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Abstract: Failure of a buried water pipeline can have an adverse effect on neighboring infrastructure, especially road networks. The impact
of the failure of water pipelines on road networks and water distribution systems (WDSs) significantly increases the economic and social
consequences of such failure. This paper presents a risk-informed decision support framework for WDSs considering the risk and the criti-
cality of components to aid maintenance prioritization. The probability of water pipe failure is estimated using a physical probabilistic
approach. The economic, operational, environmental, and social consequences of the failure of the integrated water and road segments
are evaluated using 14 factors. The economic, operational, environmental, and social consequences are combined using fuzzy hierarchical
inference to determine the overall consequence of the failure of each integrated segment (road and water network sharing the same geo-
graphical space). The risk of assets is determined by utilizing two approaches: risk equation and risk matrix. A shortest path–based network
efficiency metric is then used to identify the impact of the failure of water pipelines on both infrastructure systems. The final decision
alternatives are prepared by combining the outputs from the risk analysis and the network efficiency metric to prioritize maintenance tasks.
A geospatial model is used to identify dependent road and collocated water segments sharing the same geographical space. The water and
road networks of the Rancho Solano Zone III area of the city of Fairfield, California, are used to illustrate the proposed framework. The results
show that the failure of a critical segment can have a significant impact on the efficiency of both networks. In the considered case study,
the failure of a critical segment can result in about 7.5% and 9.6% system efficiency loss in the water and road networks, respectively.
The proposed model is expected to assist in integrated municipal asset management decision-making. DOI: 10.1061/(ASCE)WR.1943-
5452.0001365. © 2021 American Society of Civil Engineers.

Introduction

The performance of water distribution systems (WDSs) is typically
linked to other neighboring infrastructures due to physical proxim-
ity, functional dependency, shared resources, and so on. (Atef and
Moselhi 2013; Ng and Cai 2013; Rinaldi et al. 2001). Zimmerman
(2004) analyzed a set of previous failures of interdependent infra-
structure systems and concluded that failures in water networks are
the most damaging to other infrastructures, especially road net-
works. This is because most water pipelines laid underground often
follow road networks. As such, failures in water mains often led to
cascading failures to road networks resulting in huge economic
losses, and vice versa (Atef and Moselhi. 2014; Ostfeld 2014).

Hence, water utilities have become more interested in preventing
rather than reacting to water pipeline failures.

Existing water networks in the United States are at risk of failure
because a majority of water pipelines are old, with many of them
running beyond their expected life. Each year, about 240,000 water
main breaks occur throughout the United States, and roughly $2.1
trillion is required to replace all of the existing pipelines. It will cost
about $1 trillion over 25 years to replace only the most urgent pipe-
lines (ASCE 2017; AWWA 2012). Hence, many municipalities
need to prioritize maintenance under financial constraints and iden-
tify the riskiest pipelines.

In the current literature, integrated asset management decision
models considering the interdependency between water and road
networks are rare. Most of the studies on WDS performance evalu-
ation are performed separately from other infrastructure systems
(e.g., Al-Barqawi and Zayed 2008; Fares and Zayed 2010; Phan
et al. 2018). Recently, some effort has been made to evaluate
the condition of WDSs, considering interdependency with road net-
works. Abu Samra et al. (2017) developed a multiobjective decision
support tool for intervention activities for integrated road and water
networks. The multiobjective framework considered four aspects
(physical state, life-cycle cost, user cost, and replacement value)
and analyzed six parameters of the road and three parameters of
the water network for developing an intervention scheduling and
rehabilitation alternatives. Shahata and Zayed (2016) developed
a comprehensive risk assessment framework for municipal infra-
structures (sewer, water, and road). The Delphi-based analytical
hierarchy process was used to assign weights to 18 risk factors, and
a risk matrix was formulated by combining the probability of fail-
ure and consequence of failure for rating overall risk of integrated
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segments. Similarly, Elsawah et al. (2016) formulated a criticality
index for water and sewer networks for prioritizing the infrastruc-
ture intervention under budget limitation and resource constraints.
The authors accounted for 13 social, economic, and environmental
factors for consequence quantification. Most of these studies clas-
sified a branch of parameters (e.g., pipe age, diameter, type of road,
soil type, etc.) into physical, operational, environmental, and eco-
nomic factors, among others, for determining the failure likelihood
of water mains and potential failure consequences. However, while
determining the risk and developing decision alternatives, none of
these methods quantifies the importance of pipelines based on
topological and hydraulic measures to determine the performance
of complex WDSs.

WDSs are typically complex and composed of a large number of
subsystems. As such, rehabilitation decisions based on standalone
structural or hydraulic analysis often cannot capture the importance
of an individual component’s contribution to system performance.
Along with risk assessment, identification of criticality of the
components in a network based on graph theory can provide a mean-
ingful alternative in the decision-making process. Graph theory has
been extensively used in previous research for identifying critical
components and system reliability of a complex network. In the reli-
ability analysis problem, incorporating isolation valves and removing
a segment from a WDS need to be accounted for adequately when
evaluating system reliability after pipe failure (Walski 2020a, b). De-
spite its importance, the role of isolation valves was often ignored in
previous analyses, especially for estimating the reliability of a par-
tially failed system (Walski 2020a, b). Isolation valves, located along
pipelines, need to be closed to remove failed segments from the sys-
tem. Although incorporating an isolation valve would be useful to
develop a better decision model, it is often not possible due to a lack
of available information (e.g., valve location, characteristics). Many
valves are not operable in most WDSs due to many reasons, such as
misaligned box, presence of debris, and so on (Walski 2020b). When
valve location and characteristics are not known, graph theory–based
measures can still be useful to support decision-making (Balekelayi
and Tesfamariam 2019).

