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Abstract

A major bottleneck of the current Machine Learning (ML) workflow is the time consuming,
error prone engineering required to get data from a datastore or a database (DB) to the point
an ML algorithm can be applied to it. This is further exacerbated since ML algorithms are now
trained on large volumes of data, yet we need predictions in real-time, especially in a variety
of time-series applications such as finance and real-time control systems. Hence, we explore the
feasibility of directly integrating prediction functionality on top of a data store or DB. Such a
system ideally: (i) provides an intuitive prediction query interface which alleviates the unwieldy
data engineering; (ii) provides state-of-the-art statistical accuracy while ensuring incremental
model update, low model training time and low latency for making predictions. As the main
contribution we explicitly instantiate a proof-of-concept, tspDB∗ which directly integrates with
PostgreSQL. We rigorously test tspDB’s statistical and computational performance against the
state-of-the-art time series algorithms, including a Long-Short-Term-Memory (LSTM) neural
network and DeepAR (industry standard deep learning library by Amazon). Statistically, on
standard time series benchmarks, tspDB outperforms LSTM and DeepAR with 1.1-1.3x higher
relative accuracy. Computationally, tspDB is 59-62x and 94-95x faster compared to LSTM and
DeepAR in terms of median ML model training time and prediction query latency, respectively.
Further, compared to PostgreSQL’s bulk insert time and its SELECT query latency, tspDB is
slower only by 1.3x and 2.6x respectively. That is, tspDB is a real-time prediction system in that
its model training / prediction query time is similar to just inserting / reading data from a DB.
As an algorithmic contribution, we introduce an incremental multivariate matrix factorization
based time series method, which tspDB is built off. We show this method also allows one to
produce reliable prediction intervals by accurately estimating the time-varying variance of a time
series, thereby addressing an important problem in time series analysis.

1. Introduction

Data Engineering: Major Bottleneck in Modern ML Workflow. An important goal in
the Systems for ML community has been to make ML more broadly accessible Ratner et al.
(2019). Arguably, the major bottleneck towards this goal is not the lack of access to prediction
algorithms, for which many excellent open-source ML libraries exist. Rather, it is the complex
engineering and data processing required to take data from a datastore or database (DB) into
a particular work environment format (e.g. spark data-frame) so that a prediction algorithm
can be trained, and to do so in a scalable manner. See Figure 1 for a visual depiction of the ML
workflow as it stands; we aim to alleviate much of this ‘unwieldy’ data engineering by building
tspDB, a system that directly integrates prediction functionality on top of a DB in real-time.

∗An open source implementation of tspDB is available at tspdb.mit.edu.
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Figure 1: Pictorial depiction of data engineering—data transformation, feature extraction, model
training/tuning—as a major bottleneck of the ML workflow. tspDB aims to alleviate it by direct
integration of prediction functionality on top of a DB.

The Goal. Towards easing this bottleneck, and increasing accessibility of ML, our objective
is to explore the feasibility of directly integrating a prediction system on top of the DB layer.
This is in line with recent efforts to “democratize” ML (Sparks et al., 2015; Shang et al., 2019).
Indeed, the authors in Akdere et al. (2011) make a compelling case of the potential gains to
be had by direct integration of predictive functionality on top of DBs—by drawing an analogy
with the now scalable, robust and mature data management capabilities of DBs, they argue that
a similar approach to the management of predictive models can lead to large improvements in
both computational performance and accessibility of ML.

In this work, we focus on multivariate time series data, that is, data where each unit (e.g. collec-
tion of stocks, temperature readings from a collection of sensors) is associated with a time stamp.
We do so as this is one of the primary ways data is structured in a range of important applications
including finance, healthcare, retail, to name a few. We consider two types of prediction tasks
for time series data: (i) imputing a missing or noisy observation for a time series datapoint we do
observe; (ii) forecasting a time series data point in the future (i.e., data that is as of yet unobserved).

Statistical and Computational Performance Metrics to Benchmark ML Algorithms.
As described in detail in Ratner et al. (2019), given the growing demand to embed ML functionality
in high-performance systems, especially in applications with time series data (e.g. financial systems,
control systems), it is increasingly vital that we evaluate ML algorithms/systems not just through
prediction accuracy, but through computational metrics as well. We consider two important
computational metrics: (i) the time it takes to train a ML model; (ii) the time it takes to answer
a prediction query, i.e., prediction query latency. Throughout the paper, along with statistical
accuracy, we will benchmark computational performance through these two computational metrics.

1.1. Contributions

tspDB. The main contribution of this work is tspDB, a real-time prediction system for time
series data, which aims to alleviate the data engineering bottleneck by providing direct access
to predictive functionality for time series data (see Section 2 for the prediction interface tspDB
provides to users). We find tspDB outperforms the various popular existing time series libraries
we compare against with respect to all three metrics we consider—statistical performance, speed
of training the ML model and latency in making a prediction. See Table 1 for a summary of
the performance of tspDB, and the other time series algorithms we compare against, along these
metrics. Details of the precise experiments run to produce Table 1 can be found in Section 4.

†TRMF does not natively support variance imputation. We use an adapted version of TRMF since no method
in the literature exists to do variance imputation to the best of our knowledge. Refer to Appendix E.4 for details.
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Table 1: Summary of statistical accuracy (Table 1(a)), computational performance (Table 1(b)), and
functionalities (Table 1(c)) of tspDB vs. other state-of-the-art time series algorithms. We use a weighted
variant of the standard Borda Count (WBC) to evaluate statistical performance (precise definition in
Appendix E.5). WBC takes value in [0,1]: 0.5 indicates equal performance to all other algorithms on
average, 1 (resp. 0) indicates it “infinitely” superior (resp. inferior) performance compared to all others.

(a) Summary of statistical accuracy results (see Section 4.2 for details).

Statistical
Accuracy
(WBC)

Forecasting Imputation
tspDB LSTM DeepAR TRMF Prophet tspDB TRMF

Mean 0.597 0.446 0.559 0.541 0.358 0.572 0.428
Variance 0.726 N/A 0.274 N/A N/A 0.597 0.403 †

(b) Summary of computational performance results (see Section 4.4 for details).

Computational
Performance

Metric tspDB LSTM DeepAR TRMF Prophet PostgreSQL

Training/Insert Time (seconds) 9.00 556.1 531.7 13.6 3445.9 6.64
Prediction/Querying Time (ms) 3.45 325.2 326.2 5.28 1466.1 1.32

(c) Summary of tspDB functionalities compared to other time series forecasting algorithms.

tspDB LSTM DeepAR TRMF Prophet

Functionalities
Multivariate Time Series Yes Yes Yes Yes No
Variance Estimation Yes No Yes No No
Working with Missing Values Yes No Yes Yes Yes

Novel Multivariate Time Series Algorithm to Estimate Mean and Variance. tspDB
is built of a novel time series prediction algorithm that we propose. It is a generalization of
the method proposed in Agarwal et al. (2018) and extends it in the following two ways: (i) it
provides predictions for multivariate time series data, which performs significantly better than
the original univariate algorithm (see Table 7); (ii) it allows one to estimate the time-varying
variance of a multivariate time series (à la GARCH-like models), thereby addressing an important
issue in time series analysis of how to estimate the volatility of the time series. We note this
algorithm can be viewed as a variant of multivariate Singular Spectrum Analysis (mSSA). Refer
to Appendix B for detailed comparison with Agarwal et al. (2018) and mSSA. Details of the
algorithm can be found in Section 3.1.

An important feature of the proposed mean and variance estimation algorithm is that it
is “noise agnostic”, i.e., it effectively imputes and forecasts both the time-varying mean and
variance regardless of the noise model—e.g. Gaussian noise (continuous observations), Poisson
and Binomial noise (integer observations), Bernoulli noise (binary observations). tspDB’s ability
to accurately estimate the time-varying mean and variance of a time series and its robustness
to different noise models leads to interesting applications. For example, it allows one to verify
whether or not a set of integer observations are generated from a Poisson process in a data-driven
way as shown in Figure 2, a task that has received significant attention in the literature (see
Durbin (1961); Lewis (1965); Brown et al. (2005); Kim and Whitt (2014)). See Section 4.3 for
further empirical evidence of tspDB’s robustness to noise.

Theoretical Justification. Given our focus on actually building a real-time time series prediction
system and comprehensively testing its statistical and computational performance, a rigorous
theoretical analysis of the proposed algorithm is beyond the scope of this paper. However, in
Appendix C we provide intuitive formal justification of when and why this algorithm works.
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Computationally Efficient, Incremental Implementation of Algorithm in tspDB. To ensure that
tspDB achieves high computational performance (i.e., has low model training and prediction query
time) without sacrificing statistical accuracy, we develop and implement a scalable, incremental
variant of the algorithm we propose in Section 3.1. Details of this computationally efficient
variant can be found in Section 3.2. To understand the statistical and computational tradeoffs in
tspDB, we run extensive experiments on how the three metrics we consider tradeoff as we vary
key hyper-parameters in our implementation of tspDB (details can be found in Appendix F).

(a) (b)

Figure 2: Does the time series follow a Poisson process? With no prior knowledge of the distribution,
tspDB can be used to verify if integer observations are generated from a Poisson process (Figure 2(a)) by
checking if the latent mean and variances are equal, or if they are different (e.g. Binomial in Figure 2(b)).

Extensive Statistical and Computational Benchmarking of tspDB. In Section 4, we
extensively benchmark tspDB’s statistical and computational performance against popular state-of-
the-art prediction libraries, and just its computational performance against PostgreSQL—results
of these experiments are summarized in Table 1.

