicle states and on-board camera view

are transmitted between the driver station and the vehicle

via communication networks. One of the main challenges

of teleoperated UGVs is that large communication delays in
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the networks degrade vehicle mobility. This is due to delays

causing noticeable asynchrony between the human operator’s

commands to the vehicle and observations of its response.

This degradation becomes more pronounced at higher vehicle

speeds. At high speeds, the vehicle dynamics become more

critical and there is less time for the operator to respond

to errors in vehicle control and sudden changes in the en-

vironment. For example, in a simulated driving task, in which

human operators were asked to control the vehicle in a lane

while maintaining a speed of 55 mph, driving performance

was found to be significantly degraded with delays of 170 ms

[1].

The literature presents many human-in-the-loop studies of

teleoperated driving under delays; see [2, 3] for comprehensive

reviews and see [4–6] for quantified teleoperated driving per-

formance under delays in terms of vehicle mobility. Of partic-

ular interest for this work are those studies that consider delay

compensation methods to improve performance under delays

[1, 7–19]. Common practical delay compensation methods are

passivity based methods and predictive displays. The former

are mostly applied in those experimental setups where drivers

operate arm-like manipulators to drive small mobile robots

[8–11]. Passivity based methods have been shown to improve

the teleoperation performance in terms of transparency. Trans-

parency is defined as the degree of how well human operators

feel the environment when teleoperating compared to when

they directly interact with it [20]. Hence, transparency is

mostly in the sense of haptics. However, driving teleoperated

vehicles especially at high speeds relies more on vision than

haptic feedback [21]. Therefore, it is unknown how improving

haptic transparency helps with improving vehicle mobility in

high-speed vehicle teleoperation with delays [3]. Furthermore,

since mobile robots are usually operated at low speeds, vehicle

mobility is less sensitive to delays as mentioned above.

The second category of methods, namely, predictive dis-

plays, have been proven effective to compensate delays and

improve vehicle mobility in human-in-the-loop experiments

[12–19]. However, only a few were conducted in the scope

of high-speed teleoperated UGVs with large delays [16–19].

Predictive displays simulate the vehicle response that is likely

to result from the current actions of the operator. Then they

visually display to the operator either the predicted virtual

vehicle in the delayed view [13] or directly the predicted

view [13, 18]. Thus they reduce the asynchrony between the

human’s control actions and the subsequent vehicle response.

A full vehicle model is required to predict the vehicle response,

and the prediction accuracy depends on the accuracy of the

vehicle model. Such high accuracy models, however, may not
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always be available.

In light of the limitations of the state of the art identified

above, and with a focus on high-speed teleoperated driving,

here we pursue a delay compensation method that does not

require knowledge of the full vehicle model to improve teleop-

erated driving performance. A predictor based framework has

been developed previously in [22–25]. Within the framework,

two model-free predictors are implemented to predict the

control commands and vehicle states, respectively, without

requiring to know the governing dynamics of the vehicles

or human operators. The framework with two predictors has

been tested in a pilot study in [26] and showed the potential

of improving the teleoperated UGV mobility performance

under constant round-trip delays of 0.9 s. This predictor

based framework is developed further in [27] to include a

blended architecture for a more accurate heading prediction.

In particular, this architecture combines the feedback heading

prediction of the model-free predictor with the feedforward

heading prediction based on a simple steering model. Only

partial information of the vehicle steering response is needed

to generate the steering model in this blended architecture,

which is in contrast to the full vehicle model used in predictive

displays. The heading prediction accuracy has been evaluated

in open loop in [27], indicating that adding the blended

architecture helps predict the vehicle heading under delays

more accurately compared to using the model-free predictor

alone.

However, in previous work [22–27], the developed pre-

diction methods have not been evaluated with a thorough

human-in-the-loop user study. The analyses have been mostly

theoretical, the only user study being the one in [26] with a

very small number of subjects as a pilot study, without any

blending, and for only constant delays. Performance of the

predictors and the blended architecture under varying delays or

driver skills has not been studied before. This paper addresses

these gaps through the following original contributions:

1) Human-in-the-loop evaluation of the performance of the

predictor based framework in a high-speed teleoperated

UGV setting with large delays.

2) Human-in-the-loop evaluation of the performance of the

predictor based framework without and with the blended

architecture.

3) Analysis of factors of delay type (constant or varying

delays) and different driver skills when teleoperating

with the said predictor based framework without and

with blended architecture.

In the experiments, 19 human drivers controlled a simulated

vehicle in a virtual environment to complete a track following

task under the following conditions: (1) without any delays as

a baseline for teleoperated driving performance; (2) with either

constant or varying round-trip delays, but without predictor

based framework, to quantify performance degradation due

to delays; and (3) with the same amount of delays and

the predictor based framework without and with the blended

architecture to evaluate the changes in performance caused

by the framework. Three metrics, namely, track completion

time, track keeping error and steering control effort, are used
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Fig. 1. Generic paradigm of teleoperated UGV systems. Bilateral delays
cause asynchrony between operators’ control action at the driver station and
the corresponding remote vehicle response.

to quantify vehicle mobility in terms of vehicle’s longitudinal

performance, lateral performance and drivability, respectively.

Through repeated measurement Analysis of Variance (RM-

ANOVA) and t-tests, the metrics based on drivers’ data are

analyzed and changes in vehicle mobility and drivability are

tested for their statistical significance for all the conditions.

The rest of the paper is organized as follows. Sec. II

summarizes the background of the predictor based framework

applied to a teleoperated UGV system. The simulation plat-

form developed for human-in-the-loop experiments to test the

predictor based framework is described in Sec. III. Details of

the design of the human-in-the-loop experiments, including

the test task, test scenarios, selected design parameters and

analysis methods are explained in Sec. IV. Sec. V discusses

the results based on the experimental data and conclusions are

given in Sec. VI.

II. A TELEOPERATED UGV SYSTEM WITH PREDICTOR

BASED FRAMEWORK

A generic teleoperated UGV system is shown in Fig. 1.