Topological matrices have been studied to identify the critical
components of various network systems (Crucitti et al. 2005; Latora
and Marchiori 2001; Duenas-Osorio and Vemuru 2009; Campbell
et al. 2015). Yazdani and Jeffrey (2012) investigated the relation-
ship between structural configuration and functionality of WDSs
utilizing network-based theory to measure the system vulnerability
and robustness. Torres et al. (2017) explored a WDS’s topological
effects by developing a large set of lattice-like pipe networks. The
authors found a strong correlation between graph theory–based ma-
trices and performance measures of WDSs. Giustolisi et al. (2017)
used a topology-based neighborhood centrality metric for classify-
ing WDS infrastructure. Balekelayi and Tesfamariam (2019) aggre-
gated four topological metrics results and compared them with a
WDS’s hydraulic performance. The author used the Bayesian belief
network-based data fusion technique to improve the accuracy of
topological metrics. Giudicianni et al. (2020) used various centrality
matrices, such as betweenness centrality and Katz centrality, to place
sensors in a WDS without performing hydraulic analysis.

Atef and Moselhi (2014) modeled the functional interdepend-
ency between water, sewer, and road networks using four centrality
measures (betweenness centrality, neighborhood centrality, relative
closeness centrality, and significant point of variance). Boeing
(2017) analyzed complex street networks by developing an open-
source OSMnx Python tool. Other studies (Su et al. 1987; Shinstine
et al. 2002; Yannopoulos and Spiliotis 2013; Mazumder et al. 2019)
applied the adjacent matrix method and minimum cut sets approach
to determine the system reliability of water networks. Although

previous studies utilized graph theory for identifying the critical
components and reliability measures, only a few of them integrated
network analysis results in a decision-making problem.

The objective of this paper is to develop a risk-informed deci-
sion support framework for WDSs, considering the criticality
of components within a network. The aim is to support utility man-
agers to prepare an asset management plan by identifying the
impact on the infrastructure systems due to failure of water seg-
ments on the basis of expected pipe failure, integrated consequen-
ces, and system topological performance metric. The decision
support model also accounts the effect of water pipeline failure on
road networks to aid maintenance prioritization. The proposed
framework is expected to help utility managers with rehabilitation
planning and maintenance decision-making. The proposed frame-
work is presented in detail in the next section.

Research Framework

The proposed framework consists of three modules: (1) risk assess-
ment, (2) dependency analysis, and (3) decision-making. In the risk
assessment module, the riskiest segments of the water and road net-
works are identified utilizing a risk equation and a risk matrix, as
subsequently described in the paper. The risk equation and the risk
matrix are formulated based on the pipeline fragility and the con-
sequences of failure. The time-variant failure probability of individ-
ual pipelines is estimated using a physical probabilistic pipe failure
method. Fourteen factors are incorporated in this research through
rigorous literature review for determining the consequence of the
failure of integrated water and road segments. Consequence factors
are mapped into fuzzy membership functions, and a Mamdani-type
input–output rule-based fuzzy hierarchical inference system is used
for consequence quantification. Infrastructure assets are catego-
rized into five risk groups, depending on their performances.

In the decision-making module, due to budget constraints and
resource limitation, utilities often need to prioritize their assets even
among components with the same risk level. Hence, using the com-
plex network theory, criticality of a component in a network or
graph is identified using a shortest path–based network efficiency
metric. The NetworkX Python tool is used to determine the net-
work efficiency of infrastructure systems (Hagberg et al. 2008).
The output of the risk analysis and topological analysis are com-
bined to generate decision alternatives for determining critical seg-
ments for prioritizing maintenance tasks.

In the dependency analysis module, the dependency of the func-
tionality of the road network on WDSs is modeled. The geospatial
interdependency is evaluated by analyzing the geometry and loca-
tion of assets in a geographical information system (GIS) environ-
ment to recognize water and road segments that share the same
corridor in an overlapping buffered layer. It is assumed that the
functionality of collocated road segments will be affected by the
failure in water mains. The probable cascading effect in the neigh-
boring road network due to failure in the integrated water and road
segments is presented using the OSMnx tool (Boeing 2017). The
impact on WDSs and road networks due to water pipe failure is
analyzed using a network efficiency metric.

Fig. 1 illustrates the conceptual framework of the proposed
decision support model.

Risk Analysis

The integrated risk of failure can be determined if the probability
of failure (likelihood of failure) and the consequences of failure are
known (Baah et al. 2015). In this study, the failure probability of a
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pipeline is estimated as a fragility function and the consequence of
the failure is determined through a fuzzy hierarchical process.

Fragility of Pipelines

The failure probability of water pipelines is typically determined
either using physics-based or statistical methods. Statistical meth-
ods analyze previous failure data to predict the future trend of fail-
ure, whereas physics-based approaches estimate the likelihood of
failure by comparing failure stress and resistance of pipe (Rajani
and Kleiner 2001). The physics-based approach is relatively more
accurate compared to the statistical approach if all the necessary
information is readily available (Mazumder et al. 2019). A number
of methods are available for determining the failure probability of
buried pipelines using the physics-based approach. Since the ma-
jority of US water mains are made of cast iron (CI) (Kirmeyer et al.
1994), the physical probabilistic pipe failure model for CI pipelines
developed by Ji et al. (2017) is used in this study. Another advan-
tage of using a physics-based model is that it accounts for time-
dependent stress variation by incorporating the gradual reduction
of pipe wall thickness over time due to corrosion. The failure prob-
ability of a pipeline, Pf, is defined by comparing the maximum
stress (σ) on the pipeline with the tensile strength of the pipe
material as given by Eq. (1)

PfðTÞ ¼ P½σy ≤ σðTÞ� ð1Þ

where σy is the tensile failure strength of the pipeline material, T is
the elapsed time in years, and σðTÞ is the time-dependent stress on
the pipeline. Stress on the CI pipeline is estimated based on the
model developed by Robert et al. (2016). Details of the stress cal-
culation model are discussed in “Fragility Analysis Results”
section.