Superior Statistical Accuracy. In Section 4.2, we verify tspDB’s statistical accuracy by testing its
performance on benchmark datasets of time series data from real-world applications (e.g. used
in Yu et al. (2016)) and also on synthetic datasets we generate. We compare tspDB’s accuracy
against state-of-the-art algorithms, including LSTMs (Gers et al., 1999), DeepAR (by Amazon
Salinas et al. (2019)), Temporal Regularized Matrix Factorization (TRMF) (Yu et al., 2016) and
Prophet (by Facebook (Facebook, 2020)). We measure the imputation and forecasting prediction
accuracy, for both mean and variance, of these various algorithms as we vary the level of noise,
increase the fraction of missing data, and change the noise model. We use the ‘Weighted Borda
Count’ (WBC) as our statistical accuracy metric. This score is based on pairwise comparisons of
the normalized root mean squared error (NRMSE) across experiments. We use it as it better
captures the relative performance across all experiments and methods, unlike a simple statistic
such as the mean or the median ‡. Refer to Appendix E.5 for the definition of WBC and NRMSE.

On standard time series benchmarks, using WBC as our metric, we find tspDB outperforms all
other methods in both mean imputation and forecasting. We highlight tspDB’s mean WBC score
is 1.1-1.3x higher compared to LSTM and DeepAR, some of the most commonly used modern deep
learning based time series algorithms. For variance estimation, which we use to produce prediction
intervals as described in Appendix D.2, we again find tspDB outperforms all other methods.

‡In fact, as evidenced in Table 2, tspDB has even better statistical performance if we use the mean NRMSE
score, as is standard practice.
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Importantly, we note that existing methods do not provide variance estimation and instead we
have to adapt these other algorithms to be able to make such comparisons—we adapt TRMF to do
variance imputation and use DeepAR’s in-built uncertainty quantification functionality for variance
forecasting. Despite providing such an ‘unfair’ advantage to these existing approaches, tspDB still
manages to outperform them. In short, tspDB achieves state-of-the-art statistical performance.

Real-time model training, low-latency predictions. As stated earlier, the two metrics we use to
measure computational performance of tspDB are ML model training time and prediction query
latency. In Section 4.4, we test how tspDB compares against the popular, open-source time series
prediction libraries stated above—LSTM, DeepAR, TRMF, and Prophet. With respect to both
ML model training time and prediction query latency, tspDB outperforms all other prediction
algorithms we compare against—refer to Section 4.4 for a precise description of how ML model
training time and prediction latency are measured. We highlight that compared to LSTM and
DeepAR, tspDB’s median ML model training time and prediction latency is 59-62x and 94-95x
quicker, respectively. See Table 1 for a summary of the computational performance of tspDB
compared to the other methods. In conclusion, tspDB achieves both state-of-the-art statistical
and computational performance.

2. Prediction Interface

An important goal of this work is to design an ‘easy-to-use’ interface to make predictions, which:
(i) alleviates the need for error-prone data engineering; (ii) directly gives access to predictive func-
tionality in real-time for time series data. In particular, we wish to provide access to imputation
and forecasting functionality for multivariate time series data. Towards this goal, there has been
considerable recent work, especially in industry, exploring the feasibility of DBs to automate and
natively support ML workloads (cxo (2020); pym (2020); ibm (2020); ROD (2020); Rev (2020);
idm (2020)). The focus of these works has been to expose an interface that allows users to select
from an array of ML algorithms (e.g. generalized linear models, random forests, neural networks)
and train them (plus tune hyper-parameters) in the DB itself.

Prediction Query. In contrast, a significant point of departure of tspDB is how an end user
interfaces with the system to produce predictions. In particular, to make ML more broadly acces-
sible, we take a different approach and abstract the ML model from the user, and instead strive
for a single interface to answer both standard DB queries and predictive queries. In particular, in
tspDB, a predictive query has the same form as a standard SELECT query. The key difference
is that in a predictive query, the response is a prediction, rather than a retrieval of available
data. For example, consider a relation of the stock price of three companies over 100 days:
stock(day:timestamp, company1:float, company2:float, company3:float). An example
of a predictive query in this setting is shown in Figure 3(a). Note, day 101 is a forecast, i.e.,
a prediction, since the DB only contains data for the first 100 days. Similarly, if the query is
changed to WHERE day = 10, then we get the imputed (or de-noised) value for the stock price
on the tenth day. In this case, the PREDICT query response differs from a standard SELECT
query as rather than simply retrieving the available data for that day, which may possibly even
be missing, a predicted de-noised value is returned.

Building a Prediction Model in DB. To enable PREDICT queries, we need to build a
prediction model using the available multivariate time series data. Continuing the example from
above, a user can build a prediction model in tspDB as shown in Figure 3(b) using the CREATE
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query in tspDB. Note, importantly, the prediction model can be trained over multiple time series
columns, i.e., is built by simultaneously using data from multiple time series, in this case the
stock prices for the three companies. Thus, the CREATE and PREDICT queries in tspDB are
very much like building a DB index and making a SELECT query in SQL.

PREDICT company1 FROM stock

WITH PREDICTION INTERVAL = 95%

WHERE day =101;

(a)

CREATE PREDICTION_MODEL

ON stock(company1 , company2 , company3)

WITH day AS TIME_COLUMN;

(b)

Figure 3: Proposed interface for a PREDICT query (Figure 3(a)), and CREATE prediction model
in tspDB (Figure 3(b)).

tspDB vis-a-vis PostgreSQL DB. As a further computational test, in Section 4.5, we compare
the computational performance of tspDB versus the standard DB index of PostgreSQL. On
standard multivariate time series datasets, we find that the time required to CREATE prediction
model in tspDB ranges from 0.58x-1.52x to that of PostgreSQL’s bulk insert time. With respect
to query latency, we find that the time taken to answer a PREDICT query in tspDB is 1.6 to 2.8
times higher compared to answering a standard SELECT query, (1.6-2.7x for imputation queries,
1.7-2.8x for forecasting queries). In absolute terms, this translates to about 1.32 milliseconds
to answer a SELECT query and 3.36/3.45 milliseconds to answer an imputation/forecasting
PREDICT query (see Appendix E.2 for the machine configuration used). See Table 1 for summary
of results. Hence, tspDB’s computational performance is close to the time it takes to just insert
and read data from PostgreSQL, making it a real-time prediction system.

tspDB: Open-Source Implementation. As stated earlier, as our main contribution we ex-
plicitly instantiate a proof-of-concept, tspDB, which directly integrates with PostgreSQL, and
supports the PREDICT query (and CREATE prediction˙model) functionality. tspDB has an
open-source implementation and is an extension of PostgreSQL; it allows users to create prediction
queries over both single columns or multiple columns on a time series relation, i.e., allows for
both univariate and multivariate time series prediction, and provides prediction intervals for the
estimates. Importantly, we note that all results presented (e.g., in Table 1) can be reproduced
using our open-source implementation with default settings

3. Incremental Matrix Factorization Based Time Series Algorithm

In this section, we describe our novel incremental algorithm for multivariate time series prediction.
In Section 3.1, we describe the batch version of the algorithm used to do mean and variance
estimation; In Section 3.2 we describe the incremental variant of the algorithm that is tspDB is
actually built off. In Appendix C, we provide intuitive formal justification for this algorithm. In
Appendix D, we detail the system implementation of tspDB’s direct integration with PostgreSQL.

3.1. Algorithm Description

Multivariate Time Series Notation. We begin with some brief notation necessary to describe
the algorithm. Without loss of generality, we consider a discrete time index t∈Z §. Say we aim to
train a prediction model using N time series, and for each time series n∈ [N ] :={1,...,N}, we have

§This is not restrictive as tspDB supports prediction tasks on time series observed at different frequencies.
It does so by allowing the user to pick an aggregation interval (e.g. second, minute, hour) and an aggregation
function (e.g. mean, min, max).
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access to T ∈N observations (the observations might be missing). Let Xn(t) denote the (potentially
noisy, missing) observation of the n-th time series, Xn, at the t-th time step. For any t,s∈ [T ] such
that t<s, let Xn(t :s):=[Xn(t),...,Xn(s)]. Let X denote the collection of N time series X1,...,XN .

Page Matrix Data Representation. The key data representation that is utilized for the
proposed algorithm is the “stacked” Page matrix. Let integers L,P≥1 be such that P=bT/Lc.
Let P̄ :=N×P . Then the stacked Page matrix, ZX∈RL×P̄ induced by X is defined as

ZXi,[j+P×(n−1)N] =Xn(i+(j−1)L), for i∈ [L],j∈ [P ],n∈ [N ].

Further, let ZX2∈RL×P̄ denote the stacked Page matrix of squared observations,

ZX
2

i,[j+P×(n−1)N] =X
2
n(i+(j−1)L).

Mean Estimation Algorithm. Figure 4 provides a visual depiction of the core steps of the
algorithm.
Imputation. Let p̂ denotes the fraction of observed entries, that is

Figure 4: Pictorial depiction of the key steps of the mean estimation algorithm.

p̂ :=
max(1,

∑N
n=1

∑T
t=11(Xn(t) is observed ))

NT

, the key steps of mean imputation are as follows.
1. (Form Page Matrix) Transform X1(1:T),...,XN(1:T) into a stacked Page matrix ZX∈RL×P̄
with L≤P̄ . Fill all missing entries in the matrix by 0.
2. (Singular Value Thresholding) Let SVD of ZX=USV T , where U∈RL×L,V ∈RP̄×L represent
left and right singular vectors and S = diag(s1,...,sL) the diagonal matrix of singular values

s1 ≥ ... ≥ sL ≥ 0. Obtain M̂f = 1
p̂USkV

T by setting all but top k singular values to 0, i.e.
Sk=diag(s1,...,sk,0,...,0) for some k∈ [L].

3. (Output) f̂n(i+(j−1)L):=M̂f
i,[j+P(n−1)], i∈ [L],j∈ [P ].

Forecasting. Forecasting includes an additional step of fitting a linear model on the de-noised
matrix.
1. (Form Sub-Matrices) Let Z̃X∈RL−1×P̄ be a sub-matrix of ZX obtained by removing its last
row. Let ZX

L denote the last row.

