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Abstract

Leakages in the underground water distribution networks (WDNs) waste over | billion gallon of water annually in the US
and cause significant socio-economic loss to our communities. However, detecting and localization leakage in a WDN
remains a challenging technical problem despite of significant progresses in this domain. The progresses in machine learning
(ML) provides new ways to identify the leakage by data-driven methods. However, in-service WDN:s are short of labeled
data under leaking conditions, which makes it infeasible to use common ML models. This study proposed a novel machine
learning (ML)-based framework for WDN leak detection and localization. This new framework, named clustering-then-
localization semi-supervised learning (CtL-SSL), uses the topological relationship of WDN and its leakage characteristics for
WDN partition and sensors placement, and subsequently utilizes the monitoring data for leakage detection and leakage
localization. The CtL-SSL framework is applied to two testbed WDNSs and achieves 95% leakage detection accuracy and
around 83% final leakage localization accuracy by use of unbalanced data with less than 10% leaking data. The developed
CtL-SSL framework advances the leak detection strategy by alleviating the data requirements, guiding optimal sensor
placement, and locating leakage via WDN leakage zone partition. It features excellent scalability, extensibility, and up-
gradeability for applications to various types of WDN:Ss. It will provide valuable a tool in sustainable management of the
WDNEs.

Keywords
Water distribution network, artificial intelligence, machine learning, leakage detection, leakage localization, partition,
clustering-then-localization semi-supervised learning

Introduction strategies are broadly classified into 5 categories, that is,
visual observation-based, sensor/instrumentation-based,
transient response based, hydraulic model-based, and data-
driven based strategies. However, these strategies have
encountered different limitations. For instance, the con-
ventional sensor/instrumentation-based technologies re-
quire well-trained inspectors to conduct the inspection along
the pipes with the help of different types of detection
equipment including those based on the optical, acoustic, or
electromagnetic sensing principles.”’ This method can be
labor-intensive, time-consuming, and cost-prohibitive.* '

Fast detection and localization of underground water pipe
leakage is an important yet challenging issue in water dis-
tribution system management. Due to the deterioration of
underground water pipes, a large amount of water is lost
every year, mostly unnoticed. According to Sadeghioon,'
about 3281 ML (10°) was wasted in the UK during 2009—
2011, and about 15% of supplied water was wasted annu-
ally in the US. In historical water districts, such as Cleveland,
OH or Boston, MA, the percentage of water lost is signifi-
cantly higher. Moreover, unnoticed water leakage can lead to
serious social impacts due to traffic delay,” water contami-
nation,3 and water scarcity. Therefore, a system that prOVideS Department of Civil and Environmental Engineering, Case Western
real-time water pipe monitoring and enables fast leakage Reserve University, Cleveland, OH, USA
response is critical for agencies to institute preventative .
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Moreover, the reliability of detection are influenced by
various factors including the type of leakage, size of the
leakage, pipe materials, environmental conditions, and the
skill level of the inspector.'" The transient based technology
uses transient pressure or acoustic signals associated with
burst events. Such transient signals travel along the pipe at
the speed of sound starting from the burst location.'
However, the transient responses decay with distance and
diminish over a short time, and therefore require sensors
with high spatial and temporal resolutions, which makes it
not suitable for continuous monitoring in all environments.
The hydraulic model-based approach requires the use of the
hydraulic model simulation of the water distribution net-
work (WDN). But information such as customer water
usage, pipe deterioration conditions, pipe physical infor-
mation is often difficult to collect or is typically not
available."*™'° Data driven-based leak detection, which is
based on learning from historical data with statistical or
pattern recognition algorithms, is emerging.'® Such tech-
nologies mainly depend on the available historical dataset
without the requirement of collecting a comprehensive set
of information of the hydraulic model. Empowered with the
Internet of Things (IoT) and artificial intelligence (Al), data-
driven technologies have been proven capability in
knowledge discovery,'” image processing,'® and event
forecasting, etc.'” The development of supervisory control
and data acquisition (SCADA) systems also promotes the
progress in using data-driven methods for leakage detection
since real-time monitoring data of water pressure and/or
flow rate are available via SCADA system.”" %

A few data-driven methods have been developed to
detect leakage in the WDNs. The previous studies typically
formulate the leakage detection problem as either a su-
pervised machine learning (ML) problem or an unsuper-
vised ML problem. For instance, Zhou ** developed a
supervised ML method by using fully connected DensNet
for leakage detection. The sensors were first assumed to be
placed at different junctions determined by an optimization
process. The simulated water pressure data obtained by
these sensors was used to train the developed ML model and
achieved promising results. For another example, Kang’
collected the data by piezoelectric accelerometer under non-
leaking condition and under leaking condition. The labeled
data was trained by a Convolutional Neural Network (CNN)
and a Support Vector Machine (SVM) to class leaking
versus non-leaking conditions. Saade and Mustapha®® setup
a laboratory environment for leakage detection by using a
network of Fiber Bragg Grating (FBG) sensor and utilizes a
machine learning model for data analyses. Recent studies
also explored leakage detection by clustering junctions into
multiple leakage zones to enhance the final detection
accuracy.”**> Although supervised learning approach can
achieve a high leakage localization accuracy, it requires a
balanced dataset, which means it needs a sufficient amount

of WDN operational data under both leaking conditions and
non-leaking conditions. However, as pointed by Mounce
et al.,”® datasets under leaking conditions are very scarce.
Consequently, unsupervised ML model are more feasible
practically. For example, Mounce et al.?’ used Artificial
Neural Network to predict the water flow and water pressure
one day ahead. Leakage warning was triggered if the dif-
ference between the actual data and the predicted data
exceeds a threshold. However, the detection accuracy was
dependent upon a stable water pressure pattern in the WDN,
which however can be significantly affected by water usage
behaviors. Another widely used unsupervised-learning
approach is to treat the leakage as a ML-based abnor-
mally detection problem. For example, Roya developed an
autoencoder algorithm (AE) for the leakage detection®® and
validated the results on a small-scale laboratory water pipe
testbed. The developed methods have only been used for
leakage detection and not attempted for leakage localiza-
tion. Compared to the supervised ML models, the unsu-
pervised ML models have a promising advantage since they
can work with just non-leaking data.

