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Abstract— This paper focuses on the Private Linear Trans-

formation (PLT) problem in the multi-server scenario. In this
problem, there are N servers, each of which stores an identical
copy of a database consisting of K independent messages, and
there is a user who wishes to compute L independent linear
combinations of a subset of D messages in the database while
leaking no information to the servers about the identity of the
entire set of these D messages required for the computation.
We focus on the setting in which the coefficient matrix of the
desired L linear combinations generates a Maximum Distance
Separable (MDS) code. We characterize the capacity of the PLT
problem, defined as the supremum of all achievable download
rates, for all parameters N,K,D ≥ 1 and L = 1, i.e., when the
user wishes to compute one linear combination of D messages.
We show that the capacity in this case is Φ(1/N,K −D + 1),
where Φ(A,B) , (1 + A + A2 + · · · + AB−1)

−1. Moreover, we
establish an upper bound and lower bounds on the capacity of
the PLT problem for all parameters N,K,D,L ≥ 1. We show
that for the regime where K − D is a non-negative integer
multiple of L, the proposed capacity upper bound is equal to
Φ(1/N, (K−D+L)/L). Also, leveraging some known capacity
results, we show the tightness of this bound in the following
regimes: (i) the case when there is a single server (i.e., N = 1),
(ii) the case when L = 1, and (iii) the case when L = D.

I. INTRODUCTION

This work focuses on the Private Linear Transformation
(PLT) problem which was recently introduced in [1], [2]. In
the PLT problem, there are N servers, each of which stores
an identical copy of a database consisting of K independent
messages. Also, there is a user who wishes to compute L
independent linear combinations of a subset of D messages
in the database, without revealing any information to the
servers about the identities of the D messages required for
the computation, while downloading the minimum possible
amount of information from the servers.

The PLT problem can be seen as an interesting extension
of the Private Information Retrieval (PIR) (e.g., [3]–[21])
and Private Linear Computation (PLC) (e.g., [22]–[25]) prob-
lems, which have been extensively studied in the literature.
To be more specific, for L = D, the PLT problem reduces
to the multi-message PIR problem in which the goal is to
privately retrieve a subset of D messages in the database.
Moreover, for L = 1, the PLT problem reduces to the
PLC problem in which the goal is to privately compute
one linear combination of a D-subset of messages. The PLT
problem can be motivated by several practical scenarios such
as linear transformation technique applied for dimensionality
reduction in Machine Learning (ML) applications (see [2]).

This material is based upon work supported by the National Science
Foundation under Grants No. 1718658.

A. Previous and Related Work

In the classical PIR problem, a user wants to download
a message from a database replicated over N non-colluding
servers, without leaking any information about the identity of
the desired message to any individual server. The capacity of
the information-theoretic PIR was derived in [4]. Then, the
PIR problem has been extended in various directions, such as
coded PIR (e.g., [5]–[7]), multi-message PIR (e.g., [8]–[11]),
and PIR with side information (e.g., [15]–[21]).

The PLC problem, which was initially introduced in [22],
is an interesting generalization of the PIR problem, in which
the user wishes to compute one arbitrary linear combination
of the messages in the database, while revealing no informa-
tion about the identities and the coefficients of the messages
in the demanded linear combination to any server. Several
variants of the PLC problem were also studied in [23]–[28].
In [25], a variation of the PLC problem was considered in
which it is only required to protect the identities of the
messages in the demanded linear combination, while the
coefficients used to construct the linear combination do not
need to be hidden from the server.

This work focuses on the PLT problem recently introduced
in [1], [2], which is also closely related to the PIR and PLC
problems. Indeed, one naive protocol for the PLT problem
is to privately retrieve all the D messages required for
computation using a multi-message PIR scheme, and then
compute the demanded linear combinations. Another simple
approach for the PLT problem is to compute each required
linear combination separately using a PLC protocol.

Although there is a significant body of literature on PIR
and PLC problems, there are only a few studies on PLT. In
particular, the PLT problem was studied in the single-server
setting considering the following two privacy requirements:
(i) the individual privacy, where the identity of each indi-
vidual message in the support set of the demanded linear
combinations needs to be kept private [1]; and (ii) the joint
privacy, in which the identity of the entire set of messages in
the support set of the demanded linear combinations must be
kept private [2]. All variants of the PIR and PLC problems,
can be considered for the PLT problem which opens several
interesting directions for future work.

