Teaching & Learning — Programming

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Live Coding: A Review of the Literature

Ana Selvaraj
UC San Diego
aselvara@ucsd.edu

Leo Porter
UC San Diego
leporter@eng.ucsd.edu

ABSTRACT

One of the goals of computing education research is to document
the potential strengths and weaknesses of contemporary teaching
methods in computing. Live coding has recently gained attention
as one of the best practices for teaching programming. To offer a
more comprehensive understanding of the existing body of research
about live coding, we reviewed papers in computing education re-
search that investigated the value of live coding in an educational
setting. We categorized each paper based on (1) how it defines live
coding, (2) whether its version of live coding could be considered
active learning, (3) the type of study conducted, (4) types of data
collected and the data analysis methods used, (5) evidence provided
for the effectiveness of live coding, (6) reported benefits and draw-
backs of live coding, and (7) reported theoretical frameworks used
to explain the basis, effects or goals of live coding. We found that
although live coding has been recommended as one of the best
practices for teaching programming, there is a lack of empirical
evidence to support claims about the effectiveness of live coding on
student learning. Finally, we discuss the implications of our findings
and suggest future research directions that could develop a more

holistic understanding of this pedagogical technique.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion.

KEYWORDS

Live Coding; Literature Review; Active Learning; Computer Science
Education

ACM Reference Format:

Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021.
Live Coding: A Review of the Literature. In 26th ACM Conference on Innova-
tion and Technology in Computer Science Education V. 1 (ITiCSE 2021), June
26-July 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3430665.3456382

&89

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs International 4.0 License.

ITiCSE 2021, June 26-Fuly 1, 2021, Virtual Event, Germany.
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8214-4/21/06.
https://doi.org/10.1145/3430665.3456382

164

Eda Zhang
UW - Madison
rzhang346@wisc.edu

Adalbert Gerald Soosai Raj
UC San Diego
gerald@eng.ucsd.edu

1 INTRODUCTION

Live coding [14, 31, 36, 39]—the process of writing code live on a
computer in front of students during class—is recommended as one
of the best practices for teaching introductory programming [5]
(along with some well tested techniques like Peer Instruction [33]).
The primary purpose of live coding is to teach programming as a
process, rather than using static code examples that show programs
as a finished product. One perceived benefit of live coding is that
it allows the thought process of the instructor to be visible to the
students [36, 39]. In addition, live coding can demonstrate well ac-
cepted programming practices like incremental coding, debugging,
testing and commenting [1, 15, 35, 39].

Live coding has been the subject of many papers over the past
two decades (for example, [3, 14-16, 29, 31, 35, 39]). It has been
presented as a possible solution to problematic trends observed in
beginner programming students, including "Cut & Paste Oriented
Programming” and "Random Programming” [15]. Sometimes, it is
considered an active learning technique because of its potential to
engage students in the coding process [41, 44] and it has been rec-
ommended as a best practice to teach programming [5]. However,
in some cases, live coding is used in a way that renders students
passive while listening to an instructor explain their thought pro-
cess while coding [3, 45]. Also, the few studies that have tried to
determine the effectiveness of live coding for improving student
learning have had mixed results [35, 39].

Given these contrasting views on a commonly used instructional
technique, there is a need to better understand the range of ac-
tivities that are considered live coding, its commonly perceived
benefits, and to what extent its efficacy has been studied. Apart
from understanding the instructor-centric vs. student-centric na-
ture of live coding, it is also important to document the educational
theories that are used to explain the basis and/or effects of live cod-
ing since they may inform how live coding could best be utilized in
classrooms. In this study, we review the literature on live coding
to shed more light on this instructional technique and its role in
teaching introductory programming.

This paper contributes to the field of computing education by
providing a summary of the current state of research on live coding
to help guide both practitioners and researchers new to the field. In
addition, we offer suggestions about which aspects of live coding
should be studied further.

2 RELATED WORK

For the purposes of this paper, live coding refers to any lecture
technique where an instructor or student programs in a class with

https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3430665.3456382
https://creativecommons.org/licenses/by-nc-nd/4.0/

Teaching & Learning — Programming

their code being visible to all students [35]. However, in different
contexts, the words "live coding” are overloaded to have the same
meaning as the term "live programming” in Software Engineer-
ing which is the process of modifying a constantly running pro-
gram [48]. Furthermore, live coding in music refers to the real-time
manipulation of code to create music [2, 40]. These other definitions
of live coding are used in the literature study by Rein et al. who
compiled the similarities and differences in the values and contri-
butions of the research communities of exploratory programming,
live programming and musical live coding [37].