Human operators are located at the Driver Station instead of

being on-board the vehicle. They drive the remote Vehicle

Platform by sending the control vector y1(t) that includes

steering δ, throttle Th, and brake Br commands, while

monitoring the vehicle response based on the received camera

view and vehicle state vector y2(t) that includes heading ψ,

speed u and location in X,Y . All these signals and camera

view are transmitted over communication channels and there

exist control delays τ1(t) and sensor delays τ2(t) during

transmission. The round trip delays of τ1(t) + τ2(t) cause

asynchrony in time between operators’ control actions and

their observation of the corresponding vehicle responses. This

asynchrony can make teleoperated driving very challenging

and significantly deteriorate the vehicle mobility performance

as found in [1].

To reduce this asynchrony, a predictor based framework

developed previously in [27] is integrated into the teleoperated

UGV system to compensate delays and predict the undelayed

signals, as shown in Fig. 2. One modification to the teleoper-

ated UGV system in Fig. 1 is that in addition to the vectors

y1(t) and y2(t), their derivatives, ẏ1(t) and ẏ2(t), as well as

the send-time stamp need to be included in the communication

packets. A Driver Predictor and Vehicle Predictor are placed at
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Fig. 2. A predictor based framework with two model-free predictors and a
blended architecture for heading is applied to the teleoperated UGV system
to predict and recover the undelayed signals that are transmitted through the
communication channel.

opposite sides of the communication channel. These predictors

receive the delayed vectors and their derivatives, and perform

a separate prediction on each signal in the vectors. Thus they

generate corresponding predicted outputs ŷ1(t) and ŷ2(t).
Both predictors have the same dynamics:

˙̂yi(t) = ẏi(t− τi(t)) + λi[yi(t− τi(t))− ŷi(t− τi(t))] (1)

for i ∈ {1, 2}, where ŷi(t) are the predictor states as well

as the outputs, and ŷi(t − τi(t)) are the retarded states

that are delayed by the same amount as the measured one-

way delay τi(t). By synchronizing the clocks at the Driver

Station and Vehicle Platform, τi(t) can be determined as the

difference between the send-time stamp included in the packets

and the local receive time. λi is a square matrix with non-

zero terms λj (j = 1, 2, · · · , n) on the diagonal only, as

individual predictor gains to predict the jth signal in the n-

dimensional vector yi(t). Predictor stability and performance

have been well studied in [25] and a design procedure about

how to select the predictor gain has been developed in [27].

Note that both predictors are model-free in the sense that

predictor dynamics in (1) does not involve any information

about the governing equations or parameters of the remote

system, where the delayed signals originate. Being model-

free, predictors are robust to modeling errors and can be

applied to general teleoperated UGV systems regardless of the

vehicle platform or different operators with minimal parameter

retuning. However, the prediction accuracy – i.e., how close

the predicted ŷi(t) is to the undelayed signal yi(t) – may

be lower than model-based approaches if accurate models are

available.

To balance robustness with prediction accuracy, the blended

architecture that was developed in [27] is included to generate

a blended heading output ψB(t), which linearly combines the

heading ψp(t) in the Vehicle Predictor output ŷ2(t) with a

feedforward heading ψFF (t). The blending law is

ψB(t) = (1− α)ψFF (t) + αψp(t) (2)

with a blending weight α between 0 and 1. Note that a steering

model is included in the blended architecture to convert the
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Fig. 3. Human-in-the-loop simulation platform for teleoperated UGV systems
with predictor based framework.

operators’ steering commands δ(t) to vehicle yaw rate and to

generate ψFF (t) by integrating the yaw rate. Since the steering

gains are usually related to vehicle speed, gains are scheduled

depending on the predicted speed signal up(t) from ŷ2(t).
Compared to the predictive display methods where a full

vehicle model is required to perform prediction, the blended

architecture only requires identification and modeling of the

steering subsystem of the vehicle platform. Thus, a minimum

amount of information about the vehicle is used, benefiting

robustness to modeling errors. Only the prediction of vehicle

heading involves blending to achieve higher accuracy. This is

due to the observation from the pilot study in [26] that, among

all the predicted signals, human subjects are most sensitive to

the prediction errors in heading.

With Driver Predictor, Vehicle Predictor, and the blended ar-

chitecture, the final predicted vehicle response vector includes

the blended heading ψB(t) as well as the predicted speed and

location in the Vehicle Predictor output ŷ2(t).
Based on the predicted vehicle response, the delayed camera

view can be processed in two different ways [13]. Specifically,

either the predicted shadow vehicle can be overlaid onto the

delayed camera view, or the view captured from the predicted

vehicle position can be directly displayed. The latter approach

is used in this simulation platform.

The effectiveness of this predictor based framework on

vehicle mobility performance is evaluated through a driver-

in-the-loop experiment in a simulation-based test platform

introduced in the following sections.

III. SIMULATION PLATFORM

A real-time driver-in-the-loop simulation test platform is

developed in MATLAB Simulink to emulate a teleoperated

UGV system as shown in Fig. 3.

The driver station contains a set of Logitech G27 steering

wheel and pedals to generate control commands, as well as

a monitor to provide visual feedback. The physical steering

wheel and pedals are connected as a joystick to the computer

that runs the simulation platform. The encoder reading of the

steering wheel along with the throttle and brake pedal positions

are measured and scaled as the control commands. Also, due
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Fig. 4. The monitor displays the camera view and current vehicle speed. The
hook on the vehicle’s hood serves as a reference of the vehicle’s center.

to the observation that the steering commands generated by a

human do not exceed a frequency of 1 Hz in a majority of

normal driving scenarios [28], a first-order low pass filter with

cutoff frequency of 1 Hz is applied to the steering commands

to reduce measurement noise. Throttle and brake signals are

scaled between 0 and 1 to generate feasible commands for

vehicle powertrain dynamics. The visual driving interface has a

resolution of 1420x800 pixels (i.e., an aspect ratio of 16:9) and

is updated at 20 frame per second (FPS), which is within the

typical frame rate range used for teleoperated vehicles [29, 30].

An example of the visual driving interface is shown in

Fig. 4. It contains the current vehicle longitudinal speed

information and a first-person view that is captured from a

camera placed above the driver’s seat within the vehicle model

in the 3D environment. The camera has a horizontal and

vertical field of view (FOV) of 55 deg and 33 deg, respectively,

and the environment viewed through the left-half of the vehicle

windshield at the driver’s side is captured. The FOVs of the

camera are set within the common values used for teleoperated

navigation tasks [31, 32].

