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Abstract—With increased awareness comes unprecedented ex-
pectations. We live in a digital, cloud era wherein the underly-
ing information architectures are expected to be elastic, secure,
resilient, and handle petabyte scaling. The expectation of epic
proportions from the next generation of the data frameworks is
to not only do all of the above but also build it on a foundation
of trust and explainability across multi-organization business
networks. From cloud providers to automobile industries or
even vaccine manufacturers, components are often sourced
by a complex, not full digitized thread of disjoint suppliers.
Building Machine Learning and AI-based order fulfillment
and predictive models, remediating issues, is a challenge for
multi-organization supply chain automation. We posit that
Federated Learning in conjunction with blockchain and smart
contracts are technologies primed to tackle data privacy and
centralization challenges. In this paper, motivated by challenges
in the industry, we propose a decentralized distributed system
in conjunction with a recommendation system model (Matrix
Factorization) that is trained using Federated Learning on an
Ethereum blockchain network. We leverage smart contracts
that allow decentralized serverless aggregation to update local-
ized items vectors. Furthermore, we utilize Homomorphic En-
cryption (HE) to allow sharing the encrypted gradients over the
network while maintaining their privacy. Based on our results,
we argue that training a model over a serverless Blockchain
network using smart contracts will provide the same accuracy
as in a centralized model while maintaining our serverless
model privacy and reducing the overhead communication to a
central server. Finally, we assert such a system that provides
transparency, audit-ready and deep insights into supply chain
operations for enterprise cloud customers resulting in cost
savings and higher Quality of Service (QoS).

1. Introduction

Blockchain with its shared ledger represents a single
system of cryptographic truth, tamper-resistant audit logs,
and algorithmic trust, all of which provide the foundation
that AI-based complex supply chains need. Blockchain has
established itself as a disruptive technology enabling organi-
zations to reinvent, cross borders and collaborate with their

Figure 1: A Hash tree or Merkle tree combined with hash
chain promotes efficient search within a block - O(log N)

business network in previously unimaginable ways. Proof
helps engender trust, and blockchains provide irrefutable
cryptographic proof of transactions for secure audit trails
and thereby, promote trust in the overall system [1]. Figure
1 illustrates the use of Merkle trees to encode blockchain
data to be more secure as every parent node is labeled with
the cryptographic hash of its child nodes. Smart contracts
(autonomous contracts or chain code) are a core fabric com-
ponent that enables automation across a multi-organization
trusted network and its algorithms define the life cycle of
one or more business objects.

Multi-organization enterprise customers looking to mod-
ernize their automation stack and gravitating toward a con-
sume anywhere architecture with a hybrid cloud framework
to address the dynamic nature of their businesses and in
doing so, they also do want to not worry about accountabil-
ity, privacy, scalability, and finality of transactions. Recent
advances in enterprise blockchain have not only entrenched
these enterprise attributes but also proved the potential appli-
cability of blockchain is far greater than just the ubiquitous
cryptocurrency. It encompasses a vast range of industries
including building a very robust supply chain where it is
important to understand data provenance, how goods are
sourced, how ethical is the process, how easy is to log, track
and prove exceptions and thereby shorten reconciliation
cycles. It is imperative for such a supply chain to have
the system be fault-tolerant. With blockchain fault-tolerant
consensus algorithms, the network continues to operate even
in the presence of malicious or careless participants. Just like
any established network, they need to be governed member
access permissions that are regulated based on business
needs i.e., permissioned does not mean private.



1.1. Why Federated Learning?

Businesses continue to burn the midnight oil to protect
and preserve security and privacy [2], [3]. However, the
effectiveness of AI depends on access to all the data we
generate. Motivated by growing private data concerns, as
well as the explosion in computing capabilities that end-
users possess, a new machine learning paradigm called Fed-
erated Learning is gaining popularity. Federated Learning
performs Machine Learning by first training a model at each
client-side privately and confidentially and subsequently
collects and averages models from all participating clients
to generate a more generalized model [6]. None of the
clients share their confidential data which seems to solve
multi-organization data privacy challenges [7]. Healthcare
and user’s edge devices are two of the main categories that
use Federated Learning to train models. However, when
deployed to solutions across multi-organizations current
Federated Learning architecture has a few challenges such
as excessive communications, scalability, and data leakage.