In terms of literature reviews in computing education, Robins
et al. reviewed literature related to the psychological/educational
study of programming [38]. They stated that live coding could po-
tentially improve a novice programmer’s strategic skills. Similarly,
there have been literature reviews on student misconceptions in
introductory programming [34], the contemporary view of intro-
ductory programming drawing from papers published in the years
2010-2016 [25] and pair programming [18].

To the best of our knowledge, there has not been a literature
review on live coding in the computing education research com-
munity.

3 RESEARCH QUESTIONS

The following are our research questions for our literature review.

(1) What is live coding?

(2) Is live coding an active learning strategy?

(3) What are the types of studies (experimental vs. experience
reports) that have been published in this area of live coding?

(4) What aspects of live coding have been studied by analyzing
the types of data collected, and the analysis methods being
used?

(5) What is the evidence reported for the effectiveness of live coding
on student learning?

(6) What are the reported benefits and drawbacks of live coding
as a pedagogical approach according to the existing body of
research?

(7) What are the theories reported in live coding research?

4 METHODOLOGY

For this literature review, we limited our set of considered papers
to computing education conference and journal papers in English
that study live coding in an educational setting. Two researchers
manually reviewed each paper to determine its inclusion or exclu-
sion into the final set of considered papers to reduce risk of human
error.

4.1 Paper Search

For our starter set of papers, we used the keywords “live-coding”
or “live coding” in the ACM Digital Library on the ACM Full-Text
Collection with the applied filters of content-type set to “Research
Article” and “Proceeding Series” set to SIGCSE (30 results), ITiCSE
(9 results), ICER (3 results), Koli Calling (4 results), SIGITE (3 results)
and CompEd (2 results) on January 17th, 2021. Our search in ACM
was confined to these six conferences because we wanted our initial
list of conference papers to represent the mainstream computing

165

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

education research community. This search yielded a total of 51
conference papers.

Then, we manually reviewed the 51 papers from the ACM search
queries to ensure they were conference papers that discussed or
studied live coding as a lecture technique to teach programming in
an educational setting. Poster abstracts, short conference papers
(1-2 pages), papers on tool design to supplement live coding [7]
and papers on the other definitions of live coding related to editing
a running program [48] and music [40] were excluded. Moreover,
papers that just included the term “live-coding” or “live coding” but
did not have live coding as a major component of their study were
excluded [28, 30]. This process resulted in a set of seven papers [1,
4,15, 29, 36, 39, 45] that fit our criteria. This same process was done
in IEEE Xplore with the initial search limited to conference papers
that used the keywords “live-coding” or “live coding”. This yielded
24 results that were all excluded for reasons such as focusing on
tool design for live coding [24], being a paper already included in
the ACM set with Snowballing [44] (see Section 4.2), being a short
conference paper (1-2 pages) [19] or examining live coding done by
professional developers rather than instructors and students [23].

4.2 Snowballing

With the initial set of seven ACM papers, we used the snowballing
approach to find relevant papers from other conferences. Snow-
balling is an efficient technique to identify important papers on a
specific research area using reference lists and citations [49]. We
chose this technique because it helped us discover papers that could
be considered the foundation of live coding research [15, 31] (as
they are frequently referenced by other papers) and newly pub-
lished papers from other computing education conferences [35]. For
each of the seven papers from our previous step, we reviewed their
references and the papers that cited them with help of the “Cited
by” function of Google Scholar. Poster abstracts, short conference
papers, dissertations, papers that focused on live programming in
software engineering, tool design or musical live coding, etc. were
excluded. Furthermore, for this snowballing step, we decided to
include papers that described a lecture technique that involved
writing code in front of a classroom. For example, the author of an
influential paper [31] describes live programming as the process of
an instructor designing and implementing a large coding project
in a classroom. Similarly, the authors of a later study [22] propose
a new type of lecture where instructors discuss a software engi-
neering problem and modify source code in front of students while
explaining their evaluation of the problem and its potential solu-
tions. These two papers were included because they both describe
variants of live coding and may be considered important papers in
the live coding research community as they are frequently cited. On
the flip side, we decided to exclude an older study [13] because it
breaks down programming problems into steps to teach ‘program-
ming as a process’ that is frequently incorporated into live coding
sessions [3, 36] but does not specify a lecture technique where an
instructor using this strategy would program in front of students.

Ultimately, this step caused us to discover 13 conference and
journal papers on live coding as an addition to the original set of 7
papers from the previous ACM DL search.