To further advance the data-driven approach for leakage
detection and localization in water distribution network, this
study explores a new ML framework that combines the
advantages of both supervised ML and unsupervised ML
approaches. This new framework, named clustering-then-
localization semi-supervised learning (CtL-SSL), uses the
topological relationship of WDN and its leakage charac-
teristics for WDN partition, sensors placement, and sub-
sequently utilize the monitoring data for leakage detection
and leakage localization. Compared with previous studies,
this framework, (1) considers the spatial relationship of the
sensors in WDN portioning and sensor placement, such
relationship is the cornerstone for later leakage detection
and localization; (2) does not require any historical leakage
data for leakage detection; (3) can be used when only
limited historical leakage data is available. More specifi-
cally, the leakage detection uses unsupervised-learning al-
gorithm to compress and decompress the normal water
pressure data. This process performs poorly when the input
is leakage data. The leakage localization uses supervised
learning algorithm to extract the spatial relationship from
the available leakage data. Only limited leakage data is
required for each leakage zone with the help of proposed
WDN partition process.

The organization of this article is briefly summarized as
following: Methodology introduces the main components of
the proposed CtL-SSL framework, including the considered
leakage characteristics matrix, a modified k-means algo-
rithm for WDN leakage zones partition, and ML models for
leakage detection and leakage zone localization. WDN
operation data generation describes the dataset used in this
study. Due to the lack of real-world monitoring dataset, the
dataset used in this study were generated by running holistic
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hydraulic simulations using publically accepted model for
WDNs. Case study I: C-Town WDN introduces the eval-
uation of the CtL-SSL framework by a widely used
benchmark WDN. Finally, Case study II: Rancho Solano
Zone III WDN gives the conclusions.

Methodology

Figure 1 illustrates the developed CtL-SSL framework for
WDN leak detection and localization. It starts with a basic
hydraulic model of the WDN to generate the simulated
operational data with consideration of the structural, physical,
topological, and hydraulic characteristics of the WDN as well
as the characteristics of water user demands. It includes two
stages, that is, the WDN partition stage and leakage moni-
toring stage. In the WDN partition stage, the WDN is par-
titioned into k leakage zones by using a modified k-means
clustering algorithm that considers the junctions’ leakage
characteristics matrix (a matrix that describes the leakage
behaviors of each junction, details are given in Determination
of the leakage characteristics matrix) and the physical lo-
cations. The centroid of partitioned clusters also provides the
optimal locations of sensor placement. In the leakage
monitoring stage, a ML model was trained with non-leaking

data to determine the leakage that occurs in the WDN, and
another ML model was trained with available labeled leakage
data to locate the exact leakage occurrence zone. Compo-
nents involved in the implementation of the workflow in
Figure 1 are introduced below.

Determination of the leakage characteristics matrix

In previous studies, the leakage characteristic vector is
simply determined by using the difference of pressure at
monitored junctions before and after leakage at a given
junction. Hence, the length of the vector equals to the
number of sensors m. A novel leakage characteristic matrix
was proposed in this study by using the PCA and AE al-
gorithm to find the spatial relationship among the sensors,
which extract the first & principal components, with £ equals
to m/2. The conventional leakage matrix is then projected to
the k principal components. The resultant leakage charac-
teristics vector achieved dimension reduction from m to k
(or by half since k is set to be m/2). The leakage charac-
teristic matrix is subsequently used for clustering of the
WDN. Details about the conventional leakage characteristic
matrix and proposed leakage characteristic matrix are given
below.
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Conventional Leakage Characteristics Matrix

Zhang®* and Chen”® defined the leakage characteristics
matrix using the change of monitored water pressure due to
a given leakage occurring at each junction compared with
non-leaking conditions. Table 1 illustrates the calculation
of the leakage characteristics matrix, where each row is the
leakage characteristics vector corresponding to the
junction.

The leakage characteristics matrix defined in Table 1
does not consider the internal relationships among the
monitoring sensors. Previous studies have proven that
such internal relationship is sensitive to leakage occur-
rence and therefore can be used for leakage detection and
localization.”®*® Hereby, to further extract the underly-
ing relationships between the junctions, this study pro-
posed two new leakage characteristics extracted by
unsupervised-learning algorithms, that is, the Principal
Component Analysis (PCA) and Autoencoder neural
network (AE). Details of the PCA-based and AE-based
leakage characteristics matrix are described in the
following.

PCA-based leakage characteristics matrix

PCA is an unsupervised ML model that is often used for the
dimensional reduction of data samples.”” The process to
calculate PCA-based leakage characteristics is illustrated in
Figure 2. It is assumed m monitoring sensors are installed in
the WDN for data collection. A non-leaking dataset contains
t samples, each includes a vector of data by m monitoring
sensors, is first used to train the PCA model to obtain the
first k principal directions (step 1 in Figure 2). There is no
requirement for the number of training samples. However,
the more the samples, the better the PCA model in finding
the relationships among the monitoring sensors. Then, the
leakage matrix [p;] is transformed by using the PCA model
(step 2 in Figure 2). The leakage matrix, [p;], here is defined
as a matrix consisting of the monitored water pressure
vector at the m monitoring sensors when a leakage happens
to each of the n junctions in turn. That is, the /™ row of the
leakage matrix is a vector consisting of the water pressure
by the m sensors when the leak occurs at the i junction. By
feeding the leakage matrix, [p;;], to the trained PCA model,
the output matrix [d] is named as the PCA-based leakage

Table I. Leakage characteristics matrix, p/, based on water pressure change for a water distribution networks with n junctions and m

monitoring sensors (i is the sensor No., j is the junction No.).

Pressure change Pressure sensor |

Pressure sensor 2

Pressure sensor m

: nonleak junl nonleak junl nonleak junl
Junction | p —P Py —h Pm —ph

: nonleak jun. nonleak jun. nonleak jun2
Junction 2 pi — b P2 —P Pm — P
; : nonleak jun n nonleak jun n nonleak jun n
junction n pi — P P2 — P - Pm — P

Note: pronlez js the water pressure measured by sensor i under non-leaking conditions. /"'’ is the water pressure of sensor i when leaking occurs at
junction j. i is the index for sensors which ranges from | to m, j is the index for junctions which ranges from | to n.

hi1  hip him
ha21 ] haz hgm
her  hea l hem
(leakage matrix) (leakage characteristics matrix)
P11 P12 Pim . di1 dy dik
Dor Doo Dom @ Fit PCA model @ dyy d d,
: N for firstk — |21 22 "
Pni Pn2 Prm directions dpy g ;0

Figure 2. lllustration of PCA-based leakage characteristics matrix (Note: h is the training dataset that consists of non-leaking dataset, p is
the leakage matrix containing vectors of the monitored water pressure when leakage happens at each junction, d is the PCA-based
leakage characteristics matrix, m is the number of monitoring sensors, t is the number of samples for training PCA model, n is the

number of junctions, and k equals m/2).
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characteristics matrix (step 3 in Figure 2). Due to dimension
reduction by the PCA, for each of the n junctions, its leakage
characteristics are represented by a projected vector with k&
elements. The dimension of principal components £ is set to
be around m/2, as this study found this well captures the
relationship among the monitored junctions.