Consequence of Failure

Water distribution pipelines typically run under road networks,
and failure in the WDS often leads to failures in the road network.
Integrated consequence due to failure in the WDS needs to be ac-
counted for in risk assessment. Risk assessment methods typically
consider potential consequences in the form of direct and indirect
losses (Muhlbauer 2004; Fares and Zayed 2010). Parameters influ-
encing the failure consequence include both qualitative and quan-
titative parameters. A comprehensive literature review has been
performed to identify parameters that potentially influence conse-
quences after a failure event. Some recent studies considered the
integrated consequence of failure in water mains on other infra-
structure. A comparison of the contributing consequence factors
used in previous research is presented in Table 1.

Most studies classified the consequences into various catego-
ries, such as economic, operational, and environmental, among
others. Based on the literature review, the current study considers
14 factors for consequence quantification. These consequence
parameters are grouped into economic, operational, environmen-
tal, and social consequence classes.

Economic Consequences
The economic consequences of water mains failure are determined
on the basis of factors that influence asset utility and society in
monetary terms (e.g., repair cost, loss of revenue, etc.). Factors con-
sidered in the economic consequences are pipe diameter, material
type, burial depth, land use pattern, type of road, and degree of
accessibility.

Pipe diameter: The consequence due to the failure of larger
water mains is expected to be higher than the consequence due
to the failure of smaller water mains (Shahata and Zayed 2016).
Rehabilitation cost is higher for relatively larger diameter pipelines
regardless of the type of technique used (Zhao and Rajani 2002).

Material type: The type of pipe material is an important indi-
cator of replacement cost. The cost of replacing concrete and met-
allic pipes is higher than the cost of replacing PVC pipes (Shahata
and Zayed 2016).

Burial depth: The cost of rehabilitation and replacement
increases with the burial depth because more excavation will be
required (Baah et al. 2015; Shahata and Zayed 2016).

Fig. 1. Conceptual framework of proposed decision support model.

Table 1. Consequence parameters

References
Pipe

diameter
Pipe

material
Type
of soil

Type
of road

No. of
road lanes

Land
use

Average
daily traffic

Buried
depth Accessibility

Proximity to
other asset Network(s)

Al-Barqawi and Zayed (2008)
p p p

X X
p p

X X X W
Fares and Zayed (2010)

p p p
X X

p p
X X

p
W

Atef and Moselhi (2013)
p p p p

X
p p

X
p p

W, R, S
Kabir et al. (2015)

p p p p
X

p p
X X X W

Baah et al. (2015)
p

X X
p

X
p

X
p

X
p

S
Elsawah et al. (2016)

p p p p p p p p p
X W, R, S

Shahata and Zayed (2016)
p p p p

X
p p p p

X W, R, S
Abu Samra et al. (2017)

p p
X X

p
X

p
X X X W, R

Ismaeel and Zayed (2018)
p p p

X X
p

X
p

X X W

Note: W = water network; R = road network; and S = sewer network.
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Land use pattern: Losses can vary significantly depending on
the pattern of usage of the nearby area in the case of a water main
failure. For instance, the impact in an industrial area will be more
than the impact due to the same water main failure in an agricultural
area (Francisque et al. 2014).

Type of road: The economic consequence of water main failure
will differ based on the type of roadway. Failure of a water main
under an expressway will have higher consequences compared to
failure beneath a local municipal roadway (Shahata and Zayed
2016). The maintenance cost of an expressway is typically higher
than the maintenance cost of a municipal roadway.

Degree of accessibility: Limited accessibility to infrastructure
can potentially delay the repair process and cause greater damage
to surrounding assets. Accessibility can be hampered by the lack of
easement, deep infrastructure, and limited vehicle access (Shahata
2013).

Operational Consequences
Operational consequences occur due to the loss of the opera-
tional ability of infrastructure assets and associated surroundings
(e.g., loss of production, loss of hydraulic functionality, etc.).
Hydraulic performance, business disruptions, number of lanes,
and damage possibility to the nearby asset are parameters used
for evaluating the extent of operational disruption.

Hydraulic performance: The hydraulic performance of a WDS
is determined to know if the system has an excessive capacity to
provide adequate water to consumers under partially-failed condi-
tions. A system with lower hydraulic performance is likely to have
a higher consequence of failure that may lead to an inadequate
water supply to the consumers, lower firefighting capacity, and
so on (Kabir et al. 2015; Fares and Zayed 2010). The impact on
the system hydraulic excessive capacity due to the failure of each
pipeline separately is estimated using Todini’s resilience (Todini
2000). Pressure-dependent hydraulic simulation is performed using
the water network tool for resilience (WNTR) for estimating
Todini’s resilience (Klise et al. 2017). Todini’s resilience provides
information about system hydraulic excessive capacity of a WDS
[interested readers are referred to Todini (2000) for further details].

Business disruption: Nearby business areas may need to close
due to the failure of a water main. The operational impact is higher
for important business zones (e.g., health service, industrial produc-
tion zone, etc.) (Shahata 2013).

Number of lanes: The possibility of the complete shutdown
of a road increases with the decrease in road width. The number
of lanes is an important measure of the redundancy of roadways
(Al-Barqawi and Zayed 2008; Fares and Zayed 2010).