Teaching & Learning — Programming

5 RESULTS
5.1 RQ 1: What is live coding?

First, it is important to note what the research community considers
the definition of live coding. There is disagreement on the minimal
requirements of a live coding session when comparing the different
definitions of live coding in each paper so we found it prudent to
record how live coding is often explicitly defined in research. We
evaluate what a paper considers live coding if it explicitly describes
its baseline definition of live coding. A common base definition of
live coding states that it is the process of designing and implement-
ing a coding project in front of a class during lecture [17, 31, 39, 42].
The term ‘coding project’ may indicate that the person coding a
one-line program is not performing live coding since a small cod-
ing exercise is generally not considered a ‘coding project’. Two
papers [36, 44] mention that live coding must happen from a blank
file or ‘from scratch’ with no skeleton code. This implies that if an
instructor had used pre-written skeleton code when coding live in
front of a class, they are not ‘live coding’. Three papers [20, 36, 44]
state that live coding happens when someone is coding on a com-
puter whose screen is projected to the entire class. One paper [35]
states the person programming live must think aloud during live
coding. Apart from these definitions, another paper [41] uniquely
defines live coding as the process where students find a solution
to a programming problem through group discussion. These differ-
ent definitions suggest that there is no strong consensus for what
constitutes live coding in education.

Secondly, most studies perform live coding in different contexts,
such as recording live coding sessions for students to watch them
asynchronously at their convenience [45], to create their own vari-
ant of live coding. To further understand the different variants of
live coding described in each paper, we highlight three distinct
features that captured the similarities and differences across each
way live coding is performed below.

5.1.1 How is the source code written? As previously mentioned,
whether live coding sessions have instructors and students start
from a blank file is not a universal requirement in live coding
sessions. A majority of the papers describe whether their variant
of live coding had coders write from scratch or not. Table 1 shows
a summary of how source code was prepared. The papers, that did
not state how their source code was prepared, were omitted from

the table.

Table 1: Summary of the different ways that source code is
written in live coding sessions

How source code is written | # of | Studies that used

stud- this method
ies
Only write from scratch 10 [3, 4, 14, 15, 35, 39,
41, 44, 45, 47
Only write using prepared code [29]
Both from scratch and prepared | 3 [6, 16, 17]

code

166

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

5.1.2 The role of instructors and students. In each paper, we noted
who actually coded live in the classroom. Based on that, we classi-
fied the studies into 3 possibly overlapping types: 1) Instructor-led,
2) Student-led, and 3) Instructor & Student Collaboration. Most
studies regard live coding as an activity that was led by the expert
in class (i.e., instructor) where students may passively listen during
the entire process without giving their own input and/or asking
clarification questions intermittently. A few studies explicitly per-
form live coding as a student-led activity, where students coded and
explained their thought process with their code being projected to
the whole class. There are also studies that consider live coding
as a collaborative work where teachers take ideas for code from
students, and/or students code along with the instructors [39, 44].
The results on who lead the live coding process are summarized in
Table 2.

Table 2: Summary of who led the live coding process

Type of live coding # of | Studies that used
studies | this method
Instructor-led 12 [1,6,15-17, 22, 29,
31, 35, 36, 45, 47)
Student-led 4 [4, 14, 15, 41]
Instructor & student collabora- | 4 [21, 39, 42, 44]

tion

5.1.3 Synchronous/Asynchronous. Three papers describe studies
where live coding sessions were recorded and presented for stu-
dents to watch asynchronously [3, 45, 47]. This is important since
it means that live coding demonstrations do not necessarily need
to be ‘live’. These studies studied the value of asynchronous live
coding recordings where students had to passively listen. On the
other hand, all the other papers describe live coding sessions that
happened in physical classrooms where students could ask clarifi-
cations questions almost immediately at the very minimum.

5.2 RQ 2:1Is live coding an active learning
strategy?

Given the varying definitions of live coding and that only some
of these definitions meet the standards of active learning, “live
coding” may or may not be active learning depending on which
variant is being practiced. Active learning is a student-centered
paradigm in which students should not only passively listen, but
also read, write, discuss, engage in solving problems and actively
think and reflect throughout this process. For this review, we will
consider a variant of live coding to be active learning if it “con-
sists of short course-related individual or small-group activities
that all students in a class are called upon to do, alternating with
instructor-led intervals in which student responses are processed
and new information is presented” [12]. By this definition, only
five of the reviewed papers used a variant of live coding that could
be considered active learning [14, 15, 22, 42, 44]. Some of them
describe short in-class coding exercises that were given to students
after live coding demonstrations by instructors so that the students
could apply the concepts they just learned and receive immedi-
ate feedback from their peers, instructor or TAs [14, 22, 42, 44].

Teaching & Learning — Programming

However, this could also not be considered active learning if the
in-class exercises are seen as something separate from the live cod-
ing demonstrations or depending on whether feedback is actively
given to students rather than just students who explicitly ask for
guidance. One paper describes instructor-led live coding followed
by a session of student-led live coding where one student has to
code in front of the entire class and the rest of the class will provide
feedback if necessary. This may not constitute active learning since
even though the other students may code along, they do not get
feedback [15].