In this paper, we propose a decentralized blockchain
network and smart contracts to allow transparent, audit-
ready, immutable, and trust-based collaboration between
multiple cloud providers and vendors as part of fulfilling a
complex customer purchase order. Our target is to improve
the enterprise customer’s Quality of Service (QoS) attributes
when deploying and maintaining a multi-cloud solution. We
further intend to delight their experience by providing a
fabric to share accurate supply chain insights from mul-
tiple parties by implementing a decentralized (instead of
centralized) federated learning matrix factorization model
using Ethereum blockchain. The key contributions of our
work are as follows:

• A decentralized trusted architecture to overcome the
centralized federated learning single server chal-
lenges such as the single point of failure and the
excessive communications between a single server
and the rest of the nodes.

• Smart contracts to orchestrate enterprise customer
purchases of multi-cloud assets deployed on a per-
missioned blockchain network. The novelty of the
solution also lies in using smart contracts as the
control plane to integrate Federated Learning algo-
rithm to recommend cloud provider resources based
on (similar) customers usage patterns.

• Our system can be applied publicly to provide cus-
tomers and third parties with insights, future predic-
tions, and recommendations while training the model
on the localized data without violating their privacy.

The rest of the paper is organized as follows: Section
2 discusses related work. Section 3 introduces underlying
enterprise challenges while dealing with multiple cloud
provider supply chains and parallels in other sectors includ-
ing healthcare. Section 4 provides the approach of FedS-
marteum. Section 5 reports experimental evaluation, time
study, and a description of system implementation and the

benchmark datasets used. Finally, we conclude in Section 6
and reference possible future work.

2. Related Work

Given the complexity of the proposed system, we have
a two-part approach to the related work discussion. The first
part focuses on the federated learning (matrix factorization)
model used in our technique. The second part evaluates sim-
ilar systems that use federated learning built on blockchain.

The authors of FedMF [9], Chai et al., introduced a se-
cure matrix factorization framework using federated learning
where the model learns using the user’s gradients only that
are sent to the server instead of the raw preference data.
The authors proved that while the gradients seem secure
enough, it still might leak some of the user’s data [10], [11].
Therefore, they took the implementation of FedMF a step
further by implementing the matrix factorization framework
using homomorphic encryption [12]. To this end, the im-
plementation of FedMF is a secure framework that can be
used to learn a matrix factorization model. The architecture
of FedMF still relies on the traditional federated learning
approach that utilizes a single centralized server. In industry,
when a huge number of parties are included, a single server
will not be efficient to coordinate, collect, average all of
the client’s models. Therefore, a decentralized version of
FedMF is required to allow multiple worker nodes to carry
the global computational progress.

The authors of BAFFLE [13] created a decentralized
aggregator-free blockchain-driven environment that lever-
ages smart contracts to coordinate the federated learning
settings and aggregate the user’s models. BAFFLE en-
hances the aggregation process and boosts the computational
progress by dividing the global parameters space into chunks
with a score and a bid strategy. Chunking the parameters
space is due to the limit of the pertaining size of the
Ethereum Virtual Machine (EVM) which is 24 kB [14].
Furthermore, due to the expensive SC storage, the models
need to be stored in a serialized format. Therefore, the
authors use a partitioning algorithm that is used by all of
the users to first chunk then serialize the parameters. Finally,
the budget for each chunk allows users to decide on which
chunks to contribute with, which saves time, capacity, and
does not add unnecessary communication on the network.
However, the machine learning model type that is used in
BAFFLE allows aggregating the user’s models in order to
generate a more generalized global model. But that is not
the case when it comes to recommendation systems models
where each user data vector is different than the others
since not all of the users have the same items and prod-
ucts. Therefore, it is not possible for matrix factorization
techniques to aggregate the user’s models to generate a
global model. For matrix factorization, each user data vector
needs to be updated individually based on that specific
user’s data. Hence, BAFFLE environment is not applicable
for recommendation system models. Furthermore, in our
implementation, we store the items data on the worker nodes
and keep the user’s data localized on the user’s machines



while leveraging the benefits of smart contracts for other
federated learning tasks.

Tzu-Yu et al. [15] proposed a trust-based system for
Collaborative Filtering recommendation systems on the
blockchain. The proposed system provides a secure and
trust-based system supported by the use of smart contracts in
the main blockchain protocol. Using blockchain the authors
proposed a framework to collect large volumes of data and
allow users to host and share a mutual recommender model
that is being used as a public resource. Using incentive
mechanisms, users are able to share the model parameters,
new images, movies, titles, etc. that allow updating the
existing models hosted by a specific user or a group of
users. In such scenarios, all users are assumed to be trusted
users who will not share malicious information or update
the model with false predictions. In addition to the model
parameters being shared publicly on the network, the gas
fees for the smart contract storage and other operations are
very expensive. In our implementation, all of the gradients
are stored in IPFS (distributed storage). The hash from
IPFS is then shared on the Ethereum network to reduce
gas fees instead of sharing the actual data. On top of that,
all operations and model updates are computed using the
homomorphic encrypted items and gradients vectors.