Possible damage to nearby assets: The level of damage to
surrounding assets is a good indicator of the functionality of sur-
rounding infrastructure including gas, utilities, cables, electricity
(Shahata and Zayed 2016).

Environmental Consequences
Failure in water pipelines may impact habitats, water bodies, ser-
vice areas, and archaeological sites, among others (Shahata and
Zayed 2016). Parameters influencing environmental consequen-
ces include soil type, sensitive area proximity, and average traffic
volume.

Soil type: Soil type is a key factor in the corrosion behavior of
metallic pipelines. Soil can be classified based on the presence
of corrosive characteristics in soil media. The environmental con-
sequence is likely to be higher if the surrounding soil is highly ag-
gressive (Shahata 2013).

Proximity to a sensitive area: The water pipelines traveling
near industrial areas and environmental areas will have a higher

environmental impact due to the failure of the water main (Baah
et al. 2015).

Average daily traffic: A road with heavy traffic volume will
have higher environmental consequences due to water main failure
(Shahata 2013). Utility and road construction after a water pipe fail-
ure often results in a partial or complete road closure, leading to
significant traffic delay and forcing traffic to take detours. Increased
travel distance and reduced speed in the utility construction zone
may increase fuel consumption and negatively impact the environ-
ment with higher carbon emission (Matthews et al. 2015).

Social Consequences
Social consequences refer to the impact on society as a result of
inconvenience to public life due to service disruption, traffic delays,
and so on (Salman and Salem 2011). Social factors included in this
study are the type of service area, average daily traffic, and pop-
ulation density (Elsawah et al. 2016; Shahata and Zayed 2016).

Type of service area: Social impact may vary depending on the
type of service area affected due to water main failure. For instance,
longer service disruption in medical facilities and industrial areas
will have a higher social impact compared to residential areas
(Elsawah et al. 2016; Shahata and Zayed 2016).

Average daily traffic:Average daily traffic is a good measure of
social impact. The shutdown of a road with high traffic volume
will redistribute higher traffic loads to the neighboring roads. Traf-
fic delay is expected in the utility construction zone (Matthews
et al. 2015). As such, a road with higher average daily traffic
is likely to have a higher social consequence if the road needs
to be closed due to water main failure (Elsawah et al. 2016;
Shahata 2013).

Population density: Population density (number of populations
per km2) is a good indicator that measures social impact by recog-
nizing population size within a pipeline’s dissemination area that is
likely to be out of water supply after a water pipe failure. The social
consequence is typically higher in densely populated areas (Kabir
et al. 2015).

Fuzzy Membership Functions
In integrated water and road systems, data of various consequence
parameters (e.g., soil type, traffic volume, etc.) are uncertain and
imprecisely presented (Sadiq et al. 2007). One of the major chal-
lenges in dealing with linguistic or qualitative parameters is that the
contribution of the parameters to the consequences is difficult to
estimate and categorize into hazardous groups. Zadeh (1965) intro-
duced fuzzy set theory to overcome the problem associated with the
crisp and imprecise representation of probabilities. Fuzzy logic is a
useful technique to transfer qualitative human knowledge or
linguistic scale into numerical reasoning toward a conclusion or
decision-making (Demartinos and Dritsos 2006). The fuzzy-based
technique is preferable in many decision-making models because it
is capable of incorporating human jurisdiction whenever the data-
base is incomplete and unavailable.

Fuzzy membership functions can be defined in various ways,
such as triangular, trapezoidal, Gaussian, and singleton, among
others. The real data of the consequence parameters (e.g., diam-
eter, material type) is transformed into fuzzy membership ranges
½ 0; 1 � using the membership functions. The fuzzy membership
functions for each consequence parameter are defined based on
information adapted from literature review, range of the parame-
ter’s attribute, characteristics of the parameter, effect of parameter
on consequences, engineering judgment, and so on (e.g., Sadiq
et al. 2007; Fares and Zayed 2010; Kabir et al. 2015). The con-
sequence of failure is classified into five consequence levels.

The development of fuzzy membership functions for one
parameter from each consequence class is explained here. In the
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economic consequences, previous studies (e.g., Shahata and Zayed
2016; Baah et al. 2015; Kabir et al. 2015) classified the pipe
diameter into various consequence classes where the level of con-
sequence increases with the diameter size. For instance, Kabir
et al. (2015) classified pipe diameter into five consequence levels:
(1) very small: 0–50 mm, (2) small: 50–200 mm, (3) medium:
200–400 mm, (4) large: 400–600 mm, and (5) very large:
≥600 mm. Phan et al. (2018) classified pipes into four perfor-
mance class: (1) class 1: <300 mm, (2) class 2: 300–600 mm;
(3) class 3: 600–900 mm, and (4) class 4: >900 mm. Based on
the knowledge gained from previous studies and the range of
diameter considered in this study, the pipe diameter is grouped
into three consequence levels: (1) small: <100 mm, (2) medium:
100–400 mm, and (3) large: >400 mm. In the operational conse-
quences, sudden failure of the water main may damage surround-
ing assets (e.g., structure, utility, road), leading to operational
disturbance to other systems. The extent of such damage depends
on the proximity of the asset to the water main. For instance, Phan
et al. (2018) classified possible impact of failure into three catego-
ries depending on the proximity of an asset to a water main:
(1) high: distance <5 m, (2) moderate: distance 5–10 m, and
(3) low: distance >10 m. Other studies (Vanrenterghem-Raven
2007; Fares and Zayed 2010; Baah et al. 2015; Shahata and
Zayed 2016) also classified the consequence of damage into three
to five levels depending on the proximity of the asset to the water
main where a comparatively nearby asset has a higher likelihood
of damage than the farther asset. In the current study, in light of
this discussion, possible damage to nearby assets is classified into
three groups: (1) severe: distance <5 m; (2) moderate: distance
5–15 m; and (3) insignificant: distance >15 m.