5.3 RQ 3: What types of live coding studies are
reported?

The two types of papers we found are: 1) experimental/quasi-
experimental, and 2) experience reports. If the paper used within-
subjects, between-subjects design or some form of statistical anal-
ysis to compare the effectiveness of live coding by comparing it
with a control group using another teaching method (e.g., static
code examples), then we considered them as experimental/quasi-
experimental.

There were only 4 experimental/quasi-experimental studies [29,
35, 39, 47] that studied the effectiveness of live coding using a
control group while all other studies reported the instructors’ ex-
periences and/or shared students’ preferences of live coding using
surveys, interviews or open-ended feedback.

5.4 RQ 4: What aspects of live coding have
been studied by analyzing the types of data
collected, and the data analysis methods
being used?

Table 3: Aspects of live coding being investigated by data
types.

Aspects investi- | Types of data | # of | Studies
gated collected stud-
ies
Student perceptions Student prefer- | 10 [1,3,15,16,
ences survey 31, 39, 41,
42, 44, 45]
Open-ended stu- | 3 [4, 36, 42]
dent feedback
Interview 2 [17, 47]
. Grades 5 [6, 16, 39,
Student learning 41, 47]
Pre-test & post- | 3 [29, 35, 47]
test
Cognitive load on | Cognitive load | 2 [29, 35]
students survey
Level of self-| The Learning | 1 [4]
direction of | Experience Scale
students (PRO-SDLS)
survey

167

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

5.4.1 Types of Data Collected. We found the following types of
data were collected in live coding studies: 1) Student feedback
surveys (e.g., course evaluation surveys), 2) Open-ended feedback,
3) Pre-test and post-test data, 4) Course grades (exams, quizzes,
assignments, projects, overall course grades, etc.), 5) Cognitive
Load Survey, and 6) The Learning Experience Scale (PRO-SDLS)
survey. Table 3 shows the frequency distribution of the different
types of data collected in live coding studies. Note that a single
study may collect more than one type of data and therefore the sum
of the number of studies column may be greater than the number
of papers analyzed on live coding.

5.4.2 Aspects of live coding studied. With a further examination
of the types of data collected, we found that the aspects of live
coding that had been investigated so far mostly fall into these four
categories: student learning, student perceptions, cognitive load
on students [35] and self direction of students [4]. Student percep-
tions refer to the studies that conducted indirect measurements
such as students’ feedback, students’ preferences, as well as self-
reported perceived learning. 15 out of the 20 studies investigated
student perceptions which is the most common aspect examined.
On the other hand, by student learning, we mean studies that used
direct measurements such as final grades on students performance
and pre-tests/post-tests. This was the second most frequent aspect
studied with 8 out of the 20 studies collecting data on this.

5.4.3 Data Analysis Methods Used. The following types of data
analysis methods were used to analyze data in live coding studies:
1) Grounded Theory, 2) Statistical tests (e.g., t-test), and 3) Survey
analysis. No data analysis was performed in a few papers since
no data was collected as part of these studies [14, 21, 22]. In most
studies that used the course grades and/or student course evaluation
data, no form of inferential statistics was performed. Instead the
descriptive statistics of the course grade data or the survey data
were presented.

Inferential statistical tests like independent samples t-test and
Mann-Whittney U-test were employed in four studies [29, 35, 39, 41]
but the specific test used in one of these studies is not reported [29].
Table 4 summarizes the different data analysis methods used.

Table 4: The data analysis methods used in live coding stud-
ies are reported in this table.

Data analysis method # of | Studies that used
stud- | this data analysis
ies method

Survey analysis 10 [1,3, 4,15, 16, 31, 39,

42, 44, 45]

Independent samples t-test 4 [35, 39, 41, 47]

No data analysis 3 [14, 21, 22]

Grounded Theory 1 [36]

Mann-Whittney U-test 1 [35]

Data analysis method or statis- | 2 [17, 29]

tical test not specified

Teaching & Learning — Programming

5.5 RQ 5: Evidence for the (in)effectiveness of
live coding

Among the different studies that have been conducted on live cod-
ing, only three studies until now have evaluated the effectiveness
of live coding on student learning using a control group [35, 39, 47].
Two among them [35, 39] compared live coding with static code
examples (a code presentation technique where pre-written code
snippets are explained in class). In both these studies, the control
group(s) were taught using static code examples while the experi-
mental group(s) were taught using live coding. The same instructor
taught both the experimental and the control groups in these stud-
ies.