Blockchain started to make in-roads into the medical
fields to facilitate collaboration between patients, healthcare
providers, and insurers via a secure, transparent, and im-
mutable network. The authors of HealthMudra Rashmi et al.
[16] presented a recommender system that prevents diabetes
which is the most challenging disease in the healthcare
sector [16]. HealthMudra is built using a blockchain network
powered by machine learning algorithms and optimization
protocols that mainly use filtering techniques to provide
recommendations in order to prevent diabetes. Such imple-
mentations are helpful when patients share their health data
with different healthcare providers to get helpful recommen-
dations. In our work, we consider federated learning to keep
the user data localized. Even when gradients are shared,
they are shared after applying homomorphic encryption to
perform all of the learning and model updating using the
encrypted data and not raw data.

Several studies have discussed the area of federated
learning using blockchain which lead to a new paradigm
known as FLchain. This technique transfers the current
Mobile Edge Computing (MEC) networks into decentral-
ized, secure, and privacy-preserving systems. Nguyen et
al. [17] proposed a FLchain network to train a shared
model using mobile edge devices. FLchain allows training
a shared model while keeping the user’s data localized
on their devices to benefit from privacy enhancement. A
group of MEC servers is initialized with their associated
user’s devices. Each user carries out the training locally and
commits its update to these servers through a transaction that
is stored in a Merkle tree. Such approaches like FLchain
and BAFFLE are applicable in the case of using specific
types of machine learning techniques where averaging all
user’s models generates a better global model. However, in
recommendation systems averaging all user’s updates is not

Figure 2: Enterprise cloud operations under the hood.

the right way to achieve better accuracy since each user’s
updates are specific to that user. In the recommendation
systems area, users with similar behaviors tend to have
similar updates, but that cannot be generalized among all
of the users on the network.

Finally, it is worth noting the idea of a supply chain us-
ing blockchain is nascent and full potential can be achieved
with the digital transformation of existing, entrenched sup-
ply chain infrastructures. Bhagavan et al. [1] discussed uti-
lizing permissioned blockchain to process multi-cloud cus-
tomer orders. However, such networks do not have AI-based
optimization techniques implemented using smart contracts
to obtain data insights from the collected raw data across
multiple cloud vendors and suppliers.

3. Problem Formulation

Recent surveys show 60% of consumers are willing to
change in support of a traceable (provenance of materials)
and sustainable supply chain and are willing to pay up to
a 35% premium to support a circular economy (reuse of
materials) [4]. Consumers and businesses are fatigued by
massive data sprawls and are gravitating toward universal
governance, transparent data discovery, and provenance to
enable their mission-critical enterprise purchase decisions
driven by insights from data available to them. In this paper,
we discuss two major challenges:

• Cloud provider physical resources are often sourced
by a complex, not full digitized thread of disjoint
suppliers who behind the scenes are attempting to
fulfill their parts of the order expeditiously. This
often results in disjoint communication over email,
Slack, fax, spreadsheets, and other software and is
not conducive to scale beyond organizational bound-
aries. Figure 2 reveals under the hood complexity
even with a single cloud provider supply chain. The
task gets more challenging when multiple parties are
included to fulfill the supply chain network.



• Using AI to obtain insights on private data is
paramount to compete in the marketplace. To accom-
plish this task federated learning can be considered
as a solution. However, current techniques rely on
the traditional federated learning settings that utilize
a single central server. In industries where multiple
parties are involved and predictive models are lim-
ited by organization boundaries, figure 3, a single
server will not be efficient to coordinate, collect,
average all of the client’s models. A decentralized
version of federated learning is to be considered to
allow multiple worker nodes to carry the global com-
putational progress and facilitate fulfillers to make
AI-based decisions.

We discuss some of the pertinent challenges and moti-
vating use cases in more detail in the following sections.