In the environmental consequence, the presence of corrosive
characteristics in surrounding soil of pipeline may impact the

environment adversely in the case of a water main’s failure. The
environmental consequence is likely to be high if the surrounding
soil is highly aggressive. Fares and Zayed (2010) classified soil
type into five groups on a scale of 0–10 depending on the soil cor-
rosivity, where highly corrosive soil has a higher level of environ-
mental consequence. Shahata (2013) rated soil type depending on
the corrosiveness of soil into four categories: (1) nonaggressive: 1;
(2) moderate: 2; (3) high: 3; and (4) highly aggressive: 5. Based on
the information gained from these studies, soil type is classified
into three classes (low, moderate, and high) on a scale of 1–5 de-
pending on the corrosive of soil. In social consequences, the water
main’s failure is typically impacting the community as service dis-
ruption experienced by the population within the pipeline’s dis-
semination area. Population density is used in previous studies
to determine the level of possible social consequences. Kabir et al.
(2015) classified social consequences into five classes depending
on the impacted population density (person=km2): (1) very low:
<415; (2) low: 415–595; (3) medium: 595–830; (4) high: 830–
1,195; and (5) very high: >1,195. Similarly, the current study
classifies population density (person=km2) into five categories:
(1) insignificant: <100; (2) low: 100–500; (3) moderate: 300–700;
(4) high: 500–900; and (5) severe: >1,200.

Other parameters are also classified into various consequence
levels, as expressed in Figs. 2(a–e). For example, business disrup-
tion is classified into three classes depending on the pipe failure
location: (1) other (e.g., residential, open space); (2) commercial
(e.g., small shop); and (3) major clinic/user (e.g., industrial)
(Fares and Zayed 2010). Average daily traffic is used as an indi-
cator for both environmental and social consequences. Road clo-
sure due to water pipe failure may result in traffic delay, leading
to an increase in fuel consumption that negatively affects the envi-
ronment. At the same time, traffic delay increases inconvenience to

Fig. 2. Fuzzy memberships: (a) generalized triangular and trapezoidal functions; (b) accessibility, soil type, and average daily traffic; (c) diameter,
buried depth, hydraulic performance, possible damage to nearby asset, proximity to sensitive area, and population density; (d) material type, road
type, land use, business disruption, number of lanes; and (e) input/output in second and third layers.
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society. Hence, a road with higher average daily traffic is expected
to experience higher environmental and social consequences. As
classified in previous studies (Vanrenterghem-Raven 2007; Fares
and Zayed 2010; Kabir et al. 2015; Shahata 2013; Elsawah et al.
2016), average daily traffic is classified into three categories:
(1) low; (2) moderate; and (3) high, on a subjective scale of 1–5,
depending on the traffic volume.

Fuzzy membership functions are defined for the consequence
classes depending on the characteristics of a variable. Singleton,
triangular, and trapezoidal membership functions are defined in this
study, as provided in Table 2 and Figs. 2(a–e). Generalized triangu-
lar and trapezoidal membership functions presented in Fig. 2(a) are
expressed by the following equations:

Trapezoidal; μðxÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

0; x < a
x − a
b − a

; a ≤ x ≤ b

1; b ≤ x ≤ c
x − d
c − d

; c ≤ x ≤ d

0; x > d

ð2Þ

Triangular; μðxÞ ¼

8>>>>>>><
>>>>>>>:

0; x < e
x − e
f − e

; e ≤ x ≤ f

x − g
f − g

; f ≤ x ≤ g

0; x > g

ð3Þ

where μðxÞ is the fuzzy membership value on a scale of [0,1]
mapped on the vertical axis, x (horizontal) axis represents the fuzzy
universe of discourse, a is the minimum value, b and c are the
two values that define the interval of the most likely range, and

d is the maximum value of a trapezoidal membership function.
Similarly, e, f, and g are the minimum, the most likely, and the
maximum values of a triangular membership function, respectively.
The membership functions of trapezoidal and triangular members
are expressed by ½ a b c d � and ½ e f g �, respectively, as
provided in Table 2.

The level of consequence is rated as from insignificant to severe,
depending on the corresponding contribution to the consequence.
A maximum of five consequence levels is considered: Insignificant,
Low, Moderate, High, and Severe tagged as I, L, M, H, and S,
respectively. Among the selected 14 consequence parameters, a
few qualitative parameters (accessibility, soil type, average daily
traffic) are evaluated on a scale of 1–5, and triangular membership
functions are used to define three consequence levels (I, M, and S)
for these qualitative parameters, as shown in Fig. 2(b). The quan-
titative parameters (except number of lanes) are evaluated on the
range of parameter universe [min, max]. Both trapezoidal and
triangular membership functions are used to define consequence
levels for these quantitative parameters. For quantitative parame-
ters, the level of consequence remains the same after limiting values
(below a lower limit and above an upper limit). Hence, trapezoidal
membership functions are used to define I and S consequence lev-
els, and triangular membership functions are used to define inter-
mediate consequence levels (L, M, and H), as shown in Fig. 2(c).
As previously discussed, the number of consequence levels (three
or five) for a parameter is selected based on the information
obtained from available literature, range of parameter universe,
and engineering judgment (Tesfamariam and Saatcioglu 2008a, b;
Fares and Zayed 2010).