2. (Singular Value Thresholding) Let SVD of Z̃X=ŨS̃Ṽ T , where Ũ∈RL−1×L−1,Ṽ ∈RP̄×L−1

represent left and right singular vectors and S̃=diag(s1,...,sL−1) the diagonal matrix of singular
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values s̃1≥ ...≥ s̃L−1≥0. Obtain ˆ̃Mf = 1
p̂ŨS̃kṼ

T by setting all but top k singular values to 0,

i.e. S̃k=diag(s̃1,...,s̃k,0,...,0) for some for some k∈ [L−1].

3. (Linear Regression) β̂=argminb∈RL−1

∥∥∥ZX
L −( ˆ̃Mf)T b

∥∥∥2

2
.

4. (Output) f̂n(T+1):=Xn(T−(L−1):T)T β̂.

Variance Estimation Algorithm. For variance estimation, the mean estimation algorithm
is run twice, once on ZX and once on ZX2

. Then to estimate the time-varying variance (for
both forecasting and imputation), a simple post-processing step is done where the square of the
estimate produced from running the algorithm on ZX is subtracted from the estimate produced
from ZX2

. Precise details follow.

Imputation. Below are steps of variance imputation.
1. (Impute ZX,ZX2

) Use the mean imputation algorithm on X1(1 :T),...,XN(1 :T) (i.e., ZX)

and X2
1(1:T ),...,X2

N(1:T ) (i.e., ZX2
), to produce the de-noised Page matrices M̂f and M̂f2+σ2,

respectively.

2. (Output) Construct M̂f2∈RL×P̄ , where M̂f2

ij :=(M̂f
ij)

2, and produce estimates, σ̂2
n(i+(j−

1)L):=M̂f2+σ2

i,[j+P×(n−1)]−M̂
f2

i,[j+P×(n−1)], for i∈ [L],j∈ [P ].

Forecasting. Just like in mean forecasting, there is an additional step after imputation.
1. (Forecast with Z̃X,ZX

L ,Z̃
X2
,ZX2

L ) Using the mean forecasting algorithm on X1(1:T ),...,XN(1:

T) and X2
1(1 : T),...,X2

N(1 : T), to produce forecast estimates f̂n(T + 1) and f̂2
n+σ2

n(T + 1),
respectively.

2. (Output) Produce the variance estimate σ̂2
n(T+1):= f̂2

n+σ2
n(T+1)−(f̂n(T+1))2.

3.2. Incremental Variant of Mean and Variance Estimation Algorithms

Figure 5: Incremental variant of proposed algorithm.

The algorithms for mean and variance estimation described above, as written, are meant for batch
updating (i.e., they get to observe all data at once). However, for computational efficiency in any
real-world application, the prediction model needs to be trained and updated incrementally, which
in turn requires making these algorithms incremental. In particular, both the computational
efficiency and statistical accuracy should not degrade with volume of data inserted. The key
computationally expensive step in the proposed algorithm is computing the SVD of the relevant
Page matrices. We address this by proposing a simple incremental “meta”-algorithm, which has
three hyper-parameters: T0,T

′∈Z and γ∈(0,1]. Let t′ :=N×t denote the number of observations
seen thus far. Depending on t′, there are three scenarios:
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Case 1. (t′<T0): Given that the minimum observation count has not been met, the model will
output the average of the observations Xn(0:t) (for both imputation and forecasting).

Case 2. (T0≤t′≤T ′):

1. If t′ =
⌊
T0(1+γ)`

⌋
for 0 ≤ ` ≤ q0 where q0 =

⌊
ln(T ′/T0)

ln(1+γ)

⌋
: Re-train M0 using X1(0 :

t),...,XN(0:t) (i.e, do full batch SVD).
2. Else: incrementally update the model M0 (i.e., do incremental SVD using the method in

Zha and Simon (1999)).

Case 3. (t′>T ′):

1. IdentifyMi where i=i(t)=max(0,
⌊

2t′

T ′

⌋
−1), and denote the first time index ofMi as si=

iT ′

2 .

2. If (t′−si)=
⌊
T0(1+γ)`

⌋
for 0≤`≤q where q=

⌊
ln(2)

ln(1+γ)

⌋
: Re-train Mi with observations

X1(si :t),...XN(si :t).
3. Else: incrementally update Mi.

Figure 5 illustrates how the proposed segmentation is carried out, and at what points the model
is trained fully and where it is incrementally updated. Note, the incremental SVD method we use
was developed in the Latent Semantic Indexing literature (see Zha and Simon (1999) for details).

tspDB Algorithm Hyper-parameters. The hyper-parameters of tspDB are L,k,k1,k2,T0,T
′,γ. For all

reported results in Section 4, and in our open-source implementation, these are set in an automated
manner (see Appendix E.3). In Appendix F.2, we justify this choice of hyper-parameters.

4. Statistical and Computational Benchmarking of tspDB

In this section, we detail the extensive testing we conduct to benchmark tspDB’s statistical
and computational performance against popular state-of-the-art prediction libraries, and just its
computational performance against PostgreSQL. We recall the main statistical and computational
results from this section are summarized in Table 1 in Section 1. In Section 4.1, we detail the
experimental setup, e.g., datasets, machine configuration, algorithm hyper-parameters used. In
Section 4.2 and 4.4, we extensively benchmark tspDB’s statistical and computational performance
against other state-of-the-art time series prediction methods. In Section 4.5, we benchmark
tspDB’s computational performance against PostgreSQL with respect to standard DB metrics.

4.1. Setup

Datasets. Throughout the experiments, we use three real-world datasets that are standard
benchmarks (e.g. used in Yu et al. (2016)) in time series analysis as well as three synthetic
datasets. We use these synthetic datasets so we can compare with the latent mean and variance
which are of course not observable in real-world data. The real-world datasets come from three
domains: electricity Trindade (2015), traffic of Transportation (2011) and finance WRDS (2020).
For further details on the datasets used, refer to Appendix E.1.

Machine and DB Configuration. In all experiments, we use an Intel Xeon E5-2683 machine
with 16 cores, 132 GB of RAM, and an SSD storage ‖. In Table 6 in Appendix E.2, we detail
the relevant settings used for PostgreSQL 12.1.

‖Note all experiments were replicated on different machine configurations as well by replacing PostgreSQL
by TimeScaleDB timescaleDB. We find the metrics of interest remain similar. We omit these results due to space
constraints.
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Table 2: tspDB outperforms state-of-the-art algorithms in mean and variance estimation across different
datasets. We use WBC (higher is better) and average NRMSE (lower is better) to summarize the results.

Mean Imputation
(WBC/NRMSE)

Mean Forecasting
(WBC/NRMSE)

Electricity Traffic Synthetic I Financial Electricity Traffic Synthetic I Financial

tspDB 0.61/0.39 0.50/0.49 0.53/0.25 0.65/0.28 0.53/ 0.48 0.50/0.53 0.70/0.20 0.66/0.36
LSTM NA NA NA NA 0.49/0.55 0.54/0.47 0.45/0.44 0.31/1.20
DeepAR NA NA NA NA 0.53/0.48 0.53/0.47 0.53/0.33 0.65/0.40
TRMF 0.39/0.69 0.50/0.51 0.47/0.33 0.35/0.51 0.50/0.53 0.48/0.57 0.61/0.27 0.58/0.46
Prophet NA NA NA NA 0.47/0.58 0.45/0.62 0.22/1.01 0.30/1.30

Algorithms Setup and Hyper-parameters. Throughout the experiments, we compare with
several state-of-the-art algorithms. Including LSTM Gers et al. (1999), DeepAR Salinas et al.
(2019), TRMF Yu et al. (2016), and Prophet Facebook (2020). In all reported results, tspDB’s
hyper-parameters (L,k,k1,k2,T0,T

′,γ) are set in an automated manner, as detailed Appendix E.3.
Refer to Appendix E.4 for more information about the implementations and parameters used
for all other methods.

Accuracy Metrics. As stated earlier, for each experiment, we use Normalized Root-Mean-
Square-Error (NRMSE) as the accuracy metric, where normalization corresponds to rescaling each
time series to have zero mean and unit variance before calculating the RMSE. Further, to quantify
the statistical accuracy of the different methods used, we use a variant of the standard Borda
Count (weighted by the NRMSE in each experiment), which we denote as WBC. As explained in
Appendix E.5, WBC lies between 0 and 1: for a given algorithm, 0.5 means it does as well as all
other algorithms on average over all experiments; 1 (resp. 0) means it does ‘infinitely’ better (resp.
worse). Again, we emphasize that by simply looking at the mean NRMSE as is normally done,
tspDB’s relative performance is even better (see Table 2). We use WBC as we believe it better
summarizes the statistical accuracy of the various algorithms used across the various experiments.

4.2. Statistical Benchmarking of tspDB

Mean Imputation. We compare the imputation accuracy of tspDB against TRMF, a popular
method for imputing (and forecasting) multivariate time series data. We choose it as the single
point of comparison as in the work of Khayati et al. (2020), the authors conduct extensive
benchmarking of various time series imputation methods, and find TRMF to have state-of-the-art
statistical and computational performance. We note the other time series libraries we compare
against, e.g., LSTM, DeepAR, do not have imputation functionality.

We evaluate both tspDB and TRMF using the three real-world datasets and one synthetic
dataset (synthetic I) introduced in Section 4.1. To test the algorithms’ robustness, we corrupt the
various datasets by artificially masking entries with probability (1−p), and by adding zero-mean
Gaussian noise to each entry with varying standard deviation σ. As we vary p and σ for all four
datasets, we find tspDB outperforms TRMF in 80% of experiments. In Table 2, we summarize
the statistical performance of tspDB against TRMF in terms of WBC and the average NRMSE
for each dataset across all experiments. We find that using both metrics, tspDB outperforms
TRMF on all datasets.