In [2], the authors recently proved that the capacity of the
PLT with a single server and joint privacy is L/(K−D+L).
However, the capacity of the PLT in the multi-server scenario
was left as an open problem in [2]. Remarkably, neither a
general achievability scheme nor a converse was known in
this case. This work is motivated by this open problem.
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B. Main Contributions

This paper studies the multi-server setting of PLT problem
under the joint privacy guarantee. We consider the setting in
which the coefficient matrix related to the required linear
combinations generates MDS code. This setting is motivated
by several practical scenarios, e.g., the coefficient matrix may
be chosen randomly over the field of real numbers [2]. As the
first contribution of this work, we characterize the capacity
of the PLT for the case of L = 1 (i.e., PLC problem), thus
settling the open problem mentioned above for the case of
L = 1. We show that the capacity in this case is Φ(1/N,K−
D + 1), where Φ(A,B) = (1 +A+A2 + · · ·+AB−1)

−1.
Moreover, we establish an upper bound on the capacity of
PLT problem for all parameters N,K,D,L ≥ 1, and based
on some known capacity results, we show the tightness of our
proposed upper bound in some special cases of the problem:
(i) the single-server case (i.e., N = 1), (ii) the case of L = 1,
and (iii) the case of L = D. An independent and concurrent
work [29] which mainly focuses on the special case of L = 1
(i.e., PLC problem), characterizes the capacity of this case
under the individual and joint privacy guarantees. Also, for
a specific regime when L divides K−D, an upper bound on
the capacity of PLT was presented in [29] with no detailed
proof. In this paper, we present a detailed converse proof for
the established upper bound on the capacity of PLT for all
parameters N,K,D,L ≥ 1. Our converse proofs are based
on a reduction technique and leverage the capacity results for
two settings of the PIR problem with side information. Our
achievability proof for the PLC (L = 1) is inspired by our
recently proposed scheme of [20] for single-server PIR with
private coded side information, and the multi-server private
computation scheme of [22]. We propose some trivial PLT
protocols based on multi-message PIR and PLC protocols,
which provide lower bounds (does not match our proposed
upper bound) on the capacity of the multi-server PLT.

II. PROBLEM FORMULATION

A. Basic Notation

Throughout this paper, we denote random variables by
bold letters and their realizations by regular letters. The
functions P(·), P(·|·), H(·), H(·|·), and I(·; ·|·) denote prob-
ability, conditional probability, entropy, conditional entropy,
and conditional mutual information, respectively. Let Z≥0
and N denote the set of non-negative integers and the
set of positive integers, respectively. For any i ∈ N, let
[i] , {1, . . . , i}. Let Fq be a finite field for some prime
q, F×q , Fq \ {0} be the multiplicative group of Fq , and FSq
be the S-dimensional vector space over Fq for some integer
S ≥ 1. Let B , S log2 q. Let K,D,L ≥ 1 be integers such
that L ≤ D ≤ K. Let K , [K]. Let W denote the set
of all D-subsets (i.e., subsets of size D) W of K, and V
denote the set of all MDS matrices V of dimension L×D
with entries in Fq (i.e., every L× L submatrix of V is full-
rank). We denote the cardinality of a set S by |S|. For a
positive real number A and a positive integer number B, let
Φ(A,B) = (1 + A+A2 + · · ·+AB−1)

−1.

B. Setup and Assumptions
Consider N non-colluding servers, each stores an identical

copy of a database consisting of K messages, XK =
{X1, . . . , XK}, where each message Xi is a row vector
of length S. Let X , [X>1 , · · · , X>K ]> be a matrix of
dimension K × S. For some R , {i1, . . . , ir} ⊂ K, let
XR be the submatrix of X of size |R| × S, restricted to its
rows indexed by the set R, i.e., XR = [X>i1 , · · · , X

>
ir

]>.
Suppose that there is a user who wishes to compute L

linear combinations of D messages {Xi : i ∈ W}, as
V1XW , · · · , VLXW , where W ∈ W is the index set of the
D messages required for the computation, and V`, ` ∈ [L],
denoting the coefficient vector of the `th desired linear
combination, is the `th row of an L×D MDS matrix V with
entries in Fq , i.e., V = [V >1 , · · · , V >L ]>, V ∈ V. Indeed, the
user wants to compute the L × S matrix Z [W,V ] , V XW
whose rows are the L required linear combinations. We refer
to Z [W,V ] as the demand, W as the demand’s index set,
V as the demand’s coefficient matrix, L as the demand’s
dimension, and D as the demand’s support size.

