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Keywords:

Multi-source data aggregation
Machine learning

Water supply network

Pipe failure prediction

Underground water pipes deteriorate under the influence of various physical, mechanical, environmental, and
social factors. Reliable pipe failure prediction is essential for a proactive management strategy of the water
supply network (WSN), which is challenging for the conventional physics-based model. This study applied data-
driven machine learning (ML) models to predict water pipe failures by leveraging the historical maintenance data
heritage of a large water supply network. A multi-source data-aggregation framework was firstly established to
integrate various contributing factors to underground pipe deterioration. The framework defined criteria for the
integration of various data sources including the historical pipe break dataset, soil type dataset, topographical
dataset, census dataset, and climate dataset. Based on the data, five ML algorithms, including LightGBM, Arti-
ficial Neural Network, Logistic Regression, K-Nearest Neighbors, and Support Vector Classification are developed
for pipe failure prediction. LightGBM was found to achieve the best performance. The relative importance of
major contributing factors on the water pipe failures was analyzed. Interestingly, the socioeconomic factors of a
community are found to affect the probability of pipe failures. This study indicates that data-driven analysis that
integrates the Machine Learning (ML) techniques and the proposed data integration framework has the potential
to support reliable decision-making in WSN management.

1. Introduction next couple of decades [3]. These devastating issues press for reliable

pipe failure prediction models to institute preventative maintenance for

Providing a reliable and safe water supply is crucial for water supply
network (WSN) management. Water distribution pipes are the key
components of a WSN for delivering water from water treatment plants
to customers. The buried water pipes are subjected to deterioration, this
is especially severe for US urban municipalities where some of the pipes
were laid down in the 19th century [1]. More than 700 water mains
break every day in Canada and the USA, wasting approximately 2 tril-
lion gallons of drinking water annually [2]. The failure of water pipes
can cause significant financial losses with associated societal or envi-
ronmental impacts. According to the American Water Work Association,
the replacement costs of the existing WSNs in the US, combined with
their projected expansions, would cost more than $1 trillion over the
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loss reduction as well as a management practice for sustainable
improvement.

Identifying the key factors (i.e., input variables) that influence the
pipe failure is a key task in developing reliable prediction models. Over
the past decades, various factors that could lead to pipe breaks have
been assessed by experimental tests, finite element simulations, and
historical data analysis [4,5]. According to a recent review, these factors
can be generally grouped into three types according to their attributes in
WSN, i.e. physical, operational, and environmental [6]. The most widely
considered physical factors include the pipe age, length, material, and
diameter. For example, Kettle and Goulter identified the relationship
between the pipe diameter and the break probability using statistical
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analysis [7]. Yamijala et al. demonstrated that pipes with longer lengths
will suffer more failures [8]. The most widely examined operational
factor is the number of times that previous failures occurred [9-11].
These studies indicate that a larger number of previous failures along a
pipe is often associated with a higher probability of failure. In addition,
water pressure is another common operational factor for pipes in the
WSNs [12,13]. A positive correlation between internal water pressure
and the probability of breaks in concrete and metallic pipes has been
observed [13]. Environmental factors could also contribute to pipe fail-
ures. These factors include traffic loads, soil types, and climate [6]. Also,
most of these factors often have high levels of uncertainty [14,15].
Previous studies identified the influence of different climate factors such
as temperature and precipitation on pipe failures [9,16,17]. The results
indicated that larger temperature fluctuations could increase pipe fail-
ure probability. These three types of factors interplay and there is a need
to better understand the interplay between these contributing factors
and pipe failure probabilities. Besides the above-mentioned factors, it
has been increasingly realized that the interactions with other types of
factors such as socioeconomic factors should be also considered in
WSNs’ performance prediction. For example, recent studies on com-
munity reliability and resilience considered the influence of infrastruc-
ture failure and census data [18]. However, such factors have rarely
been considered in the existing pipe failure prediction model. Mean-
while, besides developing reliable and efficient tools for pipe failure
evaluation, stakeholders are highly interested in understanding the
mechanisms of the most important factors in pipe failures, which allows
instituting informed decisions for resource allocation. Although previ-
ous studies have examined the impacts of different factors on pipe
failure probabilities [19], the relative importance (i.e., degree of the
impacts) is yet to be well understood. Therefore, the interpretability
consideration is also very important in developing a pipe failure pre-
diction model.

The existing methods for pipe failure prediction generally fall into
three categories, i.e., physics-based models, statistical models, and machine
learning models [20]. The advantages and limitations of each method are
briefly reviewed here. Physical-based models consider physical factors
with empirical or semi-empirical feature equations that compare the
allowable strength of a pipe to the real-world loading [21-23]. Then, the
failure probability of a pipe can be determined by comparing the pipe’s
remaining strength and its loading via a sampling method, such as the
Monte Carlo simulation [24,25]. Although physics-based models could
intuitively indicate the different contributions of the factors considered
[26], this method is usually computationally intensive for the entire
WSN system. It is because hundreds or even thousands of pipes are
contained in a WSN and each requires an enormous number of samplings
for the failure probability estimation [27]. Moreover, some of the pop-
ular physics-based models are too conservative, such as the B31G model
[26]. By contrast, Statistical models are cost-efficient particularly for
specific areas with sufficient historical recording data. Previous studies
have reported the applicability of various statistical models for pipe
failure prediction [28-31]. The statistical models typically used statis-
tical equations (such as the time-exponential model, linear regression
model, and the Poisson-process model) to model time-dependent
breakage prediction models [32,33]. Recent studies also used the
Bayesian networks for the pipe failure inference [34,35]. Under the
assumption that the failure pattern remains consistent in the future,
these models can be further used for failure prediction. However, the
statistical models can only consider limited physical factors without
revealing their physical relationships to pipe failures. Recently,
data-driven machine learning (ML) models have become an emerging
method for the prediction of pipe failures, leveraging the increasing
amount of data available. Artificial neural networks (ANN), neuro-fuzzy
systems, Logistic regression, and genetic algorithms are some of the
most popular approaches to find the complex relationship between pipe
failure and different variables [36-41]. Although these ML-based ap-
proaches can often achieve promising computation efficiency and
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accuracy, they are often criticized as ‘black boxes’ that lack or have
limited interpretability. To overcome this limitation, some studies have
used more explainable ML algorithms such as tree-based algorithms and
Logistic regression algorithm. However, these algorithms may not ach-
ieve satisfactory accuracy for water pipe break prediction, based on the
knowledge and experience of the authors. Moreover, although some of
the ML algorithms have been used for pipe failure prediction, there is
still a lack of systematic comparison among different types of ML algo-
rithms in this application domain. In summary, even with valuable
datasets maintained by water agencies alongside the WSN management,
accurate prediction and reasonable interpretation of pipe failure prob-
ability is still challenging and thereby needs more work.

