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A B S T R A C T   

Underground water pipes deteriorate under the influence of various physical, mechanical, environmental, and 
social factors. Reliable pipe failure prediction is essential for a proactive management strategy of the water 
supply network (WSN), which is challenging for the conventional physics-based model. This study applied data- 
driven machine learning (ML) models to predict water pipe failures by leveraging the historical maintenance data 
heritage of a large water supply network. A multi-source data-aggregation framework was firstly established to 
integrate various contributing factors to underground pipe deterioration. The framework defined criteria for the 
integration of various data sources including the historical pipe break dataset, soil type dataset, topographical 
dataset, census dataset, and climate dataset. Based on the data, five ML algorithms, including LightGBM, Arti
ficial Neural Network, Logistic Regression, K-Nearest Neighbors, and Support Vector Classification are developed 
for pipe failure prediction. LightGBM was found to achieve the best performance. The relative importance of 
major contributing factors on the water pipe failures was analyzed. Interestingly, the socioeconomic factors of a 
community are found to affect the probability of pipe failures. This study indicates that data-driven analysis that 
integrates the Machine Learning (ML) techniques and the proposed data integration framework has the potential 
to support reliable decision-making in WSN management.   

1. Introduction 

Providing a reliable and safe water supply is crucial for water supply 
network (WSN) management. Water distribution pipes are the key 
components of a WSN for delivering water from water treatment plants 
to customers. The buried water pipes are subjected to deterioration, this 
is especially severe for US urban municipalities where some of the pipes 
were laid down in the 19th century [1]. More than 700 water mains 
break every day in Canada and the USA, wasting approximately 2 tril
lion gallons of drinking water annually [2]. The failure of water pipes 
can cause significant financial losses with associated societal or envi
ronmental impacts. According to the American Water Work Association, 
the replacement costs of the existing WSNs in the US, combined with 
their projected expansions, would cost more than $1 trillion over the 

next couple of decades [3]. These devastating issues press for reliable 
pipe failure prediction models to institute preventative maintenance for 
loss reduction as well as a management practice for sustainable 
improvement. 

Identifying the key factors (i.e., input variables) that influence the 
pipe failure is a key task in developing reliable prediction models. Over 
the past decades, various factors that could lead to pipe breaks have 
been assessed by experimental tests, finite element simulations, and 
historical data analysis [4,5]. According to a recent review, these factors 
can be generally grouped into three types according to their attributes in 
WSN, i.e. physical, operational, and environmental [6]. The most widely 
considered physical factors include the pipe age, length, material, and 
diameter. For example, Kettle and Goulter identified the relationship 
between the pipe diameter and the break probability using statistical 
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analysis [7]. Yamijala et al. demonstrated that pipes with longer lengths 
will suffer more failures [8]. The most widely examined operational 
factor is the number of times that previous failures occurred [9–11]. 
These studies indicate that a larger number of previous failures along a 
pipe is often associated with a higher probability of failure. In addition, 
water pressure is another common operational factor for pipes in the 
WSNs [12,13]. A positive correlation between internal water pressure 
and the probability of breaks in concrete and metallic pipes has been 
observed [13]. Environmental factors could also contribute to pipe fail
ures. These factors include traffic loads, soil types, and climate [6]. Also, 
most of these factors often have high levels of uncertainty [14,15]. 
Previous studies identified the influence of different climate factors such 
as temperature and precipitation on pipe failures [9,16,17]. The results 
indicated that larger temperature fluctuations could increase pipe fail
ure probability. These three types of factors interplay and there is a need 
to better understand the interplay between these contributing factors 
and pipe failure probabilities. Besides the above-mentioned factors, it 
has been increasingly realized that the interactions with other types of 
factors such as socioeconomic factors should be also considered in 
WSNs’ performance prediction. For example, recent studies on com
munity reliability and resilience considered the influence of infrastruc
ture failure and census data [18]. However, such factors have rarely 
been considered in the existing pipe failure prediction model. Mean
while, besides developing reliable and efficient tools for pipe failure 
evaluation, stakeholders are highly interested in understanding the 
mechanisms of the most important factors in pipe failures, which allows 
instituting informed decisions for resource allocation. Although previ
ous studies have examined the impacts of different factors on pipe 
failure probabilities [19], the relative importance (i.e., degree of the 
impacts) is yet to be well understood. Therefore, the interpretability 
consideration is also very important in developing a pipe failure pre
diction model. 

The existing methods for pipe failure prediction generally fall into 
three categories, i.e., physics-based models, statistical models, and machine 
learning models [20]. The advantages and limitations of each method are 
briefly reviewed here. Physical-based models consider physical factors 
with empirical or semi-empirical feature equations that compare the 
allowable strength of a pipe to the real-world loading [21–23]. Then, the 
failure probability of a pipe can be determined by comparing the pipe’s 
remaining strength and its loading via a sampling method, such as the 
Monte Carlo simulation [24,25]. Although physics-based models could 
intuitively indicate the different contributions of the factors considered 
[26], this method is usually computationally intensive for the entire 
WSN system. It is because hundreds or even thousands of pipes are 
contained in a WSN and each requires an enormous number of samplings 
for the failure probability estimation [27]. Moreover, some of the pop
ular physics-based models are too conservative, such as the B31G model 
[26]. By contrast, Statistical models are cost-efficient particularly for 
specific areas with sufficient historical recording data. Previous studies 
have reported the applicability of various statistical models for pipe 
failure prediction [28–31]. The statistical models typically used statis
tical equations (such as the time-exponential model, linear regression 
model, and the Poisson-process model) to model time-dependent 
breakage prediction models [32,33]. Recent studies also used the 
Bayesian networks for the pipe failure inference [34,35]. Under the 
assumption that the failure pattern remains consistent in the future, 
these models can be further used for failure prediction. However, the 
statistical models can only consider limited physical factors without 
revealing their physical relationships to pipe failures. Recently, 
data-driven machine learning (ML) models have become an emerging 
method for the prediction of pipe failures, leveraging the increasing 
amount of data available. Artificial neural networks (ANN), neuro-fuzzy 
systems, Logistic regression, and genetic algorithms are some of the 
most popular approaches to find the complex relationship between pipe 
failure and different variables [36–41]. Although these ML-based ap
proaches can often achieve promising computation efficiency and 

accuracy, they are often criticized as ‘black boxes’ that lack or have 
limited interpretability. To overcome this limitation, some studies have 
used more explainable ML algorithms such as tree-based algorithms and 
Logistic regression algorithm. However, these algorithms may not ach
ieve satisfactory accuracy for water pipe break prediction, based on the 
knowledge and experience of the authors. Moreover, although some of 
the ML algorithms have been used for pipe failure prediction, there is 
still a lack of systematic comparison among different types of ML algo
rithms in this application domain. In summary, even with valuable 
datasets maintained by water agencies alongside the WSN management, 
accurate prediction and reasonable interpretation of pipe failure prob
ability is still challenging and thereby needs more work. 