On the vehicle side, a typical military truck, namely,

a notional High Mobility Multipurpose Wheeled Vehicle

(HMMWV), is chosen as the vehicle platform. The hook on

this vehicle’s hood serves as a reference of the vehicle’s center,

i.e., if the vehicle is driven on a dashed straight line and the

hook aligns with the closest strip as shown in Fig. 4, the center

of the vehicle is exactly on the line. The vehicle is simulated

using the same model as in [27], including the 14 DoF vehicle

dynamics and Pacejka tire model that were integrated in [33],

and the powertrain model from [34] with a 6L V8 diesel engine

map, drivetrain and automatic transmission. The vehicle is

animated in the virtual environment using the MATLAB

Simulink 3D Animation Toolbox.

The simulation model is run using the ODE4 solver, with

a fixed time step of 0.01 s. The Simulink Execution Control

block is included to slow down the simulation to real time. The

signals transmitted between the Driver side and the Vehicle

side are control commands (including steering, throttle and

brake), vehicle states (including heading angle, global position

and vehicle speed) and their derivatives as required by the

predictors. While the derivative of all the vehicle states are

directly available within the simulated vehicle model, numer-

ical differentiations are performed on the control commands,

because only the measurements of commands are available

from the Logitech G27 gaming set. This simulation platform is

not set for distributed simulation. Instead, both the driver side

and vehicle side are simulated in the same Simulink model on

one computer and signals are transmitted internally without a

physical communication network. Therefore, simulated delays,

either constant or varying, are added optionally to simulate a

teleoperated vehicle system with the delays of interest. This is

further explained in detail in Sec. IV-B. Control delays τ1(t)
and sensor delays τ2(t) can be specified independently, either

as a predefined time sequence or as a random process. Also,

the same one-way delay values for each packet are directly

provided to the predictors instead of through measurement,

thus zero measurement error on the delays is assumed.

The simulation platform also has the general option to

activate or deactivate the predictor based framework without

any structural change. When all the terms of the predictor

parameters λ in the Driver Predictor and Vehicle Predictor

are set to zero, there is no prediction of control commands

and vehicle states using model-free predictors. As for the

vehicle heading prediction, blended architecture is optional

to use, as well. A transfer function based steering model is

developed based on the lateral response of the same HMMWV

vehicle platform as in [27] and implemented in the blended

architecture. The blending weight α can be adjusted to gen-

erate different blendings of heading. When α = 1, blended

heading completely relies on the predictor outputs and thus

the predictor based framework is model-free, emphasizing

robustness to modeling error. When α is set between 0 and 1,

blended heading is a linear combination of outputs from the

Vehicle Predictor and feedforward heading, and can improve

the prediction accuracy of heading even more than the former

case of using the Vehicle Predictor only (i.e., α = 1), as

studied in [27].

Note that in Fig. 3, when the teleoperated UGV is simu-

lated in the virtual environment, there exists one difference

compared to Fig. 2: the camera view is not transmitted as

video frames. Instead, it is directly available from the virtual

environment by placing the vehicle to the required position.

By moving the vehicle to the position that is specified by the

predicted location and heading, the predicted view is readily

displayed in the visual interface.

IV. HUMAN-IN-THE-LOOP EXPERIMENTS

Human-in-the-loop experiments were performed using the

aforementioned test platform to evaluate the performance of

teleoperated UGVs when using the predictor based framework

under both constant and varying delays. The experiment design

including the test task and scenarios, test setup, test procedures

and analysis methods are described in detail in this section.

A. Experiment Design

A test track is generated in the virtual environment as shown

in Fig. 5. The track (in gray) is 810 meters long and 10 meters

wide with three left turns, three right turns, and a dashed, white

centerline. Shoulders of 6 meters width (in dark green) are

located on either side of the track. The safe speed at each turn

is determined prior to the test as the maximum allowable speed

when the vehicle can successfully be driven on the centerline

without causing any tire lift-off. The safe speed is displayed
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on a traffic sign that is placed several meters before each turn

to warn test subjects about the upcoming turn. Trees at the

turns and other landmarks such as mountains, houses, corn

fields and water ponds serve as visual cues to aid the drivers

on speed and distance assessment. In the training session of

the experiment a reversed version of the track is used. During

the testing session, the original track and its mirrored version

are considered as two tracks for testing.

The task of the experiment is designed to be related to

real-world military applications. Military vehicles may need to

drive with minimum time-to-goal targets to minimize exposure

time. Similarly, they may need to follow the tracks left by

another vehicle to minimize visual signature. Hence, the task

for test subjects is to operate the vehicle to complete the track

as fast as possible while following the track’s centerline as

closely as possible.

Three performance metrics are considered as the dependent

variables of the experiment: track completion time, track

keeping error and steering control effort. Track completion

time captures how fast the vehicle is driven along the track

from start line to finish line. Track keeping error is calculated

as the area between the trajectory of the vehicle and track’s

centerline, indicating how close the vehicle follows the cen-

terline. These two metrics reflect the longitudinal and lateral

mobility performance of the vehicle, respectively. Smaller met-

rics lead to better teleoperated driving performance and thus

higher mobility. Steering effort is determined as the average

magnitude of the steering wheel angle in degrees, aiming to

capture the drivability of the vehicle. In a teleoperated driving

task with delays, overactuation in the form of oversteering

and repeated corrections is expected [35]. Smaller steering

effort reflects that subjects feel easier and more comfortable

to control the vehicle to complete the task. The above three

metrics are referred to as Time, Error and Effort, respectively.

Two independent variables that may affect the dependent

variables are studied: Delay Type and Prediction Method.