In light of the abovementioned research gaps, this study aims to
propose a multi-source data-aggregation framework for an interpretable
ML model that facilitates high-fidelity and efficient prediction of pipe
failures in water supply networks. The proposed framework was applied
on a large WSN dataset that contains more than 5300 miles (8529 km) of
water pipe, which represents the largest analyzed dataset so far based on
the authors’ knowledge. Multiple sources including physical, opera-
tional, environmental, topographical, and census data are considered in
the data preparation stage. The interpretation results not only fit pre-
vious studies but also indicate the important impact of socioeconomic
factors. Although the factors’ impact may vary in different WSNs, the
proposed analysis framework can be easily adopted by different WSN
management agencies.

2. Background of machine learning models for pipe failure
prediction

A common approach for pipe failure prediction is treating this
problem as a classification problem, i.e., classify a pipe as either broken
or intact by the given variables. The current supervised ML algorithms
for classification tasks can be generally divided into five main categories
[42], i.e., logic-based algorithms, perceptron-based techniques, statis-
tical learning algorithms, instance-based learning algorithms, and sup-
port vector machines. Although previous studies have used different ML
algorithms to classify if a pipe will break or not based on the array of
input conditions for the pipe, there is a lack of a comprehensive com-
parison between different types of ML models. To efficiently compare
the performance of these ML categories for pipe break predictions, five
popular ML algorithms are selected as the representative of each cate-
gory, i.e., the LightGBM algorithm, the Artificial Neural Network (ANN),
logistic regression, k-nearest neighbors (kNN), and support vector clas-
sification (SVC). The objective of the ML model is to classify each pipe
into either intact or broken categories based on the observed input
factors. A brief description of these ML algorithms is provided below.

2.1. LightGBM

LightGBM is a gradient boosting framework that belongs to logic-
based classification algorithms. The LightGBM involves three features:
Gradient-based One-Side Sampling (GOSS), Exclusive Feature Bundling
(EFB), and histogram and leaf-wise tree growth strategy. More specif-
ically, the GOSS is a sampling method by keeping all instances with large
gradients and perform random sampling on the instances with small
gradient. A constant multiplier for the data instances with small gradi-
ents is used to compensate the data distribution changing during the
sampling process. Hence the final performance is improved by using
these two strategies. The EFB method aims to increase the computa-
tional efficiency by dividing the features into a smaller number of
bundles. LightGBM uses EFB together with histogram algorithms to
efficiently deal with categorical features. Therefore, the categorical
features do not need to be represented with the traditional one-hot
encoding, which is a significant benefit especially when the categori-
cal feature contains lots of unique values. Detailed theories and infor-
mation can be found in [43].
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2.2. Artificial neural network (ANN)

ANN is a widely used perceptron that mimics the working of human
brain in processing a combination of stimuli into an output [44]. The key
components of an ANN architecture are the input layer, hidden layers
and output layer . The weight coefficients for neurons of each layer are
iteratively tuned to mitigate the error between the output and target
values during the training process. For each neuron, it computes a
weighted sum of its inputs and generates an output with an activation
function. Mathematically, for each neuron, its relationship between the
inputs and output can be represented by Eq. (1).

k
9—f<2w,x,.+b> b}
r=1

where @ is the output of each neuron, f(-) is the activation function, w, is
the weight of x; and b is the bias.

2.3. Logistic regression (LR)

LR is one of the statistical learning algorithms by fitting samples into
a logistic function. LR has been widely used in engineering areas because
(1) it is an explainable ML algorithm since the weight for each factor is
available after training, and (2) it assigned a value between 0 and 1 to
each sample for a classification problem, which can be interpreted as the
classification probability. Mathematically, LR is formulated as Eq. (2)
[45].

1

LS e Sy @
where p is the output of each sample; x; is the vector sample with the it"
feature; w; is the weight of the i feature that will be tuned during the
training process; and wy is the constant bias. As can be observed from the
equation LR cannot handle the categorical variables directly. Therefore,
converting methods such as one-hot-encoder is required. Once the
weights are determined, the classification result, y, of each sample can
be achieved by Eq. (3), in which the threshold is usually set as 0.5 for a
binary classification problem.

_ { —1if p < threshold 3)

1 if p > threshold

2.4. k-nearest neighbors (kNN)

kNN is one of the most classical and simplest methods for pattern
classification [46]. It assumes the instances belongs to the same class
exist in close proximity. The performance of kNN heavily depends on the
way that the distances are computed between the instances. Euclidean
distance is the most commonly used distance metric. The Euclidean
distance between samples x; and x; is defined as Eq. (4).

d(xi, x,-) = \/(Xil *le)z + (xiz *ij)2 + e+ (X,'m *X,'m)z C))

where X;,, denotes the m" feature of i sample.

For a sample x; in the test dataset, kNN runs throughout the whole
dataset to compute the distance between x; and each sample in the
training dataset. The top k points that are closest to x; will be recorded
(e.g., named Set A) to classify x;. Hence, the conditional probability of
x; belongs to class j can be estimated by Eq. (5).

