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Abstract— This paper considers the single-server Private
Linear Transformation (PLT) problem when individual privacy
is required. In this problem, there is a user that wishes to obtain
L linear combinations of a D-subset of messages belonging to a
dataset of K messages stored on a single server. The goal is to
minimize the download cost while keeping the identity of every
message required for the computation individually private.
We focus on the setting in which the matrix of coefficients
pertaining to the required linear combinations is the generator
matrix of a maximum distance separable code. We establish
lower and upper bounds on the capacity of PLT with individual
privacy, where the capacity is defined as the supremum of all
achievable download rates. We show that our bounds are tight
under certain divisibility conditions. In addition, we present
lower bounds on the capacity of the settings in which the user
has a prior side information about a subset of messages.

I. INTRODUCTION

In this work, we study the problem of single-server Pri-
vate Linear Transformation (PLT) with Individual Privacy,
referred to as IPLT for short. In this problem, there is a
single server that stores a set of K messages, and a user that
wants to compute L linear combinations of a subset of D
messages. This setup appears in several practical scenarios
such as linear transformation for dimensionality reduction in
Machine Learning (ML) applications (for a detailed example,
see a long version of this work, [1]). The objective of
the user is to recover the required linear combinations by
downloading minimum possible amount of information from
the server, while protecting the privacy of the identity of
every message required for the computation individually.
The individual privacy requirement implies that, from the
perspective of the server, every message is equally likely
to belong to the D-subset of messages that constitute the
support set of the required linear combinations.

The IPLT problem is related to the single-server PLT with
Joint Privacy (JPLT) problem, which we have studied in a
parallel work [2]. The joint privacy condition implies that,
from the server’s perspective, any D-subset of messages
must be equally likely to be the support set of the required
linear combinations. Joint privacy was previously considered
in [3]–[6] for Private Information Retrieval (PIR), and in [7],
[8] for Private Linear Computation (PLC). Individual privacy
is a relaxed version of joint privacy with an operational
meaning, and is motivated by the need to protect the access
pattern for individual messages. This is of practical impor-
tance in many scenarios. For example, consider a setting
in which the dataset contains information about individuals,
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and the user is required to hide information on whether the
data belonging to an individual was used in the computation.
Note that both of these privacy conditions are weaker than
the privacy condition considered in [9]–[12] for multi-server
PLC, where the values of the combination coefficients in the
required linear combination must be kept private. That said,
joint and individual privacy may still provide a satisfactory
degree of privacy in many practical scenarios.

Individual privacy was originally introduced in [13] for
PIR with Individual Privacy (IPIR), and was recently con-
sidered for PLC with Individual Privacy (IPLC) in [8]. Note
that IPLT reduces to IPIR or IPLC for L = D or L = 1,
respectively. IPIR and IPLC were studied in the settings in
which the user has a prior side information about a subset of
messages. It was shown that, when compared to PIR and PLC
with joint privacy, IPIR and IPLC can be performed with a
much lower download cost. Motivated by these results, this
work seeks to answer the following questions: (i) can IPLT
be performed with a lower download cost than JPLT? (ii)
can a prior side information be leveraged to further decrease
the download cost of IPLT? (iii) what are the fundamental
limits on the download cost for IPLT? We make a significant
progress towards answering these questions in this work.

A. Main Contributions

In this work, we focus on the setting in which the
coefficient matrix corresponding to the required linear com-
binations is the generator matrix of a Maximum Distance
Separable (MDS) code. The MDS coefficient matrices are
motivated by the application of random linear transformation
for dimensionality reduction in ML, see, e.g., [14]. When
the operations are performed over the field of reals (or a
sufficiently large finite field), a random transformation matrix
is MDS with probability 1 (or with high probability). For this
setting, we establish lower and upper bounds on the capacity
of IPLT, where the capacity is defined as the supremum of
all achievable download rates. In addition, we show that our
bounds are tight under certain divisibility conditions, settling
the capacity of IPLT for such cases.