AE-based leakage characteristics matrix

AE neural network is an unsupervised-learning algorithm
based on deep neural network. Unlike the PCA method,
which is an orthogonal linear transformation, AE neural
network can extract non-linear relationships among data
samples. A common architecture of AE network is shown in
Figure 3. For each sample with m features, the AE network
encodes the original dataset into a compressed dimensional
space and then decode it to the original dimension. By
minimizing the difference between output and input, the
neural network is forced to learn the features of the samples
and their relationships.

AE-based leakage characteristics matrix is defined as
illustrated in Figure 3. First, an AE neural network is built
with a middle layer consisting of k£ neurons (Figure 3). The
AE model is pre-trained with the monitoring dataset from
the WDN under non-leaking situations (this step is not
shown in Figure 3). This pre-trained AE neural network
learned the internal relationship among the monitored
junctions under non-leaking conditions. Then, the leakage
matrix [p;] (which is the same as the PCA process) is fed
into the AE neural network (see Figure 3 step 1). The output
of the middle layer of the AE neural network consists of
the leakage characteristics vector corresponding to

each junction. Matrix [d], which is dimension reduced from
m to k compared with leakage matrix [p;], is defined as the
AE-based leakage characteristics matrix. Similar to the
PCA-based leakage characteristics matrix, the reduced di-
mension k is set as m/2.

Both the PCA- and AE-based leakage characteristics
matrix are derived from the projected leaking data matrix by
PCA or AE models which are pre-trained with non-leaking
dataset only. This process effectively utilized these ML
models for the feature extraction. Meanwhile, as a byproduct
of the feature extraction process, the utilized characteristics
matrix is only half-the-size of the monitored data size and
conventional leakage characteristics matrix. Such data size
reduction could potentially increase the computing and data
storing efficiency as more data are collected by the sensors.

WDN bpartition stage: modified k-means
clustering algorithm

K-means clustering algorithm clusters data based on their
Euclidian distance. The standard k-means algorithm has been
used in previous studies for the WDN zone partition to reduce
the degree of freedoms in leakage detection, based on the
conventional leakage characteristics matrix.***> The partition
aims to improve leakage detection and localization accuracy.

We hereby noted that this current WDN partition procedure
has a few limitations. First, the standard i-means algorithm
requires the number of sensors and their placements to be
predefined. That is, the monitoring data collection schema
must be set in advance and the standard algorithm cannot
consider the influence of choosing different sensor
placements during the clustering process. For example,

Input layver

input x/

input x2 .

: P11 Pz Pim]

1 [P21 P22 Pam |1 @

| : I input x3 .)
I |Pn1 Pn2 Pnm :

1

(leakage matrix)

inputx_m

Architecture of AE neural network

Encoding

Decoding

Output laver
]

output x/

,7. output x3*
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Figure 3. lllustration of AE and AE-based leakage characteristics matrix (Note: the p, d, m, n, k are the same as in Figure 2).

Note: AE: autoencoder algorithm.
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Zhang®* used Zheng’s®® algorithm to optimize sensor
placements before initializing the WDN partitioning via the
k-means clustering process. Second, the previous WDN
partitioning (i.e., >"**) only considered the leakage char-
acteristics. It did not consider the physical distance among
the monitoring junctions. The consequence is the junctions
clustered into the same WDN zone can be geographically
scattered on the WDN.

To overcome these limitations, a modified A-means clus-
tering algorithm is developed in this study for WDN partition.
Compared to the standard A-means WDN clustering which
only considers the leakage characteristics of junctions, the new
algorithm also considers the shortest physical path distance
between the junctions over the WDN. The pseudocode of the
proposed k-means algorithm is shown in the following Table 2.

It is noted that in step 3.1, the leakage characteristics matrix
can be obtained by using different definitions, that is, con-
ventional leakage characteristic matrix based on pressure
change or feature extraction with ML algorithms. Although
PCA and AE models are used in this study, other ML models

Table 2. Modified k-means cluster algorithm for WDN partition.

can also be integrated into this framework, such as the Ma-
halanobis classification system (MCS).*' In step 3.2, the
physical distance between pairs of junctions is obtained by
using Dijkstra’s®® shortest pathfinding algorithm. Other
shortest path algorithms could also be considered when
dealing with different types of graphs, such as Floyd>-
Warshall algorithm. This step guarantees the clustered junc-
tions are concentrated based on their network path distance.
Both of the pair distance matrices are normalized by dividing
their largest value. Therefore, the range of these distances is
from 0 to 1. In step 5, the represented distance between
junctions is defined as the unweighted average of physical
distance and leakage characteristics distance. The different
ratios between the weight of leakage characteristics distance
and physical distance will be discussed in Hybrid approach for
leakage detection and leakage zone localization. In Step 6, the
process of centroid redistribution of each cluster requires the
re-acquire of the leakage characteristics matrix with the new
set of centroids. Also, in step 6, unlike the standard k-means
which used the mean value of each cluster as its centroids, the

Algorithm: Modified k-means algorithm for WDN leakage zone partition
Step |: Initialize parameters: set the number of cluster k, tolerance, maximum iteration number
Step 2: Randomly select k junctions from the WDN as the first group of centroids

Step 3: Data preparation
Step 3.1: Prepare the leakage characteristics matrix

l.a) For the conventional leakage characteristics matrix, use Table |
I.b) For PCA- or AE-based leakage characteristics matrix, follow Figures 2 and 3 respectively
Il. Normalize the leakage characteristics matrix by dividing its maximum value
Step 3.2: Calculate the WDN physical pair distance matrix by computing the shortest path between all junctions. Standardize the

matrix by dividing its maximum value
Step 4: Calculate the total Euclid distance between junctions

Step 4.1: Calculate the junctions’ Euclid distance matrix measured by the junction leakage characteristics matrix pairs, Licakage
Step 4.2: Calculate the component of Euclid distance matrix measured by the physical distance between junctions, Lohysical
Step 5: Assign each junction (v €J) to its nearest clusters based on the total Euclid distancedefined as
Lv,c,- _ (Lleakage + Lphysical)/z