Delay Type can be chosen from {CD,VD}, where CD or

VD refer to the setups with non-zero bilateral constant delays

or varying delays, respectively. Prediction Method is among

{NoPred,Pred,PredBlend}, where NoPred represents the

setup with non-zero delays, but without any prediction. The

only difference between the method of Pred and PredBlend
is the α value. For Pred, α = 1 so that only the two

model-free predictors are activated, whereas for PredBlend,

α is selected to be 0.5 and a resultant blended heading

prediction is generated with both the predictors and blended

architecture included in the setup. The parameter α is chosen

using the optimization approach in [27]. Specifically, α = 0.5
leads to the most accurate vehicle heading prediction in open

loop under the configured delay values and predictors in this

experiment. This open-loop optimization is employed only as

a design guideline, as the open-loop optimal value may not

be the optimal one for closed loop. Finding the latter is not

critical for the purposes of this work and is thus left for future

work. The detailed delay values and predictor parameters used

in the test are presented in Section IV-B and Section IV-C,

respectively.

In summary, the experiment follows a 2 (Delay Type with

two levels) × 3 (Prediction Method with three levels) within-

subjects factorial design. The goal of the experiment is to study

how the Delay Type and Prediction Method affect the vehicle

mobility and drivability in teleoperated UGVs at high speed.

Seven scenarios with three repetitions in each scenario are

tested. Seven scenarios include one NoDelay scenario with

zero delays used as the baseline performance of human drivers

to handle this track-following driving task, as well as six

scenarios with non-zero delays and different combinations of

Delay Type and Prediction Method. Thus, a total of 21 test

runs need to be completed by each test subject. Each run has

a different setup, combining one of the scenarios with one

of the test tracks. The order of the runs is randomized in an

evenly distributed manner to reduce the learning effects on a

single scenario or one track. Specifically, no single scenario

or the same track is tested twice in a row and one scenario is

not tested more than the others.

B. Test Setup: Delays

In the setups for the scenarios except NoDelay, constant

delays or varying delay sequences are generated based on real

network data. This procedure is described in detail below.

Round-trip time (RTT) delays for teleoperated UGV sys-

tems generally vary from around 0.1 s to more than 1 s,

depending on the types of communication connections (e.g.,

radio/WLAN, cellular network, satellite, etc.), communication

distance and bandwidth. Longer distance and lower bandwidth

generally lead to larger RTT. Some RTT values were reported

in teleoperated UGV systems with physical communication

networks [36–38]. In [36], an average of 0.121 s RTT was

measured based on a teleoperated vehicle road test with 3G

cellular network, while the peak delays were more than 1 s. In

[37], RTT delays were measured as a summation of a one-way

delay of 0.33 s through a low-bandwidth radio link and another

one-way delay of 0.55 s through a high-bandwidth WLAN

video link. In [38], RTT delays in a ViaSat satellite link were

around 0.75 s, when the Driver Station and Vehicle Platform

were located in Washington DC and California, respectively.

This RTT range is also aligned with the RTT values used

in most of the simulation based experiments in the literature

[1, 17, 18, 39, 40].

To simulate a representative teleoperated UGV system, large

round-trip delays of around 0.9 s are tested. Specifically, they

are distributed in the two ways of communication as control
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Fig. 6. Simulated varying delay sequences of (a) control delays and (b) sensor
delays, generated by the corresponding fitted GEV models. Mean values are
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Table I. Simulated varying control and sensor delays generated by the fitted
GEV models.

Fitted GEV
Mean (s)

Standard

ξ μ σ deviation (s)

Control delays 0.475 0.278 0.0007 0.288 0.024

Sensor delays 0.386 0.617 0.0014 0.632 0.037

delays of around 0.3 s and sensor delays of around 0.6 s.

This choice reflects the general knowledge that sensor delays

are typically higher than control delays due to the larger

packet size and conversions associated with video feeds. For

each scenario involving CD, control commands and vehicle

response are delayed by constant values of 0.3 s and 0.6

s, respectively. For scenarios with VD, delay sequences are

generated based on data collected in [22] using an actual

network between Ann Arbor, Michigan (MI) and Palo Alto,

California (CA). This network is referred to as the MI-CA

network in the rest of the paper.

A Generalized Extreme Value (GEV) distribution is used

to represent the MI-CA network as a probability distribution

delay model. Its probability density function is expressed as

fξ �=0,μ,σ =
1

σ
(1 + ξ x−μ

σ )−1−1/ξexp(−(1 + ξ x−μ
σ )−1/ξ)

fξ=0,μ,σ =
1

σ
e−

x−μ
σ exp(−e−

x−μ
σ )

(3)

where x is the random variable of delay value and ξ, μ, σ are

the shape, location and scale parameters, respectively. When

ξ > 0, a heavy tailed distribution can be represented that has a

lower bound μ− σ
ξ based on the extreme value theory. A GEV

distribution model, denoted as GEV(ξ, μ, σ), with ξ = 0.707,

μ = 0.0546, σ = 0.0012 fits well with the delay distribution

of MI-CA network, whose mean and standard deviation are

0.058 s and 0.006 s. 5 and 9 independent randomly generated

sequences using GEV(0.707, 0.0546, 0.0012) are summed

respectively to simulate sequences of varying control and

sensor delays that have mean values close to the corresponding

constant values of 0.3 s and 0.6 s.

The histograms of summed sequences are fitted again using

GEV distributions. Then new sets of sequences are randomly

generated based on the fitted distributions for 150 s and are

used as the simulated control and sensor delays in the tests, as

shown in Fig. 6. They meet the assumption that delays can be

modeled using a two-time-scale Markov Chain and thus the

predictor stability with varying delay can be established as in

[25]. The fitted parameters of the resulting GEV distributions

as well as means and standard deviations of the simulated

delays are listed in Table I. The mean control and sensor delays

are 0.288 s and 0.632 s, respectively, and thus for the varying

delay case, the round-trip delays have a mean of 0.920 s.

No physical network is included in the simulator and factors

like packet reordering and dropping are not considered based

on the negligible values observed in the tested networks [22,

34]. Only the simulated communication delays are considered

for compensation. Other than that, mechanical delays related to

the vehicle such as the delays in the steering and brake systems

are captured in the simulated 14 DoF vehicle dynamics. Based

on the time constants of the vehicle model, mechanical delays

are on the order of 0.1 s. Computational delay of applying

the predictors with or without the blended architecture is

negligible due to the simple structure of the predictors and

blended architecture. Delays of rendering the virtual interface

are also negligible in this simulation environment.

C. Test Setup: Predictor Based Framework Parameters

The design parameters in the predictor based framework

include the λ terms in both the Driver Predictor and Vehicle

Predictor to predict each of the transmitted signals.