To prove the upper bound on the capacity, we use
information-theoretic arguments based on a necessary con-
dition for IPLT schemes, and formulate the problem as an
integer linear programming (ILP) problem. Solving this ILP,
we obtain the capacity upper bound. The lower bound on the
capacity is proven by a novel achievability scheme, termed
Generalized Partition-and-Code with Partial Interference
Alignment (GPC-PIA) protocol. This protocol generalizes the
protocols we previously proposed in [13] and [8] for IPIR
and IPLC, respectively. In addition, we present lower bounds
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on the capacity of the settings in which the user has a prior
side information about a subset of messages. Our results
indicate that, when there is no side information, IPLT can
be performed more efficiently than JPLT, in terms of the
download cost. The advantage of IPLT over JPLT is even
more pronounced when the user knows a subset of messages
or a subspace spanned by them as side information.

II. PROBLEM SETUP

Throughout, we denote random variables and their real-
izations by bold-face and regular symbols, respectively.

Let Fp be a finite field of order p, and let F`
p be an `-

dimensional vector space over Fp. Let K,D,L be positive
integers such that L ≤ D ≤ K, and let K , {1, ...,K}. We
denote by W the set of all D-subsets of K, and denote by
V the set of all L×D matrices (with entries from Fp) each
of which generates an MDS code.

Suppose that there is a server that stores K messages
X1, . . . , XK , where Xi ∈ F`

p for i ∈ K is a row-vector
of length `. Let X , [XT

1 , . . . , X
T
K ]T. For every S ⊂ K, we

denote by XS the matrix X restricted to its rows indexed
by S. We assume that X1, . . . ,XK are independently and
uniformly distributed over F`

p. That is, H(Xi) = θ , ` log2 p
for i ∈ K, and H(XS) = |S|θ for S ⊂ K, where |S| denotes
the size of S. Note that H(X) = Kθ. Suppose that there
is a user that wants to compute the matrix Z[W,V] , VXW,
where W ∈W and V ∈ V. That is, Z[W,V] contains L rows
v1XW, . . . , vLXW, where vl is the lth row of the matrix
V. Note that H(Z[W,V]) = Lθ. We refer to Z[W,V] as the
demand, W as the support index set of the demand, V as
the coefficient matrix of the demand, D as the support size
of the demand, and L as the dimension of the demand.

We assume that (i) W,V,X are independent; (ii) W and
V are uniformly distributed over W and V, respectively; and
(iii) the parameters D and L, and the distribution of (W,V)
are initially known by the server, whereas the realization
(W,V) is not initially known by the server.

Given (W,V), the user generates a query Q = Q[W,V],
which is a (potentially stochastic) function of (W,V), and
sends it to the server. The query Q must satisfy the following
privacy condition: given the query Q, every message index
must be equally likely to belong to the demand’s support
index set. That is, for every i ∈ K, it must hold that

Pr(i ∈W|Q = Q) = Pr(i ∈W),

where Q denotes Q[W,V]. This condition—which was re-
cently introduced in [13] and [8] for single-server PIR and
PLC, is referred to as the individual privacy condition.

Upon receiving the query Q, the server generates an
answer A = A[W,V], and sends it back to the user. The
answer A is a deterministic function of Q and X. The
collection of the answer A, the query Q, and the realization
(W,V) must enable the user to recover Z[W,V]. That is,

H(Z|A,Q,W,V) = 0,

where Z and A denote Z[W,V] and A[W,V], respectively.
This condition is referred to as the recoverability condition.

We would like to design a protocol for generating a query
Q[W,V] and the corresponding answer A[W,V] such that the
individual privacy and recoverability conditions are satisfied.
We refer to this problem as single-server Private Linear
Transformation (PLT) with Individual Privacy, or IPLT for
short. We define the rate of an IPLT protocol as the ratio
of the entropy of the demand (i.e., H(Z) = Lθ) to the
entropy of the answer (i.e., H(A)). We define the capacity
of the IPLT setting as the supremum of rates over all IPLT
protocols. In this work, our goal is to establish (preferably
matching) lower and upper bounds (in terms of K,D,L) on
the capacity of the IPLT setting.