(v.q)

(Vva)

vEcluster, if L, <L, o, VIE{I, 2,3, ...k)
where | is the set of all junctions, L,, is the represent distance between junction i and centroid c; ¢; is the centroid of cluster i

Step 6: Centroids redistribution

Step 6.1: For cluster;, set junction v, as the new centroid. Replace the original centroid ¢; and determine the new group of centroids

(Vo €2,€3,...Ck)

Step 6.2: Recalculate the leakage characteristics matrix in step 3.1 with the new group of centroids
Step 6.3: Recalculate the distance from to v, all other junctions in cluster;
Step 6.4: For every junction in cluster;, repeat step 6.1 to 6.3 to find the junction with the minimum total distance as the new centroid

for clusteri, i.e,
new
Qe =

where 'V

M L
Vio i Y et Ly 18 minimum,
is the new centroid for cluster i, M is all junctions in cluster i

Step 6.5: Repeat step 6.1 to 6.4 for all clusters. Until the centroid distribution is stabilized
Step 7: Determine the sum of the distance of all clusters to their corresponding centroid from step 6. Repeat from step 3 to step 7 until

the following relationship is satisfied

abs(sum(L, cev ) — sum(IL,, ¢)) < tolerance
or (iteration > number of iteration)
where |, . is the distance of each junction to its corresponding centroid, c is the old set of centroids, c"*" is the new set of centroids
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optimal junctions (that minimize distance within the cluster) is
set as the new centroids so that centroids remain on the
junctions in the WDN. The sensors are recommended to be
placed at the centroid to maximize the value of data acqui-
sition. Therefore, the influence of sensor placement is also
considered during the WDN partition process.

Leakage monitoring stage: leakage detection and
leakage zone localization

The WDN partition stage clusters the WDN into partition
zones based on leakage characteristics and physical con-
nectivity. The monitoring sensors are recommended to be
installed at the centroids of the partition zones to achieve the
best value of monitoring data. With the partition zones and
sensor data, stage 2 implements algorithms for leakage
detection and localization using the sensor monitoring data.

Leakage detection

Two unsupervised ML models, PCA and AE models, are used
for leakage detection. Both PCA and AE models are capable of

extracting the most important features from the training
dataset. Testing data are projected or decomposed into the
dimension-reduced feature space; and from the projected
components, the original data can be reconstructed with small
errors. However, abnormal data that carries unknown features
will lead to large reconstruction errors from the pre-trained ML
models. This allows abnormal events such as leakages to be
detected. The advantage of the proposed models is that they
can be trained with unbalanced data (normal non-leaking data
in the case of WDN) to detect abnormal conditions.

The ML model training process for leakage detection is
illustrated in part of Figure 4(a)). First, the unsupervised ML
model is trained with a dataset under normal non-leaking
conditions, as shown in step 1. In the testing stage, the
dataset which contains non-leaking data (labeled by N) and
limited number of labeled leaking data (labeled by J;) is fed
into the trained ML model (step 2). Using the reconstruction
capability of the unsupervised ML model (step 3 and step 4),
the input data is reconstructed (step 5). A reconstruction
error 6 for each sample is computed based on distance
measure @ =p’ —p. Since the ML model is trained
with non-leaking dataset only, among the testing dataset,

(@)
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Figure 4. lllustration of the ML models for leakage detection and localization: (a) procedures for training ML models (note: h is the
historical data matrix, p is the dataset with labels. p’ is the reconstructed matrix of p. @ is the reconstruction error); (b) procedures for
model applications in leakage detection and localization (note: N is the new observed dataset without labels. N is the corresponding
reconstructed matrix. E; is the reconstruction error of sample I. &' is the reconstruction error threshold).
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non-leaking samples will have a small reconstruction error
while leaking samples will have a larger reconstruction
error. A threshold of reconstruction error can be used to
differentiate leaking versus non-leaking dataset. This
threshold can be obtained by only using non-leaking
samples based on the characteristics of reconstruction er-
rors, or further fine-tuned by labeled leaking samples.

Leakage localization

The leakage localization is defined as a classification
problem, that is, the leakage conditions are classified into
different WDN partition zones. There are various types of
ML models for classification problems, such as the Artificial
Neural Network, Support Vector Machine, Decision Tree,
Random Forest (RF). In this study, Random Forest (RF) is
used because (1) RF is an efficient classification algorithm,
and (2) it only needs a very few hyperparameters to be
tuned. These help with the efficiency and consistency
during the evaluation process. It is noted that the other types
of ML-based classifiers can also be used for leakage lo-
calization. The RF is trained with leaking samples with
leakage zone labels (step 7).

With the trained models for leakage detection (PCA and
AE) and model for leakage localization (RF), for each
operational dataset, the leak is detected based on recon-
struction error larger than the threshold 6. If a leak is de-
tected, the data will be fed into the RF classifier for leakage
zone localization. The detection and localization process for
real-time monitored data is illustrated in Figure 4(b).

WDN operation data generation

The developed method for WDN leakage detection and
localization can be readily applied to operational WDN.
However, the monitoring data of in-service WDN is
scarce. A hydraulic simulator of WDN is therefore utilized
to generate a dataset to evaluate the developed framework.
Simulation-based data generation is commonly used to
develop ML models to overcome the limitations of
physical data. For example, Tao** evaluated an artificial
immune network with the dataset generated by water
pipeline hydraulic simulation code EPANET. Similar
works have also been done by many studies.**>* In this
study, a python package WNTR is utilized to build the
hydraulic model for WDN. The package implements the
hydraulic model and solver of EPANET 2.2, which is an
industrial hydraulic standard.*® It is also capable of per-
forming Monte Carlo simulations of WDN operations
under different scenarios.*’

By default, the hydraulic simulator considers the user
node could always get designed water demand (d) even
when the water pressure at that node is 0. However, due to
the leakages, the supplied water demand (d*) could be less

than the designed water demand (d) when the water pressure
is low. Herein, a pressure-dependent water model is used to
consider the influence of water pressure on the water supply
at each junction, which is assumed to follow Wagner’s
formulas*' as shown in equation (1)

09 pSPO

P_PO 1/n
d = = Py<p<P, 1
) d(Pf—P0> . Po<pzp (D)

d, p>Pf

where p is the water pressure at the junction, d is the de-
signed water demand, d* is the supplied water at different
water pressure. Py is the minimum water pressure, Py is the
required water pressure to meet the designed water demand.
n is the pressure exponent which is set as 2 in this study. The
values of Py and Py are set as 2 and 30 m, respectively, based
on recommendation byReference 42.