In light of the abovementioned research gaps, this study aims to 
propose a multi-source data-aggregation framework for an interpretable 
ML model that facilitates high-fidelity and efficient prediction of pipe 
failures in water supply networks. The proposed framework was applied 
on a large WSN dataset that contains more than 5300 miles (8529 km) of 
water pipe, which represents the largest analyzed dataset so far based on 
the authors’ knowledge. Multiple sources including physical, opera
tional, environmental, topographical, and census data are considered in 
the data preparation stage. The interpretation results not only fit pre
vious studies but also indicate the important impact of socioeconomic 
factors. Although the factors’ impact may vary in different WSNs, the 
proposed analysis framework can be easily adopted by different WSN 
management agencies. 

2. Background of machine learning models for pipe failure 
prediction 

A common approach for pipe failure prediction is treating this 
problem as a classification problem, i.e., classify a pipe as either broken 
or intact by the given variables. The current supervised ML algorithms 
for classification tasks can be generally divided into five main categories 
[42], i.e., logic-based algorithms, perceptron-based techniques, statis
tical learning algorithms, instance-based learning algorithms, and sup
port vector machines. Although previous studies have used different ML 
algorithms to classify if a pipe will break or not based on the array of 
input conditions for the pipe, there is a lack of a comprehensive com
parison between different types of ML models. To efficiently compare 
the performance of these ML categories for pipe break predictions, five 
popular ML algorithms are selected as the representative of each cate
gory, i.e., the LightGBM algorithm, the Artificial Neural Network (ANN), 
logistic regression, k-nearest neighbors (kNN), and support vector clas
sification (SVC). The objective of the ML model is to classify each pipe 
into either intact or broken categories based on the observed input 
factors. A brief description of these ML algorithms is provided below. 

2.1. LightGBM 

LightGBM is a gradient boosting framework that belongs to logic- 
based classification algorithms. The LightGBM involves three features: 
Gradient-based One-Side Sampling (GOSS), Exclusive Feature Bundling 
(EFB), and histogram and leaf-wise tree growth strategy. More specif
ically, the GOSS is a sampling method by keeping all instances with large 
gradients and perform random sampling on the instances with small 
gradient. A constant multiplier for the data instances with small gradi
ents is used to compensate the data distribution changing during the 
sampling process. Hence the final performance is improved by using 
these two strategies. The EFB method aims to increase the computa
tional efficiency by dividing the features into a smaller number of 
bundles. LightGBM uses EFB together with histogram algorithms to 
efficiently deal with categorical features. Therefore, the categorical 
features do not need to be represented with the traditional one-hot 
encoding, which is a significant benefit especially when the categori
cal feature contains lots of unique values. Detailed theories and infor
mation can be found in [43]. 
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2.2. Artificial neural network (ANN) 

ANN is a widely used perceptron that mimics the working of human 
brain in processing a combination of stimuli into an output [44]. The key 
components of an ANN architecture are the input layer, hidden layers 
and output layer . The weight coefficients for neurons of each layer are 
iteratively tuned to mitigate the error between the output and target 
values during the training process. For each neuron, it computes a 
weighted sum of its inputs and generates an output with an activation 
function. Mathematically, for each neuron, its relationship between the 
inputs and output can be represented by Eq. (1). 

θ = f

(
∑k

r=1
wrxr + b

)

(1)  

where θ is the output of each neuron, f(⋅) is the activation function, wr is 
the weight of xr and b is the bias. 

2.3. Logistic regression (LR) 

LR is one of the statistical learning algorithms by fitting samples into 
a logistic function. LR has been widely used in engineering areas because 
(1) it is an explainable ML algorithm since the weight for each factor is 
available after training, and (2) it assigned a value between 0 and 1 to 
each sample for a classification problem, which can be interpreted as the 
classification probability. Mathematically, LR is formulated as Eq. (2) 
[45]. 

p =
1

1 + e−(w0+
∑m

i=1
wixi)

(2)  

where p is the output of each sample; xi is the vector sample with the ith 

feature; wi is the weight of the ith feature that will be tuned during the 
training process; and w0 is the constant bias. As can be observed from the 
equation LR cannot handle the categorical variables directly. Therefore, 
converting methods such as one-hot-encoder is required. Once the 
weights are determined, the classification result, y, of each sample can 
be achieved by Eq. (3), in which the threshold is usually set as 0.5 for a 
binary classification problem. 

=

{
−1 if p ≤ threshold

1 if p > threshold (3)  

2.4. k-nearest neighbors (kNN) 

kNN is one of the most classical and simplest methods for pattern 
classification [46]. It assumes the instances belongs to the same class 
exist in close proximity. The performance of kNN heavily depends on the 
way that the distances are computed between the instances. Euclidean 
distance is the most commonly used distance metric. The Euclidean 
distance between samples xi and xj is defined as Eq. (4). 

d
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi1 − xj1

)2
+

(
xi2 − xj2

)2
+ ⋯ +

(
xim − xjm

)2
√

(4)  

where xim denotes the mth feature of ith sample. 
For a sample xl in the test dataset, kNN runs throughout the whole 

dataset to compute the distance between xl and each sample in the 
training dataset. The top k points that are closest to xl will be recorded 
(e.g., named Set A) to classify xl. Hence, the conditional probability of 
xl belongs to class j can be estimated by Eq. (5). 