We assume X1, · · · ,XK are independently and uniformly
distributed over FSq , i.e., H(Xi) = B for i ∈ K. Thus,
H(X) = KB, H(XR) = |R|B for every R ⊂ K, and
H(Z[W,V]) = LB. We also assume that W , V, and X
are independent random variables such that W and V are
uniformly distributed over W and V, respectively. Moreover,
we assume that the servers initially know the distributions of
W and V, whereas the servers have no information about
the realizations W and V in advance.

C. Privacy and Recoverability Conditions
To retrieve the demand Z [W,V ] for any givenW and V , the

user generates N queries {Q[W,V ]
n }n∈[N ], and sends Q[W,V ]

n

(potentially stochastic function ofW and V ) to server n. Let
Q[W,V ] , {Q[W,V ]

n }n∈[N ] and Q[W,V] , {Q[W,V]
n }n∈[N ].

Once server n receives the query Q[W,V ]
n , it responds with

an answer A[W,V ]
n (deterministic function of Q[W,V ]

n and X ,
i.e., H(A

[W,V]
n |Q[W,V]

n ,X) = 0) to the user. For clarity, let
A[W,V ] , {A[W,V ]

n }n∈[N ] and A[W,V] , {A[W,V]
n }n∈[N ].

Recoverability Condition: The answers A[W,V ] from all
the servers along with the queries Q[W,V ], and the real-
izations W, V must enable the user to retrieve the demand
Z [W,V ]. This condition is referred to as the recoverability
condition, as formally stated in the following

H(Z[W,V]|A[W,V],Q[W,V],W ,V) = 0,

Privacy Condition: The queries Q[W,V ] should be de-
signed such that the servers infer no information about the
user’s demand index set W . This condition is referred to as
the (joint) privacy condition, formally stated as follows

I(W ;Q[W,V]
n ,A[W,V]

n ,XK) = 0 ∀n ∈ [N ].

Equivalently, from the perspective of each server, every D-
subset of indices K must be equally likely to be the demand’s
index set, i.e., for any given W̃ ∈W, it must hold that

P(W = W̃|Q[W,V]
n = Q[W,V ]

n ) = P(W = W̃) ∀n ∈ [N ].

183
Authorized licensed use limited to: National Science Foundation. Downloaded on January 15,2022 at 21:26:47 UTC from IEEE Xplore.  Restrictions apply. 



D. Problem Statement

The problem is to design a protocol for generating queries
Q[W,V ] and their corresponding answers A[W,V ] (for any
givenW and V ) such that both the privacy and recoverability
conditions are satisfied. We refer to this problem as Private
Linear Transformation (PLT). A protocol for generating
queries/answers for PLT is referred to as a PLT protocol.

The rate of a PLT protocol is defined as the ratio of
the entropy of the demand , i.e., H(Z[W,V]) = LB,
to the total entropy of answers from the servers, i.e.,
ΣNn=1H(A

[W,V]
n ). The capacity of the PLT problem, denoted

by CPLT (N,K,L,D), is defined as the supremum of rates
over all PLT protocols, i.e.,

CPLT (N,K,L,D) , sup
LB

ΣNn=1H(A
[W,V]
n )

In this work, our goal is to characterize (or derive non-
trivial bounds on) the capacity of the PLT problem, i.e.,
CPLT (N,K,L,D), and to design a PLT protocol that is
capacity-achieving.

III. MAIN RESULTS

In this section, we present our main results. Theorem 1
establishes an upper bound on the capacity of the PLT
problem for all parameters N,K,L,D ≥ 1. Leveraging
some known capacity results, we show that the presented
upper bound is tight in the following regimes: (i) the case
where there is a single server (i.e., N = 1), (ii) the
case where L = 1, and (iii) the case where L = D.
Theorem 2 characterizes the capacity of the PLT problem for
all parameters N,K,D ≥ 1 and L = 1, i.e., the case where
the user wishes to privately compute one linear combination
of D messages in the database. The proofs of theorems 1
and 2 are given in sections IV and V, respectively.