Mean Forecasting. We compare the forecasting performance of tspDB against LSTM, DeepAR,
TRMF, and Prophet—these are some of the most popular time series libraries used in academia
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and industry. Using the same datasets used for mean imputation and varying p and σ in the same
way, we find that tspDB performs competitively with deep-learning algorithms (DeepAR and
LSTM), and outperforms both TRMF and Prophet. Specifically, as we vary the fraction of missing
values and the noise added, tspDB is the best performing method in 50% of experiments, and at
least the second best performing in 80% of experiments. To summarize the statistical performance
of all algorithms, we compute their WBC and the average NRMSE for each dataset in Table 2; we
find tspDB, using both metrics, outperforms all other algorithms in the electricity, financial and
synthetic I datasets, while performing competitively with DeepAR and LSTM in the traffic dataset.

Variance Estimation. We restrict our analysis to synthetic data as we do not get access to the
true underlying time-varying variance in real-world data. We use the dataset synthetic II, which
consists of nine sets of multivariate time series each with a different additive combination of time
series dynamics and a different noise observation model (Gaussian, Poisson, Bernoulli noise). See
Appendix E.1 for details on how synthetic II was generated. We again vary the fraction of observed
data p∈{1.0,0.8,0.5}. For imputation, to the best of our knowledge, there is no algorithm which
produces prediction intervals. Hence we use an adaptation of TRMF to benchmark tspDB’s
performance—note though it does not natively support variance estimation. For forecasting, we
compare with DeepAR as it has in-built functionality to produce confidence intervals for its predic-
tions. Refer to Appendix E.4 for details of how we use these algorithms to do variance estimation.

We find tspDB has superior performance in all but one experiment (>98%) over both the
adapted version of TRMF (for imputation) and DeepAR’s in-built functionality (for forecasting).
See Table 3 for the NRMSE values for each experiment along with a summary of the performance
of each algorithm using WBC and the mean NRMSE across experiments. In summary, we find
tspDB outperforms TRMF in variance imputation and DeepAR in variance forecasting across
both metrics (WBC, mean NRMSE). Specifically, with respect to imputation, we find tspDB
outperforms TRMF in all but one experiment, where the ratio of TRMF’s error to tspDB’s in the
range of 0.97-2.27 (see Table 3). With respect to forecasting, we find tspDB outperforms DeepAR
in all experiments, where the ratio of DeepAR’s error to tspDB’s is in the range 1.01-1870.59
(see Table 3). tspDB’s performance is notably superior when dealing with integer (e.g., Poisson
generated) observations. Collectively, these experiments show the robustness of tspDB, in that
it is “noise model agnostic” when estimating the mean and variance of a time series.

Table 3: tspDB outperforms both TRMF (in variance imputation) and DeepAR (in variance forecasting).

Observation
Model

Time Series
Dynamics

tspDB
(Imputation)

TRMF
(Imputation)

tspDB
(Forecasting)

DeepAR
(Forecasting)

p = 1.0 p = 0.8 p = 0.5 p = 1.0 p = 0.8 p = 0.5 p = 1.0 p = 0.8 p = 0.5 p = 1.0 p = 0.8 p = 0.5

Gaussian
Har 0.076 0.099 0.118 0.122 0.125 0.141 0.106 0.144 0.156 0.170 0.184 0.289
Har + trend 0.075 0.091 0.103 0.133 0.135 0.142 0.154 0.155 0.247 0.286 0.232 0.269
Har+AR+trend 0.074 0.090 0.101 0.134 0.136 0.146 0.173 0.263 0.337 0.214 0.265 0.388

Poisson
Har 0.126 0.132 0.150 0.137 0.138 0.151 0.143 0.152 0.157 13.20 148.5 90.20
Har+ trend 0.086 0.087 0.101 0.176 0.187 0.194 0.093 0.182 0.199 0.491 1.403 2.163
Har+AR+trend 0.081 0.088 0.104 0.184 0.187 0.204 0.093 0.182 0.199 1.386 34.45 162.5

Bernoulli
Har 0.024 0.027 0.030 0.026 0.027 0.029 0.029 0.050 0.033 0.073 0.072 0.077
Har + trend 0.022 0.025 0.025 0.030 0.030 0.032 0.029 0.048 0.059 0.049 0.068 0.076
Har+AR+trend 0.022 0.024 0.025 0.030 0.030 0.032 0.036 0.036 0.056 0.070 0.082 0.111

Summary
WBC 0.597 0.403 0.726 0.264
Mean NRMSE 0.070 0.112 0.132 16.9
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4.3. tspDB’s Robustness to Noise Models

In practice, the same latent time series dynamic can lead to very different observations depending
on the type of noise that is present (e.g., Gaussian, Poisson, Bernoulli). Thus, as an additional
experiment, we showcase tspDB’s robustness against different noise models. Pleasingly, we find
tspDB is “noise agnostic”, i.e., it effectively imputes and forecasts the latent time-varying mean
without knowledge of the underlying noise model.

For these set of experiments, we use dataset synthetic III (see Appendix E.1 for details); we
generate three noise models—Gaussian (i.e., float) , Bernoulli (i.e., boolean), and Poisson (i.e.,
integer)—all with the same latent time series dynamics (normalized to lie within the interval
[0,1]) as shown in Figures 6(a), 6(b), 6(c), respectively. We find that tspDB’s imputation
error in RMSE/R2 is (0.079/0.854), (0.078/0.858) and (0.102/0.758) for the Gaussian, Bernoulli
and Poisson observation models respectively. Similarly, the forecasting error in RMSE/R2 is
(0.041/0.979), (0.083/0.914) and (0.110/0.851) for the Gaussian, Bernoulli and Poisson observation
models respectively. Figure 6 gives a visual depiction of how tspDB effectively imputes and
forecasts under Gaussian, Bernoulli and Poisson observation models.

(a) (b) (c)

Figure 6: Without knowledge of whether the observations come from a time-varying Gaussian process
(i.e. floats, see Figure 6(a)), a Bernoulli process (i.e. binary data, see Figure 6(b)), or a Poisson process
(i.e. integers, see Figure 6(c)), tspDB successfully imputes and forecasts the underlying mean.

4.4. Computational Benchmarking of tspDB vs. Other Prediction Algorithms

tspDB vs. Other Prediction Methods.
As stated earlier, we evaluate the computational performance of all algorithms using two metrics:
(i) the time it takes to train a prediction model on a given dataset—each of the methods we
benchmark against exposes a “.fit()” interface or equivalent (similar to CREATE prediction˙model
in tspDB), and we measure the time it takes for a prediction model to be returned from when
“.fit()” is executed; (ii) the time required by the model to produce a point forecast for a time
series—each of the methods we benchmark against exposes a “.predict()” interface or equivalent

Table 4: tspDB has significantly less training time, prediction query latency compared to alternatives.

Training/Insert Time
(seconds)

Prediction/Querying Time
(milliseconds)

Electricity Traffic Synthetic I Financial Electricity Traffic Synthetic I Financial

tspDB 11.8 14.4 6.2 2.3 3.3 3.9 3.2 3.6
LSTM 1357.5 661.2 450.9 97.9 295.6 358.3 278.7 354.8
DeepAR 907.6 572.2 491.2 144.5 366.6 378.5 285.8 207.2
TRMF 34.5 14.8 12.4 3.6 7.3 6.0 2.5 4.6
Prophet 6868.8 4726.3 535.9 2165.4 1473.4 1458.8 1480.3 1434.0
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(similar to a PREDICT query in tspDB), and we measure the time it takes for a fitted prediction
model to return a forecast for a queried future time step (e.g., the time required to do a forward
pass in an LSTM network to predict the stock price tomorrow for a certain company). We evaluate
all algorithms using the machine configuration detailed in Section 4.1. The hyper-parameters
chosen for the various algorithms are detailed in Appendix E.4; just like for tspDB, we choose
the default parameters in the open-source implementations.

In Table 4, we report results for these experiments. With respect to time taken to train a
model, we find tspDB is 42.4-114.9x faster than LSTM, 39.7-79.2x faster than DeepAR, 1.03-2.92x
faster than TRMF, and 86.4-832.7x faster than Prophet. With respect to prediction queries,
tspDB’s latency is 86.0-99.4x faster than LSTM’s, 58.0-110.4x faster than DeepAR’s, 0.8-2.2x
the latency of TRMF’s, and 370.3-456.9x faster than Prophet’s.

4.5. Computational Benchmarking vs. PostgreSQL

tspDB vs. PostgreSQL. On the same datasets we use to benchmark tspDB against these
other algorithms, we compare: (i) tspDB’s training time (i.e. CREATE predict model query)
vs. PostgreSQL’s bulk insert time; (ii) tspDB’s PREDICT query latency against PostgreSQL’s
SELECT query latency. We find tspDB’s model training time ranges from 0.58-1.52x to that
of the insert time of PostgreSQL. We evaluate the prediction query latency with and without
uncertainty quantification (UQ), i.e., producing prediction intervals via variance estimation—see
Appendix D.2 for details on how we do UQ. Compared with a SELECT query in PostgreSQL,
imputation queries are 1.64-2.67x slower, and forecasting queries are 1.67-2.77x slower. If UQ
is added, queries are 3.34-5.35x and 3.42-5.48x slower for imputation and forecasting, respectively.
This amounts to 1.29-2.36 milliseconds for SELECT queries, 3.22-3.87 milliseconds for imputa-
tion queries (5.65-7.88 milliseconds with UQ), and 3.24-3.94 milliseconds for forecasting queries
(5.67-8.08 milliseconds with UQ). Refer to Table 5 for a summary of results.

Table 5: N and T refer to number of time series and number of observations per time series respectively.