P(y = jX = xl) =
1
k

∑

i∈A
I(yi = j) (5)  

where the k is the predefined k value; I(yi = j) equals 1 if instance yi is in 
class j, otherwise it equals 0. 

2.5. Support vector classification (SVC) 

SVC is a support vector machine for classification tasks by finding the 
optimal vector of hyperplane. The hyperplane is a plane that can divide 
the n-dimensional data points into two components. For instance, if the 
instances are a two-dimensional (2D) dataset, the hyperplane is a line on 
a 2D plane. SVC aims to find the hyperplane which could maximize the 
margins (sum of distances) from the hyperplane to the nearest training 
samples from each class [47]. Mathematically, SVC solves the following 
optimization Eqs. (6) to (8) to find the optimal hyperplane vector. 

min
w,b,ζ

1
2

wT w + C
∑n

i=1
ζi (6)  

subject to 

yi
(
wT ϕ(xi) + b

)
≥ 1 − ζi (7)  

ζi ≥ 0, i = 1, ⋯, n (8)  

where the objective equation (Eq. (6)) is to maximize the margins (by 
minimizing wTw) and minimize the misclassification of the distances (ζi) 
with a penalty term C. ϕ(x) is the kernel function that maps each sample 
into a higher dimensional space. w is the corresponding weight vector 
and b is the bias term. xi is the training sample and yi is the corre
sponding class. 

With the trained weight vector (w) and bias term (b), the sample x in 
the test dataset can be classified by Eq. (9). SVC cannot output predic
tion probability directly, but such a probability (y) can be obtained by 
using the Platt scaling method [48]. 

y = sign
(
wT ϕ(x)w + b

)
(9)  

where sign is the signum function. 

2.6. Metrics for ML model evaluation 

The output of these five ML algorithms is a continuous value between 
0 and 1, which denotes the confidence of a pipe being broken. Such 
confidence value is often interpreted as the failure probability [19]. 
Given that the ground truth of the test dataset is a binary class (intact or 
broken), a common approach to evaluate the prediction results is to 
divide them into each class based on a threshold, i.e., 0.5. In other 
words, the sample is predicted as break if the output is larger than 0.5, 
otherwise, it is ‘intact’. Based on the predicted results and the ground 
truth, a confusion matrix can be obtained as shown in Fig. 1 [49], in 
which the terms ‘True Break’ and ‘True Intact’ represent the correctly 
classified samples. The ‘False Intact’ denotes the pipes that are predicted 
as intact but break. The ‘False break’ denotes the pipes that are predicted 

Fig. 1. Confusion matrix for pipe status classification.  
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as break but intact. 
Based on the categorized prediction results, three metrics are used in 

this study to quantitatively evaluate the performance of ML models, i.e., 
the accuracy, recall, and precision, as given in Eqs. (10)–(12). 

Accuracy =
TB + TI

TB + TI + FB + FI
(10)  

Recall =
TB

TB + FI
(11)  

Precision =
TB

TB + FB
(12)  

here TB refers to True Break, TI refers to True Intact, FB refers to False 
Break, FI refers to False Intact. 

The accuracy index measures the overall prediction accuracy by 
considering all the prediction results. The precision is the ratio between 
the True breaks and all the predicted breaks. The recall is the ratio be
tween the True breaks and all real breaks. Specifically, a larger recall 
value means more break samples in the test dataset are successfully 
identified by the model. A larger precision value means more predicted 
break samples are true break samples. In reality, a low recall value may 
lead to the missing of the failure pipes and a low precision value may 
lead to mistakenly replacing intact pipes, thereby increasing unnec
essary maintenance costs. 

Previous studies indicated only using the Accuracy, Recall, and 
Precision is not enough for model evaluation [10]. To better compare 
the performance of different ML models, the Receiver Operating Char
acteristics (ROC) curve has been widely used in previous studies [10,20] 
since it describes the relationship between the FP rate and TP rate under 
different thresholds. However, the ROC curve could be misleading when 
it is applied in extremely imbalanced classification scenarios. The 
precision-recall curve (PRC) is suggested as the reliable alternative [50]. 
The PRC represents the relationship between recall and precision with 
different thresholds. To illustrate the different performance of ROC and 
PRC indexes with a highly imbalanced dataset, the Area Under Curve 
(AUC) values of ROC and PRC are calculated and compared in this study. 
The AUC value of each curve varies from 0.0 to 1.0, where 1.0 represents 
a perfect prediction, 0.5 indicates random guessing, and a value below 
0.5 means worse than the random guessing. 

3. Multi-Source data-aggregation framework for a large water 
supply network 

Data preparation is an important step in data-driven ML approaches. 
The pipe information dataset and historical repairing records used in 
this study are collected by the Cleveland Water Department, which 
manages one of the largest WSNs in the United States. The collected 
dataset covers WSN that is used in Cuyahoga County which is the 
second-most populous county in the State of Ohio, US. The Cleveland 
Water Department is responsible for the water supply to 440,000 active 
user accounts with 5300 miles of water main pipelines. The studied area 
is also one of the largest cities in the Great Lakes area of North America. 
Due to the unique geology location, the soil of this area experiences 
frequent frozen and thawing processes during the winter days. 

Fig. 2 shows the overview of the water supply system by the Cleve
land Water Department. Fig. 2(a) shows the distribution of the pipe 
network, which includes a total number of 51,832 pipes. The physical 
attributes of each pipe, including the age, material, diameter, and length 
are included in the data record. Fig. 2(b) shows an example of pipe 
maintenance record in one of the areas in the WSN. The points are the 
locations where maintenance has been conducted. The maintenance 
date is also recorded by the Cleveland Water Department (CWD). Fig. 2 
(c) shows the distribution of the pipe ages in the WSN. As can be seen, a 
large number of pipes have been used for over 100 years. Fig. 2(d) shows 
the estimated annual cost if all the damaged pipes were completed 
replaced. The estimation is based on the experience of the Cleveland 
Water Department, where the cost of renewing a pipe is estimated at 
around $483.74/feet. However, the real total cost may be lower than the 
estimated value as 1) multiple damages may be repaired at once, and 2) 
the maintenance might only fix the leak without completely replace the 
entire pipe. A method to provide reliable prediction of water pipe break 
will be very valuable for maintenance budget preparation. 