Ply=X=x) = 3 1(n=)) ®)

i€A

where the k is the predefined k value; I(y; = j) equals 1 if instance y; is in
class j, otherwise it equals 0.
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Fig. 1. Confusion matrix for pipe status classification.

2.5. Support vector classification (SVC)

SVC s a support vector machine for classification tasks by finding the
optimal vector of hyperplane. The hyperplane is a plane that can divide
the n-dimensional data points into two components. For instance, if the
instances are a two-dimensional (2D) dataset, the hyperplane is a line on
a 2D plane. SVC aims to find the hyperplane which could maximize the
margins (sum of distances) from the hyperplane to the nearest training
samples from each class [47]. Mathematically, SVC solves the following
optimization Eqs. (6) to (8) to find the optimal hyperplane vector.

{(% %WTW +C Z;: ¢; (6)
subject to

(W) +b) = 1-¢ ™
§>0,i=1,-,n (8)

where the objective equation (Eq. (6)) is to maximize the margins (by
minimizing w'w) and minimize the misclassification of the distances (¢;)
with a penalty term C. ¢(x) is the kernel function that maps each sample
into a higher dimensional space. w is the corresponding weight vector
and b is the bias term. x; is the training sample and y; is the corre-
sponding class.

With the trained weight vector (w) and bias term (b), the sample x in
the test dataset can be classified by Eq. (9). SVC cannot output predic-
tion probability directly, but such a probability (y) can be obtained by
using the Platt scaling method [48].

y = sign(w ¢p(x)w+b) ()]

where sign is the signum function.

2.6. Metrics for ML model evaluation

The output of these five ML algorithms is a continuous value between
0 and 1, which denotes the confidence of a pipe being broken. Such
confidence value is often interpreted as the failure probability [19].
Given that the ground truth of the test dataset is a binary class (intact or
broken), a common approach to evaluate the prediction results is to
divide them into each class based on a threshold, i.e., 0.5. In other
words, the sample is predicted as break if the output is larger than 0.5,
otherwise, it is ‘intact’. Based on the predicted results and the ground
truth, a confusion matrix can be obtained as shown in Fig. 1 [49], in
which the terms ‘True Break’ and ‘True Intact’ represent the correctly
classified samples. The ‘False Intact’ denotes the pipes that are predicted
as intact but break. The ‘False break’ denotes the pipes that are predicted
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(a) Cleveland WDN Network
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Fig. 2. Overview of the Cleveland WSN network (a: the pipes managed by Cleveland Water Department; b: example of maintenance records; c: distribution of pipes’

service years; d: estimated annual maintenance cost ($)).

as break but intact.

Based on the categorized prediction results, three metrics are used in
this study to quantitatively evaluate the performance of ML models, i.e.,
the accuracy, recall, and precision, as given in Eqs. (10)-(12).

TB + TI
Accuracy = L L (10)
TB+TI +FB+FI
B
Recall = ——— an
TB + FI
B
Precision = ——— 12
recision = - 7B 12)

here TB refers to True Break, TI refers to True Intact, FB refers to False
Break, FI refers to False Intact.

The accuracy index measures the overall prediction accuracy by
considering all the prediction results. The precision is the ratio between
the True breaks and all the predicted breaks. The recall is the ratio be-
tween the True breaks and all real breaks. Specifically, a larger recall
value means more break samples in the test dataset are successfully
identified by the model. A larger precision value means more predicted
break samples are true break samples. In reality, a low recall value may
lead to the missing of the failure pipes and a low precision value may
lead to mistakenly replacing intact pipes, thereby increasing unnec-
essary maintenance costs.

Previous studies indicated only using the Accuracy, Recall, and
Precision is not enough for model evaluation [10]. To better compare
the performance of different ML models, the Receiver Operating Char-
acteristics (ROC) curve has been widely used in previous studies [10,20]
since it describes the relationship between the FP rate and TP rate under
different thresholds. However, the ROC curve could be misleading when
it is applied in extremely imbalanced classification scenarios. The
precision-recall curve (PRC) is suggested as the reliable alternative [50].
The PRC represents the relationship between recall and precision with
different thresholds. To illustrate the different performance of ROC and
PRC indexes with a highly imbalanced dataset, the Area Under Curve
(AUCQ) values of ROC and PRC are calculated and compared in this study.
The AUC value of each curve varies from 0.0 to 1.0, where 1.0 represents
a perfect prediction, 0.5 indicates random guessing, and a value below
0.5 means worse than the random guessing.

3. Multi-Source data-aggregation framework for a large water
supply network

Data preparation is an important step in data-driven ML approaches.
The pipe information dataset and historical repairing records used in
this study are collected by the Cleveland Water Department, which
manages one of the largest WSNs in the United States. The collected
dataset covers WSN that is used in Cuyahoga County which is the
second-most populous county in the State of Ohio, US. The Cleveland
Water Department is responsible for the water supply to 440,000 active
user accounts with 5300 miles of water main pipelines. The studied area
is also one of the largest cities in the Great Lakes area of North America.
Due to the unique geology location, the soil of this area experiences
frequent frozen and thawing processes during the winter days.

Fig. 2 shows the overview of the water supply system by the Cleve-
land Water Department. Fig. 2(a) shows the distribution of the pipe
network, which includes a total number of 51,832 pipes. The physical
attributes of each pipe, including the age, material, diameter, and length
are included in the data record. Fig. 2(b) shows an example of pipe
maintenance record in one of the areas in the WSN. The points are the
locations where maintenance has been conducted. The maintenance
date is also recorded by the Cleveland Water Department (CWD). Fig. 2
(c) shows the distribution of the pipe ages in the WSN. As can be seen, a
large number of pipes have been used for over 100 years. Fig. 2(d) shows
the estimated annual cost if all the damaged pipes were completed
replaced. The estimation is based on the experience of the Cleveland
Water Department, where the cost of renewing a pipe is estimated at
around $483.74/feet. However, the real total cost may be lower than the
estimated value as 1) multiple damages may be repaired at once, and 2)
the maintenance might only fix the leak without completely replace the
entire pipe. A method to provide reliable prediction of water pipe break
will be very valuable for maintenance budget preparation.