The equation by Crowl and Louvar® is used as the
leaking model. The model assumes there is a turbulent flow
of water as leak occurs. The mass flow rate of the leakage is
expressed by equation (2)

dleak = CdA V zgh (2)

where diekis the leaking demand which depends on the
water pressure. Cy is the discharge coefficient which is set as
0.75 in this study. 4 is the leaking area in the unit of m?, & is
the water head with unit of m, g is the gravity acceleration
(m/s”). To emulate the uncertainty of leakage size, a ran-
domly generated value of the leaking area A4 is used in
simulating different leaking scenarios.

The following procedures are used to generate dataset
under normal (non-leaking) conditions and leaking
conditions:

Data generation for normal operation scenario of the
WDN:

1. Define water pipe network: Build the WDN pipe
network with the corresponding pipeline geometry
and material properties following EPANET data
input format.

2. Set the water demands at WDN junctions: Each
junction on the WDN has a design water demand. A
Gaussian fluctuation is added to the design water
demand as the total design water demand to consider
the variations in user needs, that is

Demand; = ’Di

base + N(O’ 0-12)‘ (3)
where D is the baseline design water demand at junction
i which is defined in the original pipe network. A Gaussian

term is added to consider the water usage fluctuations.
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3. Data generation: With the defined water pipe net-
work, the hydraulic model for the WDN is solved
with proper hydraulic boundary conditions with the
WNTR solver package. The results include all hy-
draulic information such as water pressure or flow
rate at any location in the WDN.

a. The results of water pressure at selected moni-
toring nodes under different WDN operational
conditions are obtained.

b. Gaussian noise N(0,y) is added to the water
pressure data to mimic the noise in the moni-
toring data (due to sensor performance or other
random factors).

c. Store the data.

Steps 2 to 3 are repeated to generate data under different
water demand conditions.

Data generation for WDN under leaking scenario:

Similar procedures are used to generate a dataset for
WDN under the leaking scenario (steps 1-3). Except for the
effects of leakages are considered in step 3 before solving
the hydraulic model for the WDN. Leaking is assumed to
occur at each junction, which is convenient for clustering
purposes.”**> The leakage size is assumed to be randomly
set between 0.05 m to 0.1 m in this study, which leads to
0.0012m? to 0.0078 m? leaking size. These, however, can be
easily changed to more complex leaking conditions.

Case study I: C-Town WDN

C-Town water distribution network is a WDN that was used
for calibration competition in Battle of the Water Calibration
Networks (BWCN) [49]. The topology of this WDN is
shown in Figure 5. The WDN has 388 junctions that are
connected by 429 pipes. The water source includes 1 res-
ervoir and 7 water tanks. The water is powered by 11 pumps
and controlled by 4 different kinds of valves. Each pump
and valve have its functionality which will perform dif-
ferently under different water usage situations. The WDN
hydraulic model includes the junction locations, pipe
lengths, pipe diameters, pipe roughness, water demands,
user patterns, and working rules of pumps, valves, tanks,
etc. The original data of the WDN shared by ASCE include
hydraulic simulation at 168-time steps. The hydraulic model
for the C-Town WDN was made public after the compe-
tition. The model can be downloaded from the ASCE Li-
brary, which also includes the EPANET input format file.
The details of the network can be found in the original
article.

Although the parameters of the C-Town WDN provided
by the original article are deterministic values, the uncer-
tainties of the WDN are considered in this study by adding
randomness to the parameters. For example, a Gaussian
distributed random value (equation (3)) was added to the

Figure 5. Topology of C-Town water distribution network
(T: tank, S: meter district, P: pumps, V: valves, red star: Junction
]370).

water demand of each junction to represent the uncertainties
of water demand, the standard deviation is 10% of the
junction’s designed water demand. The leakage size of each
leakage scenario was chosen from uniform distribution of
0.05 m-0.1 m. Besides, to consider the sensor noise, a
random error of Gaussian distribution is also added to the
water pressure data, which has a 0 mean value and 0.1 m
standard deviation. Using the EPANET model for the C-
Town WDN with proper hydraulic boundary conditions,
simulations are conducted on the WDN under different
operational conditions (i.e., the operational rules of the
pumps and valves, water demand, and leakage occurrence).
From these, the hydraulic data (i.e., water head and flow
rate) at any location in the WDN can be obtained.

Figure 6 compares the total water head at junction “J370”
(noted by a red star in Figure 5) with and without a nearby
leakage, which clearly shows that leakage affects the hy-
draulic conditions in the WDN. Here, the water head is
defined as total water head including the summation of the
pressure head and junction’s elevation head. It is noted that
the water pressure under leaking conditions is sometimes
higher and sometimes lower than that under normal con-
ditions, possibly due to fluctuation in the WDN operational
status. These make leaking detection and localization to be a
challenging task.

C-town WDN bpartition results

The C-town WDN is partitioned following the procedures
described in WDN partition stage: modified k-means
clustering algorithm. Datasets of C-town WDN were
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Figure 6. Example of water head fluctuation under normal or
leaking conditions at Junction 370.

generated using the python package WNTR for both non-
leaking conditions and leaking conditions via the proce-
dures described in WDN operation data generation.

To calculate the leakage characteristic matrix, without
loss of generality, a fixed leakage size of 0.05 m was as-
sumed in the simulation, since the subsequent data nor-
malization will take away the effects of leakage size. A
leakage matrix is essential to obtain the leakage charac-
teristics matrix for WDN partitioning. The leakage matrix is
used to obtain the influence of leakage at different junctions
on the monitoring locations. A fixed leakage size of 0.05 m
was used to build the leakage matrix for the simplify
consideration. This leakage size is selected based on the
lower bound of leakage size. The effects of selected leakage
size are minor since the leakage matrix can be normalized to
determine the leakage characteristics matrix.

To evaluate the relative performance of the proposed
partitioning method, the testbed C-town WDN were par-
titioned into different numbers of leakage zones based on 5
different partitioning methods, which utilizes different data
feature versus Euclid distance measures. These comparative
approaches are described as following.

1. Standard k-means clustering using the conventional
leakage characteristics matrix (Table 1), which was
used in previous studies such as Zhang.** This is
named conventional partition in this article.

2. Modified k-means clustering using conventional
leakage characteristics matrix and physical distance
matrix (named as modified partition).