To provide a comprehensive understanding of potential factors for 
WSN failures and associated maintenance, data from various sources are 
firstly aggregated. Although more and more data are becoming acces
sible in the public space nowadays, they are commonly hosted by 
different agents and stored in different formats, which makes it difficult 
to combine data from multiple sources. A noted gap in current imple
mentation of data-driven approaches is the lack of guidelines on how to 
effectively assemble datasets from various sources. In this regard, this 
section is aimed at proposing a multi-source data-aggregation frame
work, as a supplement to the development of such guidelines. More 
specifically, Six datasets are considered in this study, i.e. (1) the WSN 

Fig. 2. Overview of the Cleveland WSN network (a: the pipes managed by Cleveland Water Department; b: example of maintenance records; c: distribution of pipes’ 
service years; d: estimated annual maintenance cost ($)). 
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pipe-information dataset, (2) historical pipe break-records dataset, both 
(1) and (2) are from the Cleveland Water Department (CWD), (3) the 
SSURGO soil type dataset from National Cooperative Soil Survey [51], 
(4) the topographical dataset from Digital Elevation Model (DEM) by 
United State Department of Agriculture (USDA) [52], (5) American 
Community Survey (ACS) 5-Year Data obtained from United States 
Census Bureau (USCB) [53], and (6) the climate dataset obtained from 
National Oceanic and Atmospheric Administration (NOAA) [54]. The 
latter four datasets are publicly accessible and are aggregated with the 
two datasets provided by the CWD to create the overall training and 

testing datasets. The data aggregation framework is outlined in Fig. 3. 
The criteria and assumptions for data aggregation are elaborated on 
below. 

3.1. Pipe information and break records aggregation 

Pipe information and break records are provided by CWD in the 
formats of two different layers in the Geographic Information Systems 
(GIS). As shown in Fig. 2(b), the pipe-information dataset is represented 
by ‘lines’ and the break-records dataset is represented by ‘points’. Close 

Fig. 3. Schema of aggregation of multiple sources of datasets.  

Fig. 4. Illustration of assumptions used for data aggregation process of different datasets: (a) pipe break dataset aggregated based on nearest distance of break point 
to a pipe, (b) soil type dataset aggregated based on geological information, (c) topographical dataset aggregation based on coordinate in the digital elevation model, 
and (d) census dataset aggregation based on physical coordinate of pipe or break point to the Census block. 
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examination indicated that these two types of data are not strictly 
overlapped. It is because the pipelines are based on actual laydown, 
while break locations (maintenance locations) are recorded manually or 
by GPS devices which do not align with the water pipes. For data ag
gregation, the break records are assumed to occur at its nearest pipe as 
long as the nearest distance is shorter than 1 m, which is the common 
resolution for GPS devices, as illustrated in Fig. 4(a). This allows the 
break records to be associated with the corresponding water pipes. After 
assigning the break records to the corresponding pipe, the physical 
factors about the pipe can be obtained for each pipe (i.e., Table 1). These 
include the pipe nominal size, pipe material, and pipe length that can be 
directly obtained from the original pipe information dataset. The pipe 
nominal size is a unitless designation standard size used in North 
America [55]. Pipes with any missing data of these three factors are 
removed. Another three factors including the pipe age, pipe previous 
break times, and interval time to last break are determined/processed 
based on the break records. 

3.2. Soil type aggregation 

As water pipes are commonly buried underground, previous studies 
have identified the important role of soil-pipe interaction on pipe fail
ures [56–58]. In particular, the pipes may suffer failures resulting from 
the differential ground settlement [59]. The pipe deterioration process 
due to different soil corrosivity can also affect the pipe failure proba
bility. Previous studies indicated the pipe corrosion occurs in a certain 
range of pondus hydrogen (pH) values [58]. As it is almost impossible to 
consider all the soil-related factors that may influence the pipe break, a 
practical way instead is to consider soil types that can be extracted from 
the public SSURGO dataset [51]. In this study, a total of 72 different soil 
types are considered. These soil types are classified based on several soil 
parameters including the slope, main components, surface texture, etc. 
[60]. The soil type data for individual pipes are assigned according to 
the major location of break records, together with the majority of the 
soil type where the pipe is embedded. For instance, in Fig. 4(b), the 
assigned soil type to Pipe 1 is Soil I since it is where the break point 
locates. For Pipe 2 that has no break records, the assigned soil type is Soil 
II since the majority part of Pipe 2 locates at Soil II. 

3.3. Topographical data aggregation 

As some of the pipe information data lack the operational water 
pressure, which may be an important factor for failure assessment of 
WSN, topographical data that describe the elevation of pipes can be 
considered to compensate for this lack because pipes located in higher 
elevations generally undergo lower water pressures. The area of the 
studied WSN pipes, Cuyahoga County, Cleveland, OH, experiences a 
diverse elevation range from 238 m to 401 m. The topographical dataset 
is obtained from Geospatial Data Gateway (GDG) of the USDA elevation 
dataset with a resolution of 30 m. The digital elevation model (DEM) 
provides the elevation of any single point in the Cuyahoga area. Similar 

to the soil type aggregation, pipe segments may experience different 
elevations, especially for the long-length pipes. Therefore, as illustrated 
in Fig. 4(c), the elevation of the breakpoint is used as the elevation of the 
pipe with break records (e.g., Pipe I). Otherwise, the elevation of the 
pipe geometry center is used. 