3.1. Policing B2B Multi-organization cloud supply
chains

An enterprise-level supply chain is characterized as a
complex system orchestration between geo-dispersed sup-
pliers, buyers, and fulfillers that could be spread across
multiple organizations, and with people and systems in vari-
ous roles performing life cycle activities. International Data
Corporation [5] estimates 81% of enterprise organizations
use a multi-cloud approach (often mixed with hybrid cloud),
which empowers them to selectively extend their cloud
footprint and deploy application workloads based on cloud
provider strengths, cost, and disaster recovery needs. For
cloud providers, even with self-service, typical enterprise
cloud customer sales and procurement are addressed by
the sales department drawing up purchase orders which are
fulfilled behind the scenes by pockets of automation along
the way. Furthermore, it is an arduous task to automate when
multiple organizations are involved.

Recent trends in cloud computing encourage customers
to keep compute close to their existing data which may
be deployed on any cloud provider. Figure [2] captures a
view of the entrenched scope of order orchestration. Terms
of purchase are recorded by multi-organization sales using
prevailing tools and practices, with some of them being
archaic. Requested cloud providers and their data centers
may have to replenish specific compute or storage types,
set up cloud accounts, and propagate data to all billing
and subscription systems to validate the order. As shown in
Figure [3], any automation for fulfillment that may also use
AI for predictions typically stops at the company’s firewall
making order fulfillment progress opaque to the enterprise
customer. Manual order reconciliation is costly and time-
consuming as every cascading fulfiller in a multi-cloud
supply chain will have their own system of record which
often has strict rules about how data can be shared across
the business network. For example, the personal information
and identity of the customer may be required to process
an order automatically or billing reconciliation when an
incorrect compute node configuration was deployed, but

Figure 3: Information silos in multi-organization business
flows

fulfiller business rules are written to prevent such data to be
shared across organizational boundaries. It is commonplace
for cloud providers or customers to change contract terms,
leading to further delays. For example, Elastic File System
storage with higher performance IOPS and lower latency
may no longer be available in the desired region due to
supplier issues. The customer is then presented with an
alternate data center or asked if the use of elastic block
storage instead will satisfy their needs.

3.2. Healthcare supply chain seams exposed

COVID-19 pandemic is a global challenge and demands
no less than a global response. It has compressed innovation
cycles across the health, manufacturing, and computing
industry by at least a factor of ten. The opportunities to
improve care management, patient outcome, and patient
engagement are significant. However, recent health and
bioinformatics exploration has exposed our vulnerability not
just to the virus, but also the dependency we have on our
infrastructure which in many cases has failed us particularly
in the areas of trust, scalability, immutability, security, and
privacy. Several recent events amplify existing gaps in our
supply chain infrastructure. Even though vaccines were de-
veloped with unprecedented speed, there were unexpected
delays in manufacturing and distribution. Key ingredients re-
quired for vaccines were compromised and the manufacturer
was unaware until it was too late to correct. Government
and hospitals lack shipment delivery of vaccines to help
normalize the supply chain based on population density
and demographics. In many instances, hackers were able
to target groups and gain control of distribution systems for
malicious use. Contact tracing, an important epidemiological
tool, has proven critical to tracking and containing the
spread of the current pandemic, yet its implementation has
been fraught with logistical and privacy concerns including
disturbing the balance between safety and liberty.

Personal patient data is protected information and AI
and machine learning algorithms have to work around that



Figure 4: Smart contract orchestrated federated learning matrix factorization for multi-cloud enterprise customer order.

to make deep inroads for automation and analytics. As a
team of German scientists noted in a 2019 paper in Nature
Partner Journals of Digital Medicine: Hidden in isolated
databases, incompatible systems, and proprietary software,
the data are difficult to exchange, analyze, and interpret.
This slows down medical progress, as technologies that rely
on these data — artificial intelligence, big data, or mobile
applications — cannot be used to their full potential [8].
It is almost impossible to reach healthcare data due to the
data sensitivity and the number of regulations and protocols
that need to be done in order to run an experiment or
train a model. Furthermore, the provenance and authenticity
of training data are critical in AI BOTS that perform the
role of a physician’s assistant. Recommendations are only
one half of the solution, while the other half should focus
on source data for the machine learning algorithms, why
should we trust it, and how much impact did it have on
my treatment outcome. Food manufacturers are thinking
about the next step to save lives where they can trackback
foodborne illnesses to bad ingredients. All of these are real,
current problems in the healthcare industry that pass the Fit
for Blockchain Test.