III. A NECESSARY CONDITION FOR IPLT PROTOCOLS

The individual privacy and recoverability conditions yield
a necessary (but not sufficient) condition for any IPLT
protocol, stated in Lemma 1. The proof is straightforward
by the way of contradiction, and hence, omitted.

Lemma 1. Given any IPLT protocol, for any i ∈ K, there
must exist W∗ ∈W with i ∈W∗, and V∗ ∈ V, such that

H(Z[W∗,V∗]|A,Q) = 0.

The result of Lemma 1 establishes a connection between
linear codes with a certain constraint and linear schemes for
IPLT, i.e., any scheme in which the server’s answer to the
user’s query consists of only linear combinations of the mes-
sages. In particular, the matrix of combination coefficients—
pertaining to the linear combinations in the answer, must
be the generator matrix of a linear code of length K that
satisfies the following condition: for any coordinate i, there
must exist K −D coordinates different from i such that the
code resulting from puncturing1 at these K −D coordinates
contains L codewords that are MDS. Note, however, that this
condition is only necessary and not sufficient. In particular,
a sufficient (yet not necessary) condition is that, for every
coordinate i, the punctured codes resulting from puncturing
at any K−D other coordinates (different from i) collectively
contain the same number of groups of L codewords that
are MDS. Maximizing the rate of a linear IPLT scheme
is then equivalent to minimizing the dimension of a linear
code that satisfies this sufficient condition. However, despite
the fact that this sufficient condition is stronger than the
necessary condition provided by Lemma 1, the former is
more combinatorial, while the latter is more information-
theoretic and hence more useful in the converse proof.

IV. MAIN RESULTS

This section summarizes our main results for IPLT.

Theorem 1. For the IPLT setting with K messages,
demand’s support size D, and demand’s dimension
L, the capacity is lower and upper bounded by
(bKD c+min{RS ,

R
L})
−1 and (bKD c+min{1, RL})

−1, respec-
tively, where R , K (mod D) and S , gcd(D + R,R).
The lower and upper bounds match when R ≤ L or R | D.

1To puncture a linear code at a coordinate, the column corresponding to
that coordinate is deleted from the generator matrix of the code.
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To prove the converse bound, we use the necessary con-
dition for IPLT protocols provided by Lemma 1 along with
information-theoretic arguments, and formulate the problem
as an integer linear programming (ILP) problem. Solving
this ILP, we obtain the upper bound on the capacity (see
Section V). The lower bound on the capacity is proven by
constructing an IPLT protocol, called Generalized Partition-
and-Code with Partial Interference Alignment (GPC-PIA)
(see Section VI). This protocol is a generalization of the
protocols we previously proposed in [13] and [8] for single-
server PIR and PLC (without SI) with individual privacy. The
main ingredients of the GPC-PIA protocol are as follows:
(i) constructing a properly designed family of subsets of
messages, where some subsets are possibly overlapping,
and (ii) designing a number of linear combinations for
each subset, where the linear combinations pertaining to the
overlapping subsets are partially aligned.

Remark 1. As shown in [8], the capacity of PLC with
individual privacy, which is a special case of IPLT for
L = 1, is given by d K

D+M e
−1, where the user initially

knows M uncoded messages or one linear combination
of M messages as side information. The capacity of this
setting was left open for M = 0. Theorem 1 provides a
lower bound (bKD c+min{RS , R})

−1 and an upper bound
(bKD c+min{1, R})−1 on the capacity of this setting. Inter-
estingly, these bounds are matching when R = 0 or R | D,
settling the capacity of PLC (without SI) with individual
privacy for these cases. For L = D, IPLT reduces to PIR
(without SI) with individual privacy, and an optimal scheme
in this case is to download the entire dataset [13].