Training/Insert Time
(seconds)

Query Latency
(milliseconds)

N/T tspDB PostgreSQL
tspDB’s Forecast
/with UQ

tspDB’s Imputation
/with UQ

PostgreSQL’s
SELECT

Electricity 370 / 25968 11.81 8.34 3.32/7.02 3.25/6.93 1.34
Traffic 963 / 10392 14.42 9.50 3.94/8.08 3.87/7.88 2.36
Synthetic I 400 / 15000 6.20 4.93 3.24/5.67 3.22/5.65 1.31
Financial 839 / 3993 2.31 4.00 3.57/7.07 3.47/6.90 1.29

Scalability of tspDB. We compare how the computational performance of tspDB relative
to PostgreSQL scales with respect to the metrics we consider as we vary the amount of data
inserted. We generate a single time series that is a sum of harmonics and then corrupt it with
additive Gaussian noise. Specifically, we generate X(t)=f(t)+ε(t), where ε(t)∼N (0,0.1) and
f(t)=

∑4
i=1αicos(ωit/T), where t∈ [T ], αi∈ [−1.5,1.5] and ωi∈ [1,100] (randomly selected). We

vary the amount of data points (T ) between 104 to 108. Using this time series data, we create a
table with the following simple schema: synthetic(time:timestamp, time_series: float),
where the column time is the primary key, indexed by the default PostgreSQL DB index (B-tree
data structure); we note that indexing the time column is a standard practice in time series DBs.

Throughput. As before, we evaluate the time taken to create a prediction model in tspDB as we
vary the number of rows inserted from 104 to 108 and compare it against the time needed to insert
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the same rows into the aforementioned indexed table. We find that the time required to train
tspDB’s prediction model is 1.13-2.17x faster than PostgreSQL insert time as we vary the dataset
size. In absolute terms, the time to train tspDB’s prediction model is 2.62-7.78 microseconds
per record. See Figure 7(a). Since the time required to create the prediction model in tspDB is
comparable to PostgreSQL’s bulk insert time, and the two operations are independent and so can
be effectively run in parallel, integrating tspDB with PostgreSQL will pleasingly not bottleneck
PostgreSQL’s throughput as new data points are inserted.

Query Latency. As before, we compare the latency of a standard SELECT point query in
PostgreSQL against the a PREDICT query in tspDB. We evaluate the latency for both imputation
and forecasting predictions with and without UQ. As shown in Figure 7(b), we find that imputation
PREDICT queries are 1.77-2.56x slower relative to SELECT queries as we vary the table size,
and forecasting PREDICT queries are 3.87-6.39x slower. PREDICT queries with UQ are 3.04-
4.60x and 6.99-12.80x slower for imputation and forecasting queries respectively. In absolute
terms, this amounts to 0.41-0.61 milliseconds for SELECT queries, 0.94-1.23 milliseconds for
imputation queries (1.72-2.11 milliseconds with UQ), and 1.73-3.04 milliseconds for forecasting
queries (3.02-5.85 milliseconds with UQ).

(a) (b)

Figure 7: (a) Training tspDB prediction model is 1.13-2.17x faster than PostgreSQL’s bulk insert. (b)
Predictions using tspDB are only 1.77x to 6.39x slower than standard SELECT queries.

5. Conclusion

In this paper, we build an open-source, real-time time series prediction system tspDB’s, which
achieves state-of-the-art statistical and computational performance with respect to widely used
time series algorithms/libraries, including deep-learning based methods such as LSTMs and
DeepAR. tspDB’s excellent statistical performance is likely due to real-world time series data
following the time series model we introduce in Appendix C. Given that this one time series model
captures a broad class of time series dynamics, and the matrix factorization algorithm we utilize
is well-motivated under it, it allows us to focus our efforts on building a scalable, incremental
implementation of said algorithm. This along with the surprising simplicity of the algorithm used
in tspDB, simply doing singular value thresholding and linear regression—compared to more
complicated non-linear models such as LSTM and DeepAR—likely explains the large gains in
computational performance in tspDB. We recall that an important design choice we make is to
directly integrate tspDB on top of PostgreSQL and abstract away the ML workflow from a user,
thus striving for a single interface to answer both standard DB queries and predictive queries.
We hope this serves as a benchmark for other such integrated prediction systems in the growing
and exciting line of work in AutoML and Systems for ML.
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Appendix A. Appendix Organization

The appendix consists of five main sections.

Related Work. In Appendix B, we discuss prior related work both with respect to time series
analysis and the interplay between ML and DBs.

Theoretical Justification of Proposed Time Series Algorithm. In Appendix C, we pro-
vide theoretical justification for why such simple mean and variance estimation algorithms work
for a rich class of time series models.

Direct Integration of tspDB with PostgreSQL - System Implementation. In Appendix
D, we detail the system implementation of tspDB’s direct integration with PostgreSQL.

Experimental Setup Details. In Appendix E, we detail the experimental setup used, in
particular: the datasets used; the computational infrastructure and DB configurations used, the
hyper-parameters used for tspDB and the other time series algorithms compared against; and
the statistical accuracy metrics used.

Statistical and Computational Tradeoffs in tspDB. In Appendix F.1, we explore the
statistical and computational tradeoffs in tspDB’s performance when building a multivariate
vs. univariate time series prediction model. In Appendix F.2, we study how the parameters
of tspDB affect its statistical and computational performance, and justify the selection of the
default hyper-parameters used in our experiments.

Appendix B. Related Work

Predictive Modeling and DBs. As stated earlier, our work is in line with exciting recent efforts,
especially in industry, exploring the potential of DB management systems to support ML algo-
rithms cxo (2020); pym (2020); ibm (2020); ROD (2020); Rev (2020); idm (2020); Hellerstein et al.
(2012); mldb.ai. In a complementary vein, there has been a line of work to automate the process of
choosing an optimal ML workload for a given task Sparks et al. (2015); Shang et al. (2019). There
has also been a line of work to exploit DBs to make certain key computationally expensive steps
that are pervasive in training ML algorithms, much more efficient Park et al. (2019); Sparks et al.
(2017); Cohen et al. (2009); Brown (2010); Kumar et al. (2015). Further, there have been attempts
to provide a declarative SQL-like language for prediction Shah et al. (2018); Hellerstein et al. (2012);
Akdere et al. (2011). tspDB is very much in line with these efforts. However, crucially rather than
facilitating the use of a variety of ML algorithms or sub-routines, we take the stance of abstracting
the entire ML algorithm from the user, and providing a single interface to answer both standard
DB queries and predictive queries. This is in line with Sparks et al. (2015); Shang et al. (2019).
Our focus is specifically on prediction with time series data, an important part of ML with crucial
applications, that has not yet been directly tackled. To justify abstracting the ML algorithm from
the user, we comprehensively test both the statistical and computational performance of tspDB
compared to state-of-the-art alternatives, and show promising results. We note that just the first
prediction task, imputation, by itself has received considerable attention in the systems for ML
community. For example, in Khayati et al. (2020), they conduct a thorough empirical evaluation of
twelve prominent imputation techniques and in Cambronero et al. (2017); Arous et al. (2019); May-
field et al. (2010); Saad and Mansinghka (2016), they explore systems which directly integrate im-
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putation of missing values as an in-built functionality. In addition to imputation, tspDB also adds
forecasting predictive functionality. And, importantly it does both with uncertainty quantification.

Modern Multivariate Time Series Algorithms. Given the ubiquity of multivariate time
series analysis, we cannot possibly do justice to the entire literature. Hence we focus on a few
techniques, most relevant to compare against empirically. Recently, with the advent of deep
learning, neural network (NN) based approaches have been the most popular, and empirically
effective. Some industry standard NN methods include LSTMs and DeepAR (for an industry
leading NN library for time series analysis, see Salinas et al. (2019)).

Matrix Factorization Based Time Series Algorithms. The line of time series analysis most
closely associated with the algorithm we propose is where a matrix is constructed from a time
series, and some form of matrix factorization is done (see Wilson et al. (2008); Yu et al. (2016)).
A particularly relevant algorithm is Singular Spectrum Analysis (SSA) (see Golyandina et al.
(2001)). The main steps of SSA are: Step 1 - create a Hankel matrix from univariate time series
data; Step 2 - do a Singular Value Decomposition (SVD) of it; Step 3 - group the singular values
based on user belief of the model that generated the process; Step 4 - perform diagonal averaging
to “Hankelize” the grouped rank-1 matrices outputted from the SVD to create a collection of
time series; Step 5 - learn a linear model for each “Hankelized” time series for the purpose of
forecasting. A generalization of SSA to multivariate time series data is called multivariate SSA
(mSSA); here the only change is in Step 1, where a Hankel matrix is constructed for each time
series, and the various matrices are concatenated column-wise to create a “stacked” Hankel
Hassani and Mahmoudvand (2013); Hassani et al. (2013).

In Agarwal et al. (2018), the authors show that a simple variant of SSA, where close to no
hyper-parameter tuning is required, is both theoretically and empirically effective. They show that
by using the Page matrix instead of the Hankel (see Section 3.1 for the definition), doing a single
SVD on it, and subsequently learning a single linear forecaster suffices. This is in contrast to the
user having to specify how the singular values need to be grouped in the original SSA method.

The multivariate time series algorithm we introduce is a variant of mSSA and a generalization of
the univariate time series algorithm proposed in Agarwal et al. (2018) – inspired by mSSA, the
core data structure for multivariate time series data we analyze is the “stacked” Page matrix (the
matrix induced by column-wise concatenation of the Page matrices constructed for each time
series); in line with Agarwal et al. (2018), we show that even for multivariate time series data,
surprisingly one only needs to do a single SVD and learn a single linear forecaster to produce
effective predictions. See Appendix C for a theoretical justification for why our proposed variant
of mSSA works, something which importantly has been absent from the literature.

Another popular method in the literature is TRMF (see Yu et al. (2016)) and one we directly com-
pare against due to its popularity and empirical effectiveness for both imputation and forecasting.

Time-Varying Variance Estimation. The time-varying variance is a key input parameter in
many sequential prediction algorithms themselves. For example in control systems, the widely
used Kalman Filter uses an estimate of the per step variance for both filtering and smoothing.
Similarly in finance, the time-varying variance of each financial instrument in a portfolio is
necessary for risk-adjustment. The key challenge in estimating the variance of a time series
(which itself might very well be time-varying) is that unlike the actual time series itself, we
do not get to directly observe the variance. Despite the vast time series literature, existing
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algorithms to estimate time-varying variance are mostly heuristics and/or make restrictive,
parametric assumptions about how the variance (and the underlying mean) evolves; for example
“Auto Regressive Conditional Heteroskedasticity” (ARCH) and “Generalized Auto Regressive
Conditional Heteroskedasticity” (GARCH) models. See Bollerslev (1986).