Predictor parameters λ are chosen independently for each

transmitted signal type and based on the design procedure

developed in [27] considering both predictor stability and

performance. The values are listed in Table II. Firstly, all λ
are between 0 and the maximum allowable range to ensure

predictor’s asymptotic stability. The maximum values are

denoted as λmax(τ) for constant delay τ and λmax(τ(t)) for

varying delay τ(t) and are calculated as follows [25]. For

constant delays,

λmax(τ) =
π

2τ
(4)

and for varying delays τ(t) that can be modeled using a two-

time-scale Markov Chain,

λmax(τ(t)) =
3

2τavg(t)
(5)

where τavg(t) is the average value of τ(t). Pilot test data

collected in [26] under the same test task and scenario

are analyzed to provide some insights into each transmitted

signal y(t) with constant measured delays τm. One relevant

information is the dominant frequency components within the

coupling error c(t). c(t) is defined as the difference between

an undelayed and delayed signal, i.e.,

c(t) := y(t)− y(t− τm) (6)

To achieve good steady state prediction performance, it is

recommended that the predictor bandwidth ωp is greater than

the coupling error bandwidth ωc [27]. Here, the coupling error

bandwidth ωc is estimated as the frequency until which the

signal power of c(t) is accumulated to reach 90% of the total

power within the Nyquist frequency of c(t). The predictor
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Table II. Predictor settings for individual signals of interest

Predicted
Signal

Measured
Delay τm [s]

ωc

[rad/s]
λ [s−1]

Sat. &
Reset.

ωp

[rad/s]

Throttle

0.3

11.5 0.30λmax(0.3) No 1.65

Brake 19.4 0.30λmax(0.3) No 1.65

Steering 5.37 0.10λmax(0.3) Yes 0.94

Speed

0.6

3.35

0.40λmax(0.3)

Yes

1.92
Global X 1.88 No

Global Y 1.30 No

Heading 1.86 Yes

bandwidth ωp is related to the selection of λ and is the smallest

positive value that satisfies

λ = 2ωp sin(τpωp) (7)

where τp is the amount of delay to be compensated by the

predictor. Larger λ and smaller τp result in larger ωp. To

achieve good transient prediction performance, larger λ leads

to faster transient, but causes greater magnitude of overshoot

in ŷ(t). Applying the saturation & resetting scheme developed

in [27] could help reduce the overshoot when the transmitted

signal y(t) has change of direction. A detailed analysis of

λ’s effect on the predictor’s overall performance in terms of

steady state and transient with respect to the constant delays

has been addressed in [27]. The λ values for scenarios with

varying delays are chosen to be the same as the λ values for

constant delays.

Taking into account the trade-off in λ between steady

state and transient performance, λ for each transmitted signal

is designed as shown in Table II. Note that for control

commands of throttle, brake and steering, it is unlikely that

the predictor bandwidth ωp can cover all the frequencies up

to ωc. Thus, smaller λ values are chosen to minimize the

potentially significant degradation of steady state performance.

On the contrary, ωc for the vehicle states of speed, position

and heading are relatively small. Therefore, partial delays of

0.3 s (i.e., τp = 0.3) out of 0.6 s measured (i.e., τm = 0.6)

are compensated with the selected λ values to satisfy the

expectation of ωp > ωc as much as possible. Since frequent

direction changes in steering, vehicle speed and heading are

observed, saturation and resetting scheme is applied when

predicting these three signals to reduce the effect of overshoot

on transient performance. The predictor outputs for throttle

and brake commands are saturated between 0 and 1, as well.

D. Test Procedure

Prior to the test, subjects were asked to fill out an informed

consent form and answered some basic background questions

about their age, proficiency of driving a vehicle in the real

world, and proficiency of driving in a virtual environment with

a gaming steering wheel and pedals.

The whole test process lasted no more than 2 hours and was

divided into a training session (1 hour) and a testing session

(45 minutes). The training session was necessary to help

subjects adapt to driving in a simulation based teleoperation

setup under large delays. Subjects were verbally instructed

on the test details, including the track-following driving task,

the performance goals, as well as the seven scenarios to test.

They were informed that driving as fast and as close to the

centerline as possible were equally important. However, the

subjects were not told how the performance metrics were

specifically measured and were allowed to adopt a driving

behavior suitable for themselves to meet the performance goals

according to their own priorities.

The remaining time in the training session was left for

subjects to adapt to the teleoperated driving setup and practice

all seven test scenarios one by one. The current scenario to

practice was visually displayed on the visual driving interface

and the three performance metrics were calculated each time

the subjects completed the driving task to monitor their

performance under training. A scenario would be practiced

until metrics between the successive trials indicated consistent

performance and subjects felt confident about driving in such

a scenario. Subjects also could ask for more time to be

distributed on the scenarios with which they were not familiar.

In the testing session, each subject was asked to complete

a total of 21 valid runs in randomized order, with three

repetitions in each scenario. The subjects were aware of the

scenario in each run before testing. The run was considered

valid if none of the following conditions were observed:

• Vehicle was off track for more than 5 s or did not pass

the finish line of the track.

• At least two tires lifted off in the vehicle model.

• Average vehicle speed was less than 25 mph.

A warning was displayed on the visual driving interface when

one of the tires lifted off the ground. The 25 mph speed

bound was determined based on the driving data of the beta

test. In the beta test, a human driver with rich experience of

performing teleoperated driving under delays went through the

training session and became well-trained to generate replicates

of test run data with consistent performance. In the most chal-

lenging scenarios with varying delay and without prediction

(i.e., VD × NoPred), the driver was able to complete the

task with an average vehicle speed of 30 mph. Up to 5 mph

reduction in speed compared to the beta test was then allowed

in the experiments, resulting in the 25 mph minimum bound

on average speed. A run with average speed lower than 25

mph meant that the subject did not push the vehicle dynamics

to the limit to complete the driving task in this run. An average

speed of more than 25 mph is considered as high speed in this

experiment, given that other vehicles or ground robot platforms

are usually tested in speeds of only several m/s [41]. After

all test runs were completed, subjects were thanked for their

participation and received a compensation.