Hence, we conclude that blockchain is the fabric or
tool of choice for multi-organization automation as it em-
bodies an organizational and algorithmic trust based on
advanced cryptography in a shared ledger to help form a
single system of truth across business networks. Smart (au-
tonomous) contracts are triggered when proper conditions
are met without human intervention, and consensus amongst
all impacted parties is sought, met, and reconciled without
involving intermediaries. Validated transactions are recorded

in a shared ledger and are immutable forming a tamper-
resistant audit log which not only helps with regulatory
compliance but also when properly used can non-repudiate
and pinpoint exactly when and how deviation occurred and
radically shorten the reconciliation process and improve
customer QoS. Bitcoin and Ethereum are two examples
of blockchain decentralized networks that allow people to
exchange cryptocurrency without violating their privacy.
They demonstrate how peer-to-peer (P2P) networks provide
security and transparency and allow individuals to be in
charge of their own data while performing computational
operations privately. With the help of blockchain and fed-
erated learning, a collaboration between several parties is
possible even when there is no trust between these parties.
In addition, we have an obligation to show the lineage of
where training data came from. Trust and explainability
are paramount as we move into the world where AI bots
are used liberally. Blockchain can help with many of these
aspects given that many of these traits are organic to the
blockchain platform.

4. FedSmarteum

We implemented our work using an Ethereum
blockchain in order to provide customers with transparency
while keeping the data private. Ethereum leverages the use
of smart contracts that coordinates the federated learning
process between all the included nodes and cloud parties.
In this paper, we train a Matrix Factorization model in a
federated way where all the customers’ data remain local-
ized on data owner’s devices. The items data will be placed



on one of the worker nodes (could be one of the nodes that
are included in training the model). Sending and receiving
the training data, weights, and gradients on the Ethereum
network is too expensive and requires a lot of gas fees, other
than the network transfer size limitations. Therefore, we use
a distributed database (IPFS) [18] that provides hash-based
storage. When storing an object in IPFS, the distributed
storage will provide a hash to be used when reading the
object from the storage. Consequently, instead of sharing a
model, dataset, or gradients set on the blockchain, we store
these objects on IPFS and then send that hash to the smart
contract which is going to share it with the participating
nodes. In this way, all of the nodes will be able to share data
on the blockchain using IPFS without incurring expensive
fees. The remaining question is, should all the nodes trust
IPFS or the worker nodes in order to share their weights or
gradients? The answer is no. In our work, we have enabled
homomorphic encryption where each node encrypts its data
before sharing it on IPFS or on the chain. Using HE, nodes
do not need to trust IPFS or any of the worker nodes. HE
allows operations on the encrypted data such as addition,
multiplication, and subtraction. In our scenario, we are
using the encrypted customer’s data to update the encrypted
items data. Therefore, all the participants keep their data
private and share their encrypted gradients only. The smart
contract coordinates the federated learning process between
the included parties. The purpose of the blockchain network
is to keep all the parties included and updated during the
process. Blockchain provides transparency between the cus-
tomers and the cloud providers. All customers will be up
to date with their procurement and services while the cloud
providers will be able to get insights using the customer’s
data without violating their privacy.

4.1. FedSmarteum Methodology
As mentioned in section I, federated learning is an

approach to allow users to train a shared model on their
joint data without exposing users’ local data. Federated
learning comes under the umbrella of privacy-preserving
techniques and can be categorized based on the distribution
characteristics of the data [19]. Horizontal federated learning
is one of the categories of federated learning where users’
data share the same feature space while different users have
different samples. Therefore, this matrix factorization model
can be considered as an example of horizontal federated
learning since the rating data shared with each user has
the same feature space, but different users have different
samples. In our implementation, we assume all of the users
in our scenario are cloud providers. Our technique secures
the users further from the central server since this server
might be a trusted, but curious server.

4.1.1. Stochastic Gradient Descent for user-level matrix
factorization. In this section, we introduce the optimization
method that is used in the matrix factorization model [9],
[20] which is stochastic gradient descent. We design a
serverless decentralized network to update the model locally

Figure 5: Deployment flow depiction of FedSmarteum.

using worker nodes in a decentralized way instead of relying
on a central server.