Remark 2. The result of Theorem 1 can be extended to
IPLT with Side Information (SI). We consider two types
of SI—previously studied in the PIR and PLC literature:
Uncoded SI (USI) (see [15]), and Coded SI (CSI) (see [16]).
In the case of USI (or CSI), the user initially knows a
subset of M messages (or L MDS coded combinations of
M messages). For both USI and CSI, the identities of these
M messages are initially unknown by the server. When the
identity of every message in the support sets of demand and
side information must be protected individually, a slightly
modified version of the GPC-PIA scheme (for IPLT without
SI) achieves the rate (b K

D+M c+min{RS ,
R
L})
−1 for both

IPLT with USI and CSI, where R = K (mod D +M) and
S = gcd(D +M +R,R). This result generalizes the results
of [13] and [8] for PIR and PLC with individual privacy. The
optimality of this rate, however, remains open in general.

V. PROOF OF CONVERSE

Lemma 2. The rate of any IPLT protocol for K messages,
demand’s support size D and dimension L, is upper bounded
by (bKD c+min{1, RL})

−1, where R , K (mod D).

Proof: Consider an arbitrary IPLT protocol that gener-
ates the query-answer pair (Q[W,V],A[W,V]) for any given
(W,V). To prove the rate upper bound in the lemma, we
need to show that H(A) ≥ (LbKD c+min{L,R})θ. Recall

that A denotes A[W,V], and θ is the entropy of a message.
Consider an arbitrary message index k1 ∈ K. By the result of
Lemma 1, there exist W1 ∈W with k1 ∈W1, and V1 ∈ V

such that H(Z1|A,Q) = 0, where Z1 , Z[W1,V1]. By the
same arguments as in the proof of [2, Lemma 2], we have

H(A) ≥ H(A|Q) +H(Z1|A,Q)

= H(Z1|Q) +H(A|Q,Z1)

= H(Z1) +H(A|Q,Z1) (1)

To further lower bound H(A|Q,Z1), we proceed as follows.
Take an arbitrary message index k2 6∈ W1. Again, by
Lemma 1, there exist W2 ∈W with k2 ∈W2, and V2 ∈ V

such that H(Z2|A,Q) = 0, where Z2 , Z[W2,V2]. Using a
similar technique as in (1), it follows that H(A|Q,Z1) ≥
H(Z2|Q,Z1) +H(A|Q,Z1,Z2), and consequently,

H(A|Q,Z1) ≥ H(Z2|Z1) +H(A|Q,Z2,Z1). (2)

Combining (1) and (2), we get

H(A) ≥ H(Z1) +H(Z2|Z1) +H(A|Q,Z2,Z1). (3)

We repeat this lower-bounding process multiple rounds
until there is no message index left to take. Let n be the
total number of rounds, and let k1, . . . , kn be the message
indices chosen over the rounds. For every i ∈ {1, . . . , n}, let
Wi ∈ W with ki ∈ Wi and ki 6∈ ∪1≤j<iWj , and Vi ∈ V,
be such that H(Zi|A,Q) = 0, where Zi , Z[Wi,Vi]. (For
any i ∈ {1, . . . , n}, Wi and Vi exist due to Lemma 1.) Note
that ∪1≤i≤nWi = K. Similarly as before, we can show that

H(A) ≥
∑

1≤i≤n

H(Zi|Zi−1, . . . ,Z1) +H(A|Q,Zn, . . . ,Z1)

≥
∑

1≤i≤n

H(Zi|Zi−1, . . . ,Z1). (4)