One of these studies [39] was conducted in a regular course
where the students’ grades in the course on projects, exams, and
assignments were used as a measure of student learning. This study
reports that students in the live coding group performed statistically
significantly better than the students in the static code examples
group on the final project. There were no differences between the
two groups on other course components.

A more recent study [35] conducted a pre-test and a post-test
and used the students’ performance on these tests as a measure
of student learning. In this study, the static code examples group
performed better than the live coding group but the difference was
not statistically significant.

Meanwhile, a study [47] compared the pre-test and post-test of
student performance scores who were taught using live coding. The
authors found that students’ improvement in procedural knowledge
was significantly better than their gain in conceptual knowledge.
However, this study did not compare live coding with static code
examples so it does not provide evidence that live coding is more
effective than traditional code presentations.

5.6 RQ 6: Benefits and drawbacks of live coding

Live coding has often been perceived to expose programming as
a process to students and improve debugging skills [15, 36]. In
contrast, it has been reported to have drawbacks including being
time-consuming as a lecture technique [35].

To determine the commonly perceived benefits and drawbacks
of live coding as a pedagogical strategy, we decided to tabulate the
most commonly reported benefits and drawbacks of live coding
from each paper over traditional lecture techniques that use static
code.

It is also interesting to note that most of these benefits and draw-
backs are conjectures drawn from instructors’ experiences and
student feedback surveys, and are not supported by strong empir-
ical evidence. The strongest evidence for a benefit comes from a
study [39] where the higher final project scores of the experimental
group, who was taught using live coding over the control group
taught using static code examples, could indicate that live coding
can ingrain better coding practices in students. However, as stated
in the previous section, the difference in test scores between the two
groups was not statistically significant in this study and in another
experimental study [35]. The perceived benefits and drawbacks of
live coding are summarized in Tables 5 and 6 respectively.

168

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Table 5: The six most frequently perceived benefits of live
coding across all reviewed studies.

Perceived benefits of live cod- | # of | Studies which
ing stud- | perceived these
ies benefits

Improves debugging skills 9 [3, 4, 15, 31, 35, 36,
39, 41, 44]

Exposes programming as a pro- | 8 [3, 17, 22, 35, 36, 41,

cess 44, 45]

Increases student engagement 7 [6, 17, 31, 35, 36, 39,
42]

Teaches how to apply program- | 5 [16, 21, 31, 36, 47]

ming concepts

Improves testing skills 5 [1, 3, 22, 36, 39]

Teaches incremental Coding 5 [3, 22, 35, 39, 44]

Table 6: The perceived drawbacks of live coding across all
reviewed studies

Perceived drawbacks of live | # of stud- | Studies which

coding ies perceived
these draw-
backs

Relatively time-consuming 4 [6, 17, 36, 39]

Hard for students to take notes | 1 [45]

Hard for students to keep up with | 1 [17]

the pace of programming

5.7 RQ 7: Theoretical frameworks of live
coding

Another feature of the live coding research community is that there
are different theoretical frameworks that explain the effects of live
coding, inform the goal of live coding as a pedagogical strategy or
form the theoretical basis of live coding. These are important to
record because it shows the current theoretical foundations of live
coding research. As such, we tabulated each theoretical framework
involved with live coding and the studies that reference them in
Table 7. The depth of each reference is omitted for succinctness as
some papers used a reported theory to inform their study design
(for example, to create and test a new variant of live coding [22])
while others only mention the theory briefly to give minimal con-
text [39]. Moreover, there are some papers that did not reference
any theoretical framework at all [1, 45].

Although Cognitive Apprenticeship (CA) is the most common
theoretical framework referenced, most studies referencing CA
only study live coding as part of the modeling phase while ignoring
the other phases in CA (scaffolding and fading). There were two
exceptions to this trend [4, 22].

Furthermore, there are many theories that are only mentioned
in passing but its relation with live coding are never studied exten-
sively like Discovery Learning [14] and Just-In-Time Learning [44].