Assuming we have a m number of items and n number
of users where each user rated a number of items (a subset
of m). Given [n] := {1, 2, ..., n} which is the set of users
and [m] := {1, 2, ...,m} is the set of items, we can denote
M ∈ [n]X[m] for the user-item rating pairs and M is the
total number of ratings M = |M|. We denote the user i that
rated item j by rij . Assuming the value rij is given, then
the recommendation system is expected to predict all if the
items for all of the users by fitting a binary model on the
existing ratings. That is computed using user matrix U ∈
Rn×d and item matrix V ∈ Rm×d and the output matrix is
then used to predict the user i’s rating on items j which can
be described as ⟨ui, vj⟩. The authors of FedMF [9] shows
how to compute U and V by solving the regularized least
squares minimization as in equation 1.

min
U,V

1

M
(ri,j − ⟨ui, vj⟩)2 + λ||U ||22 + µ||V ||22 (1)

λ and µ are small values that were added to rescale the
penalizer. U and V will be updated using the Stochastic
Gradient Descent as in Equations 2 and 3.

ut
i = ut−1

i − γ∇ui
F (U t−1, V t−1) (2)

vti = vt−1
i − γ∇viF (U t−1, V t−1) (3)

where

∇uiF (U, V ) = −2
∑
j:(i,j)

vj(ri,j − ⟨ui, vj⟩) + 2λui (4)

∇viF (U, V ) = −2
∑
i:(i,j)

ui(ri,j − ⟨ui, vj⟩) + 2λvj (5)

Then, this update takes place iteratively until the number
of rounds is met.



4.1.2. The Decentralized Matrix Factorization. In our
implementation, all users keep their rating data localized
without sharing it with anyone. Then, the model is trained
on the user’s joint data. In order to achieve this goal, we
leverage the use of the decentralized matrix factorization
approach. This approach decomposes the updating of algo-
rithms into two parts where the first part is performed on
the user’s device locally and the second part is performed
and computed using the worker nodes in a decentralized
way. Equation number 2 is performed and computed on
the user i’s device whereas equation 3 is performed and
computed in a decentralized way using the worker nodes.
The decentralization part is because of two main reasons: (i)
to keep the user’s rating data localized, and (ii) to prevent
a trusted but curious server from recovering insights from
the model.

Algorithm 1 Decentralized User-level matrix factorization

1: Init: Worker nodes initialize item profile matrix V
2: Init: User initializes user profile matrix U
3: Output: Converged U and V
4: IPFS and worker nodes keeps latest item-profile

for all users
5: User local update:
6: Smart Contract shares the hash with users to

obtain V, perform local update:
7: ut

i = ut−1
i - γ ∇ui

F (U t−1, V t−1)
8: Gradienti = γ ∇vi F (U t−1, V t−1)
9: Worker nodes update:

10: Smart Contract shares IPFS Gradienti
block with worker nodes for user-i

11: Perform update: vti = vt−1
i - Gradienti

The general user-level matrix factorization method al-
lows users to keep their data localized on their devices while
they share the generated gradients as plain text with the
server [20]. The authors of FedMF [9] proved that while
the users keep their data localized, the server is still able to
decode users’ ratings through the gradients. Therefore, the
authors have implemented the recommendation system using
HE in order to secure the gradients. The server is still able
to perform the same updates using the encrypted gradients
while maintaining the model accuracy. The encrypted gradi-
ents will secure the users from the curious server and other
attacks. However, the server will have an overhead updating
the encrypted items data using the encrypted gradients. We
replaced the server with worker nodes in order to carry out
the items update in a decentralized fashion.

Our focus was on the efficiency of a decentralized frame-
work while maintaining the model accuracy. We observed
our generated model has similar predictions when testing
the recommendation system on the MovieLens [21] rating
dataset. However, since our algorithm was implemented in a
decentralized way, there is a difference in the execution time
as in our proposed approach the worker nodes are carrying
out the items updates instead of the central server. Algorithm
1 shows the updating procedures.

4.2. Passing Gradients Over Blockchain

Most of the Blockchains have an upper size limit on
the transactions. Ethereum Virtual Machine (EVM) has the
limit of 24 kB [14]. Any random smart contract that contains
many functions, too much code, with multiple events will
hit the size limit instantly. For example, ERC1400 Security
Token Standard requires 27 functions and 13 events [14].
With additional application functions and specific code to
implement these standards, the limit will easily exceed 24
kB. Therefore, storing a large volume of amount of data on
the smart contract is not feasible.