Next, we show that

H(Zi|Zi−1, . . . ,Z1) ≥ min{Ni, L}θ, (5)

where Ni , |Wi \ ∪1≤j<iWj | is the number of message
indices that belong to Wi, but not ∪1≤j<iWj . (Note that
N1 = |W1|= D.) Let Zi,1, . . . ,Zi,L be the (row-) vectors
pertaining to Zi, where Zi,l , vi,lXWi , and vi,l is the lth
row of Vi. Note that these vectors are linear combinations
of the messages X1, . . . ,XK . We need to show that there
exist Mi , min{Ni, L} vectors pertaining to Zi that are
independent of the vectors pertaining to Z1, . . . ,Zi−1. Let
ui,l be a row-vector of length K such that the vector ui,l
restricted to its components indexed by Wi is the vector
vi,l, and the rest of the components of the vector ui,l are
all zero, and let Ui , [uTi,1, . . . , u

T
i,L]

T. Thus, we need to
show that the matrix Ui contains Mi rows that are linearly
independent of the rows of the matrices U1, . . . ,Ui−1. Note
that the rows of the matrix Ui are linearly independent,
because Ui contains Vi as a submatrix, and Vi is invertible.
Let Si be an L × Ni submatrix of Ui formed by columns
indexed by Wi \ ∪1≤j<iWj . Note that Si is a submatrix
of Vi, and every L × L submatrix of Vi is invertible. We
consider two cases: (i) Ni ≤ L, and (ii) Ni > L. In the
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case (i), the Ni columns of Si are linearly independent.
Otherwise, any L×L submatrix of Vi that contains Si cannot
be invertible, and hence a contradiction. In the case (ii), any
L columns of Si are linearly independent. Otherwise, Si (and
Vi) contains an L×L submatrix that is not invertible, which
is a contradiction. By these arguments, the rank of Si is
Mi = min{L,Ni}, and Si contains Mi linearly independent
rows. Without loss of generality, assume that the first Mi

rows of Si are linearly independent. Moreover, the submatrix
of [UT

1 , . . . ,U
T
i−1]

T restricted to its columns indexed by
Wi \ ∪1≤j<iWj (and all its rows) is an all-zero matrix.
Thus, the first Mi rows of Ui are linearly independent of the
rows of [UT

1 , . . . ,U
T
i−1]

T. This completes the proof of (5).
Combining (4) and (5), we have

H(A) ≥
∑

1≤i≤n

min{L,Ni}θ (6)

Recall that Ni = |Wi \ ∪1≤j<iWj |. Note that 1 ≤ Ni ≤ D
since Wi \ ∪1≤j<iWj is a subset of Wi, and the mes-
sage index ki belongs to Wi \ ∪1≤j<iWj . Moreover,∑n

i=1Ni = K since W1, W2 \W1, . . . , Wn \ ∪1≤j<nWj

form a partition of K, and |W1|= N1 = D, |W2 \W1|= N2,
. . . , |Wn \ ∪1≤j<nWj |= Nn. To obtain a converse bound,
we need to minimize

∑
1≤i≤n min{L,Ni}, subject to the

constraints (i) N1 = D, and 1 ≤ Ni ≤ D for any
1 < i ≤ n, and (ii)

∑
1≤i≤nNi = K. To this end, we re-

formulate this optimization problem as follows. For ev-
ery j ∈ {1, . . . , D}, let Tj ,

∑
1≤i≤n 1{Ni=j} be the

number of rounds i such that Ni = j. Using this no-
tation, the objective function

∑
1≤i≤n min{L,Ni} can

be rewritten as
∑

1≤j≤D Tj min{L, j}, or equivalently,∑
1≤j≤L Tjj +

∑
L<j≤D TjL; the constraint (i) reduces to

Tj ∈ N0 , {0, 1, . . . } for every 1 ≤ j < D, and
TD ∈ N , {1, 2, . . . }; and the constraint (ii) reduces to∑