3. Modified k-means clustering using PCA extracted
leakage characteristic matrix and physical distance
matrix (named as PCA-based partition).

4. Modified k-means clustering using AE-based leak-
age characteristic matrix and physical distance ma-
trix (named as AE-based partition).

5. Modified k-means clustering only using the physical
distance matrix (named as graph distance-based
partition).

The results of WDN partition into different numbers of
clusters (6, 10, and 14) by the five different partition pro-
cedures are shown in Figure 7. Junctions of the cluster are
represented with different colors, with the centroid of each
cluster indicated with a rectangle symbol with the same
color as its cluster.

As shown in Figure 7, subgraph 1 indicate that con-
ventional partition using the traditional k-means algorithm
without the consideration of the graph distance between
junctions, the junctions in clusters are scattered and inter-
mingled. The scattering increases with the increasing
number of partition zones. From subgraph 2, the modified
partition based on modified k-means clustering algorithm
effectively reduces the scattering since it considers the
graph distance of junctions in addition to the conventional
leakage characteristics. This leads to a much smaller number
of isolated junctions. Comparison of subgraph 3 and 4 vs 2
shows that PCA-based partition and AE-based partition
further reduce the scattering based on raw leakage char-
acteristic matrix. PCA-based partition and AE-based par-
tition achieved comparable results. It is noted that the
AE-based partition of the C-town WDN took more than
10 h while the PCA-based partition required only a few
minutes. The main reasons include the AE method needs
more time for training and requires more iteration times to
get convergence. A potential solution is using regularization
methods for AE-based partition.**

C-town leakage Detection

The leakage detection is demonstrated on the clustering
result when the C-town WDN is partitioned into 10 clusters
by PCA-based partition. The monitoring sensors are as-
sumed to be installed at the centroid of each cluster and the
corresponding data are used (shown in Figure 7 (3) by
rectangles) for leakage detection. PCA and AE models are
used for leakage detection.

With the data generation procedures outlined in WDN
operation data generation, the dataset with 1000 non-
leaking samples under different operation conditions of
the WDN is generated. The non-leaking data are randomly
split into a subset of 700 and 300 samples. Then, 300
leaking samples were generated by setting a random leakage
size at a randomly picked junction. The subset of 700 non-
leaking samples is used as the training dataset. The subset of
300 non-leaking samples together with the 300 leaking
samples is used as the testing dataset.

The ML-based leakage detectors (AE model or PCA
model) are first individually trained with the training dataset
(700 non-leaking samples). With the trained ML models, the
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Figure 7. Results of water distribution networks leakage zone partition with five different approaches (Note: class | to k are the leakage
zone IDs. Class 0 is the pump/tank/reservoir nodes. Black rectangular denotes the pressure sensor location).
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Figure 8. Reconstruction error of non-leaking versus leaking samples: (a) AE detector; (b) PCA detector.

Note: AE: autoencoder algorithm.

testing datasets are fed as inputs. The reconstruction errors
of the input data by the AE detector and PCA detector are
shown in Figure 8. The models feature larger reconstruction
error with leaking samples than non-leaking samples, which
is the basis for differentiating leaking versus non-leaking
cases. A threshold can be set to achieve the best leaking
detection performance. For practical implementation, this
threshold can be empirically set initially based on statistical
analyses of the reconstruction error distribution with
monitored data under non-leaking condition. For example,
the maximum value or third quantile value can be used. It
can be fine-tuned when more leaking data become available.

If the reconstruction error of a non-leaking sample is
smaller than the threshold or a leaking sample is larger
than the threshold, this sample will be recognized as
correctly classified. Misclassifications happen with the set
threshold, that is, leaking samples are classified as non-
leaking, or non-leaking samples are classified as leaking.
The leakage detection accuracy is assessed by the number
of correctly classified cases over the total number of
testing samples.

The leakage detection performance of PCA and AE
detectors when the WDN is partitioned into different
numbers of leakage zones is summarized in Figure 9. Since
monitoring data are assumed to be at the centroid of each
partition, the dataset for each number of partitions has to be
regenerated for each case using the data generation process
described in WDN operation data generation. The size of
training dataset and testing dataset are kept the same
throughout. To overcome the uncertainties during the data
generation, the average accuracy of 5 cross-validations is
reported for each case. As seen in Figure 9, the leakage
detection accuracy steadily increased with the increasing
number of WDN partitions. It is understandable since the
more sensors deployed in the WDN, the more water leakage

| AE network
B rcA

80

a0

20

Leakage detection accuracy (%)

k value

Figure 9. Leakage detection accuracy with two different
unsupervised ML models under different number of partitions
(k value).

scenarios would be covered. The results also show that the
AE leak detector overperforms the PCA detector by about
5%.

C-town leakage zone localization

Besides detecting leakage, localizing the leakage is also
important for retrofit actions on the WDN. Conventional
supervised ML classifier requires training dataset must
include data of leaking occurring at each WDN junction. In
practice, however, leakage only appears at limited locations,
which makes it infeasible to well train a supervised ML
model. With the partition of WDN, the leakage localization
problem is defined as a semi-supervised classification
problem. The Random Forest (RF) model is chosen for
leakage zone localization following the procedures outlined
in Figure 4(b).
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The leakage localization performance of using different
partition methods is first evaluated in WDN by partitioning
the WDN into 6 leakage zones. A small portion of total
junctions (assumed as 10% in this study which can be
changed to other assumptions without loss of generality) are
assumed to have experienced leakage. The leaking junctions
are assumed to be evenly distributed among the 6 partition
zones. Based on this assumption, leaking data samples are
generated by assuming a leakage of random size occurring
at one of these selected junctions. For each of the 6 partition
zones, 400 leaking data samples are generated. Therefore,
the total training dataset includes 2400 data samples, with
their respective labels of partition zones they belong to.

For the testing data, 200 leaking data samples are ran-
domly generated assuming leakage of random size occur-
ring at randomly picked junctions in the remaining 90%
junctions. Altogether, the testing dataset includes 1200
leaking samples.