On the other hand, gas fees paid for transactions is
expensive. As of August 25, 2021, the gas fee for a single
transaction is 0.0013 Ether/transaction [22], with the Ether
price today is $3,247.73, each Ethereum transaction costs
almost $4. For example, the average size of a photo that was
taken using an iPhone-6 is 2-3MB. Hence, depending on the
Ether price, buying a car might be cheaper than adding one
photo on Ethereum blockchain [23]. Ethereum network can
be used due to its security, immutability, and transparency.
However, for distributed storage purposes, we have used
Interplanetary File System (IPFS) [18]. Using Ethereum and
IPFS creates a simple, yet powerful, system of immutable
content. This way, all data, and models can be stored on
IPFS, while transactions and communications can take place
using the Ethereum blockchain. Using IPFS, we are able to
timestamp much larger data to be used over the blockchain
than the pure blockchain networks. When users add data to
IPFS, the protocol returns a hash for the data. This hash is
cryptographically guaranteed to be unique to the content so
no two sections of data will have the same hash. When the
same section of data is added again to IPFS for the second
time, the same unique hash will be returned. To retrieve data
from IPFS, we use the reverse way. The same cryptographic
hash returned from the storage process is then returned for
the IPFS in order to retrieve the original data that was stored.
By using the IPFS mechanism, we guarantee that our data
has not been tampered with. Furthermore, all of the data
stored on IPFS during our implementation is homomorphic
encrypted. Therefore, the data cannot be read or tampered
with by others. The receiver node can then download the
encrypted data from IPFS and use the gradients for updating
the items data. The smart contract is responsible for this
process and directing the hash values between the user’s
local devices, worker nodes, and training nodes.

After the model is trained, the items data can be used
with customer data to provide specific recommendations for
that customer. The updated items data will be available in
IPFS and worker nodes. The participating cloud providers
and other privileged entities in the supply chain can use
this data with new customers data to generate predictions
and recommendations. The reason for leaving the encrypted
items data on worker nodes is due to the fact that training
is perpetual and iterative. As additional customers and data
are generated, so are the training iterations. The accuracy of
the model has a strict relationship with time and the number
of users. All participating cloud providers have aqual access



to the model.
Figure 5 represents the deployment architecture for

FedSmarteum. We have multiple stakeholders of the system
including developers who are responsible for maintaining
smart contracts, the data scientists who build and maintain
ML algorithms, the blockchain governor who is responsible
for setting up and maintaining the network connection and
protocols, and finally, the customer who relies on the sys-
tem for insights to help make business decisions on cloud
resource utilization across a multi-organization platform de-
ployment. For example, a customer may be recommended
by the model that a specific machine type on data center X
has taken longer to deploy due to unavailability of the
desired chipset, and other customers have either chosen to
deploy a different machine type of chipset or pick an entirely
different region previously. Having this recommendation
enables customers to avoid unnecessary delays and cost.
Also note that in our system, the customer is a training
data provider for data scientists to train the ML models in
a federated learning approach.

As alluded to earlier, smart contracts are developed to
orchestrate the supply chain flow and federated learning
technique and they constitute the backbone of our system.
We deploy these smart contracts using the Remix platform
on the Ethereum network. Machine Learning engineers and
data scientists can then build their models and start the
training process. The worker nodes connected to IPFS will
then pull the encrypted items data from IPFS, decrypt it,
generate gradients, and update the customer’s data, and
finally encrypt the gradients and push them back to IPFS.
IPFS contains the latest items data that can be used to get
insights by using the Analytics platform supplied by cloud
providers. For example, we can deploy on an IBM Red
Hat OpenShift cluster in a containerized environment which
gives us ready access to analytic tools. As a cloud provider,
we can rely on these insights to provide recommendations
and predictions for future customers based on the previous
customer’s behavior.

5. Evaluation and Implementation Details
We deployed an Ethereum blockchain connected to mul-

tiple participating nodes that represent cloud providers and
other stakeholders in the multi-organization supply chain.
We conducted all of the smart contract executed federated
learning evaluation using a well-known MovieLens dataset
[24] and our private cloud dataset. We ran the evaluations
using a different number of users, items, and rounds. Our im-
plementation relies on decentralized architecture and smart
contracts that coordinate the training process between cloud
providers and worker nodes. Owing to this, we observed a
few extra seconds of delay for each round of execution.
This extra time is attributed to the time it takes for the
smart contract to initialize the process with the worker
nodes and the rest of the additional time is consumed
during the process of pushing and pulling the encrypted
data from IPFS. It is our intent to demonstrate that for
industry applications, we can replace the central server with

Figure 6: The execution time for FedSmarteum VS. FedMF
using our cloud dataset. The experiment includes 20 cus-
tomers with 40 items.

decentralized distributed worker nodes using blockchain and
smart contracts while maintaining the same model accuracy.
Table 1 shows the observed difference in time between
FedSmarteum and FedMF. Figure 6 compares the execution
time between FedSmarteum and FedMF. In this experiment,
we ran both models on the cloud dataset including 20 cus-
tomers with 40 items (multi-cloud resources and services).
As can be seen in figure 6, the difference in time between
the models is negligible which validates the decentralized
approach applicability of FedSmarteum.