E. Analysis Methods

2-way repeated measures analysis of variance (RM-

ANOVA) was used to study the effect of the two independent

variables (i.e., Delay Type and Prediction Method) on each of

the dependent variables (i.e., performance metrics Time, Error
and Effort). Applying RM-ANOVA requires that data meet

two assumptions: normality (whether metrics follow normal

distribution) and sphericity (whether variance of metrics within

each group are equal). For each metric, normality was checked

using the Anderson-Darling test and sphericity was checked

by comparing variances across the six test conditions of Delay
Type × Prediction Method based on Levene’s test. Processing
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such as performing log scale transformation on data was done

when needed to satisfy the assumption of normality.

Two null hypotheses for each metric were tested using an

F-test based on Type III sums of squares with 95% confidence

level. These null hypotheses were:

1) There does not exist a significant difference in perfor-

mance metrics when different prediction methods are

applied to compensate delays.

2) There does not exist a significant difference in perfor-

mance metrics between the constant and varying delays

used for testing.

If the F-test indicated that at least one mean is different from

the rest (i.e., P < 0.05), Fisher’s least significant difference

(LSD) method was used to identify the groups with pairwise

significant differences in the means.

Another dimension to study was whether there was any

correlation between drivers’ skill level and performance in this

teleoperated driving task with large delays. Metrics of Time
and Error were normalized to their mean values among all

drivers’ data. An overall performance metric Pcomb combining

normalized Time and Error was defined:

Pcomb := 0.5
Time

Timeavg

+ 0.5
Error

Erroravg

(8)

The smaller Pcomb was, the better a driver’s overall per-

formance was. The two metrics were combined with equal

weights, because the drivers were informed before the test that

driving fast and accurately would be evaluated equally. Pcomb

in scenarios (CD × NoPred) and (VD × NoPred) was used

as the criterion to distinguish driver skill level. All drivers

were divided into 2 skill groups, SKILLED and NOVICE,

via 2-means clustering.

The following null hypotheses were tested using two-sample

t-tests with 95% confidence level:

1) Means of metrics for SKILLED drivers are equal to

those of NOVICE drivers under the same scenario.

2) Means of level of improvement in metrics for SKILLED
drivers and NOVICE drivers after applying the predictor

based framework are equal.

V. RESULTS AND DISCUSSION

The simulation was run in a Dell Z210 Desktop computer

with CPU core frequency of 3.4 GHz. The experiments were

approved by the University of Michigan Health Sciences and

Behavioral Sciences Institutional Review Board (UM IRB

#HUM00112376). Drivers at all skill levels were welcomed

and were recruited publicly through email announcements and

flyers. A total of 22 test subjects participated in the experi-

ments. 2 of them were observed to still struggle with com-

pleting the driving task especially in the delayed conditions

without any prediction after 1 hour of training session. The

background information collected revealed that they reported

to have only 1-6 months of experience on driving vehicles in

the real world and no experience of driving virtual vehicles at

all. Another subject did not push the vehicle to its limits as

instructed. Therefore, these three subjects could not complete

the experiments successfully and their data are not included

in the analysis.
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Fig. 7. Distribution of performance metrics of track completion time and
track following error for various scenarios among all test subjects. Exp Driver
denotes the expert teleoperator in the beta test.

The remaining 19 subjects had an average age of 22.7 years

old with standard deviation of 2.6 years. Majority of them

were familiar with doing daily driving in the real world: 18

subjects reported to own driver licenses and 15 of them had

more than 2 years of driving experience. However, only 6

subjects were familiar with driving in a virtual environment

such as playing racing games. In terms of the situation most

similar to this experiment, where humans drive the vehicle in

simulated environment using steering wheel and pedals, only

3 of them had prior experience. Given the general lack of

experience among the test subjects on driving in the used test

setup, the importance of training session is emphasized again

to help them adapt to the test setup and become familiar with

the scenarios especially when large round trip delays of around

0.9 s were added into the system.

The three performance metrics are calculated based on

19 subjects’ data. Averaging the three repeated runs within

the same scenario, metrics of track completion time (Time)

and track following error (Error) from each driver’s data are

plotted in Fig. 7. NoPred, Pred and PredBlend represent

the scenarios with different prediction methods. Delay type

CD and VD stands for the constant and varying bilateral

delays. Each ellipse encloses all the data points under the

same scenario with minimum volume and represents the

distribution of subjects’ driving performance. The numbers

marked in scenario (NoPred x CD or VD) represent the nth

driver’s metric. As mentioned in Sec. IV-E, Pcomb for each

driver is calculated. Drivers 3, 4, 6, 7, 8, 10, 13 and 14

are classified into the group of SKILLED and the remaining

drivers comprise the NOVICE skill group. The performance

of the aforementioned experienced driver in the beta test is

marked in asterisk. Despite the performance variation among

drivers, metrics of Time and Error are reduced in the scenarios

of Pred and PredBlend compared to the scenario of NoPred,

which indicates better performance. Similar trends are seen

when tested with either constant delays or varying delays.

The means and standard deviations of 19 subjects’ data

are reported in Table III. For each metric, the first row with

parentheses and the second row with brackets represent the

results of SKILLED and NOVICE driver group, respectively.

NoDelay is considered as the baseline of performance metrics.
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Table III. Comparison of means and standard deviations of metrics under different scenarios. Numbers in parentheses and brackets are for the SKILLED
and NOVICE group, respectively.