A confusion matrix is often used to evaluate the clas-
sification performance, which is also used for leakage lo-
calization performance in this study. A typical confusion
matrix contains four prediction terminologies: True Posi-
tive, True Negative, True Positive, and False Negative. For a
multi-classification confusion matrix with a structure like
Figure 10, the True Positive indicate the number of correctly
predicted samples, the rest rows of each class are False

Positive, and the rest columns are False Negative. The
accuracy, recall value, and precision matrices are used for
evaluation since this is a balanced testing dataset. For a
better understanding, the equations to compute each matrix
are shown in equations (5)—(7)

S M;
=== 5
ace sum(M) )
M.
Recall; = ———
M, (6)
=
Precisi M;; e
récision; = e — 7
Zj:le:lZWﬁ

where M is the confusion matrix, i is the i class, and k is the
total number of classes. M; indicates the i row and j”
column.

The RF leakage zone detection is implemented on WDN
using different partition methods, that is, AE-based parti-
tion, PCA-based partition, Modified Partition, and Graph
distance-based partition. The confusion matrices of the final
leakage localization results are shown in Figure 10. From
the comparison, the RF-based leakage localization using
PCA-based partition achieved the highest accuracy of 91%
(Figure 10(a)). This is followed by 88% accuracy using

(a) (b)
Predicted class Predicted class

Recall Recall

1 2 3 4 5 6 1 2 3 4 5 6
1 176 | 11 13 0 0 0 | 088 1 172 2 19 0 0 7 | 086
2| 2 4 184 | 12 0 0 0 | 092 2| 2 0 171 0 15 9 5 | 086
Ol 3 16 4 158 6 6 10 | 0.79 Ol 3 25 0 160 | 0 0 5 | 084
g 4 0 0 198 | 0 0 | 099 g‘: 4 0 10 1 187 | 0 2 | 094
< 5 0 4 0 187 | 0 | 094 <| 5 1 13 0 0 176 | 0 | 088
6 6 2 8 0 0 178 | 0.92 6 1 6 5 0 0 178 | 0.89
Precision 0.87 | 0.90 0.78 097 | 097 | 090 | 091 Precision 0.78 0.85 | 0.86 0.93 0.95 | 0.90 | 0.88

© PCA-based partition @ AE-based partition
Predicted class Predicted class

Recall Recall

1 2 3 4 5 6 I 2 3 4 5 6
1 150 14 7 26 0 | 075 1 121 5 0 37 4 33 | 0.6l
2| 2 0 189 1 0 10 0 | 095 2| 2 0 181 0 6 9 4 | 091
O 3 0 0 193 6 1 0 | 097 O 3 43 0 153 3 0 1| 077
2| 4 0 0 103 | 95 2 0 | 048 2| 4 18 0 139 | 21 22 | 0.70
<[ s 22 | 21 24 4 129 | 0 | 065 <[ s 16 0 1 | 17 2 | 086
6 0 0 11 10 2 177 | 0.89 6 6 0 0 118 3 72 | 036
Precision | 0.87 | 089 [ 056 [ 078 [ 0.76 | 1.00 | 0.78 Precision | 0.71 | 082 [ 1.00 | 044 | 082 [ 054 | 0.70

Modified partition Graph distance-based partition

Figure 10. Accuracy of leakage zone localization using different WDN partitioning strategies: (a) PCA-based partition; (b) AE-based

partition; (c) modified partition; (d) graph distance-based partition.

Note: WDN: water distribution networks; AE: autoencoder algorithm.
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AE-based partition (Figure 10(b)), 78% accuracy using
modified partition (Figure 10(c)), 70% accuracy using graph
distance-based partition (Figure 10(d))).

The effects of the number of WDN partitions on the
leakage zone localization accuracy are further evaluated and
summarized in Figure 11(a)). 20 trials are conducted for
each case to eliminate the randomness and the average
accuracy is plotted. The accuracy in leakage localization by
RF consistently achieved top 2 performance by using AE-
based or PCA-based partitions. The accuracy of localization
is worst when only considers the physical distance of
junctions with no consideration of the leakage characteristics.
It is noted that leakage zone localization using AE-based
partition started to overperform that using the PCA-based
partition for a larger number of partitions (i.e., 12). This might
be attributed to that AE-based partition is more capable of
identifying complex relationships from the data.

Figure 11(b) shows the influence of different percentages
of junctions with leakage data on the accuracy of leakage
zone localization, which is performed by partitioning the
WDN into 10 leakage zones via different partition methods.
The results show with leaking data available at more
junctions, the leakage localization accuracy improves. The
results also showed that the RF-based leakage zone local-
ization achieved the best performance with PCA-based
partition.

Hybrid approach for leakage detection and leakage
zone localization

The analyses so far indicate that the AE model achieved
higher accuracy than the PCA model for leak detection,
possibly due to its ability to extract non-linear relationships
among the input features. Meanwhile, the RF-based leakage
localization achieved the highest accuracy when using
PCA-based WDN partition, possibly because the PCA-
based information extraction is easier to be learned by

Therefore, a hybrid framework is proposed that combines
the use of PCA-based partition, AE-based leakage detec-
tion, and RF-based leakage localization.

In practice, resource constraints might prevent sensors to
be installed at the most optimal junctions. To consider such
issue, analyses are conducted under the scenery where
sensors are assumed to be “randomly placed” in the WDN
and the leakage zones are clustered using these sensors as
the centroids. The accuracy of leakage detection and lo-
calization under “optimal sensor placement” and “random
sensor placement” are determined using the C-Town WDN
testbed. The final results are summarized in Figure 12. The
results of random sensor placement are the mean values of
10 different random sensor deployment scenarios.

As seen in Figure 12, deployment at non-ideal locations
slightly compromises the accuracy of the proposed leakage
detection and localization method. However, it still
achieved an overall accuracy between 70% and 80%. The
overall performance is regarded satisfactory. This is vin-
dication of the accuracy and robustness of the developed
method. It is also observed from Figure 12(b) that the
differences in the detection accuracy under optimal versus
non-optimal sensor locations diminishes with the increasing
number of leakage zones. With more leakage zones parti-
tions, more sensors are placed in the WDN. Placing sensors
at optimal locations become less important for the devel-
oped leakage detection framework.

Initially, the proposed framework is illustrated by de-
fining distance L,. as the average distance of leakage
characteristics distance and graph shortest path distance.
The sensitive study about the different penalty weights of
the leakage characteristics distance and graph distance is
conducted here based on the hybrid partition and detection
framework. In detail, the distance is redefined as equation
(4). The target leakage zone number (k) is set as 10 for the
illustration purpose.
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Figure | 1. Leakage localization accuracy with RF model under (a) different numbers of partition zones, and (b) percentage of junctions

with leakage data available (water distribution networks with 10 partitions).
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Figure 13. The influence of weights assigned to the leakage
characteristics distance during Water distribution networks
clustering (stage |) on the final leakage localization accuracy (stage 2).
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where w; is the weight assigned to the leakage char-
acteristics distance and w, is the weight assigned to the
physical distance.