To provide a comprehensive understanding of potential factors for
WSN failures and associated maintenance, data from various sources are
firstly aggregated. Although more and more data are becoming acces-
sible in the public space nowadays, they are commonly hosted by
different agents and stored in different formats, which makes it difficult
to combine data from multiple sources. A noted gap in current imple-
mentation of data-driven approaches is the lack of guidelines on how to
effectively assemble datasets from various sources. In this regard, this
section is aimed at proposing a multi-source data-aggregation frame-
work, as a supplement to the development of such guidelines. More
specifically, Six datasets are considered in this study, i.e. (1) the WSN
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Fig. 3. Schema of aggregation of multiple sources of datasets.

Soil IT
o
S =
® .
=2 ~
- Break point Break point
T.\Teares‘r distance Soil I
Pipe 1. Soil TII Pipe 1
(Nearest pipe)
(a) (b)
Cdnsus block I  Census block IT
~~
< Geometry center (E = h,) N
L! Y 2 2 A Geometry
I . [-o center
(; Break point (E = h;) Break point
o,
£
Pipe 1 (E = hy) Pipe 1

(©)

(d)

Fig. 4. Illustration of assumptions used for data aggregation process of different datasets: (a) pipe break dataset aggregated based on nearest distance of break point
to a pipe, (b) soil type dataset aggregated based on geological information, (c) topographical dataset aggregation based on coordinate in the digital elevation model,
and (d) census dataset aggregation based on physical coordinate of pipe or break point to the Census block.

pipe-information dataset, (2) historical pipe break-records dataset, both
(1) and (2) are from the Cleveland Water Department (CWD), (3) the
SSURGO soil type dataset from National Cooperative Soil Survey [51],
(4) the topographical dataset from Digital Elevation Model (DEM) by
United State Department of Agriculture (USDA) [52], (5) American
Community Survey (ACS) 5-Year Data obtained from United States
Census Bureau (USCB) [53], and (6) the climate dataset obtained from
National Oceanic and Atmospheric Administration (NOAA) [54]. The
latter four datasets are publicly accessible and are aggregated with the
two datasets provided by the CWD to create the overall training and

testing datasets. The data aggregation framework is outlined in Fig. 3.

The criteria and assumptions for data aggregation are elaborated on
below.

3.1. Pipe information and break records aggregation

Pipe information and break records are provided by CWD in the
formats of two different layers in the Geographic Information Systems
(GIS). As shown in Fig. 2(b), the pipe-information dataset is represented
by ‘lines’ and the break-records dataset is represented by ‘points’. Close
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Table 1 Table 2
Pipe physical factors. Considered census factors.

Factor name Description Source Factor name Description Source

Pipe nominal North American set of standard Pipe-information dataset Population Estimated total population of the year ACS 5-year

size sizes for pipes that consists of many

varieties.

The materials of the pipe dataset.

The length of the recorded pipes.

The age of the pipe at the selected

observation year.

Previous break The break numbers before the
times selected observation year.

Interval time Years between the observation year
to last break and the year of last break.

Pipe material
Pipe length
Pipe age Pipe-information dataset,

and break-records dataset.

examination indicated that these two types of data are not strictly
overlapped. It is because the pipelines are based on actual laydown,
while break locations (maintenance locations) are recorded manually or
by GPS devices which do not align with the water pipes. For data ag-
gregation, the break records are assumed to occur at its nearest pipe as
long as the nearest distance is shorter than 1 m, which is the common
resolution for GPS devices, as illustrated in Fig. 4(a). This allows the
break records to be associated with the corresponding water pipes. After
assigning the break records to the corresponding pipe, the physical
factors about the pipe can be obtained for each pipe (i.e., Table 1). These
include the pipe nominal size, pipe material, and pipe length that can be
directly obtained from the original pipe information dataset. The pipe
nominal size is a unitless designation standard size used in North
America [55]. Pipes with any missing data of these three factors are
removed. Another three factors including the pipe age, pipe previous
break times, and interval time to last break are determined/processed
based on the break records.

3.2. Soil type aggregation

As water pipes are commonly buried underground, previous studies
have identified the important role of soil-pipe interaction on pipe fail-
ures [56-58]. In particular, the pipes may suffer failures resulting from
the differential ground settlement [59]. The pipe deterioration process
due to different soil corrosivity can also affect the pipe failure proba-
bility. Previous studies indicated the pipe corrosion occurs in a certain
range of pondus hydrogen (pH) values [58]. As it is almost impossible to
consider all the soil-related factors that may influence the pipe break, a
practical way instead is to consider soil types that can be extracted from
the public SSURGO dataset [51]. In this study, a total of 72 different soil
types are considered. These soil types are classified based on several soil
parameters including the slope, main components, surface texture, etc.
[60]. The soil type data for individual pipes are assigned according to
the major location of break records, together with the majority of the
soil type where the pipe is embedded. For instance, in Fig. 4(b), the
assigned soil type to Pipe 1 is Soil I since it is where the break point
locates. For Pipe 2 that has no break records, the assigned soil type is Soil
II since the majority part of Pipe 2 locates at Soil II.

3.3. Topographical data aggregation

As some of the pipe information data lack the operational water
pressure, which may be an important factor for failure assessment of
WSN, topographical data that describe the elevation of pipes can be
considered to compensate for this lack because pipes located in higher
elevations generally undergo lower water pressures. The area of the
studied WSN pipes, Cuyahoga County, Cleveland, OH, experiences a
diverse elevation range from 238 m to 401 m. The topographical dataset
is obtained from Geospatial Data Gateway (GDG) of the USDA elevation
dataset with a resolution of 30 m. The digital elevation model (DEM)
provides the elevation of any single point in the Cuyahoga area. Similar

2019 dataset (2019)
Percent of households whose income

below the poverty line in the past 12

months

Percent of the population without any

health insurance.