Theorem 1. The capacity of the PLT problem with N non-
colluding and replicated servers, K messages, demand’s
support size D, and demand’s dimension L,
(i) if K−D

L ≤ 1, is upper bounded by

CPLT (N,K,L,D) ≤
(

1 +
K −D
LN

)−1
,

(ii) and if K−D
L ≥ 1, is upper bounded by

CPLT (N,K,L,D) ≤

(
1−

(
1
N

)bθc
1− 1

N

+
(θ − bθc)
Nbθc

)−1
.

where θ , K−D+L
L .

The converse proof is provided in Section IV-A, which is
based on a reduction argument and leverages the capacity
result for multi-message PIR with private side information
problem, introduced in [14].

Corollary 1. If K−D
L ∈ Z≥0, the capacity upper bounds

provided in Theorem 1, can be written as

CPLT (N,K,L,D) ≤ Φ(
1

N
,
K −D + L

L
).

Remark 1. The capacity upper bounds in Theorem 1 are
tight for the case when N = 1 (i.e., when there is a single
server), which is equal to L/(K − D + L) as was shown
in [2, Theorem 2]. Moreover, in Theorem 2, we prove the
tightness of this upper bound for the case of L = 1.

Remark 2. Notably, for the case of L = D, where
the user wishes to privately compute D independent lin-
ear combinations of D-subset of messages in the database
(which is equivalent to privately retrieving these D mes-
sages), the capacity upper bound in Theorem 1, i.e., (i)
(1 + (K −D)/DN)

−1 if K/D ≤ 2, and (ii) Φ(1/N,K/D)
if K/D ≥ 2 and K/D ∈ N, is tight as was shown in [9].
Note that in this case, an optimal capacity-achieving multi-
message PIR protocol proposed in [9, Theorems 1, 2] is an
optimal protocol that achieves the capacity upper bound in
Theorem 1.

Theorem 2. The capacity of the PLT problem with N non-
colluding and replicated servers, K messages, demand’s
support size D, and demand’s dimension L = 1, is given
by

CPLT (N,K, 1, D) = Φ

(
1

N
,K −D + 1

)
.

The converse proof follows directly from the result of
Theorem 1 for L = 1. Also, an alternative proof of converse,
similar to that of Theorem 1, is provided in Section V.
For the achievability proof, we design a PLT protocol that
achieves the proposed upper bound provided by converse,
and is inspired by both our recently proposed scheme of [20]
for the single-server PIR with private coded side information
problem, and the scheme proposed in [22] for the private
computation problem.

Remark 3. The result of Theorem 2 generalizes the previous
finding reported in [2] for the PLT problem with a single
server, without any prior side information, when joint privacy
is required, and L = 1. As was shown in [2], the capacity of
this setting is equal to K −D + 1, which is consistent with
the result of Theorem 2 for N = 1. Also, evidently it can be
observed that for the case of D = 1, the result of Theorem 2
reduces to the known capacity result of [4] for the classical
PIR problem where the user wants to privately download one
message in the database, which is Φ (1/N,K).

Remark 4. It is worthwhile to compare the result of The-
orem 2 with the capacity result of [22] for the related PLC
problem where the user wishes to compute one arbitrary
linear combination of K independent messages in a database
replicated at N non-colluding servers, while hiding both the
identities and the coefficients of the messages participating
in the demand. As was shown in [22], the capacity of this
setting is equal to Φ (1/N,K). Unlike the privacy require-
ments in the private computation problem introduced in [22],
in the PLT problem, the goal is to hide only the identities of
the D messages participating in the user’s demand and not
necessarily the values of their coefficients, which based on
the result of Theorem 2, it can be fulfilled more efficiently
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with much higher rate, i.e., Φ (1/N,K −D + 1). This is
interesting since this type of access privacy are motivated
by many practical scenarios such as linear transformation
technique used for dimensionality reduction in Machine
Learning (ML) applications (see, e.g. [2], [30] and references
therein). By comparing the capacity results of these two
problems, one can readily conclude that the advantage of PLT
protocols over the repeated use of a PLC protocol becomes
more tangible when the demand’s support size D increases.

Remark 5. It is noteworthy that for1 D ≥ 2, a trivial
PLT protocol for L = 1 would be privately retrieving
the D messages required for the linear computation using
an optimal multi-message PIR scheme satisfying privacy
of demand messages jointly, introduced in [9], and then
computing the required linear combination. As was shown
in [9, Theorems 1, 2], the optimal rate that can be achieved
leveraging this approach, is upper bounded by D−1 ≤ 1/2.
The result of Theorem 2 indicates that the PLT problem in
general can be addressed much more efficiently with the rate
of Φ(1/N,K −D + 1) ≥ 1/2.