Appendix C. Algorithm Justification

Notation. Let fn(t) denote the noiseless version of the time series, Xn(t), i.e., E[Xn(t)]=fn(t).
Further, let σ2

n(t) =E[Xn(t)−fn(t)]2, denote the variance of the per-step noise. Let the col-
lection of N time series, f1, ... ,fN be denoted by f; define σ2 analogously with respect to
σ2

1, ... ,σ
2
N . Let Mf ,Mσ2 ∈ RL×P̄ denote the stacked Page matrices induced by f and σ2

(analogous to how ZX,ZX2
are defined). In particular, Mf

i,[j+P×(n−1)N] :=fn(i+(j−1)L) and

Mσ2

i,[j+P×(n−1)N] :=σ
2
n(i+(j−1)L).

C.1. Justification for Mean Estimation Algorithm

The goal of the mean estimation algorithm is to impute and forecast the underlying time-varying
mean, f , i.e., produce an estimate f̂ .

Linear Recurrent Formulae (LRF). Consider the univariate time series setting, i.e., N=1.

Here, Mf1
ij =f1(i+(j−1)L).

Definition 1 A time series, fn, is called a order-R (univariate) LRF if i,j∈N with i+j≤T ,
f1(i+j)=

∑R
r=1gr(i)hr(j), where gr(·), hr(·):Z→R for r∈ [R].

Proposition C.1:
(Proposition 5.2 in Agarwal et al. (2018)) f1(t)=

∑A
a=1exp(αat)·cos(2πωat+φa)·Pma(t) admits

an order-R LRF representation, where Pma is any polynomial of degree ma. Further the order
R of the LRF induced by f1 is independent of T , the number of observations, and is bounded
by R≤A(mmax+1)(mmax+2), where mmax =maxa∈Ama.

Interpretation. From Proposition C.1, we see that LRFs admit a rich class of time series families
including finite sums of products of harmonics, polynomials and exponentials. Thus LRFs
well-approximate a large class of time series dynamics (e.g. stationary time series functions, see
Brockwell and Davis (2013)).

Imputation, Forecasting for LRFs. It is easy to see that if f1 is an order-R LRF, the Page
matrix, Mf1, induced by it is rank R. In particular, Mf1

ij =
∑R

r=1UirVjr, where Uir = gr(i)

and Vir = hr(i). Since Mf1 is rank R and E[ZX1] =Mf1, by recent advances in the matrix
estimation and high-dimensional linear regression literature, we know that performing HSVT on
ZX1 and subsequently fitting a linear model (i.e., doing Principal Component Regression) leads
to a consistent estimator for both imputation and forecasting, with error scaling as ∼

√
R/T 1/4,

∼R/
√
T respectively. Specifically, see Theorem 4.1 in Agarwal et al. (2018) for the imputation

result; and Theorem 4.2 and Proposition 4.2 in Agarwal et al. (2019) for the forecasting result.
Note the key to these results is that the underlying matrix Mf1 is (approximately) low-rank.

Multivariate LRF. In multivariate time series data, where N>1, there exists both temporal
structure, i.e., the relationship within a time series) and “spatial” structure, i.e., the relationship
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across a collection of related time series. We propose a natural multivariate generalization of the
LRF model. Under this model, we justify below why our proposed algorithm provides accurate
imputation and forecasting.

Definition 2 f is an order-(K,Rmax) multivariate LRF if for all n∈ [N], fn(t)=
∑K

k=1(θn)k ·
hk(t), where θn∈RK and hk :Z→R is an order-Rk LRF, and Rk≤Rmax for k∈ [K].

Interpretation. The (K,Rmax) multivariate LRF model can be interpreted as one where there are
K “fundamental” time series hk(·); each hk(·) is a (univariate) LRF, with order, Rk, bounded
by Rmax. Each fn(·) for n∈ [N ] can thus be seen as a unique additive combination of these K
LRFs, with the latent linear parameters given by (θn)k.

Proposition C.2:
If f is an order-(K,Rmax) multivariate LRF, then rank(Mf)≤K ·Rmax.

Proof Mf
i,[j+P×(n−1)N] = fn(i + (j − 1)L) =

∑K
k=1(θn)k · hk(i + (j − 1)L) =

∑K
k=1(θn)k ·∑Rk

r=1U
(k)
ir V

(k)
jr . The last equality follows from the fact that hk(·) is a order-Rk LRF and

so the induced Page Matrix Mhk is of rank Rk. Note, U(k),V (k) ∈RK are the left and right
singular vectors of Mhk respectively. Observing that the number of terms in the summation

of
∑K

k=1(θn)k ·
∑Rk

r=1U
(k)
ir V

(k)
jr is less than K ·Rmax, completes the proof.

Interpretation. The key data transformation, the stacked Page matrix, Mf , has rank less than
K ·Rmax and E[ZX]=Mf . Crucially, under this model, the rank of Mf is not growing with N
or T , rather just with the inherent model complexity of the multivariate time series, quantified by
K ·Rmax. The results of Theorem 4.1 in Agarwal et al. (2018) and Theorem 4.2 and Proposition
4.2 in Agarwal et al. (2019), suggests that the imputation and forecasting error for the algorithm
we propose scales as ∼

√
K ·Rmax/(NT )1/4 and ∼K ·Rmax/

√
NT respectively, thereby justifying

the mean estimation algorithm under this model. The additional inverse dependence on N in
the error scaling may be why the multivariate generalization of the time series algorithm has
significantly better empirical prediction error compared to the univariate version of the algorithm.
As stated earlier, a rigorous theoretical finite-sample analysis of our proposed algorithm is beyond
the scope of this work, given our focus on building and comprehensively benchmarking tspDB.

C.2. Justification for Variance Estimation Algorithm

The goal of the variance estimation algorithm is to impute and forecast the underlying time-
varying variance, σ2, i.e., produce an estimate σ̂2. A key challenge in estimating the time-varying
variance of a time series is that it is not directly observed (as opposed to f , for which we at least
get noisy, sparse observations, X).

Multivariate LRF model for σ2. Analogous to the model we propose for f, we justify the
variance estimation algorithm for estimating σ2 under a multivariate LRF model. In particular,

assume σ2 is an order-(K(2),R
(2)
max) multivariate LRF; continue to assume f is an order-(K,Rmax)

multivariate LRF.

Repeating Mean Estimation Algorithm on ZX2
. Let Mf2 ∈RL×P̄ by the stacked Page

matrix induced by an entry-wise squaring of Mf , i.e., Mf2

ij := (Mf
ij)

2. Let Mf2+σ2 ∈RL×P̄
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be the stacked Page matrix induced by entry-wise addition of the matrices Mf2 and Mσ2.
Then by a straightforward modification of the proof of Proposition C.2, one can establish that

rank(Mf2+σ2)≤(K ·Rmax)2+K(2) ·R(2)
max. Note that E[X2]=f2+σ2 and so E[ZX2

]=Mf2+σ2.
Hence using same argument as we did in the previous section provides justification of why

applying the mean estimation algorithm on E[ZX2
] allows one to accurately estimate f̂2+σ2 for

both imputation and forecasting. In particular, similar to the previous section, this suggests that

the variance imputation and forecasting error will scale as ∼(K ·Rmax)·
√
K(2)·R(2)

max/(NT)1/4

and ∼(K ·Rmax)2·K(2)·R(2)
max/
√
NT respectively.

Estimating σ2 Under Multivariate LRF Model. It is then easy to see that through the
following simple post-processing step, we can reliably estimate σ2;

σ̂2 := f̂2+σ2−f̂2,

where f̂2 is the component-wise square of the estimate, f̂, produced by the mean estimation

algorithm. If f̂2+σ2 is close to f2+σ2 and f̂ is close to f , by triangle inequality it must be that σ̂2

is close to σ2. This motivates why this simple variance estimation algorithm reliably recovers the
underlying (unobserved) time-varying variance under a multivariate LRF model for both f and
σ2. Empirically in Section 4.2, we find the simple multivariate variance estimation algorithm we
propose significantly outperforms alternatives for both imputation and forecasting. As before, a rig-
orous finite-sample analysis of this variance estimation algorithm is beyond the scope of this work.

Appendix D. tspDB Implementation Details

D.1. Prediction Model Storage in DB

To directly integrate tspDB with PostgreSQL, we store all model parameters in PostgreSQL itself.
For each model, the algorithms require storing: (i) the parameters associated with the appropriate
truncated SVD (left/right singular vectors, and singular values); (ii) the linear regression coeffi-
cients. Importantly, we choose to store all of these parameters in the standard relational DB; thus,
in response to a prediction query, the DB itself is queried to make predictions. The specific schema
used to store model parameters, and the relationship between them, is depicted in Figure 8 (for
the case k1 =k2 =3). Note, the parameters associated with the variance estimation models are
stored in an identical manner. For a forecasting predictive query, we average the values of linear
regression coefficients stored across models. Hence, we create a standard materialized view of the
coefficient table to precompute the average weights of the last few models, for efficient querying.

D.2. Answering a PREDICT query in tspDB

Recall the two prediction tasks supported in tspDB are imputation and forecasting. For both
tasks, the system needs to provide a response, both of the estimated mean and the associated
prediction interval (upper and lower bound) – see Section 2. To answer a PREDICT query,
the atomic response boils down to providing an estimation of the mean of the time series at a
given t with prediction interval of c% for c∈(0,100). This response is effectively constructed by
estimating the mean, f̂n(t) and the standard deviation σ̂n(t).
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Figure 8: The schema used to store the prediction models. Note that bold attributes represent the
primary keys, while underlined attributes are columns indexed by a B-tree. The columns u1, v1, s1, ...
uk1, vk1, sk1) correspond to ZX and the columns uf1, vf1, sf1, ..., ufk2 ,vfk2, sfk2 correspond to Z̃X.