Poverty percentage

Non health-
insurance
percentage

to the soil type aggregation, pipe segments may experience different
elevations, especially for the long-length pipes. Therefore, as illustrated
in Fig. 4(c), the elevation of the breakpoint is used as the elevation of the
pipe with break records (e.g., Pipe I). Otherwise, the elevation of the
pipe geometry center is used.

3.4. Census data aggregation

As WSN is operated almost all the time for communities, it is
reasonable to infer that community factors (such as user behaviors,
population, etc.) may affect failure probabilities of pipes. To demon-
strate this inference, public census data that contain community factors
are adopted in this study. The census dataset obtained from the US
census bureau contains enormous variables that describe every com-
munity block. The whole of Cuyahoga County is divided into 2952
community blocks in the census dataset. To consider the community
factors from different perspectives, the population, poverty percentage,
and non-medical insurance percentage, as listed in Table 2, are selected
based on the availability of the dataset. Since a single pipe may cross
multiple census blocks, a representative point defined in this study is
used to assign the census data for each pipe. As illustrated in Fig. 4(d),
for the pipe without break records, the representative point is chosen as
the pipe geometry center (e.g., Census block I for Pipe 2), while for the
pipe with break records, its breakpoint is used as the representative
point (e.g., Census block for Pipe 1).

3.5. Climate data aggregation

Significant seasonal influence on the pipe’s break has been observed
in previous studies (e.g. air temperature, precipitation, etc.) [61, 62].
These studies indicate that the pipes suffered more breaks during
extremely cold or hot days, possibly due to the soil-pipe interaction.
However, previous studies did not account for the temperature data [20]
for annual pipe break prediction. To overcome this limitation in
considering the climate effects, the accumulated cold and hot days are
used in this study to describe the climate experienced by each pipe
during its service life. The hot days denote the days that have the highest
temperature above 90 F while the cold days stand for those with the
lowest temperature below 32 F (or the freezing index concept commonly
used in cold region ground engineering). The number of these days are
extracted from dataset provided by the climate service organizations
such as NOAA. The cold and hot days experienced by each pipe used in
this study are the accumulated days of each year from its installation
date to the selected year of study (Eq. (13)).

t+pipe age

Hot/Cold Days = Z Dy 13)

T=t

where Dr is the total hot/cold days at year T, t is the pipe installation
year.

The developed data aggregation framework assembles a compre-
hensive dataset that allows to integrate the physical properties of water
pipes, the operational conditions, geology conditions, community so-
cioeconomic characteristics, and climate conditions, which will be used
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Fig. 5. Workflow for ML training and interpretation.

by the ML models to predict the pipe break behaviors.

4. Case study

4.1. Machine learning based pipe failure prediction workflow of machine
learning modeling

Fig. 5 shows the overview of the developed workflow of the ML based
water pipe break prediction. The aggregated dataset based on criteria
discussed in Section 3 is selected and cleaned by removing the samples
with any missing factors and outliers. To improve the performance of ML
approaches, data normalization is applied to the numeric factors, which
are standardized by removing the mean values and scaling to unit
variance. The categorical factors will be encoded with one-hot encoding
(a coding method to represent categorical factors by zeros and ones) if
the ML algorithm cannot handle the categorical variables directly [63].

The prepared dataset was randomly split into training set and test set
by the ratio of 8:2, which is a common approach to identifying the
model’s prediction ability. As the break records only account for around
10% of the total dataset, the issue of the imbalanced dataset for ML
model training is an important issue to be taken care of. As shown in
Fig. 5, both balanced and imbalanced training datasets are used for the
model training. To balance the dataset, the oversampling method [64] is
used in this study, which randomly replicates the minor class of pipe
break dataset until the number of break samples equals the intact sam-
ples. The testing dataset is unchanged. Therefore, the models trained
with both balanced and imbalanced datasets were evaluated with the
same testing dataset. Once the ML model with the highest performance
is identified, the whole dataset is used again for ML explanation by the
use of an interpretation method named SHAP [65] to understand the
influence of contributing factors on the pipe break. It should be noted
the model interpretation results are independent of the train-test split-
ting method because the selected model is fitted again with the whole
dataset. Details of data preparation and ML model performance evalu-
ation are provided below.

4.2. Data preparation and assessment of data characteristics

4.2.1. Label assignment and dataset preparing

As the objective of this study is to predict the pipe status at a certain
year, the pipe’s status is defined either as break or intact, and therefore
the ML model is defined as a classification problem. Preparing a dataset
that covers each year of each pipe is unpractical and could lead to an
extremely imbalanced dataset. To mitigate the level of imbalance as well
as fully utilize the break records, the following procedures were applied
to create the final dataset for ML training and testing.

1) For each pipe, a random year between its installation year and the
latest update before this study (Oct 2020) is selected. Time-

Table 3
Categories and statistical properties of factors considered for pipe break
prediction.

Factor Type of factors ~ Units ~ Mean Std. Min Max
Nominal size Physical - 8.3 2.1 2 12
Material - Ductile Iron, Cast Iron, and Unknown
Length feet 326.9 322.3 0.5 1332.5
Age years 44 29.77 1 127
Previous Operational - 0.4 1.6 0 37
break times
Years to last years 1.2 3.9 0 34
break time
Soil type Environmental - UmB, MmB, UeA, Ub, EsC, ..., etc. 72
different soil types
Elevation m 259.3 46.4 174.8 3829
Cold days days 1861.6  1236.7 33 5378
Hot days days 462.2 318.8 0 1219
Population Societal - 34325 12940 703 7953
Poverty % 12.6 13.3 0.4 91.1
percentage
Percent % 5.0 3.4 0.2 18
without
health

insurance

dependent factors during this period (i.e., previous failure times,
pipe age, cumulative frozen and hot days experienced) are
determined.