3.4. Census data aggregation 

As WSN is operated almost all the time for communities, it is 
reasonable to infer that community factors (such as user behaviors, 
population, etc.) may affect failure probabilities of pipes. To demon
strate this inference, public census data that contain community factors 
are adopted in this study. The census dataset obtained from the US 
census bureau contains enormous variables that describe every com
munity block. The whole of Cuyahoga County is divided into 2952 
community blocks in the census dataset. To consider the community 
factors from different perspectives, the population, poverty percentage, 
and non-medical insurance percentage, as listed in Table 2, are selected 
based on the availability of the dataset. Since a single pipe may cross 
multiple census blocks, a representative point defined in this study is 
used to assign the census data for each pipe. As illustrated in Fig. 4(d), 
for the pipe without break records, the representative point is chosen as 
the pipe geometry center (e.g., Census block I for Pipe 2), while for the 
pipe with break records, its breakpoint is used as the representative 
point (e.g., Census block for Pipe 1). 

3.5. Climate data aggregation 

Significant seasonal influence on the pipe’s break has been observed 
in previous studies (e.g. air temperature, precipitation, etc.) [61, 62]. 
These studies indicate that the pipes suffered more breaks during 
extremely cold or hot days, possibly due to the soil-pipe interaction. 
However, previous studies did not account for the temperature data [20] 
for annual pipe break prediction. To overcome this limitation in 
considering the climate effects, the accumulated cold and hot days are 
used in this study to describe the climate experienced by each pipe 
during its service life. The hot days denote the days that have the highest 
temperature above 90 F while the cold days stand for those with the 
lowest temperature below 32 F (or the freezing index concept commonly 
used in cold region ground engineering). The number of these days are 
extracted from dataset provided by the climate service organizations 
such as NOAA. The cold and hot days experienced by each pipe used in 
this study are the accumulated days of each year from its installation 
date to the selected year of study (Eq. (13)). 

Hot

/

Cold Days =
∑t+pipe age

T=t
DT (13)  

where DT is the total hot/cold days at year T, t is the pipe installation 
year. 

The developed data aggregation framework assembles a compre
hensive dataset that allows to integrate the physical properties of water 
pipes, the operational conditions, geology conditions, community so
cioeconomic characteristics, and climate conditions, which will be used 

Table 1 
Pipe physical factors.  

Factor name Description Source 

Pipe nominal 
size 

North American set of standard 
sizes for pipes that consists of many 
varieties. 

Pipe-information dataset 

Pipe material The materials of the pipe dataset.  
Pipe length The length of the recorded pipes.  
Pipe age The age of the pipe at the selected 

observation year. 
Pipe-information dataset, 
and break-records dataset. 

Previous break 
times 

The break numbers before the 
selected observation year.  

Interval time 
to last break 

Years between the observation year 
and the year of last break.   

Table 2 
Considered census factors.  

Factor name Description Source 

Population Estimated total population of the year 
2019 

ACS 5-year 
dataset (2019) 

Poverty percentage Percent of households whose income 
below the poverty line in the past 12 
months  

Non health- 
insurance 
percentage 

Percent of the population without any 
health insurance.   
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by the ML models to predict the pipe break behaviors. 

4. Case study 

4.1. Machine learning based pipe failure prediction workflow of machine 
learning modeling 

Fig. 5 shows the overview of the developed workflow of the ML based 
water pipe break prediction. The aggregated dataset based on criteria 
discussed in Section 3 is selected and cleaned by removing the samples 
with any missing factors and outliers. To improve the performance of ML 
approaches, data normalization is applied to the numeric factors, which 
are standardized by removing the mean values and scaling to unit 
variance. The categorical factors will be encoded with one-hot encoding 
(a coding method to represent categorical factors by zeros and ones) if 
the ML algorithm cannot handle the categorical variables directly [63]. 

The prepared dataset was randomly split into training set and test set 
by the ratio of 8:2, which is a common approach to identifying the 
model’s prediction ability. As the break records only account for around 
10% of the total dataset, the issue of the imbalanced dataset for ML 
model training is an important issue to be taken care of. As shown in 
Fig. 5, both balanced and imbalanced training datasets are used for the 
model training. To balance the dataset, the oversampling method [64] is 
used in this study, which randomly replicates the minor class of pipe 
break dataset until the number of break samples equals the intact sam
ples. The testing dataset is unchanged. Therefore, the models trained 
with both balanced and imbalanced datasets were evaluated with the 
same testing dataset. Once the ML model with the highest performance 
is identified, the whole dataset is used again for ML explanation by the 
use of an interpretation method named SHAP [65] to understand the 
influence of contributing factors on the pipe break. It should be noted 
the model interpretation results are independent of the train-test split
ting method because the selected model is fitted again with the whole 
dataset. Details of data preparation and ML model performance evalu
ation are provided below. 

4.2. Data preparation and assessment of data characteristics 

4.2.1. Label assignment and dataset preparing 
As the objective of this study is to predict the pipe status at a certain 

year, the pipe’s status is defined either as break or intact, and therefore 
the ML model is defined as a classification problem. Preparing a dataset 
that covers each year of each pipe is unpractical and could lead to an 
extremely imbalanced dataset. To mitigate the level of imbalance as well 
as fully utilize the break records, the following procedures were applied 
to create the final dataset for ML training and testing.  

1) For each pipe, a random year between its installation year and the 
latest update before this study (Oct 2020) is selected. Time- 

dependent factors during this period (i.e., previous failure times, 
pipe age, cumulative frozen and hot days experienced) are 
determined.  

2) The pipe status recorded at the selected year is labeled as 0 for intact 
status or 1 for break status.  

3) To fully utilize the pipe break records, for any pipe with break record 
(s), the data of its last break year is added to the dataset created in the 
previous steps.  

4) In the final prepared dataset, the prepared dataset is split into 
training and test dataset with a ratio of 8:2. 

The selected data are subjected to the data aggregation process 
described in the earlier part of this paper. Data cleaning is then con
ducted, where data points with missing information are removed. After 
data cleaning, 39,491 pipe data samples are obtained including 31,078 
non-break samples and 8413 break samples. 

In light that the random selection of a year in Step 1) may influence 
the model prediction results. Therefore, ten random selections are 
conducted, and the average values of evaluation matrices are used for 
model performance assessment. 

4.2.2. Characteristics of factors in aggregated dataset 
To present an overview of the behaviors of aggregated data, Table 3 

summarizes an example of their categories and statistical properties 
including mean, standard deviation (std.), minimum, and maximum 

Fig. 5. Workflow for ML training and interpretation.  