Means and Stds Delay Type CD VD
NoDelay Prediction Method NoPred Pred PredBlend NoPred Pred PredBlend

(58.9 ± 2.34)
Time [s]

(62.1 ± 2.03) (61.3 ± 2.08) (60.4 ± 2.13) (62.5 ± 2.35) (61.6 ± 2.07) (60.5 ± 2.33)

[60.9 ± 2.60] [64.3 ± 2.00] [63.9 ± 1.59] [62.8 ± 1.93] [64.8 ± 2.36] [64.4 ± 2.12] [62.9 ± 2.12]

(578 ± 180)
Error [m2]

(1178 ± 210) (1019 ± 205) (850 ± 180) (1163 ± 270) (1141 ± 197) (910 ± 158)

[662 ± 165] [1490 ± 260] [1155 ± 159] [998 ± 161] [1499 ± 211] [1148 ± 152] [1045 ± 183]

(36.7 ± 1.11)
Effort [deg]

(43.9 ± 2.97) (39.2 ± 1.86) (38.4 ± 1.22) (43.8 ± 2.95) (39.3 ± 1.78) (39.1 ± 1.76)

[36.5 ± 1.15] [45.3 ± 3.41] [39.9 ± 1.91] [39.5 ± 1.86] [45.3 ± 3.03] [40.4 ± 2.43] [39.3 ± 2.21]

Table IV. RM-ANOVA table for the metric Time.
Factor DF Adjusted SS Adjusted MS F P

Delay 1 0.0019 0.0019 2.71 0.101

Method 2 0.0456 0.0228 31.71 0.000

Delay ×
Method

2 0.0007 0.0007 0.51 0.601

Skill group 1 0.1277 0.1277 18.99 0.000

Method ×
Skill group

2 0.0005 0.0003 0.36 0.697

Subject 17 0.1143 0.0067 4.75 0.000

Repetition 38 0.0538 0.0014 1.97 0.001

Error 278 0.2000 0.0007

Total 341 0.5452

Table V. RM-ANOVA table for the metric log(Error).

Factor DF Adjusted SS Adjusted MS F P

Delay 1 0.0021 0.0021 3.40 0.066

Method 2 0.1263 0.0631 103.33 0.000

Delay ×
Method

2 0.0013 0.0006 1.04 0.354

Skill group 1 0.0445 0.0445 25.19 0.000

Method ×
Skill group

2 0.0083 0.0041 6.79 0.001

Subject 17 0.0300 0.0018 2.57 0.008

Repetition 38 0.0261 0.0007 1.13 0.290

Error 278 0.1699 0.0006

Total 341 0.4171

It is observed that the metrics in scenario NoPred without

any prediction are much worse than the baseline NoDelay.

Applying the predictor based framework either without or

with the blended architecture (Pred or PredBlend) helps

with reducing the means of all three metrics compared to

NoPred. Thus, the predictor framework helps improve vehicle

mobility and drivability as quantified by the three metrics.

Additionally, the SKILLED group outperforms the NOVICE
group in almost all the scenarios and metrics. The detailed

results related to the effect of prediction methods, skill groups,

and delay types are presented in Section V-A, Section V-B and

Section V-C, respectively.

A. Relation between Prediction Methods and Performance

To study whether the improvement is statistically significant,

RM-ANOVA is applied to the data within the six scenarios

with delays only, since the metrics in scenario NoPred are

significantly different than those in other scenarios.

ANOVA is based on the assumption of normality. Hence,

normality of the metrics are checked first using Anderson-

Darling Test and only the calculated metrics of Time follow

normal distribution with 95% confidence. For the remaining

two metrics of Error and Effort, box-cox transformation with

λ = 0 in Minitab 17 is applied, which is equivalent to taking

the natural logarithm of the metrics. Normality then holds

Table VI. RM-ANOVA table for the metric log(Effort).
Factor DF Adjusted SS Adjusted MS F P

Delay 1 0.0001 0.0001 0.39 0.531

Method 2 0.0811 0.0406 264.31 0.000

Delay ×
Method

2 0.0001 0.0001 0.20 0.818

Skill group 1 0.0034 0.0034 2.40 0.140

Method ×
Skill group

2 0.0002 0.0001 0.73 0.482

Subject 17 0.0244 0.0014 8.88 0.000

Repetition 38 0.0061 0.0002 1.05 0.394

Error 278 0.0427 0.0002

Total 341 0.1615

for the transformed metrics log(Error) and log(Effort) based

on the Anderson-Darling Test with 95% confidence. Through

Levene’s test, the null hypothesis of equal variances of metrics

Time, log(Error) and log(Effort) fails to be rejected with 95%

confidence and therefore the sphericity condition also holds

for the metrics.

Two-way RM-ANOVA on each metric of Time, log(Error)

and log(Effort) is performed individually in Minitab 17 as a

general linear model. The two factors of interest are Delay
Type and Prediction Method. The factor of skill group and

its nested factor of subject and repetition are also included in

the model, but set as random or uncontrolled to set up the

requirement of repeated measures.

The detailed RM-ANOVA tables are shown in Table IV–

VI. With significance level of 0.05, P values of the F-test

with respect to the factor of Prediction Method are close

to 0 and much smaller than 0.05 in all three RM-ANOVA

tables, indicating a significant difference in all three metrics

among different prediction methods. The effect sizes (partial

eta squared) of the factor Prediction Method for the metrics

Time, log(Error) and log(Effort) are 0.085, 0.329 and 0.522,

respectively. Pairwise comparison results are shown in Fig.

8, where the asterisk represents that there exists significant

difference in mean pairwise. In terms of the effect of Delay
Type, the effect sizes are very close to 0 and the P value for the

metrics of Time, Error, Effort in the RM-ANOVA results are

0.101, 0.066 and 0.531, respectively. All P values are greater

than 0.05 and thus the hypothesis of no significant difference

between constant and varying delays tested cannot be rejected

with 95% confidence level.

Define the level of improvement LoI as:

LoI :=
|rp − rd|
|rnd − rd| (9)

where r is the mean of a given transformed metric, with

subscript nd representing NoDelay, subscript p and d rep-

resenting the scenarios with prediction (Pred or PredBlend)
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Table VII. The level of improvement in performance metrics with Pred or
PredBlend, compared to NoPred.

Delay Type CD VD
Prediction Method Pred PredBlend Pred PredBlend

Time 15% 47% 17% 52%

log(Error) 26% 47% 20% 40%

log(Effort) 60% 68% 57% 66%
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Fig. 8. Pairwise ANOVA comparison results on the three performance
metrics Time, log(Error), log(Effort) with different delay types and prediction
methods. There exists significant difference in mean among NoPred, Pred,
PredBlend, indicated by the asterisks.

and without prediction (NoPred), respectively, with the same

type of delays of either CD or VD. The levels of improvement

for the three metrics are shown in Table VII. The larger LoI is,

the more improvement in performance subjects benefit from

the predictor based framework without and with the blended

architecture.