1≤j≤D Tjj = K. Thus, we need to solve the following
integer linear programming (ILP) problem:

minimize
∑

1≤j≤L

Tjj +
∑

L<j≤D

TjL

subject to
∑

1≤j≤D

Tjj = K

T1, . . . , TD−1 ∈ N0, TD ∈ N

Solving this ILP using the Gomory’s cutting-plane algo-
rithm [17], an optimal solution is TD = bKD c, TR = 1,
and Tj = 0 for all j 6∈ {R,D}, where R , K (mod D),
and the optimal value is LbKD c+min{L,R}. Equiva-
lently,

∑n
i=1 min{L,Ni} ≥ LbKD c + min{L,R}. Com-

bining this inequality and the inequality (6), we have
H(A) ≥ (LbKD c+min{L,R})θ, as was to be shown.

VI. ACHIEVABILITY SCHEME

This section presents an IPLT protocol, called General-
ized Partition-and-Code with Partial Interference Alignment
(GPC-PIA), that achieves the rate (bKD c+min{RS ,

R
L})
−1,

where R , K (mod D) and S , gcd(D + R,R). Ex-
amples of this protocol—not presented here due to space
constraints—can be found in [1].

In the following, we denote by W̃ a sequence of length D
(instead of a set of size D) that the user initially constructs
by randomly permuting the elements in the demand’s support
index set W, and denote by Ṽ an L×D matrix that the user
initially constructs by applying the same permutation on the
columns of the demand’s coefficient matrix V.

We consider two different cases: (i) L ≤ S, and (ii) L > S.
In each case, the protocol consists of three steps as follows.

Step 1: The user constructs a matrix G and a permutation
π, and sends them as the query Q[W,V] to the server. In the
following, we describe the construction of the matrix G and
the permutation π for the cases (i) and (ii) separately.

Case (i): Let n , bKD c − 1, m , R
S + 1, and t , D

S − 1.
The user constructs an L(n+m)×K matrix G,

G =


G1 0 . . . 0 0
0 G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Gn 0
0 0 . . . 0 Gn+1

 (7)

where G1, . . .Gn are L × D matrices, and Gn+1

is an Lm× (D +R) matrix. The matrices (blocks)
G1, . . . ,Gn,Gn+1 are constructed as follows.

The user randomly selects one of the blocks
G1, . . . ,Gn+1, where each of the blocks G1, . . . ,Gn

is selected with probability D
K , and the block Gn+1 is

selected with probability D+R
K . Let i∗ be the index of

the selected block. Depending on the choice of i∗, the
description of the protocol is different. In the following, we
consider the cases of 1 ≤ i∗ ≤ n and i∗ = n+ 1 separately.

First, consider the case of 1 ≤ i∗ ≤ n. In this case, the
user takes Gi∗ to be the matrix Ṽ, i.e., Gi∗ = Ṽ. For any
i ∈ {1, . . . , n} \ {i∗}, the user takes Gi to be a randomly
generated MDS matrix of size L×D. The construction
of Gn+1 is as follows. First, the user randomly generates
an MDS matrix C of size L × (D + R), and partitions
the columns of C into t + m column-blocks each of size
L × S, i.e., C = [C1, . . . ,Ct+m]. Then, the user constructs
Gn+1 = [B1,B2], where B1 and B2 are given byα1ω1,1C1 . . . αtω1,tCt

...
...

...
α1ωm,1C1 . . . αtωm,tCt

 and

αt+1Ct+1

. . .
αt+mCt+m


respectively, and α1, . . . , αt+m are t +m randomly chosen
elements from Fp\{0}, and ωi,j , (xi−yj)−1 for 1 ≤ i ≤ m
and 1 ≤ j ≤ t, where x1, . . . , xm and y1, . . . , yt are t +m
distinct elements chosen at random from Fp. Note that ωi,j

is the entry (i, j) of an m× t Cauchy matrix.
Now, consider the case of i∗ = n + 1. For any

i ∈ {1, . . . , n}, the user takes Gi to be a randomly generated
MDS matrix of size L×D. The user then constructs Gn+1

with a structure similar to that in the previous case, but for
a different choice of matrices C1, . . . ,Ct+m and parameters
α1, . . . , αt+m, as specified below.