Remark 6. Interestingly, in the PLT problem, a simple
approach of computing each of the required linear combi-
nations separately through applying an optimal PLT scheme
introduced in Theorem 2, cannot achieve the capacity upper
bound presented in Theorem 1 for all parameters N,K,L,D.

IV. PROOF OF THEOREM 1
A. Converse proof

The proof of converse follows from the capacity result
for the problem of multi-message PIR with private side
information, referred to as M-PIR-PSI, introduced in [14,
Theorem 1]. In this problem, there is a database of K
independent messages whose copies are replicated across N
servers, and there is a user who has access to M messages
from the database as side information. The user wishes to
retrieve P messages from the database while leaking no
information about the the identities of both the desired mes-
sages and the side information messages, to any individual
server. As was shown in [14, Theorem 1], the capacity of
this setting, denoted by CMPIR−PSI(N,K,P,M),
(i) if K−M

P ≤ 2 is given by

CMPIR−PSI(N,K,P,M) =

(
1 +

K −M − P
PN

)−1
,

(1)
(ii) if K−M

P ≥ 2 is upper bounded by

CMPIR−PSI(N,K,P,M) ≤

(
1−

(
1
N

)bρc
1− 1

N

+
(ρ− bρc)
Nbρc

)−1
,

(2)
where ρ , K−M

P . In case (ii), as was shown [14, Corol-
lary 1], if K−M

P ∈ N, the capacity is given by

CMPIR−PSI(N,K,P,M) = Φ(
1

N
,
K −M
P

). (3)

1Note that for the case of D = 1, the PLT problem reduces to the classical
single-message PIR problem introduced in [4].

In the following, we want to show that any PLT protocol
designed for the problem with N servers, K messages,
demand’s support size D, and demand’s dimension L, can
be used as a protocol that satisfies both the recoverability
and the privacy conditions of the M-PIR-PSI problem with
demand size P = L and side information size M = D − L.
Specifically, for a given instance of the M-PIR-PSI problem
with the set of demand indices P of size L, (i.e., P = L),
and the set of side information indices S of size D − L ,
(i.e., M = D − L), the user can construct a random L×D
MDS matrix V and forms the set W = P ∪ S . Then,
for the given W and V , the user and the servers can
apply a PLT protocol for generating queries Q[W,V ] and
their corresponding answers A[W,V ], such that the user can
privately compute L MDS coded linear combinations of the
D messages indexed by the set W (i.e., union of demands
and side information messages). The user can then retrieve
the L desired messages by subtracting off the contribution
of the D−L side information messages from the computed
L linear combinations.

Now, we need to prove that the PLT-based protocol de-
scribed above satisfies both the recoverability and the joint
privacy conditions of the M-PIR-PSI problem. It should be
noted that since the PLT protocol enables the user to compute
L MDS coded linear combinations of D messages, based
on the property of MDS codes2, one can readily verify that
the user can always retrieve the L desired messages by
subtracting off the contribution of D − L side information
messages from the L computed linear equations, and solving
the resulting system of L linear equations with L unknowns.
Thus, the recoverability condition is satisfied.

It is easy to verify that by applying the PLT protocol, the
identities of all the D messages (i.e., the union of the demand
messages and side information messages) participating in
the L linear combinations, will be jointly protected from
each server as a result of the privacy guarantees of the PLT
protocol. Indeed, from the perspective of each server, every
D-subset of K messages is equally likely to be the union
of the demand messages and side information messages.
Moreover, due to the property of MDS codes, within each D-
subset of messages, every subset of size L can be considered
as the set of demand messages (i.e., the remaining D−L as
the set of side information messages) with equal probability.
This ensures that the described PLT-based protocol satisfies
the privacy condition in the M-PIR-PSI problem.

Thus, we conclude that any achievable rates in the
PLT problem with N servers, K messages, demand’s sup-
port size D, and demand’s dimension L, would be also
achievable (using the PLT-based protocol) in the M-PIR-
PSI problem with N servers, K messages, demand size
P = L, and side information size M = D − L. Thus, the
capacity of PLT problem with parameters N,K,D,L, i.e.,
CPLT (N,K,L,D), is upper bounded by the capacity of the
M-PIR-PSI problem with parameters N,K,P = L,M =
D − L, i.e., CMPIR−PSI(N,K,L,D − L).