2) The pipe status recorded at the selected year is labeled as O for intact
status or 1 for break status.

3) To fully utilize the pipe break records, for any pipe with break record
(s), the data of its last break year is added to the dataset created in the
previous steps.

4) In the final prepared dataset, the prepared dataset is split into
training and test dataset with a ratio of 8:2.

The selected data are subjected to the data aggregation process
described in the earlier part of this paper. Data cleaning is then con-
ducted, where data points with missing information are removed. After
data cleaning, 39,491 pipe data samples are obtained including 31,078
non-break samples and 8413 break samples.

In light that the random selection of a year in Step 1) may influence
the model prediction results. Therefore, ten random selections are
conducted, and the average values of evaluation matrices are used for
model performance assessment.

4.2.2. Characteristics of factors in aggregated dataset

To present an overview of the behaviors of aggregated data, Table 3
summarizes an example of their categories and statistical properties
including mean, standard deviation (std.), minimum, and maximum
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Fig. 6. Histograms of considered factors in terms of training and test sets.

from one dataset. A total of 13 factors are aggregated including 11
continuous variables and two categorical variables. These factors are
grouped into four main types, i.e., physical, operational, environmental,
and societal.

Fig. 6 shows histograms of the considered factors in both training and
testing datasets. In general, features of the testing dataset are well
covered by the training dataset. More specifically, distributions of the
physical variables are shown in Fig. 6(a) to (d). Note that Ductile Iron
and Cast Iron are the most widely used materials in WSN systems, while
there are also a large number of pipes whose materials are unknown
(Fig. 6(c)). Fig. 6(e) and (f) illustrate the characteristics of two opera-
tional variables. Fig. 6(g) to (j) show the four environmental variables.
72 different soil types are assigned to the pipes, but for the convenience
of visualization, Fig. 6(g) only plots the 10 most popular ones, i.e., UmB
(Urban land-Mahoning complex), MmB (Mahoning-Urban land com-
plex), UeA (Urban land-Elnora complex), Ub (Urban land), EsC (Ells-
worth-Urban land complex), MxB (Mitiwange-Urban land complex),
LuC (Loudonville-Urban land complex), UnB ((Urban land-Mitiwanga
complex), UoB (Urban land-Oshtemo complex), and MgA (Mahoning
silt loam). The elevation of the pipes varies from 150 to 382 m (Fig. 6
(h)). The considered climate factors include the accumulated hot days
and cold days as shown in Fig. 6(i) and Fig. 6(j). It is interesting to find
that they share similar trends with the distribution of pipe age, which

indicates that the climate factors are critical for pipe failures. As shown
in Fig. 6(k) to (m), the population, percentage of households below
poverty lines, and percentage of households without health insurance
are chosen to represent socio-economical features of each pipe for the
served community. It is worth noting that the population within each
Census community block range from 700 to around 8000, since Cuya-
hoga County includes some densely populated area such as Cleveland
City. For most community blocks, the poverty percentage is below 40%.
However, the most poverty block has more than 90% households whose
annual incomes are below the poverty line. Similar to observed poverty
condition, the percent of people in community blocks who do not have
any medical insurance ranges from 0.2% to 18%.

Based on whether this pipe is broken in the selected observation
year, the group of pipes has been divided into two classes, the class code
is 1 if the pipe breaks in the observation year and the code is 0 if it is
intact. The results are shown in Fig. 6. (n).

4.2.3. Relationship between internal factors and break status

The correlation matrix can be used to show the internal relationship
among the factors considered to contribute to pipe failures as well as the
external relationship between each factor and the target. Since the
datasets contain both numerical and categorical variables, different
correlation indicators are used to quantify their correlation. Methods to
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map in Fig. 8 also indicates that some of the considered societal vari-
ables (population, percentage of poverty, percentage without health
Continuous Categorical insurance) are correlated but not strongly, which is good for them to be
variable variable treated as independent variables in the ML model. Besides, there is no
correlation between any single input variable and the output variable
that is dominant, which indicates that the pipe failure is a complex
Continuous Pearson . . problem that does not depend on any single factor.
. R Correlation ratio
variable correlation
4.3. L-based pipe failure prediction
Categorical . . . L
vargiable Correlation ratio Cramér's V 4.3.1. Prediction results
The five types of supervised ML algorithms for classification prob-

Fig. 7. The correlation indicators used for numerical variables and categori-
cal variables.

determine the correlations between different types of variables are
shown in Fig. 7. Specifically, the correlation between two numerical
variables is represented by Pearson correlation [66], while that between
two categorical variables is quantified by the Cramér’s V coefficient
[67]. Besides, the Correlation ratio is used between the categorical and
numerical variables [68]. These indicators fall between —1 to 1 for
numerical factors and 0 to 1 when one or more factors are categorical (1
or —1 denotes complete positive or negative association while 0 denotes
no association). Detailed discussion about the correlation computations
is not shown here due to the paper length limitation. Interested readers
could refer to the Supplementary file (Algorithm I).

Fig. 8 shows the final correlation matrix among the 13 factors
considered as well as their correlation with the pipe break status (indi-
cated as ‘target’ in the figure). Factors with the highest correlation
values to the target (pipe break status) are the hot days, cold days, and
pipe ages. These imply that the weather and pipe service age are among
the most important factors determining pipe conditions. The other fac-
tors that follow include the previous break number, interval year, and
pipe length, etc. The present study considers all of them to observe their
behaviors in the ML model and model interpretation. The correlation

lems as introduced in the Background section are developed for the pipe
break classification problem. The hyperparameters of each ML algo-
rithm are optimized by grid-search optimization [69]. For the ANN
model, one input layer, a dropout layer, two hidden neural network
layers, and an output layer are used. The neuron numbers of the hidden
layers are 64 and 128 respectively. Fig. 9a) shows the prediction results
when the model is trained with an imbalanced dataset and Fig. 9b)
shows the results when the model is trained with balanced dataset. The
recall and precision matrices for each class are denoted at the right and
bottom sides, respectively. The overall model accuracy is denoted at the
right-bottom cell. Regardless of balanced or imbalanced dataset, the
LightGBM and ANN models achieve the best prediction in terms of the
accuracy, recall, and precision metrics. On the contrary, the KNN and
SVC models tend to miss many break samples when trained with the
imbalanced dataset and miss many intact samples when trained with the
balanced dataset. Oversampling method helps the model identified more
break samples.