First, the user partitions the columns of Ṽ into t + 1
column-blocks each of size L×S, i.e., Ṽ = [Ṽ1, . . . , Ṽt+1].
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The user then randomly chooses t + 1 indices from
{1, . . . , t+m}, say, i1, . . . , it+1, and for any 1 ≤ j ≤ t+ 1,
takes Cij = Ṽj . Next, the user randomly generates the rest
of Ci’s such that C = [C1, . . . ,Ct+m] is an MDS matrix.
The choice of αi’s is described below.

Hereafter, we refer to the submatrix of Gn+1 formed
by the ith L rows as the ith row-block of Gn+1. Note
that Gn+1 has m row-blocks. Let s be the number of
column-block indices ij for j ∈ {1, . . . , t + m} such that
ij > t. Note that Ci1 , . . . ,Cit−s+1

belong to the matrix
B1, and Cit−s+2

, . . . ,Cit+1
belong to the matrix B2. Let

I , {i1, . . . , it+1} be the index set of those column-
blocks of C that correspond to the column-blocks of Ṽ. Let
I1 , {i1, . . . , it−s+1}, and let I2 , I \I1. Note that for any
i ∈ I1, Ci appears in all row-blocks of Gn+1, and for any i ∈
I2, Ci appears only in the (i− t)th row-block of Gn+1. The
parameters αi’s are to be chosen such that, by performing
row-block operations on Gn+1, the user can construct an L×
(D+R) matrix with t+m column-blocks each of size L×S
that satisfies the following two conditions: (a) the blocks
indexed by {1, . . . , t+m} \ I are all zero, and (b) the
blocks indexed by I = {i1, . . . , it+1} are Ci1 , . . . ,Cit+1

. For
simplifying the notation, let {j1, . . . , js−1} , {1, . . . , t} \ I,
and let {k1, . . . , ks} , I2 = {it−s+2, . . . , it+1}.

To perform row-block operations, for every i ∈ I2 =
{k1, . . . , ks}, the user multiplies the (i − t)th row-block of
Gn+1 by a nonzero coefficient ci. Let c , [ck1 , . . . , cks ]

T.
Upon choosing αj1 , . . . , αjs−1 randomly from Fp \ {0}, it
follows that the condition (a) is satisfied so long as M1c is
an all-zero vector, where

M1 ,

 ωk1−t,j1 ωk2−t,j1 . . . ωks−t,j1
...

...
...

...
ωk1−t,js−1

ωk2−t,js−1
. . . ωks−t,js−1

 .
Since M1 is a Cauchy matrix by the choice of ωi,j’s, the
submatrix of M1 formed by columns indexed by {2, . . . , s}
is invertible [18]. Thus, for any arbitrary ck1

6= 0, there is
a unique solution for the vector c. Note also that all the
components of c are nonzero because every square submatrix
of M1 is invertible (by the properties of Cauchy matrices).

Given the vector c, the condition (b) is satisfied so long
as αk1

= 1/ck1
, . . . , αks

= 1/cks
, and αi1 , . . . , αit−s+1

are
chosen such that M2c is an all-one vector, where

M2 ,

 αi1ωk1−t,i1 . . . αi1ωks−t,i1
...

...
...

αit−s+1
ωk1−t,it−s+1

. . . αit−s+1
ωks−t,it−s+1

 .
Solving for αi1 , . . . , αit−s+1

, it follows that αij ,
(
∑

1≤l≤s ckl
ωkl−t,ij )

−1 for 1 ≤ j ≤ t− s+ 1. Note
that αi1 , . . . , αit−s+1

are nonzero. Note also that∑
1≤l≤s ckl

ωkl−t,ij is nonzero because the jth row of
M2 is linearly independent of the rows of M1. For any
i ∈ {1, . . . , t + m} \ {i1, . . . , it+1, j1, . . . , js−1}, the user
chooses αi randomly from Fp \ {0}. This completes the
construction of the matrix G.