2Every L× L submatrix of an L×D MDS matrix is invertible.
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Thus, the proof is completed by substituting P with L,
and M with D − L in equations 1, 2.

V. PROOF OF THEOREM 2

Here, we prove the converse by showing that the capacity
for the case of L = 1, i.e., CPLT (N,K, 1, D), is upper
bounded by the capacity of PIR with private side information
problem, referred to as PIR-PSI, in which a database of K
independent messages is replicated across N servers, and
the user has access to M messages from the database as
side information. The user wants to retrieve one message
from the database while hiding jointly the identities of the
desired message and the side information messages, from
any individual server. This problem was introduced by Chen
et al. [12]. As was shown in [12, Theorem 1], the capacity
of PIR-PSI problem, denoted by CPIR−PSI(N,K,M), is
equal to Φ( 1

N ,K −M).
Any PLT protocol designed for the problem with N

servers, K messages, demand’s support size D, and de-
mand’s dimension L = 1, enables the user to compute
one linear combination of a subset of D messages while
hiding the identities of these messages from any server. So,
based on a similar reasoning used in the converse proof of
Theorem 1, one can easily confirm that such PLT protocol
would also be a protocol satisfying the recoverability and
the privacy conditions in the PIR-PSI problem with side
information size M = D − 1. Thus, any achievable rate in
the PLT problem with N servers, K messages, demand’s
support size D, and demand’s dimension L = 1, can be
also achieved for the PIR-PSI problem with N servers, K
messages, and side information size M = D − 1. Thus, we
have CPLT (N,K, 1, D) ≤ CPIR−PSI(N,K,D − 1) =
Φ( 1

N ,K −D + 1).

A. Achievability proof

In this section, we complete the proof of Theorem 2 by
designing a PLT protocol for the setting with N servers, K
messages, demand’s support size D, and demand’s dimen-
sion L = 1, such that it achieves the upper bound provided
by converse on the rate of any such PLT protocols, i.e.,
Φ(1/N,K −D + 1). The proposed protocol, referred to as
the Modified GRS Code, leverages ideas from a modified
version of the Specialized GRS Code Protocol proposed for
the problem of single-server PIR with private coded side
information in [20], as well as the PLC scheme proposed
for the PLC problem in [22].

Modified GRS Code protocol: Assume q ≥ K, and let
each message consists of S = N(K

D) symbols from Fq .
Suppose the user wishes to privately compute one linear
combination of D messages indexed by a setW , as V1XW =∑
i∈W viXi where V1 is a row vector of length D. This

protocol consists of four steps as follows:
Step 1: By using the Modified Specialized GRS Code pro-

tocol proposed in [20], the user first constructs a polynomial
p(x) =

∑K−D
i=0 pix

i ,
∏
i6∈W(x− ωi) where ω1, . . . , ωK

are K distinct arbitrarily chosen elements from Fq . The user
then constructs r , K − D + 1 vectors Q1, . . . , Qr, each

of length K, such that Qi = [α1ω
i−1
1 , . . . , αKω

i−1
K ], i ∈ [r],

where αj =
vj

p(ωj)
for any j ∈ W , and αj is chosen randomly

from F×q for any j 6∈ W .
Step 2: Let X̂i ,

∑K
j=1 αjω

i−1
j Xj for i ∈ [r]. We refer to

X̂i as a super-message. Note that the vector Qi, constructed
in Step 1, is the vector of coefficients of the messages
{Xi}i∈K in the super-message X̂i. Let F ,

(
K
D

)
, and let

W1,W2, . . . ,WF be the collection of all D-subsets of K in
a lexicographical order. The structure of the Specialized GRS
Code protocol [20] ensures that for each Wf , f ∈ [F ], there
exist exactly q−1 linear combinations Y 1

f , Y
2
f , . . . , Y

q−1
f of

the messages {Xi}i∈Wf
with (non-zero) coefficients from

F×q , such that for every k ∈ [q − 1], Y kf can be written
as a linear combination of the super-messages X̂1, . . . , X̂r.
Let βkf , [βkf,1, . . . , β

k
f,r] be a vector of length r such that

Y kf =
∑r
i=1 β

k
f,iX̂i. It should be noted that, for each f ∈

[F ], Y 1
f , Y

2
f , . . . , Y

q−1
f are the same up to a scalar multiple,

i.e., for each k ∈ [q − 1], Y kf = δkY
1
f , or equivalently,

βkf = δkβ
1
f , for some distinct δk ∈ F×q . The user then

constructs F vectors β1, . . . , βF , each of length r, such that
βf = β

kf
f for f ∈ [F ], is chosen arbitrarily from the set

of vectors {βkf }k∈[q−1]. Let Yf , Y
kf
f for f ∈ [F ]. Each

Yf is referred to as a (linear) function. Note that βf is the
vector of coefficients of the super-messages {X̂i}i∈[r] in the
function Yf .