To further explain how the fuzzy membership function is
defined for a quantitative parameter, consider pipe diameter as
an example. Three consequence levels and their corresponding
membership functions are defined for pipe diameter under the eco-
nomic consequences. Membership functions for pipe diameter are

Table 2. Fuzzy membership functions

Parameter Unit I L M H S

Economic consequences
Pipe diameter mm Small [0 0 100 250] — Medium [100 250 400] — Large [250 400 500 500]
Buried depth m [0 0 1 3] — [3 4 5] — [3 4 5 5]
Accessibility — Good [1 1 3] — Moderate [1 3 5] — Low [3 5 5]
Pipe material — PVC — Asbestos/Corrugated

Steel
— Steel, CI, DI/Concrete

Road type — Local Collector Arterial Custom Highway
Land use — Agricultural/Open

Space
Park Residential Educational/

Commercial
Industrial

Operational consequences
Hydraulic performance — [0 0 0.05 0.1] — [0.05 0.1 0.15] — [0.1 0.15 1 1]
Business disruption — Other — Commercial — Health Clinic/Major Users
Number of lanes Numbers — — ≥3 2 1
Possible damage to
nearby assets

m [10 15 20 20] — [5 10 15] — [0 0 5 10]

Environmental consequences
Soil type (corrosivity) — Low [1 1 3] — Moderate [1 3 5] — High [3 5 5]
Proximity to sensitive area m [10 15 20 20] — [5 10 15] — [0 0 5 10]
Average daily traffic — Low [1 1 3] — Moderate [1 3 5] — High [3 5 5]

Social consequences
Type of service
area (land use)

— Agricultural/Open
Space

Park Residential Educational/
Commercial

Industrial/Medical/Emergency

Average daily traffic — Low [1 1 3] — Moderate [1 3 5] — High [3 5 5]
Population density ppl=km2 [0 0 100 300] [100 300 500] [300 500 700] [500 700 900] [700 900 1200 1200]

Note: I = insignificant; L = low; M = moderate; H = high; S = severe; and ppl = population.
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defined over a range of 0 to 500 mm. It was assumed that a diameter
value of less than or equal to 100 mm will have the same level
of I consequence. Similarly, a diameter value of 400 mm or more
will have the same level of S consequence. Hence, the trapezoidal
membership function is used to define I and S consequence levels
as ½ 0 0 100 250 � and ½ 250 400 500 500 �, respectively.
Fuzzy numbers in the parenthesis ½ 0 0 100 250 � represent
trapezoidal fuzzy membership function of the I consequence level
where 0 is the minimum, interval 0–100 is the most likely range,
and 250 is the maximum value of trapezoidal membership function.
The fuzzy membership value of I consequence, μ, at any point be-
tween 0 and 250, is calculated using Eq. (2). Intervals of midlevel
consequence levels (L, M, and H) are equally distributed using
triangular membership functions. The fuzzy numbers in the paren-
thesis ½ 100 250 400 � represent a triangular membership func-
tion of M consequence level where 100, 250, and 400 denote the
minimum, the most likely, and the highest values, respectively. The
fuzzy membership value of M consequence, μ, at any point be-
tween 100 and 400, is calculated using Eq. (3).

Other qualitative and quantitative parameters are evaluated for
standard five consequence levels based on their characteristics and
relative effect to the consequence. Singleton fuzzy membership
functions are used to define these parameters, as presented in
Fig. 2(d) and Table 2.

However, it should be noted that number of consequence levels,
the interval between different consequence levels of a particular
parameter, fuzzy membership type can be modified or changed
based on expert opinion. For instance, the pipe diameter is classi-
fied into three categories based on the understanding of previous
literature, and both trapezoidal and triangular membership func-
tions are used to define corresponding consequence levels. The
number of consequence levels and type of membership functions
can be modified and changed by the user based on the specific con-
text (Sadiq et al. 2007). Two parameters, land use and average
daily traffic, are used twice for estimating the consequences. Aver-
age daily traffic is used for estimating environmental and social
consequences because it contributes to both. Similarly, the type
of land use or service area is considered for estimating economic
and social consequences.

Figs. 2(a–e) shows the fuzzy membership functions used in this
study for consequence quantification.

Fuzzy Hierarchical Inference
The hierarchical fuzzy inference is developed to aggregate the con-
sequences of parameters for each pipe segment, as shown in Fig. 3.
The indirect knowledge acquisition approach (e.g., expert in-person
interview, literature review, engineering judgment) is applied to de-
velop a knowledge base fuzzy hierarchical model for consequence
quantification due to water pipeline failure. The consequence
parameters are categorized into four consequences depending on
their type of contribution to the consequence. The parameters as-
sociated with consequence evaluation are decomposed into three
hierarchical levels. In the first layer, all parameters are classified
into four consequences and the corresponding consequence values
are obtained through a Mamdani-type inference. In the economic
consequences, the selected six parameters are subgrouped into
major economic contributor (Eco1) and minor economic contributor
(Eco2). These subgroups are performed because (1) the four param-
eters in the Eco1 class contribute more to the economic
consequence than the parameters in the Eco2 class and (2) consid-
eration of the six economic parameters in a class results in a large
number of fuzzy combinations (rules) that potentially increase com-
putation time significantly. Subclassifying the economic parameters
increase computational efficiency in the analysis. Similar to the

input membership functions, input–output variables in the second
and third layers are mapped into I, L, M, H, and S consequence
levels over a range from 0 to 1. Intervals of five consequence levels
are equally distributed on a scale of ½ 0; 1 � (Sadiq et al. 2007),
Hence, fuzzification used for variables in the second and third layers
is ðI; L;M;H; SÞ⇒ ð½0 0 0.25 �; ½0 0.25 0.5 �; ½0.25 0.5 0.75 �;
½0.5 0.75 1.0 �; ½0.75 1.0 1.0 �Þ.