To illustrate the overall performance of different models, the average
Receiver Operating Characteristics (ROC) and precision-recall curve
(PRC) metrics and the corresponding area under curve (AUC), and
average training time of ten sampled datasets are calculated and pre-
sented in Fig. 10. Among all the considered models, the LightGBM model
achieved the highest ROC and PRC values and a short training time
regardless of imbalanced or balanced training sets. A potential reason is
the LightGBM can deal with categorical variables without one-hot-
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Fig. 8. Correlation map of considered factors and prediction target.

encoding so the input dataset is much less sparse than that of other
models. When comparing the ROC matrix and PRC matrix, it can be
observed that the LightGBM, ANN, LR, and kNN achieved similar ROC
values, which is controversial to the previously observed results (see
Fig. 9). The PRC matrix shows more obvious different values for
different models, which demonstrates a better identification of the
optimal models. Based on the PRC results, the balanced training
LightGBM model achieved a higher AUC of PRC value (0.810) than that
of imbalanced training model (0.793).

Figs 8, 9, and 10 represent the results when using randomly based
train-test splitting. However, one critical question in engineering
application is that whether the machine learning model trained by data
recorded from previous events could effectively predict the future
events. To address this concern, a time-line based train-test splitting
method is used again to compute the above processes. The results are not
discussed here due to the similar conclusions. Interested readers could
refer Fig. S1 to Fig. S3 in the supplementary material.

To better understand the performance of using different ML models
for pipe break prediction, the performance of these ML models is
compared under different indicators in Table 4 based on the accuracy,
training speed, ability to handle the categorical features, and inherent
model interpretability. Based on the classification results with imbal-
anced and balanced training datasets, it can be confirmed that the
LightGBM achieved the best accuracy on the current dataset. The areas
under PRC for the test dataset are about 0.82 when trained with the
balanced dataset. Then followed by the ANN, LR, SVC, and kNN models.
In terms of the computational efficiency, the LR model finished the
learning process within a few seconds, then followed by the LightGBM
model and ANN model. The kNN model and SVC model took the longest
time among these models. The LightGBM model is the only model that
could analyze the categorical variables without any encoding due to its
histogram and leaf-wise tree growth strategy feature. Although the

10

inherent explanation ability of different models is not the focus of this
study, they are discussed here based on the previous studies [20,42] for
completeness. Generally, the statistical algorithms (e.g., the LR model)
are considered the most explainable algorithms since the weights of each
factor are transparent and can be interpreted based on their physical
meaning. The Logistic-based algorithms such as LightGBM model are
also quite easy to interpret as the relative importance of factors can be
quantified based on their roles during the tree splitting. Finally, the
perceptron-based algorithms (e.g., ANN model), instance-based learning
algorithms (e.g., kNN), and support vector machines (i.e., SVC) are
considered as black box model with poor interpretability.

4.3.2. Interpretation of considered factors with shap method

Based on the performance comparison of the five major types of ML
models for classification problems as described in the previous sections,
the LightGBM model features both the highest prediction accuracy and
is also computationally efficient. Although the model itself has a mod-
erate explanation ability, it is still unable to fully understand the
contribution of each factor to the output directly. To solve this issue, an
ML model interpreter, Shapley Additive exPlanations (SHAP) [65] is
adopted together with the LightGBM model trained with the balanced
training dataset, to interpret the contribution of each factor. SHAP
presents a way to calculate the additive feature importance score for
each factor [70]. The higher the importance score, the more important
the factor to the final ML model prediction. The SHAP interpretation
method together with decision-tree based ML algorithms have been
widely used in the field of civil engineering, including some scenarios
where highly correlated variables existed, such as the explanation of the
failure of reinforced concrete [71], the explanation of RC walls shear
strength [72], and the roadway segment crashes [73].

The impacts of each factor on the pipe break can be gathered to
evaluate their overall influence. Fig. 11 shows the overall importance of
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b) Test set prediction results by model trained with balanced data

Fig. 9. Prediction results with imbalanced and balanced training dataset (‘I' shorts for intact and ‘B’ shorts for break).
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Fig. 10. Comparison of applied ML models using different evaluation metrics.
the considered factors. The Pipe age, Cold days, and Hot days are kept in and ‘Pipe age’. The interval to the last break, Cold days, and pipe length
the dataset to study the impact of climate factors. The result shows the turns out to be the most influential factors. The pipe material and the

‘Cold days’ has the most impact among them, followed by the ‘Hot days’ nominal size of the pipe have a relatively lower influence on the pipe
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Table 4
Model summarization for pipe break prediction.
LightGBM ANN LR kNN SvC
Accuracy in general i wx * * *
Speed of learning process i i el * *
Handle categorical variables ik * * * *
Inherent model interpretability i * e * *

***denote the best performance.
*denote the worst performance.

break probability.

The following figures show the detailed effects of each factor on the
pipe break probability. The SHAP method computes an impact value for
each variable at each sample. To represent the overall impact of
considered factors on the pipe break probability, each factor’s impact
values are extracted from all pipe samples. The impact of continuous
variables is colorized for their magnitudes. The impact variables are
represented by their mean values. The following conclusions can be
inferred based on the observations. Many of these conclusions are
consistent with previous studies, which demonstrate the soundness of
the model interpretation results.