Table 3 
Categories and statistical properties of factors considered for pipe break 
prediction.  

Factor Type of factors Units Mean Std. Min Max 

Nominal size Physical – 8.3 2.1 2 12 
Material – Ductile Iron, Cast Iron, and Unknown 
Length feet 326.9 322.3 0.5 1332.5 
Age years 44 29.77 1 127 

Previous 
break times 

Operational – 0.4 1.6 0 37 

Years to last 
break time 

years 1.2 3.9 0 34 

Soil type Environmental – UmB, MmB, UeA, Ub, EsC, …, etc. 72 
different soil types 

Elevation m 259.3 46.4 174.8 382.9 
Cold days days 1861.6 1236.7 33 5378 
Hot days days 462.2 318.8 0 1219 

Population Societal – 3432.5 1294.0 703 7953 
Poverty 

percentage 
% 12.6 13.3 0.4 91.1 

Percent 
without 
health 
insurance 

% 5.0 3.4 0.2 18  
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from one dataset. A total of 13 factors are aggregated including 11 
continuous variables and two categorical variables. These factors are 
grouped into four main types, i.e., physical, operational, environmental, 
and societal. 

Fig. 6 shows histograms of the considered factors in both training and 
testing datasets. In general, features of the testing dataset are well 
covered by the training dataset. More specifically, distributions of the 
physical variables are shown in Fig. 6(a) to (d). Note that Ductile Iron 
and Cast Iron are the most widely used materials in WSN systems, while 
there are also a large number of pipes whose materials are unknown 
(Fig. 6(c)). Fig. 6(e) and (f) illustrate the characteristics of two opera
tional variables. Fig. 6(g) to (j) show the four environmental variables. 
72 different soil types are assigned to the pipes, but for the convenience 
of visualization, Fig. 6(g) only plots the 10 most popular ones, i.e., UmB 
(Urban land-Mahoning complex), MmB (Mahoning-Urban land com
plex), UeA (Urban land-Elnora complex), Ub (Urban land), EsC (Ells
worth-Urban land complex), MxB (Mitiwange-Urban land complex), 
LuC (Loudonville-Urban land complex), UnB ((Urban land-Mitiwanga 
complex), UoB (Urban land-Oshtemo complex), and MgA (Mahoning 
silt loam). The elevation of the pipes varies from 150 to 382 m (Fig. 6 
(h)). The considered climate factors include the accumulated hot days 
and cold days as shown in Fig. 6(i) and Fig. 6(j). It is interesting to find 
that they share similar trends with the distribution of pipe age, which 

indicates that the climate factors are critical for pipe failures. As shown 
in Fig. 6(k) to (m), the population, percentage of households below 
poverty lines, and percentage of households without health insurance 
are chosen to represent socio-economical features of each pipe for the 
served community. It is worth noting that the population within each 
Census community block range from 700 to around 8000, since Cuya
hoga County includes some densely populated area such as Cleveland 
City. For most community blocks, the poverty percentage is below 40%. 
However, the most poverty block has more than 90% households whose 
annual incomes are below the poverty line. Similar to observed poverty 
condition, the percent of people in community blocks who do not have 
any medical insurance ranges from 0.2% to 18%. 

Based on whether this pipe is broken in the selected observation 
year, the group of pipes has been divided into two classes, the class code 
is 1 if the pipe breaks in the observation year and the code is 0 if it is 
intact. The results are shown in Fig. 6. (n). 

4.2.3. Relationship between internal factors and break status 
The correlation matrix can be used to show the internal relationship 

among the factors considered to contribute to pipe failures as well as the 
external relationship between each factor and the target. Since the 
datasets contain both numerical and categorical variables, different 
correlation indicators are used to quantify their correlation. Methods to 

Fig. 6. Histograms of considered factors in terms of training and test sets.  
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determine the correlations between different types of variables are 
shown in Fig. 7. Specifically, the correlation between two numerical 
variables is represented by Pearson correlation [66], while that between 
two categorical variables is quantified by the Cramér’s V coefficient 
[67]. Besides, the Correlation ratio is used between the categorical and 
numerical variables [68]. These indicators fall between −1 to 1 for 
numerical factors and 0 to 1 when one or more factors are categorical (1 
or −1 denotes complete positive or negative association while 0 denotes 
no association). Detailed discussion about the correlation computations 
is not shown here due to the paper length limitation. Interested readers 
could refer to the Supplementary file (Algorithm I). 

Fig. 8 shows the final correlation matrix among the 13 factors 
considered as well as their correlation with the pipe break status (indi
cated as ‘target’ in the figure). Factors with the highest correlation 
values to the target (pipe break status) are the hot days, cold days, and 
pipe ages. These imply that the weather and pipe service age are among 
the most important factors determining pipe conditions. The other fac
tors that follow include the previous break number, interval year, and 
pipe length, etc. The present study considers all of them to observe their 
behaviors in the ML model and model interpretation. The correlation 

map in Fig. 8 also indicates that some of the considered societal vari
ables (population, percentage of poverty, percentage without health 
insurance) are correlated but not strongly, which is good for them to be 
treated as independent variables in the ML model. Besides, there is no 
correlation between any single input variable and the output variable 
that is dominant, which indicates that the pipe failure is a complex 
problem that does not depend on any single factor. 

4.3. L-based pipe failure prediction 

4.3.1. Prediction results 
The five types of supervised ML algorithms for classification prob

lems as introduced in the Background section are developed for the pipe 
break classification problem. The hyperparameters of each ML algo
rithm are optimized by grid-search optimization [69]. For the ANN 
model, one input layer, a dropout layer, two hidden neural network 
layers, and an output layer are used. The neuron numbers of the hidden 
layers are 64 and 128 respectively. Fig. 9a) shows the prediction results 
when the model is trained with an imbalanced dataset and Fig. 9b) 
shows the results when the model is trained with balanced dataset. The 
recall and precision matrices for each class are denoted at the right and 
bottom sides, respectively. The overall model accuracy is denoted at the 
right-bottom cell. Regardless of balanced or imbalanced dataset, the 
LightGBM and ANN models achieve the best prediction in terms of the 
accuracy, recall, and precision metrics. On the contrary, the KNN and 
SVC models tend to miss many break samples when trained with the 
imbalanced dataset and miss many intact samples when trained with the 
balanced dataset. Oversampling method helps the model identified more 
break samples. 