Teaching & Learning — Programming

Table 7: The theoretical frameworks used in live coding
across all reviewed studies

Theoretical frameworks of | # of | Studies that ref-

live coding stud- erence this the-
ies oretical frame-

work

Cognitive Apprenticeship 5 [4, 22, 35, 36, 39]

Cognitive Load 2 [29, 35]

Constructivist Educational Ap- | 2 [4, 14]

proach

Constructive Alignment Theory | 2 [14, 15]

Apprenticeship 1 [15]

Discovery Learning 1 [14]

Studio Teaching 1 [6]

Modality Theory 1 [29]

Just-In-Time Learning 1 [44]

6 DISCUSSION

Effectiveness of live coding on student learning. One of the
key observations we made from our literature review is that, al-
though live coding has been discussed and used as one of the com-
mon code presentation techniques in computing education, most
of the published studies on live coding have focused primarily on
students’ perceptions and preferences of this teaching method. Very
few studies [35, 39] have attempted to evaluate the effectiveness
of this teaching method on student learning by comparing it with
static code examples (i.e., presenting pre-written code examples
in-class). Prior studies in physics education research have shown
that in-class physics demos did not generally contribute to student
learning on their own unless students were asked to predict the
output of those demos [10, 26, 27]. Given the paucity of empirical
studies on live coding and the mixed results from the existing few
empirical studies, further research on the topic would be beneficial
to the community before recommending the practice.

Rethinking active learning in CS. Many CS education researchers
and practitioners believe that instructor-led live coding is an ac-
tive learning strategy because students make continuous predic-
tions about the code they are witnessing in a live coding ses-
sion [6, 35, 41, 44], however similar arguments might be made about
lecture in general. In contrast, others report that only student-led
versions of live coding can be considered active learning since
students are only actively involved when they are writing code
themselves [14, 15]. One challenge for answering this question is
the lack of clear definition for active learning [11]. We recommend
future research seek to understand what components of live cod-
ing are necessary for it to actively engage students (e.g., through
student observations, interviews, etc.). Secondly, if live coding is
viewed to be an active learning pedagogy, studies aiming to under-
stand its efficacy should compare live coding against other effective
active learning strategies in CS such as Peer Instruction [32, 33, 43].

The neglected phases of Cognitive Apprenticeship in live
coding. On a related note, we also found that even though most
studies on live coding refer to Cognitive Apprenticeship (CA) [8,

169

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

9] as the theory behind live coding, most of the studies using
instructor-led live coding [31, 35, 39] primarily focuses only on
the first phase of CA, i.e., modeling. Only a few studies on live cod-
ing use the second phase of CA (i.e., scaffolding) using techniques
like in-class coding where students write code in the presence of
instructors and TAs [42, 44] and student-led live coding [14, 15].
The third phase of CA (i.e., fading) is usually achieved by means of
programming assignments which are intended to make students
write code independently. We recommend future live coding studies
to focus more on the scaffolding phase as we believe it could create
a safe space for students to make mistakes while writing code in
the presence of an expert.

Studying instructors’ perceptions on live coding. Although
instructor-led live coding is the most commonly reported form of
live coding in the literature, it is interesting that there were no
studies that captured the instructors’ perception on this technique.
In instructor-led live coding, the instructor is more actively involved
in the process (by typing, compiling, debugging, testing, thinking-
aloud, etc.) than the student so it may be interesting to study the
cognitive load [46] imposed by live coding on instructors.

Limitations. While searching for papers to review, we decided to
exclude papers on the design of tools to supplement live coding [7].
This is because we wanted to examine papers that primarily focus
on studying live coding in an educational setting. If we decided to
include the papers on tool design, our review may have been more
comprehensive in capturing the entire body of live coding research.
Another limitation is we only examine 20 papers compared to other
literature reviews which cover many more papers. This is because
live coding is much less extensively studied than other common
literature review topics like introductory programming [25] and stu-
dent misconceptions in introductory programming [34]. However,
we still believe that our review could be useful since it summarizes
previous live coding studies and notes unexplored perspectives that
could improve the utility of live coding as an educational tool.

7 CONCLUSION

In this paper, we reviewed conferences and journal papers that
studied live coding in classrooms. We found that there is no con-
sensus on a universal definition of live coding. We also discovered
that most research papers on live coding were experience reports
that used feedback from student surveys to infer the effects of live
coding. The few empirical studies that do exist have limitations
and do not provide strong evidence for the commonly reported
benefits of live coding. This finding should be a call for more em-
pirical studies exploring the benefits of live coding over traditional
lectures. Furthermore, because most claims about live coding are
based on student feedback, an unexplored area of research is how
live coding impacts instructors and how they perceive the practice.
In sum, this article provides a holistic summary of the state of live
coding research by examining the conference and journal articles
that study live coding in computing education.

ACKNOWLEDGMENTS

We greatly appreciate the reviewers for their helpful feedback. This
work was supported in part by NSF award 2044473.

Teaching & Learning — Programming

REFERENCES

[1]

[2]
B3]

[4]

[5]
[6]
[71

(8]
[

[10]

(1)

[2)

[13)

[14]

[15)

[16]

(7

[18)

[19]

[20]

[21)

[22]

[23]

[24]

[25]

Mauricio Aniche, Felienne Hermans, and Arie van Deursen. Pragmatic software
testing education. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pages 414-420, 2019.