Refer back to Section 3.1 for definition of ZX,Z̃X

Creating a Prediction Interval. Using a Gaussian approximation, the c% prediction interval
is given by, [

f̂n(t)−σ̂n(t)Φ−1(
1

2
+

c

200
),f̂n(t)+σ̂n(t)Φ−1(

1

2
+

c

200
)

]
,

where Φ:R→ [0,1] denotes the Cumulative Density Function of standard Normal distribution
with mean 0 and variance 1. One could alternatively utilize Chebyshev’s inequality to obtain
a more conservative answer as[

f̂n(t)− σ̂n(t)√
1− c

100

, f̂n(t)+
σ̂n(t)√
1− c

100

]
.

Either can be specified in tspDB.
Answering Predictive Queries. Now we describe how a PREDICT query in tspDB for a given
t with c% prediction interval is answered. To start with, we determine whether it is an imputation
task, i.e. t∈ [T ] or a forecasting task, i.e. t>T . For each of these cases, we respond as follows.

Imputation: f̂n(t):t∈ [T ],n∈ [N ] ¶.
1. (Find sub-model) Let i=i(t)=max(0,

⌊
2t×N
T ′

⌋
−1). If i=0 and t<T ′/2N, use I(t)={0}

else I(t)={i(t),i(t)+1}.
2. (Find Row, Column Indices) Let trow(j)=(t− jT ′

2N ) modL, tcol(j)=N
⌊
(t− jT ′

2 )/L
⌋

+(n−
1) be row, column indices of matrix corresponding to the models with j∈I(t).

3. (Find Truncated SVD for Mean) Query left, right singular vectors Uj,V j respectively from
U_table, V_table for model corresponding to mean values with index j∈I(t) along with
singular values Sj from s_table.

4. (Produce Mean Estimate) Set: f̂n(t)= 1
|I(t)|

∑
j∈I(t)

∑
kU

j
trow(j)kV

j
tcol(j)k

Sjk.

5. (Find Truncated SVD for Second Moment) Query left, right singular vectors Ũj,Ṽ j re-
spectively from V_table, U_table for model corresponding to second moment with index
j∈I(t) along with singular values S̃j from s_table.

6. (Produce Variance Estimate) Set σ̂n
2(t)=max(0,f̂2

n+σ2
n(t)−f̂n(t)2), where:

f̂2
n+σ2

n(t)=

∑
j∈I(t)

∑
kŨ

j
trow(j)k

Ṽ j
tcol(j)k

S̃j
k.

|I(t)| .

¶Note that answering an imputation query for a given range {t1,...,t2} follows a similar procedure, except
that it will potentially query multiple rows from V_table, U_table, and s_table.
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7. (Output Prediction Interval) Output interval using f̂n(t),σ̂n(t) for queried confidence c%.

Forecasting: f̂n(t):t>T,n∈ [N ].

1. (Retrieve History) Query the last L-1 observations Xn(T−L+1:T)).
2. For t0∈{T−L+1,...,T}, set gmn (t0)=Xn(t0) if Xn(t0) is not missing, otherwise set it to

zero. Similarly, set gvn(t0)=X2
n(t0)

3. (Obtain Coefficients) Obtain a certain coefficients average from the materialized view (e.g.
average of last 10 models) for means β̂m and variances β̂v.

4. (Sequential Forecasting) For τ∈{T+1,...,t} produce estimate of means and variances as
gmn (τ)=

∑L−1
`=1 g

m
n (τ−`)β̂m` , and gvn(τ)=

∑L−1
`=1 g

v
n(τ)(τ−`)β̂v` .

5. (Output Prediction Interval) Output estimate f̂n(t) = gmn (t) and its prediction interval
using σ̂n(t)=gvn(t) for queried confidence c%.

Appendix E. Experimental Setup

E.1. Datasets Description

Throughout the experiments, we use three real-world datasets that are standard benchmarks in
time series analysis as well as three synthetic datasets. In this section, we describe these datasets
in details.

Electricity Dataset. Obtained from the UCI repository, it records 15-minutes electricity loads
of 370 households (Trindade (2015)). We follow the preprocessing done in Yu et al. (2016);
Sen et al. (2019); Salinas et al. (2019): data is aggregated into hourly intervals; the first 25968
time-points are used for training; and day-ahead forecasts for the next seven days (i.e. 24-step
ahead for 7 windows) are made.

Traffic Dataset. Obtained from the UCI repository, it records occupancy rate of traffic lanes
in San Francisco (of Transportation (2011)). We follow the preprocessing done in Yu et al.
(2016); Sen et al. (2019); Salinas et al. (2019): data is aggregated into hourly intervals; first 10392
time-points are used for training; day-ahead forecasts for the next seven days (i.e. 24-step ahead
for 7 windows) are made.

Financial Dataset. Obtained from Wharton Research Data Services (WRDS), it records average
daily stocks prices of 839 companies from October 2004 – November 2019 WRDS (2020). To
limit number of time series for ease of experimentation, we remove stocks with average prices
below 30$ across the available period, and those with null values. This preprocessing gives 839
time series (i.e. stock prices) each with 3993 daily readings. We use the first 3813 time points
for training. For forecasting, we forecast 180 days ahead one day at a time (i.e. 1-step ahead
forecast for 180 windows). We do so as this is a standard goal in finance.

Synthetic Dataset I (Mean Estimation). We generate observations of n×m time series
over T observations X∈Rn×m×T by first randomly generating the two vectors U∈Rn=[u1,...,un]
and V ∈ Rm = [v1, ...,vn]. Then, we generate r mixtures of harmonics where each mixture
gk(t),k ∈ [r], is generated as: gk(t) =

∑4
h=1αhcos(ωht/T) where the parameters are selected

randomly such that αh∈ [−1,10] and ωh∈ [1,1000]. Each observation is constructed as follows:
Xi,j(t)=

∑r
k=1uivjgk(t) where r is the tensor rank, i∈ [n], j∈ [m]. In our experiment, we select

n=20, m=20, T=15000, and r=4. This gives us 400 time series each with 15000 observations.
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In the forecasting experiments, we use the first 14000 points for training. The goal here is to do
10-step ahead forecasts for the final 1000 points.

Synthetic Dataset II (Variance Estimation). With k∈{1,2,3,4}, we generate three different
sets of time series as follows: (i) four harmonics ghark (t)=

∑4
i=1αicos(ωit/T) where αi∈ [−1,10]

and ωi∈ [1,1000]; (ii) four AR processes gARk (t)=
∑3

i=1φig
AR
k (t−i)+ε(t) where ε(t)∼N (0,0.1),

φi∈ [0.1,0.4]; (iii) four trends: gtrendk (t)=ηt where η∈ [10−4,10−3]. Then we generate a tensor by
sampling two random vectors U ∈R20 =[u1,...,u20] and V ∈R20 =[v1,...,v20]. Next we generate
three 20×20×1500 tensors as follow: (i) A mixture of harmonics: F 1

i,j(t) =
∑4

k=1uivjg
har
k (t);

(ii) A mixture of harmonics + trend: F 2
i,j(t)=

∑4
k=1uivj(g

har
k (t)+gtrendk (t)); (iii) A mixture of

harmonics + trend+ AR: F 3
i,j(t)=

∑4
k=1uivj(g

trend
k (t)+ghark (t)+gARk (t)). Here i,j∈ [1,...,20]. For

each tensor, we normalize its values to be between 0 and 1 and use three observations models
to generate three tensors from each: (i) Gaussian: Xq

ij(t) ∼N (F 1
i,j(t),F

q
i,j(t)); (ii) Bernoulli:

Xq
ij(t)∼Bernoulli(F qi,j(t)); (iii) Poisson: Xq

ij(t)∼Pois(F qi,j(t)). Where q ∈ {1,2,3}. Note, this
give us a total of nine observation tensors for our variance experiments. For the forecasting
experiments, we use the first 14000 points for training and the last 1000 time steps for testing.

Synthetic Dataset III (Robustness to Observation Models). We generate a f as a
sum of harmonics; f(t) =

∑4
i=1αicos(ωit/T), where t ∈ [T ], T = 100000, αi ∈ [−1.5,1.5] and

ωi∈ [1,100] (randomly selected). We normalize f(t) to be between 0 and 1, and then generate
three different observation models: (i) XGauss(t)=f(t)+ε(t), where ε(t)∼N (0,0.5) (float); (ii)
XBernoulli(t)∼Bernoulli(f(t)), i.e. each observation at time t follows a Bernoulli distribution with
mean f(t) (boolean); (iii) XPois(t)∼Pois(f(t)), i.e. each observation at time t follows a poisson
distribution with mean λ=f(t) (integer). The goal is to recover (i.e. impute) and forecast f(t)
for each set of observations. Note that we use the first 96000 observations for training, and the
last 4000 points for testing.

E.2. Machine and DB Configuration.

As we said earlier, we use an Intel Xeon E5-2683 machine with 16 cores, 132 GB of RAM, and an
SSD storage in all experiments. In Table 6, we detail the relevant settings used for PostgreSQL 12.1.

Table 6: The used configurations for PostgreSQL 12.1.

Parameter Value

Shared buffers 30GB
maintenance work mem 2GB
effective cache size 80GB
default transaction isolation ‘read committed’
wal buffers 16MB
max parallel workers 16
max worker processes 16
work mem 54MB
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E.3. tspDB Hyperparameters

All experimental results are produced using the default settings in the open-source implementation
of tspDB. In particular, the hyperparameters of tspDB are selected as follow:

L. We choose L using guidance from the analysis in Agarwal et al. (2018), which requires L≤P̄ .
Specifically in tspDB, L=P̄/10.

Number of Singular Values (k,k1,k2). This choices is done in a data-driven manner. Specif-
ically, we follow the optimal procedure proposed in Gavish and Donoho (2014) for choosing a
threshold for HSVT. The procedure depends on the median of the singular values and the shape
of the Page matrix. For more details, refer to Gavish and Donoho (2014).

“Meta-Algorithm” Parameters (T0, T
′, γ). The default parameters we choose are T0 =

100, T ′=2.5×106, γ=0.5. For details on how these parameters are chosen, refer to Appendix F.2.