The most commonly used Mamdani-type input–output fuzzy
model is used to estimate the consequence of each integrated sec-
tion (Mamdani 1976). Mamdani fuzzy inference has an advantage
over the Sugeno fuzzy system, because the rules of the Mamdani
model are easily understandable, well suited for a knowledge-based
expert system, and consequents are expressed in fuzzy sets (Sugeno
1985; Jin 2003). Mamdani fuzzy inference uses simple rules based
on the IF and THEN relationship of antecedent and consequent
parts (Mamdani 1976; Fares and Zayed 2010), as expressed by
Eq. (4). The fuzzy inference process determines the consequent
(output) based on the antecedent (inputs). Input parameters in
the antecedent part convey the characteristics of consequent. For
instance, environmental consequences (consequent/output) in the
second layer is obtained based on three input parameters (anteced-
ent) in the first layer. The attribute of input parameters is evaluated
on fuzzy memberships, and consequent value is obtained through
fuzzy rules. A typical form of IF/THEN rules can be expressed as

IF ðAntecedentÞTHEN ðConsequentÞ
Ri ¼ IF ðx1 is Ai

1 and x2 is A
i
2 and · · · · · · · · · · and xm is Ai

mÞ
THEN ðy is BjÞ ð4Þ

where Ri is the ith rule, Ai
jði ¼ 1; 2; : : : ;N; j ¼ 1; 2; : : : ;mÞ is the

fuzzy subsets of inputs, N is the total number of rules,m is the total
number of input variables, and Bj is the fuzzy subsets of outputs.
An example of fuzzy rules generation is explained in the supple-
mental materials.

This rule-based fuzzy inference typically has a large number of
rules to account for all possible combinations of input variables
(Tesfamariam and Saatcioglu 2008a). The Mamdani method is
based on simple minimum function, and logical operator “and”
is used for the minimum function, as expressed by Eq. (5)
(Demartinos and Dritsos 2006; Fares and Zayed 2010). Hence,
the fuzzy rules presented in Eq. (4) can be reexpressed as (Jin 2003)

μRiðx1; x2 : : : : : : ; xm; yÞ ¼ μAi
1
∧ μAi

2
∧ · · · · · · · · ·∧ μAi

m
∧ μBi

ð5Þ

where ∧ is the minimum operator, μAi
j
is the membership function

of parameter j for the ith rule, μBi is the membership of output
parameter for the ith rule, and μRi presents the fuzzy relationship
for the ith rule. The consequent is evaluated on a scale of ½ 0; 1 �.
After knowledge base fuzzy rules are evaluated, the consequent val-
ues of fuzzy rules are aggregated by using the maximum operator,
as follows (Jin 2003):

μRðx1; x2 : : : : : : ; xm; yÞ ¼ ⋁
i¼1

N
½μRiðx1; x2 : : : : : : ; xm; yÞ� ð6Þ

where ∨ is the maximum operator and μR is the aggregated mem-
bership function for consequents. Eqs. (5) and (6) perform the
maximum of minimum approach ½maxfminðÞg� to obtain aggre-
gated consequent numbers for insignificant to severe consequence
levels. This approach is used to obtain the maximum value of any
consequent membership functions used to determine a crisp value
of consequence in the defuzzification process.
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Defuzzification
The defuzzification process converts fuzzy outputs into a crisp
value in each hierarchy level. There are several ways to perform the
defuzzification process (e.g., the centroid of the area, weighted
average). The centroid of area method is applied in this study to
determine the crisp number of each output. Eq. (7) estimates the
centroid of each truncated consequent function and averages them
by their areas for determining the crisp value. This approach has the
advantage of being easier to program, computationally efficient,
and providing reasonable outcomes (Fares and Zayed 2010).
The crisp value of each consequence is determined on a quantitative
scale ½ 0; 1 �, as follows:

Cf ¼
P

n
i¼1 Āi × ciP

n
i¼1 Āi

ð7Þ

where Cf is the consequence of failure, Āi is the truncated area of
the ith part, and ci is the centroid of the ith part.

Defuzzification is performed for economic (Eco1, Eco2), opera-
tional, environmental and social consequences to obtain a crisp num-
ber using fuzzy consequent membership functions. The weighted
sum method is used to integrate the overall consequence from the
different consequences. Weights of consequences in the decision-
making process can be derived from information available in the
literature and/or expert’s pairwise comparison between parameters.
The relative importance of consequences/parameters can be esti-
mated at each hierarchical layer through the analytical hierarchy pro-
cess. Shahata and Zayed (2016) studied the integrated consequence
of water, sewer, and road assets where 18 factors are grouped under
economic, operational, environmental, and social consequence in-
dexes. Since the current study also classified consequence parame-
ters into four consequence indexes in a similar way, for the water
and road assets, weights of four consequence classes are adapted
from Shahata and Zayed (2016). However, for assigning weights
of parameters for a particular context, readers are referred to
Tesfamariam and Saatcioglu (2008b) for a detailed descript of ana-
lytical hierarchy–based weights estimation from expert judgment.
The final consequence is also evaluated on a scale of 0–1. The
fuzzy inference system, as presented in Fig. 3, was built and
analyzed in the MATLAB program.

Risk Estimation

Risk Equation
The overall risk (Rf) is the combination of the probability of failure
(Pf) and the consequence (Cf) due to the failure of an asset to meet
the performance objective. A widely used concept to quantify the
risk is multiplying the probability of failure with the consequence
of failure (Vladeanu and Matthews 2018) as follows:

Rf ¼ Pf × Cf ð8Þ

This approach determines the riskiest components based on the
numerical values of the probability of failure and the consequence
of failure.