TABLE 1: Execution time for FedSmarteum and FedMF.

FedSmarteum FedMF

3
U

se
rs

-
10

It
em

s

R-1 0:00:42 0:00:40
R-5 0:02:41 0:02:35
R-10 0:05:34 0:05:08
R-15 0:08:33 0:07:50
R-20 0:10:54 0:09:27
R-25 0:14:31 0:12:59

5
U

se
rs

-
20

It
em

s

R-1 0:01:55 0:01:48
R-5 0:08:50 0:07:51
R-10 0:16:39 0:15:31
R-15 0:24:41 0:23:41
R-20 0:31:41 0:28:31
R-25 0:44:31 0:37:42

10
U

se
rs

-
40

It
em

s

R-1 0:06:25 0:06:09
R-5 0:29:30 0:27:52
R-10 1:02:54 0:57:02
R-15 1:29:30 1:20:59
R-20 1:56:15 1:50:39
R-25 2:26:37 2:19:47

The table shows execution time for FedSmarteum and
FedMF. “R” represents the number of rounds. The time is
expressed in Hours:Minutes:Seconds.

5.1. Benchmark Description
We conducted our experiments using two datasets. The

first one is the MovieLens datasets [21] is a well-known
benchmark that has been collected and made available by



the GroupLens Research [25]. The dataset contains 100,000
movie ratings and 3,600 tag applications applied to 9724
movies by 610 users. The dataset is available at the follow-
ing link: https://grouplens.org/datasets/movielens/.

The second dataset is our private cloud dataset. The
premise for this dataset was to represent cloud resources
(compute, storage, network, etc.,) procured by different cus-
tomers across multiple cloud providers in order to deploy
their application workloads. The cloud dataset we used
includes data for 50 different resources provisioned across
multiple cloud providers along with the count for each
resource applied to 100 customers.

5.2. Blockchain Implementation and Encryption
To implement the homomorphic encryption, we used the

Python programming language. Using Paillier encryption
[26], we kept the length of the public key 1024. We used
Truffle Suite [27] in order to deploy a synthetic Ethereum
blockchain for development and testing purposes. In par-
ticular, we used Ganache version 2.5.4 [28] which allows
interacting with smart contracts using Python. The smart
contracts were deployed using Remix IDE [29]. All smart
contracts were written in Solidity programming language
using the compiler version ˆ0.4.21.

IPFS version 0.15.0 was used to allow the distributed en-
crypted items data to be shared. IPFS powers the Distributed
Web using a peer-to-peer hypermedia protocol designed to
preserve and grow humanity’s knowledge by making the
web upgradeable, resilient, and more open [18].

6. Conclusion and Future Work

Computing on the cloud, social, and edge devices gener-
ate massive volumes of data every second. AI has cemented
its place as the tool of choice for analytic workloads and
also helps build predictive models that are able to assist
and automate workflows across multi-organizations business
networks. Current implementations lean toward federated
learning for training AI models on private data. However,
federated learning relies on a central server to perform
the global computation progress which can lead to several
issues related to handling data heterogeneity between par-
ties, coordination of learning process, bias due to lack of
verification datasets, single point of failure, and above all
communication overhead between parties involved. We pro-
posed a decentralized federated learning matrix factorization
technique implemented using a blockchain. Our implemen-
tation leverages the use of smart contracts to orchestrate and
automate the asset procurement process. This immutable,
decentralized architecture reduces the overhead communi-
cation between the server and all the nodes while retaining
data ownership and privacy with participants. Additionally,
we eliminated the single point of failure and proved that
decentralized recommendation systems can be implemented
using blockchain while maintaining the model accuracy
with marginal overhead in computational time. We hope
this paper will inspire cloud providers and their supplier

community to consider a decentralized framework as they
engineer their next generation of supply chain automation.

Democratization via a decentralized architecture pro-
vides equal rights for clients to share unbiased data. Our
future work will focus on reducing the time required to
complete a single iteration and worker node updates using
our decentralized federated learning technique and more
accurate prediction models for resource procurement. We
hope to explore similar techniques to homomorphic en-
cryption that requires less computing and updating time.
Reducing the communication between worker nodes, IPFS,
and smart contracts will reduce the execution time in each
iteration. We are also investigating model governance and
how cloud providers can have access to the model based
on the provided training data and accuracy before and after
including each cloud provider.
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