Step 3: The user then sends to all servers the vectors
Q1, . . . , Qr, associated with the super-messages X̂1, . . . , X̂r,
and the vectors β1, . . . , βF , associated with Y1, . . . , YF .

Step 4: Then, the user and the servers leverage the PLC
scheme of [22] with r (independent) messages and F (linear)
functions of these messages such that the user can privately
retrieve one of these functions. Indeed, the r = K −D + 1
super-messages {X̂i}i∈[r] and the F functions {Yf}f∈[F ],
respectively, play the role of the original messages and
the functions in the PLC scheme, and the user is inter-
ested in retrieving the function Yf∗ privately, where Yf∗

is a linear combination with non-zero coefficients of the
messages {Xi}i∈W . Note that by construction, there exists
only one function Yf∗ among Y1, . . . , YF such that Yf∗

is a linear combination (with only non-zero coefficients)
of the messages {Xi}i∈W , and the user’s demand is an
scalar multiple of Yf∗ . More specifically, each server first
constructs the super-messages {X̂i}i∈[r] by using the coef-
ficient vectors {Qi}i∈[r] as described in Step 2, and then
constructs the functions {Yf}f∈[F ] by utilizing the super-
messages {X̂i}i∈[r] and the coefficient vectors {βf}f∈[F ]

as explained in Step 2. Note that each function Yf for
f ∈ [F ] consists of S = NF symbols (from Fq) where
N is the number of servers. Then, each server sends to
the user S(1/N + 1/N2 + · · ·+ 1/NK−D+1) carefully de-
signed linear combinations of all symbols associated with
all functions {Yf}f∈[F ]. The details of the design of the
user’s query to each server and each server’s transmitted
linear combinations (which also depend on the query of the
user) can be found in [22, Section 4].
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An example of the Modified GRS Code protocol is pro-
vided in [31].

Lemma 1. The Modified GRS Code protocol is a PLT
protocol, and achieves the rate ( 1

N ,K −D + 1).

Proof. Since the messages X[K] are uniformly and
independently distributed over FSq , and {X̂1, . . . , X̂r}
are linearly independent combinations of the messages
in X[K], thus {X̂1, . . . , X̂r} are uniformly and
independently distributed over FSq as well, i.e.,
H(X̂1) = · · · = H(X̂r) = S log q = B. Hence, the rate of
the Modified GRS Code protocol is the same as the rate of
the PLC protocol for N servers and K −D + 1 messages,
which is given by Φ( 1

N ,K −D + 1) (see [22, Theorem 1]).
From the step 4 of the Modified GRS Code protocol,

it is evident that the recoverability condition is satisfied.
For the joint privacy of the proposed protocol, the proof is
as follows. The PLC protocol protects the privacy of the
function requested by the user (i.e., no server can infer any
information about the index of the function requested by the
user upon receiving the query). Consider an arbitrary server
n ∈ [N ], which receives an arbitrary query Q

[W,V ]
n , gen-

erated by the proposed protocol. Given Q
[W,V]
n = Q

[W,V ]
n ,

from the perspective of server n, every function Yf for
f ∈ [F ], is equally likely to be the user’s desired function.
We denote the support of Yf by Yf , i.e., Yf is the set of all
indices i ∈ [K] such that Xi has a non-zero coefficient in
the linear combination Yf . Note that for any W̃ ∈W, in the
proposed protocol, there exists only one function Yf∗ among
Y1, . . . , YF with Yf∗ = W̃ . Thus, for any W̃ ∈W and every
n ∈ [N ], the following holds

P(W = W̃|Q[W,V]
n = Q[W,V ]

n )

= Pr(W = Yf∗ |Q[W,V]
n = Qn) =

1(
K
D

) = P(W = W̃).

This completes the proof.
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