To illustrate the overall performance of different models, the average 
Receiver Operating Characteristics (ROC) and precision-recall curve 
(PRC) metrics and the corresponding area under curve (AUC), and 
average training time of ten sampled datasets are calculated and pre
sented in Fig. 10. Among all the considered models, the LightGBM model 
achieved the highest ROC and PRC values and a short training time 
regardless of imbalanced or balanced training sets. A potential reason is 
the LightGBM can deal with categorical variables without one-hot- 

Fig. 6. (continued). 

Fig. 7. The correlation indicators used for numerical variables and categori
cal variables. 
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encoding so the input dataset is much less sparse than that of other 
models. When comparing the ROC matrix and PRC matrix, it can be 
observed that the LightGBM, ANN, LR, and kNN achieved similar ROC 
values, which is controversial to the previously observed results (see 
Fig. 9). The PRC matrix shows more obvious different values for 
different models, which demonstrates a better identification of the 
optimal models. Based on the PRC results, the balanced training 
LightGBM model achieved a higher AUC of PRC value (0.810) than that 
of imbalanced training model (0.793). 

Figs 8, 9, and 10 represent the results when using randomly based 
train-test splitting. However, one critical question in engineering 
application is that whether the machine learning model trained by data 
recorded from previous events could effectively predict the future 
events. To address this concern, a time-line based train-test splitting 
method is used again to compute the above processes. The results are not 
discussed here due to the similar conclusions. Interested readers could 
refer Fig. S1 to Fig. S3 in the supplementary material. 

To better understand the performance of using different ML models 
for pipe break prediction, the performance of these ML models is 
compared under different indicators in Table 4 based on the accuracy, 
training speed, ability to handle the categorical features, and inherent 
model interpretability. Based on the classification results with imbal
anced and balanced training datasets, it can be confirmed that the 
LightGBM achieved the best accuracy on the current dataset. The areas 
under PRC for the test dataset are about 0.82 when trained with the 
balanced dataset. Then followed by the ANN, LR, SVC, and kNN models. 
In terms of the computational efficiency, the LR model finished the 
learning process within a few seconds, then followed by the LightGBM 
model and ANN model. The kNN model and SVC model took the longest 
time among these models. The LightGBM model is the only model that 
could analyze the categorical variables without any encoding due to its 
histogram and leaf-wise tree growth strategy feature. Although the 

inherent explanation ability of different models is not the focus of this 
study, they are discussed here based on the previous studies [20,42] for 
completeness. Generally, the statistical algorithms (e.g., the LR model) 
are considered the most explainable algorithms since the weights of each 
factor are transparent and can be interpreted based on their physical 
meaning. The Logistic-based algorithms such as LightGBM model are 
also quite easy to interpret as the relative importance of factors can be 
quantified based on their roles during the tree splitting. Finally, the 
perceptron-based algorithms (e.g., ANN model), instance-based learning 
algorithms (e.g., kNN), and support vector machines (i.e., SVC) are 
considered as black box model with poor interpretability. 

4.3.2. Interpretation of considered factors with shap method 
Based on the performance comparison of the five major types of ML 

models for classification problems as described in the previous sections, 
the LightGBM model features both the highest prediction accuracy and 
is also computationally efficient. Although the model itself has a mod
erate explanation ability, it is still unable to fully understand the 
contribution of each factor to the output directly. To solve this issue, an 
ML model interpreter, Shapley Additive exPlanations (SHAP) [65] is 
adopted together with the LightGBM model trained with the balanced 
training dataset, to interpret the contribution of each factor. SHAP 
presents a way to calculate the additive feature importance score for 
each factor [70]. The higher the importance score, the more important 
the factor to the final ML model prediction. The SHAP interpretation 
method together with decision-tree based ML algorithms have been 
widely used in the field of civil engineering, including some scenarios 
where highly correlated variables existed, such as the explanation of the 
failure of reinforced concrete [71], the explanation of RC walls shear 
strength [72], and the roadway segment crashes [73]. 

The impacts of each factor on the pipe break can be gathered to 
evaluate their overall influence. Fig. 11 shows the overall importance of 

Fig. 8. Correlation map of considered factors and prediction target.  
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the considered factors. The Pipe age, Cold days, and Hot days are kept in 
the dataset to study the impact of climate factors. The result shows the 
‘Cold days’ has the most impact among them, followed by the ‘Hot days’ 

and ‘Pipe age’. The interval to the last break, Cold days, and pipe length 
turns out to be the most influential factors. The pipe material and the 
nominal size of the pipe have a relatively lower influence on the pipe 

Fig. 9. Prediction results with imbalanced and balanced training dataset (‘I’ shorts for intact and ‘B’ shorts for break).  

Fig. 10. Comparison of applied ML models using different evaluation metrics.  
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break probability. 
The following figures show the detailed effects of each factor on the 

pipe break probability. The SHAP method computes an impact value for 
each variable at each sample. To represent the overall impact of 
considered factors on the pipe break probability, each factor’s impact 
values are extracted from all pipe samples. The impact of continuous 
variables is colorized for their magnitudes. The impact variables are 
represented by their mean values. The following conclusions can be 
inferred based on the observations. Many of these conclusions are 
consistent with previous studies, which demonstrate the soundness of 
the model interpretation results.  