Consider the constant delay case first. Compared to NoPred,

metrics of Time, log(Error) and log(Effort) are improved

significantly by 15%, 26% and 60%, respectively, in scenario

Pred. With PredBlend, they are all improved significantly

by 47%, 47% and 68%. Track completion time and track

keeping error are improved more using PredBlend than Pred
by 32% and 21%, respectively, and steering control effort is

improved more by 8%. Similar level of improvement can also

be observed in the varying delay case.

B. Relation between Driver Skill and Performance

In Table III, the SKILLED driver group (with means μ1)

outperforms NOVICE group (with means μ2) in almost all the

scenarios and metrics. 2-sample one-tailed t-tests with 95%

confidence are performed to study whether the difference in

mean of performance between the two groups is statistically

significant. The null hypothesis H0 and its alternative hypoth-

esis Ha1 and Ha2 are defined as:

H0 : μ1 = μ2, Ha1 : μ1 < μ2, Ha2 : μ1 > μ2 (10)

Error and Effort are transformed to log(Error) and log(Effort)
to meet the normality assumption of t-tests. For each scenario

and each metric Time, log(Error) and log(Effort), pooled

standard deviation of two groups are calculated and t-values

are listed in Table VIII. The sample sizes of the SKILLED
group and NOVICE group are N1 = 24 and N2 = 33,

respectively. The critical value is t0.05,55 = −1.673. Each

cell colored in green indicates that H0 can be rejected with

95% confidence and Ha1 when t < t0.05,55 is accepted. Cells

not colored show no significant evidence for such scenario

and metric. Overall, the SKILLED group has statistically

better performance in terms of Time and log(Error) than the

NOVICE group.
Similarly, level of improvements LoI for Time, log(Error)

and log(Effort) within each subject are calculated based on

(9). Pooled standard deviation of two groups is calculated and

t-values of LoI for different prediction methods and delay

types are listed in Table IX. Same hypotheses as in (10)

are tested and the critical value is t0.05,17 = −1.740. Cells

colored indicate that H0 can be rejected with 95% confidence.

Green cells mean Ha1 when t < t0.05,17 is accepted and

the NOVICE group improves its performance more than the

SKILLED group when predictors are used in the varying

delay scenario. Blue cells mean Ha2 when t > t0.95,17 is

accepted and the SKILLED group improves its performance

more (larger LoI) when applying predictors under varying

delays as well as predictors with blended architecture under

constant delays. The remaining LoIs are not significantly

different due to large variations within each group. There

is no straight conclusion that relatively novice drivers, who

do not perform well in teleoperated driving with delays, will

have more performance improvement than skilled drivers after

applying the predictor based framework.
C. Relation between Delay Types and Performance

Note that means and standard deviations of the metrics with

VD are slightly larger than those with CD in Table III, but

the difference is negligible and not significant. The level of

improvement in metrics between VD and CD shown in Table

VII are also similar with the predictor based framework, as the

same λ values in the predictors are used for scenarios with both

constant and varying delays. In the literature, Refs. [17, 40]

reported detectable performance difference between constant

and varying delays (with a delay variation ratio of 0.3 to 0.67

between the standard deviation and mean of delays), while no

significant difference between them was observed in [7], with

a ratio of 0.5. In contrast, the said ratio is less than 0.1 in

our experiment and it is more unlikely to lead to significant

performance difference. However, our delay sequences are

generated based on the measurements of an actual network and

are therefore more realistic to represent an actual network con-

nection than the aforementioned experiments in the literature.
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Table VIII. t-values of the 2-sample one-tailed t-tests to compare two skill groups’ mean performance, with significance level of 0.05. Green cells are those
for which the SKILLED group has statistically better performance than the NOVICE group.

t-values Delay Type CD VD
NoDelay Prediction Method NoPred Pred PredBlend NoPred Pred PredBlend

-3.005 Time -4.115 -5.329 -4.381 -3.734 -4.798 -4.077

-1.991 log(Error) -4.852 -2.899 -3.306 -5.382 -0.296 -2.807

0.726 log(Effort) -1.653 -1.426 -2.601 -1.901 -1.978 -0.338

Table IX. t-values of the 2-sample one-tailed t-tests to compare the level of
improvement (LoI) in performance metrics between two skill groups. Green
(blue) cells are those for which the LoI in the NOVICE (SKILLED) group

is statistically significantly larger than that in the SKILLED (NOVICE)
group.

Delay Type CD VD
Prediction Method Pred PredBlend Pred PredBlend

Time 0.823 -0.191 0.013 -0.474

log(Error) -0.920 -0.222 -2.933 -0.464

log(Effort) 0.326 2.317 1.896 -0.683

As shown in Fig. 6, delay values are mostly distributed around

their means and there exist sudden spikes in the sequences.

However, these spikes do not last for a long duration and,

in this closed-loop simulation based experiment, they do not

have a notable effect on the performance. Further experiments

could be conducted to study the effect of variations in the

delay on performance when tested with a network that has a

larger variation of delays.

VI. CONCLUSIONS

This paper presents the first human-in-the-loop evaluation of

the predictor framework of [22–27] in teleoperated UGVs in

terms of its ability to improve vehicle mobility and drivability

in a track following task. Two realizations of the framework

are considered. In the first realization all coupling signals are

predicted in a model-free manner, whereas in the second one

a blended prediction of the heading signal is considered by

linearly combining the model-free prediction with a steering

model based one. The performances of both realizations of the

framework under both constant and varying delays are evalu-

ated with human-in-the-loop simulations, where performance

is measured using three metrics.

Based on the results, four conclusions are drawn: (1)

The predictive framework significantly improves all metrics,

thereby improving vehicle mobility and drivability. (2) The

blended architecture offers more improvement in all three

metrics compared to the purely model-free realization. (3)

There is no direct relation between driver skill level and

level of improvement in metrics when prediction methods are

applied, even though the skilled driver group outperforms the

novice driver group in all the metrics and all the scenarios. (4)

There is no significant difference in any of the metrics under

any conditions between constant and varying delays. These

conclusions encourage further development of the predictor

framework.

Future work includes applying the predictor based frame-

work to actual vehicle platforms, which involves transmitting

packets with actual communication networks, measuring one-

way delays and developing image processing methods to

convert the delayed camera view to the predicted view based

on delayed and predicted vehicle states.
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