1) Fig. 12 shows the impact of physical factors considered. All these
factors have a positive influence on the pipe failure probability, i.e.,
the larger the value of the factor, the larger the SHAP value. The
distribution of pipe length values indicates the longer pipes have a
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higher failure probability than shorter ones. Similar observation can
be found on pipe age. Older pipes correspond to larger SHAP value,
indicating they are more prone to failure than the younger ones. The
nominal size also shows a positive correlation to the SHAP value,
which means that pipes with larger nominal sizes have higher failure
probabilities. The impact of pipe material is shown separately on the
right side of Fig. 12 since it is a categorical variable. Although both
with small SHAP values, the Cast Iron corresponds to positive SHAP
impact value while Ductile Iron corresponds to negative SHAP
impact value. This indicates that pipes made with Cast Iron corre-
spond to higher break probability compared with those made of
Ductile Iron. This is partially attributed to the fact that Ductile Iron is
less brittle than Cast Iron.
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Fig. 13. Plot of SHAP values showing the impacts of operational factors.
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Fig. 11. The overall rank of considered factors on pipe failure probability.
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Fig. 12. The impacts of physical factors.
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Fig. 15. Community factors impact.

2) Fig. 13 shows the effects of service operational factors. Compared
with the times of previous breaks, the time interval since the last
break shows higher impact on the pipe failure probability. While a
larger time interval since the last break on the pipe is found to cor-
responded to increased failure probability, a smaller time interval
shows both negative and positive influences (rather than only
negative influence as intuitively) on the failure probability. This
implies that there are quite a few pipes broken soon after the
installation or repair. This observation fits previous studies that
indicated the failure rate of a pipe is a bathtub curve, i.e., high failure
probabilities occur either at the early life or at wear-out life of pipes
[74]. Besides, the results of SHAP values in Fig. 13 show that a larger
number of previous breaks at the pipe corresponds to a higher failure
probability at the pipe. This is consistent with empirical observations
by interviewing with practitioners, i.e., pipe failures tend to occur
more frequently at similar locations.

For the environmental factors shown in Fig. 14, the results demon-
strate that the larger the number of cold days a pipe experienced, the
higher the probability it broke. It may be induced by the influence of
soil settlement due to the soil freezing and thawing process. The
impact of soil types is shown on the right side of Fig. 14. Among the
top 10 soil types that most pipes are buried, the LuC (Loudonville-
Urban land complex) soil triggers the highest pipe failure probability
while the UoB (Urban land-Oshtemo complex) shows the lowest
failure probability. Finally, the result indicates that the pipes in
higher elevations are less likely to break, which is reasonable
because pipes located at higher elevations experience lower service
water pressure. This leads to less internal stress on the pipe by the
service water pressure.

Regarding the societal factors as shown in Fig. 15, it is surprising to
find that communities that are poorer or with less health insurance
coverage have a smaller probability of water pipe break. It may be
because the poverty areas are less inspected, or they generally use
less frequency/amount of water that helped to extend the service life
of the pipe. In-depth reasons require more studies based on more
data. Moreover, the density of a community block does not have a
consistent trend of effects on the pipe failure probability, although

3)

4

-

13

the densely populated area corresponds to a relatively higher water
pipe break probability in most pipe samples.

5. Conclusions

This study aims to explore the ML techniques to predict water pipe
breaks based on data from a large WSN and to understand the effects of
contributing factors. A framework that integrates WSN maintenance
datasets and multiple public datasets is proposed, which is a critical step
that allows considering contributing factors for pipe failures, including
the geology, climate, and socioeconomic factors. With the aggregated
data, five different ML models, each from one of the five major types of
ML classification models, are developed for pipe break prediction. The
models are trained with an imbalanced dataset where the majority are
from intact pipes, as well as a balanced training dataset, where the
oversampling method is used to balance the training dataset. The results
of different training datasets are compared. Finally, the trained ML
model is interpreted by an interpolation method, SHAP. Major contri-
butions of this study include:

1) It provides a state-of-the-art data aggregation framework that in-
tegrates multi-source public datasets, leading to the largest real-field
dataset (both in size and timeline) and associated largest number of
input parameters for machine learning modeling for WSN. Hence,
this study significantly expands and deepens the communities’ un-
derstanding on the effects of engineering, geology, climate and so-
cioeconomic factors. To our best knowledge, this is the first paper to
assess the influence of socioeconomic factors on the failure of water
supply networks.

For the sake of implementation, five popular machine learning al-
gorithms are examined and comprehensively compared by five
metrics (i.e., the accuracy, computation time, influence of categori-
cal variables, and interpretation ability). The LightGBM model ach-
ieved the highest performance with the second shortest training
time. Meanwhile, the Receiver operating characteristics (ROC) is
demonstrated to be too optimistic about the results than the

2)
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precision-recall curve (PRC) metric when the dataset is highly
imbalanced.

The SHAP interpretation results fit with previous studies, which
demonstrated its ability to interpret the influence of the contributing
factors. The results indicate the significant influence of pipe buried
time, especially the interval time to the last break, the experienced
cold days, hot days, and pipe age. The contribution of pipe physical
factors and climate factors are in accordance with results reported in
previous studies. The contribution of community characteristics in-
dicates that areas with high poverty are associated with a lower pipe
break probability (or less frequently maintained), while areas with
high population density correspond to a higher probability of water
pipe break. These indicate that socioeconomic factors have an
important influence on the pipe service conditions.

3)

Finally, water pipe failure is a result of the complex nonlinear in-
teractions among various factors. Previous studies often simplified the
analysis process by considering a small number of factors due to the
model capability and data availability. Future studies should consider to
include more advanced ML techniques and more extensive dataset to
further improve the reliability of pipe failure prediction. Progresses in
these areas will potentially catalyze the transformation of decision-
making support for proactive management of WSN to achieve sustain-
ability goal.
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