Renick Bell. A live coding improvisation. In Proceedings of the 9th ACM Conference
on Creativity & Cognition, pages 392-393, 2013.

Jens Bennedsen and Michael E Caspersen. Revealing the programming process. In
Proceedings of the 36th SIGCSE technical symposium on Computer science education,
pages 186190, 2005.

Naomi R Boyer, Sara Langevin, and Alessio Gaspar. Self direction & construc-
tivism in programming education. In Proceedings of the 9th ACM SIGITE conference
on Information technology education, pages 89-94, 2008.

Neil CC Brown and Greg Wilson. Ten quick tips for teaching programming. PLoS
computational biology, 14(4):e1006023, 2018.

Russel E Bruhn and Philip] Burton. An approach to teaching java using comput-
ers. ACM SIGCSE Bulletin, 35(4):94-99, 2003.

Charles H Chen and Philip] Guo. Improv: Teaching programming at scale via
live coding. In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale,
pages 1-10, 2019.

Allan Collins, John Seely Brown, and Ann Holum. Cognitive apprenticeship:
Making thinking visible. American educator, 15(3):6-11, 1991.

Allan Collins, John Seely Brown, and Susan E Newman. Cognitive apprenticeship:
Teaching the craft of reading, writing and mathematics. Thinking: The Journal of
Philosophy for Children, 8(1):2-10, 1988.

Catherine Crouch, Adam P Fagen,] Paul Callan, and Eric Mazur. Classroom
demonstrations: Learning tools or entertainment? American journal of physics,
72(6):835-838, 2004.

Valerie Drew and Lorele Mackie. Extending the constructs of active learning:
implications for teachers’ pedagogy and practice. Curriculum Journal, 22(4):451—
467, 2011.

Richard M Felder and Rebecca Brent. Active learning: An introduction. ASQ
higher education brief, 2(4):1-5, 2009.

Rex E Gantenbein. Programming as process: a “novel” approach to teaching
programming. ACM SIGCSE Bulletin, 21(1):22-26, 1989.

Alessio Gaspar and Sarah Langevin. Active learning in introductory programming
courses through student-led “live coding™ and test-driven pair programming. In
International Conference on Education and Information Systems, Technologies and
Applications, Orlando, FL, 2007.

Alessio Gaspar and Sarah Langevin. Restoring” coding with intention” in intro-
ductory programming courses. In Proceedings of the 8th ACM SIGITE conference
on Information technology education, pages 91-98, 2007.

Nasser Giacaman. Teaching by example: using analogies and live coding demon-
strations to teach parallel computing concepts to undergraduate students. In 2012
IEEE 26th International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, pages 1295-1298. IEEE, 2012.

Tor-Morten Grenli and Siri Fagernes. The live programming lecturing technique:
A study of the student experience in introductory and advanced programming
courses. In Norsk IKT-konferanse for forskning og utdanning, number 4, 2020.
Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie Murphy, and Carol Zander.
Pair programming in education: a literature review. Computer Science Education,
21(2):135-173, 2011.

Hui-Chun Hung. Flipped learning with live-coding approach for programming
concepts learning. In 2018 1st International Cognitive Cities Conference (IC3),
pages 223-224. IEEE, 2018.

Roger T Johnson and David W Johnson. Active learning: Cooperation in the
classroom. The annual report of educational psychology in Japan, 47:29-30, 2008.
Luke Johnston, Madeleine Bonsma-Fisher, Joel Ostblom, Ahmed Hasan, James
Santangelo, Lindsay Coome, Lina Tran, Elliott de Andrade, and Sara Mahallati.
A graduate student-led participatory live-coding quantitative methods course in
r: Experiences on initiating, developing, and teaching. Journal of Open Source
Education, 2(16):49, 2019.

Michael Kélling and David] Barnes. Enhancing apprentice-based learning of
java. In Proceedings of the 35th SIGCSE technical symposium on Computer science
education, pages 286-290, 2004.

Jan-Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. How live
coding affects developers’ coding behavior. In 2014 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 5-8. IEEE, 2014.
Francesco Maiorana, Daniela Giordano, and Ralph Morelli. Quizly: A live coding
assessment platform for app inventor. In 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond), pages 25-30. IEEE, 2015.

Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcdo. A
systematic literature review on teaching and learning introductory programming
in higher education. IEEE Transactions on Education, 62(2):77-90, 2018.

170

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Kelly Miller, Nathaniel Lasry, Kelvin Chu, and Eric Mazur. Role of physics lecture
demonstrations in conceptual learning. Physical review special topics-physics
education research, 9(2):020113, 2013.