E.4. Benchmarking Algorithms Parameters and Settings

In this section, we describe the hyper-parameters/implementation used for each method we
compare with.

DeepAR. We use the default parameters of “DeepAREstimator” algorithm provided by
the GluonTS package. In variance forecasting, we compare with DeepAR as it natively had
functionality to produce prediction intervals. It uses a Monte Carlo approach that samples the
estimated posterior to produce multiple samples of the time series trajectories. We take the
variance of these samples as an estimate of the forecasted variance.

LSTM. Across all datasets, we use a LSTM network with three hidden layers each, with
45 neurons per layer, as is done in Sen et al. (2019). We use the Keras implementation of
LSTM Chollet (2015). We train the network with a batch size of 128 for 100 epochs.

Prophet. We used Prophet’s Python library with the default parameters selected (Facebook,
2020).

TRMF. We use the implementation provided by the authors (Yu et al. (2016)) in Github. We
use k=60 for the electricity, k=40 for the traffic, k=20 for the financial and synthetic data and
variance experiments (selected via cross-validation); k represents the chosen rank of the T×N
time series matrix. Another hyper-parameter, the lag index is set to include the last day and
same weekday in the last week for the traffic and electricity data. For the financial and synthetic
data, the lag index include the last 20 points. To perform variance imputation, we adapt TRMF
similar to the extension used in tspDB as follows:

1. Impute the time series Xn(t),X2
n(t) to produce estimates f̂n

TRMF
(t),f̂2

n+σ2
n

TRMF
(t) respec-

tively;

2. Output σ̂2
n

TRMF
= f̂2

n+σ2
n

TRMF
(t)−f̂TRMF

n (t)2.

E.5. Accuracy Score Metrics

In this section, we provide detailed description for the accuracy metrics used throughout the
experiments.
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Normalized Root Mean Squared Error (NRMSE). Throughout all experiments, NRMSE
is used as an accuracy metric. In particular, we rescale each time series to have a zero mean
and unit variance before calculating the RMSE. This is done to avoid over-weighting the error in
time series with larger magnitudes or greater variance.

Weighted Borda Count (WBC). In Table 1 and Table 2, we use WBC to report the
algorithms’ performance across different experiments. This score is inspired from Borda count –
a commonly used method to rank a list of candidates. Specifically, rather than choosing a single
candidate, voters rank all candidates in order of preference. Then, each candidate is given a
number of points that corresponds to the number of candidates ranked lower.

We use a weighted version of the standard Borda Count, where we rank algorithms (i.e.
candidates) based on pairwise comparisons of the normalized root mean squared error (NRMSE)
across experiments (i.e. voters). We use this metric as it better captures the relative performance
across all experiments and methods, unlike a simple statistic such as the mean or the median.
Particularly, let A represent the set of algorithms used in the experiments. For example, in
the mean forecasting experiments, A= {tspDB, DeepAR, LSTM, Prophet, TRMF}. Let X
represent the set of all experiments across different noise levels (σ), and fraction of missing values
(p). Let e(a,x) represent the NRMSE of algorithm a∈A in experiment x∈X . Then the Weighted
Borda Count of algorithm a∈A is:

WBC(a)=
1

|A|−1

∑
a′∈A:a′ 6=a

(
1

|X |
∑
x∈X

e(a′,x)

e(a,x)+e(a′,x)

)

WBC ranges between 0 and 1 and captures the relative performance against alternative algorithms.
A score of 0.5 indicates identical performance to the average of all other algorithms, a score of
0/1 indicates it performs “infinitely” worse / better, respectively.

Appendix F. Statistical and Computational Tradeoffs in tspDB

We detail two additional set of experiments we conduct to study the statistical and computational
tradeoffs in our implementation of tspDB. In Appendix F.1, we explore this tradeoff between
multivariate and univariate time series prediction models – we find using multiple time series can
greatly improve accuracy with a moderate slow down in training time and query latency. However,
beyond a certain point, the gain in statistical accuracy from adding more time series (∼N>50)
becomes minimal and can add unnecessary overhead. In Appendix F.2, we study how the three
key parameters in the scalable implantation of the prediction algorithm in tspDB, T0,T

′,γ (see
Section 3.2 for their definition), affect tspDB’s statistical and computational performance. We
select the default parameters in tspDB based on these experiments.

F.1. Multivariate vs. Univariate Prediction Models in tspDB

In our proposed algorithm, a prediction model is trained using data from a collection of time series.
If this collection of time series are carefully selected (i.e., have high “correlation”), this should
lead to better statistical accuracy (see Appendix C for a justification). However, the drawback
is that training on multiple time series leads to higher model training time and prediction query
latency. We evaluate this tradeoff in tspDB’s performance across the three metrics of interest.
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Table 7: How the three metrics change as we train using more time series (N) relative to the univariate case.

Dataset Synthetic I Electricity

N 1 10 40 80 160 400 1 10 40 80 150 370
Forecasting Accuracy 1.00 0.62 0.11 0.11 0.08 0.06 1.00 0.49 0.44 0.45 0.45 0.46
Training Time 1.00 6.80 16.2 30.28 55.24 250.2 1.00 6.53 20.84 39.63 127.13 369.06
Forecasting Latency 1.00 1.00 1.05 1.15 1.28 1.60 1.00 1.28 1.35 1.60 1.931 2.62

Specifically, we use the synthetic I and electricity datasets (detailed in Appendix E.1). We
evaluate tspDB’s performance as we vary the number of time series, N, used in training the
prediction model. N∈{1,10,40,80,160,400} and N∈{1,10,40,80,150,370} for the synthetic and
electricity datasets, respectively. We report performance across the three metrics relative to the
univariate case. To reduce variance due to randomness in which time series are selected for the
statistical accuracy evaluation, we average results over 50 runs.

Results. Table 7 shows how the three metrics change as we train using more time series.
The training time increases almost linearly, as we train on more time series in the synthetic
(6.80x-250.2x) and electricity (6.53x-369.06x) datasets. The prediction query latency increases
moderately by 1.001x-1.60x and 1.28x-2.62x for the synthetic and electricity datasets respectively.
In contrast, the forecasting error decreases by 1.61x-17.59x and 2.04x-2.27x for the synthetic and
electricity datasets respectively. In summary, we find that using multiple time series to train the
prediction model can greatly improve accuracy with a moderate slow down in the training time
and query latency. However, beyond a certain point, the gain in statistical accuracy from adding
more time series (∼N>50) becomes minimal and thus can add unnecessary overhead.

F.2. Hyper-parameter Tuning - T0,T
′,γ

We discuss how the default parameters for T0,T
′,γ are selected in tspDB – we quantify the effect

of each of these parameter on three metrics of interest: training time, prediction latency, and
statistical accuracy. We find T0 has minimal effect on these three metrics, and for simplicity of
exposition, we simply choose it to be T0 =100 for all experiments.

Setup. In this experiment, we use a synthetic time series generated from a sum of harmonics
with 5×107 data points. We initially train the prediction model with all but the last 106 entries
and then incrementally add data over a 1000 batches, with a 1000 data points in each batch; note
we do so to study the effect of γ on training time, whose effect is limited to such data insertion
patterns. We vary the parameter T ′∈ [104,107], and γ∈{0.01,0.2,0.5,0.7,1.0}.

Results. Figure 9 shows tspDB’s performance on the three metrics of interest as we vary the
parameters. The x-axis reflects the time needed to train the prediction model relative to the
time needed to insert the same data into a PostgreSQL table. The y-axis reflects the forecast
query latency relative to a PostgreSQL SELECT query. The color of each dot corresponds to the
forecasting accuracy in normalized RMSE. We see there is a clear trade-off between query latency
and accuracy. Specifically, using small values of T ′ ∈ [104,105] yields faster but less accurate
predictions (3x-4x slower than SELECT queries). Further, it has a negative effect on training
time (it is 2x-6x the insert time). On the other hand, using high values of T ′∈ [5×106,5×107]
yields more accurate but slower predictions (6x-7x slower than SELECT queries), with relatively
low training time (train time is 70% of insert time). We choose the default setting of T ′ to be
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2.5×106, gives accurate and relatively fast predictions (5.1x slower than SELECT queries) and
relatively low training time (training time is 1.25x quicker compared to PostgreSQL insert time).

We find γ’s effect on the accuracy to be minimal but has significant effect on training time for
certain range of parameter choice. For example choosing γ=0.01 slows training time by∼50% com-
pared to γ=1.0. Training time does not vary for γ∈{0.5,0.7,1.0}, with choice of γ=0.5 performing
best. Hence we choose γ=0.5. to be the default setting. Note γ has no effect on predictions latency.

Figure 9: T ′ and γ can significantly affect the three metrics of interest. We choose T ′=2.56 and γ=0.5
which gives the best tradeoff across all three metrics.

56


	Introduction
	Contributions

	Prediction Interface
	Incremental Matrix Factorization Based Time Series Algorithm
	Algorithm Description
	Incremental Variant of Mean and Variance Estimation Algorithms

	Statistical and Computational Benchmarking of tspDB
	Setup
	Statistical Benchmarking of tspDB
	tspDB's Robustness to Noise Models
	Computational Benchmarking of tspDB vs. Other Prediction Algorithms
	Computational Benchmarking vs. PostgreSQL

	Conclusion
	Appendix Organization 
	Related Work
	Algorithm Justification
	Justification for Mean Estimation Algorithm
	Justification for Variance Estimation Algorithm

	tspDB Implementation Details
	Prediction Model Storage in DB
	Answering a PREDICT query in tspDB

	Experimental Setup
	Datasets Description
	Machine and DB Configuration.
	tspDB Hyperparameters
	Benchmarking Algorithms Parameters and Settings
	Accuracy Score Metrics

	Statistical and Computational Tradeoffs in tspDB
	Multivariate vs. Univariate Prediction Models in tspDB
	Hyper-parameter Tuning - T_0, T', 