Sensitivity analyses are conducted on the effects of
weights assigned to the leakage characteristic distance. The
final leakage localization accuracy when using different
values of w; is shown in Figure 13 and the corresponding
WDN partition results are shown in Figure 14. The results
indicate the leakage localization framework achieved higher
than 76% when 20% weight is assigned to the leakage
characteristic distance (80% weight by the physical dis-
tance). The performance improved with increasing weight
of the leakage characteristics. However, about 60% weight,
the performance improvement becomes insignificant.
Meanwhile, a more scattered leakage zone partition result is
observed when the leakage characteristics are given higher
weights, as demonstrated in Figure 14. These observations
indicate that an optimal weight exist that achieves balanced
consideration of the leakage localization accuracy and the
leakage zone scattering degree.

Case study Il: Rancho Solano Zone
111 WDN

To further illustrate the proposed leakage partition, detec-
tion, and localization framework, another WDN, Rancho
Solano Zone IIT WDN is used as the second independent
testbed. This testbed is located in Fairfield, California. The
information about this WDN is published by ASCE task
committee on a research database for water distribution
systems and are open to download from the database of
Kentucky University [50]. The graph of this water supply
network is shown in Figure 15. There are 112 nodes in total,
including one reservoir and one water treatment plant as the
source of water, and 126 pipes. The elevations of the nodes
in this pipe network range from 90 m to 120 m and the
length of the pipes range from 90 m to 130 m. The original
data of water demand and water supply conditions for this
WDN are used in this study.

The same uncertainties of water demand and sensor
noise that are considered in the Case study I are used again
in this testbed. The leakage uncertainty range is set as
U(0.01, 0.05) since a too large leakage size could directly
drainage all the water in this WDN. A 40 time steps water
pressure record of Junction “F010” is shown in Figure 16 to
illustrate the influence of a nearby leakage.

Rancho Solano Zone Il WDN bpartition results

The proposed hybrid framework in Hybrid approach for
leakage detection and leakage zone localization is applied
on the Rancho Solano Zone III to illustrate the effect of
WDN partition results. The considered leakage zone
numbers are 2, 4, and 6 in this study. When using an
equivalent penalty weight of the leakage characteristics and
physical distance, the final partition results when consid-
ering different numbers (k) of partition zones are shown in
Figure 17.
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Figure 14. The water distribution networks partition results based on different weights assigned to the leakage characteristics:

(@) w; =0.2; (b) w; = 0.4; (c) w; = 0.6; (d)w; = 0.8.

Rancho
Solano
Reservoir

CITY OF FAIRFIELD

Rancho Solano Zone I1I Water Treatment Plant

Figure 15. Water distribution networks graph structural of
Rancho Solano Zone Il (Red node denotes junction “J1131”).

As can be seen from the results, the partitioned results are
reasonably balanced and concentrated. Hence, the main-
tenance team can easily narrow down the inspection area
after a leakage is detected.
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Figure 16. Example of water head fluctuation under normal or
leaking conditions at Junction “1131.”

Rancho Solano Zone Il leakage detection and
localization results

Similar to case study I, only non-leaking monitored water
pressure data is used for leakage detection and only 10% of
junctions of each leakage zone are assumed to have leakage
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Figure 17. Water distribution networks leakage zone partition results when considering different values of k (where the black
rectangular denotes the pressure sensors location): (a) k=2; (b) k=4; (c) k=6.
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Figure 18. Final leakage detection and localization accuracy.

experience. Hence, the recorded water pressure under
available leakage experiences can be used for the leakage
localization model training. A similar preparing process for
the training dataset and testing dataset in case study I is also
used here. Figure 18 shows the final leakage detection
accuracy and leakage localization accuracy when the WDN
is portioned into different numbers of leakage zones. As can
be seen from the results, the leakage detection accuracy
increases with the increasing number of leakage zones
which is also the number of placed sensors. It is under-
standable since the more sensors the higher chances that one
of them could be impacted by the leakage. For a small-scale
WDN like Rancho Solano Zone III, the water pressure of
each junction is sensitive to any leakage situation, so the
leakage detection achieved about 95% even with two
sensors. On the other hand, the leakage zone localization
accuracy fluctuates from 80% to 86% when partitioning the

WDN into a different number of leakage zones. The overall
accuracy is still acceptable.

Conclusions

A novel CtL-SSL framework is developed for WDN
leakage management in this study. The framework includes
WDN leakage zone partition, leakage detection, and leakage
zone localization. The WDN partition is based on the
leaking behaviors of the WDN junctions. New leakage
characteristics are defined based on features extracted from
non-leaking data with unsupervised ML models such as
PCA or AE. Improved k-means method is proposed for
WDN partition, which considers the graph distance between
junctions and the leakage characteristics. Sensors are rec-
ommended to be installed at the centroid junction of each
partition to acquire monitoring data. With the monitoring
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data, unsupervised ML models are developed for leakage
detection based on threshold criteria of reconstruction er-
rors. This allows leakages to be detected with unbalanced
dataset that contains non-leaking samples only. With the
leakage zone partition of the WDN, the leakage zone lo-
calization is defined as a ML-based classification problem
using partition zone numbering, which is achieved with a
small percentage of leaking data.

The results indicate the new partition algorithm (stage 1)
achieves less intermingling of junctions from different
partitions compared with the conventional partition method.
The leakage detection and localization stage (stage 2) also
gained promising performance even with leakage data over
only a small portion of junctions. The proposed framework
achieved around 95% accuracy in leakage detection and
83% leakage localization accuracy in both case studies with
less than 10% of junctions’ leakage data.

The proposed CtL-SSL framework can be easily used on
different WDNs and updated with more powerful models in
the future, which increases its extensibility and upgrade-
ability. The final performance may vary when the number of
leakage zones and scales of WDNSs are different. Deter-
mining the optimal number of leakage zones for different
types of WDN is still a problem worth future investigation.
In practice, an optimal number of leakage zones should not
only consider the final detection and localization accuracy
but also factors such as budget limitation, expected leakage
zone resolution, social-economic impact, and so on.
Moreover, the proposed method is developed and validated
by use of data generated by use of hydraulic model for
WDNs. While it is common to use holistic simulation data
for development and validation of machine learning models,
further validation with data from real-world in service WDN
are highly recommended.
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