1) Fig. 12 shows the impact of physical factors considered. All these 
factors have a positive influence on the pipe failure probability, i.e., 
the larger the value of the factor, the larger the SHAP value. The 
distribution of pipe length values indicates the longer pipes have a 

higher failure probability than shorter ones. Similar observation can 
be found on pipe age. Older pipes correspond to larger SHAP value, 
indicating they are more prone to failure than the younger ones. The 
nominal size also shows a positive correlation to the SHAP value, 
which means that pipes with larger nominal sizes have higher failure 
probabilities. The impact of pipe material is shown separately on the 
right side of Fig. 12 since it is a categorical variable. Although both 
with small SHAP values, the Cast Iron corresponds to positive SHAP 
impact value while Ductile Iron corresponds to negative SHAP 
impact value. This indicates that pipes made with Cast Iron corre
spond to higher break probability compared with those made of 
Ductile Iron. This is partially attributed to the fact that Ductile Iron is 
less brittle than Cast Iron. 

Table 4 
Model summarization for pipe break prediction.   

LightGBM ANN LR kNN SVC 

Accuracy in general *** ** * * * 
Speed of learning process ** ** *** * * 
Handle categorical variables *** * * * * 
Inherent model interpretability ** * *** * * 

***denote the best performance. 
*denote the worst performance. 

Fig. 11. The overall rank of considered factors on pipe failure probability.  

Fig. 12. The impacts of physical factors.  

Fig. 13. Plot of SHAP values showing the impacts of operational factors.  

X. Fan et al.                                                                                                                                                                                                                                      



Reliability Engineering and System Safety 219 (2022) 108185

13

2) Fig. 13 shows the effects of service operational factors. Compared 
with the times of previous breaks, the time interval since the last 
break shows higher impact on the pipe failure probability. While a 
larger time interval since the last break on the pipe is found to cor
responded to increased failure probability, a smaller time interval 
shows both negative and positive influences (rather than only 
negative influence as intuitively) on the failure probability. This 
implies that there are quite a few pipes broken soon after the 
installation or repair. This observation fits previous studies that 
indicated the failure rate of a pipe is a bathtub curve, i.e., high failure 
probabilities occur either at the early life or at wear-out life of pipes 
[74]. Besides, the results of SHAP values in Fig. 13 show that a larger 
number of previous breaks at the pipe corresponds to a higher failure 
probability at the pipe. This is consistent with empirical observations 
by interviewing with practitioners, i.e., pipe failures tend to occur 
more frequently at similar locations. 

3) For the environmental factors shown in Fig. 14, the results demon
strate that the larger the number of cold days a pipe experienced, the 
higher the probability it broke. It may be induced by the influence of 
soil settlement due to the soil freezing and thawing process. The 
impact of soil types is shown on the right side of Fig. 14. Among the 
top 10 soil types that most pipes are buried, the LuC (Loudonville- 
Urban land complex) soil triggers the highest pipe failure probability 
while the UoB (Urban land-Oshtemo complex) shows the lowest 
failure probability. Finally, the result indicates that the pipes in 
higher elevations are less likely to break, which is reasonable 
because pipes located at higher elevations experience lower service 
water pressure. This leads to less internal stress on the pipe by the 
service water pressure.  

4) Regarding the societal factors as shown in Fig. 15, it is surprising to 
find that communities that are poorer or with less health insurance 
coverage have a smaller probability of water pipe break. It may be 
because the poverty areas are less inspected, or they generally use 
less frequency/amount of water that helped to extend the service life 
of the pipe. In-depth reasons require more studies based on more 
data. Moreover, the density of a community block does not have a 
consistent trend of effects on the pipe failure probability, although 

the densely populated area corresponds to a relatively higher water 
pipe break probability in most pipe samples. 

5. Conclusions 

This study aims to explore the ML techniques to predict water pipe 
breaks based on data from a large WSN and to understand the effects of 
contributing factors. A framework that integrates WSN maintenance 
datasets and multiple public datasets is proposed, which is a critical step 
that allows considering contributing factors for pipe failures, including 
the geology, climate, and socioeconomic factors. With the aggregated 
data, five different ML models, each from one of the five major types of 
ML classification models, are developed for pipe break prediction. The 
models are trained with an imbalanced dataset where the majority are 
from intact pipes, as well as a balanced training dataset, where the 
oversampling method is used to balance the training dataset. The results 
of different training datasets are compared. Finally, the trained ML 
model is interpreted by an interpolation method, SHAP. Major contri
butions of this study include: 

1) It provides a state-of-the-art data aggregation framework that in
tegrates multi-source public datasets, leading to the largest real-field 
dataset (both in size and timeline) and associated largest number of 
input parameters for machine learning modeling for WSN. Hence, 
this study significantly expands and deepens the communities’ un
derstanding on the effects of engineering, geology, climate and so
cioeconomic factors. To our best knowledge, this is the first paper to 
assess the influence of socioeconomic factors on the failure of water 
supply networks. 

2) For the sake of implementation, five popular machine learning al
gorithms are examined and comprehensively compared by five 
metrics (i.e., the accuracy, computation time, influence of categori
cal variables, and interpretation ability). The LightGBM model ach
ieved the highest performance with the second shortest training 
time. Meanwhile, the Receiver operating characteristics (ROC) is 
demonstrated to be too optimistic about the results than the 

Fig. 14. Environmental factors impact.  

Fig. 15. Community factors impact.  
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precision-recall curve (PRC) metric when the dataset is highly 
imbalanced.  

3) The SHAP interpretation results fit with previous studies, which 
demonstrated its ability to interpret the influence of the contributing 
factors. The results indicate the significant influence of pipe buried 
time, especially the interval time to the last break, the experienced 
cold days, hot days, and pipe age. The contribution of pipe physical 
factors and climate factors are in accordance with results reported in 
previous studies. The contribution of community characteristics in
dicates that areas with high poverty are associated with a lower pipe 
break probability (or less frequently maintained), while areas with 
high population density correspond to a higher probability of water 
pipe break. These indicate that socioeconomic factors have an 
important influence on the pipe service conditions. 

Finally, water pipe failure is a result of the complex nonlinear in
teractions among various factors. Previous studies often simplified the 
analysis process by considering a small number of factors due to the 
model capability and data availability. Future studies should consider to 
include more advanced ML techniques and more extensive dataset to 
further improve the reliability of pipe failure prediction. Progresses in 
these areas will potentially catalyze the transformation of decision- 
making support for proactive management of WSN to achieve sustain
ability goal. 
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