Next, the user constructs a permutation π as follows.
Let W̃ = {l1, . . . , lD}, and let K \W = {lD+1, . . . , lK}.
First, consider the case of 1 ≤ i∗ ≤ n. In this case, the
user constructs π such that: for every 1 ≤ j ≤ D, π(lj) =
(i∗ − 1)D + j; and for every D < j ≤ K, π(lj) is a
randomly chosen element from K \ {π(lk)}1≤k<j . Next,
consider the case of i∗ = n + 1. Recall that i1, . . . , it+1

are the indices of those column-blocks of C that correspond
to the column-blocks of Ṽ. Thus, the user constructs π such
that: for every 1 ≤ k ≤ t+ 1 and (k − 1)S + 1 ≤ j ≤ kS,
π(lj) = nD + (ik − 1)S + fj , where fj = j (mod S) if
S - j, and fj = S if S | j; and for every D < j ≤ K,
π(lj) is a randomly chosen element from K\{π(lk)}1≤k<j .

Case (ii): Let n , bKD c − 1, and m , R
L + 1. The user

constructs an L(n+m)×K matrix G with a structure similar
to (7), where G1, . . . ,Gn are constructed similarly as in the
previous case, but the construction of Gn+1 is different. In
the following, we will only explain how to construct Gn+1.

For the case of 1 ≤ i∗ ≤ n, the user randomly generates
an [D +R,L+R] MDS code, and takes Gn+1 to be the
generator matrix of this code. For the case of i∗ = n + 1,
the user constructs a [D +R,L+R] MDS code using the
same technique as in the step 1 of the Specialized MDS
Code protocol of [2], except where K is replaced by D +R,
and W is replaced by a randomly chosen D-subset of
{1, . . . , D + R}, say, {h1, . . . , hD}. The user then uses the
generator matrix of the constructed MDS code as Gn+1.

Next, the user constructs a permutation π. For the case of
1 ≤ i∗ ≤ n, π is generated exactly the same as in the case
(i), whereas the construction of π for the case of i∗ = n+1
is different from that in the case (i). Similarly as before, let
W̃ = {l1, . . . , lD}, and let K\W = {lD+1, . . . , lK}. For the
case of i∗ = n+1, the user constructs π such that: for every
1 ≤ j ≤ D, π(lj) = nD + hj ; and for every D < j ≤ K,
π(lj) is a randomly chosen element from K\{π(lk)}1≤k<j .

Step 2: Given the query Q[W,V], i.e., the matrix G and
the permutation π, the server first constructs the matrix X̃ ,
π(X) by permuting the rows of the matrix X according to the
permutation π, i.e., for every l ∈ K, π(l)th row of X̃ is the
lth row of X. Then, the server computes the matrix Y , GX̃,
and sends Y back to the user as the answer A[W,V].

Step 3: Upon receiving the answer A[W,V], i.e., the matrix
Y, the user recovers the demand Z[W,V] as follows. For every
1 ≤ i ≤ n, let Yi be the matrix Y restricted to its rows
indexed by {(i−1)L+1, . . . , iL}, and let Yn+1 be the matrix
Y restricted to its rows indexed by {nL+ 1, . . . , nL+mL}.
For the case of 1 ≤ i∗ ≤ n, Z[W,V] can be recovered
from the matrix Yi∗ for both cases (i) and (ii). For the
case of i∗ = n+ 1, Z[W,V] can be recovered by performing
proper row-block or row operations on the augmented matrix
[Gn+1,Yn+1] for the case (i) or (ii), respectively.

Lemma 3. The GPC-PIA protocol is an IPLT proto-
col, and achieves the rate (bKD c+min{RS ,

R
L})
−1, where

R , K (mod D) and S , gcd(D +R,R).

Proof: The proof can be found in [1].
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