Marina Milner-Bolotin, Andrzej Kotlicki, and Georg Rieger. Can students learn
from lecture demonstrations. Journal of College Science Teaching, 36(4):45-49,
2007.

Mia Minnes, Christine Alvarado, Max Geislinger, and Joyce Fang. Podcast high-
lights: Targeted educational videos from repurposed lecture-capture footage. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
pages 365-371, 2019.

Briana B Morrison. Dual modality code explanations for novices: Unexpected
results. In Proceedings of the 2017 ACM Conference on International Computing
Education Research, pages 226-235, 2017.

Ayesha Naeem Syeda, Rutwa Engineer, and Bogdan Simion. Analyzing the effects
of active learning classrooms in cs2. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 93-99, 2020.

John Paxton. Live programming as a lecture technique. Journal of Computing
Sciences in Colleges, 18(2):51-56, 2002.

L. Porter, C. Bailey-Lee, B. Simon, Q. Cutts, and D Zingaro. Experience report: A
multi-classroom report on the value of peer instruction. ITiCSE, 2011.

Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. A multi-institutional study of peer
instruction in introductory computing. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pages 358-363, 2016.

Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Transactions on Computing
Education (TOCE), 18(1):1-24, 2017.

Adalbert Gerald Soosai Raj, Pan Gu, Eda Zhang, Jim Williams, Richard Halverson,
and Jignesh M Patel. Live-coding vs static code examples: Which is better with
respect to student learning and cognitive load? In Proceedings of the Twenty-
Second Australasian Computing Education Conference, pages 152-159, 2020.
Adalbert Gerald Soosai Raj, Jignesh M Patel, Richard Halverson, and Erica Rosen-
feld Halverson. Role of live-coding in learning introductory programming. In
Proceedings of the 18th Koli Calling International Conference on Computing Educa-
tion Research, pages 1-8, 2018.

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
Exploratory and live, programming and coding: A literature study comparing
perspectives on liveness. arXiv preprint arXiv:1807.08578, 2018.

Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching
programming: A review and discussion. Computer science education, 13(2):137-
172, 2003.

Marc] Rubin. The effectiveness of live-coding to teach introductory programming.
In Proceeding of the 44th ACM technical symposium on Computer science education,
pages 651-656, 2013,

Alex Ruthmann, Jesse M Heines, Gena R Greher, Paul Laidler, and Charles Saulters.
Teaching computational thinking through musical live coding in scratch. In
Froceedings of the 41st ACM technical symposium on Computer science education,
pages 351-355, 2010.

Amy Shannon and Valerie Summet. Live coding in introductory computer science
courses. Journal of Computing Sciences in Colleges, 31(2):158-164, 2015.
Madhav Sharma, Surya Ayyalasomayajula, Nikunj Dalal, et al. Teaching pro-
gramming to the post-millennial generation: Pedagogic considerations for an is
course. journal of Information Systems Education, 31(2):96-105, 2020.

Beth Simon, Julian Parris, and Jaime Spacco. How we teach impacts learning:
peer instruction vs. lecture in CS0. In Proceedings of the 44th ACM Technical
Symposium on Computer Science Education, 2013.

Adalbert Gerald Soosai Raj, Jignesh Patel, and Richard Halverson. Is more active
always better for teaching introductory programming? In 2018 International
Conference on Learning and Teaching in Computing and Engineering (LaTICE),
pages 103-109, 2018.

Ben Stephenson. Coding demonstration videos for csl. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, pages 105-111, 2019.
John Sweller. Cognitive load theory, learning difficulty, and instructional design.
Learning and instruction, 4(4):295-312, 1994.

Sheng-Rong Tan, Yu-Tzu Lin, and Jia-Sin Liou. Teaching by demonstration:
programming instruction by using live-coding videos. In EdMedia+ Innovate
Learning, pages 1294-1298. Association for the Advancement of Computing in
Education (AACE), 2016.

Steven L Tanimoto. A perspective on the evolution of live programming. In 2013
1st International Workshop on Live Programming (LIVE), pages 31-34. IEEE, 2013.
Claes Wohlin. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering, pages 1-10, 2014.

	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions
	4 Methodology
	4.1 Paper Search
	4.2 Snowballing

	5 Results
	5.1 RQ 1: What is live coding?
	5.2 RQ 2: Is live coding an active learning strategy?
	5.3 RQ 3: What types of live coding studies are reported?
	5.4 RQ 4: What aspects of live coding have been studied by analyzing the types of data collected, and the data analysis methods being used?
	5.5 RQ 5: Evidence for the (in)effectiveness of live coding
	5.6 RQ 6: Benefits and drawbacks of live coding
	5.7 RQ 7: Theoretical frameworks of live coding

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