Risk Matrix
The risk matrix is a square matrix where the columns and rows of
the matrix denote the consequence of failure and the probability of
failure, respectively, as shown in Fig. 4 (Vladeanu and Matthews
2018). Previous research on condition rating of infrastructure assets
(Elsawah et al. 2016; Shahata and Zayed 2016; Vladeanu and
Matthews 2018) used a similar risk matrix for decision-making.
In this research, both the consequence of failure and the probability

of failure are classified into five levels, as shown in Fig. 4. Finally,
five qualitative risk levels are assigned based on the combination of
the level of the consequence of failure and the level of likelihood of
failure, as shown in Fig. 4 and Table 3.

Dependency Analysis

Modern infrastructure systems are highly interconnected and be-
coming increasingly interdependent due to physical proximity,
shared resources, and functionality, among others. Existing research
classified dependency and interdependency among infrastructures in
various ways (Ouyang 2014). Infrastructure dependency refers to a
unidirectional relationship among the infrastructure systems where
the state of one system is dependent on the state of another system.
On the other hand, infrastructure interdependency refers to a

Fig. 3. Fuzzy hierarchical structure.

Fig. 4. Risk matrix.

Table 3. Risk scaling

Risk
level

Likelihood
of failure

Letter
grade Description

5 Severe S Severe impact on the performance and
consequence

4 High H Highly influence the performance and at risk
3 Moderate M Moderately affect the system component
2 Low L Minor impact on the performance
1 Insignificant I No or very little influence on the performance
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bidirectional relationship among the infrastructure systems where
the state of one system is dependent on the state of the other and
vice versa (Rinaldi et al. 2001).

The current study modeled the dependency of road networks on
water infrastructure assets as a geospatial dependency. Infrastruc-
ture systems are spatially dependent or interdependent when the
performance of one is affected by another in the same geographical
space (Atef and Moselhi 2014). Road networks collocated in the
paths of water pipelines are likely to suffer catastrophic consequen-
ces in the event of a failure in the water network. Hence, the geo-
spatial dependency of road networks on WDSs is performed to
identify the road and water network segments that are collocated
in the same geographical space.

Geospatial analysis can be performed utilizing the geoprocess-
ing tool of a GIS software. ArcGIS geoprocessing toolbox is used
to analyze the data set of the two infrastructure systems to identify a
new data set with collocated assets. This is achieved by generating a
buffer around each link in the two systems. A buffer is a dynamic or
static geometric boundary generated around the selected feature,
and it encapsulates the study zone (Atef and Moselhi 2014). If
any feature falls within that boundary, it is considered as a collo-
cated feature. For example, if a buffer of 10 m is assumed from the
centroid of a water pipeline, then the intersection of a buffered layer
of water pipes and road links are considered as collocated assets.
The width of the buffer can be varied dynamically or statically de-
pending on the decision maker’s preference. Using the selection
query and union module, the dependent road links and collocated
water pipelines can be identified. Fig. 5 shows an example of spa-
tial data analysis used for identifying dependent road and collo-
cated water segments.

Network Criticality Analysis

After quantifying the risk to the infrastructure assets, decision
makers need to know how failure of a component affects the

performance of the system. Criticality of a component is estimated
by identifying the change of network efficiency before and after the
failure of that component. Complex network theory is used to de-
termine the network efficiency of a network. Road and water net-
works are typically a complex representation of graphs consisting
of vertices and edges embodied in a geographical space that can be
modeled as a graph Gðn; eÞ composed of a collection of n vertices
(e.g., node, junction, intersection, tank) connected by e edges
(e.g., pipeline, road links). A graph can be either directed or undi-
rected, depending on their representation of edge direction. A graph
is said to be undirected if a vertex can be reached from any other
vertices, whereas in a directed graph, vertices can be reached by
following directed edges only. It should be noted that the topologi-
cal metrices are determined for an undirected graph using the
NetworkX tool (Latora and Marchiori 2001; Brandes 2008;
Hagberg et al. 2008).

Edge Betweenness Centrality

In a water or road network graph, an edge (pipe or road link) may
not be important locally but maybe important globally if many ac-
cess flows need to pass through it (Hawick 2012). Edge between-
ness centrality (EBC) is defined as the number of shortest paths
based on the length that passes through an edge in a network or
graph (Barthélemy 2011). Pipeline failure and road closure are
common phenomena in the WDS and road networks, respectively.
EBC of edge (pipe or road link) provides information about the
possible flow path disruption if the edge fails. Failure of a
pipeline/road link with high EBC is likely to significantly affect
the connectivity of the system (Giustolisi et al. 2019).

The EBC of an edge, l (pipe or road link), for vertices s and t, is
calculated by the following equation (Brandes 2008; Giustolisi
et al. 2019):

CeðlÞ ¼
X
s≠tεV
lεE

ρs;tðlÞ
ρs;t

ð9Þ

where CeðlÞ is the EBC of edge l, ρs;tðlÞ is the number of connect-
ing shortest paths that pass-through edge l from vertex s to vertex t,
ρs;t is the total number of shortest paths from vertex s to vertex t,
and V and E are sets of vertices and edges, respectively. For an
undirected graph, the normalized form of the EBC is expressed
as (Brandes 2008)

C�
eðlÞ ¼

2

ðn − 1Þðn − 2ÞCeðlÞ ð10Þ

where C�
eðlÞ is the true EBC of edge l and n is the number of ver-

tices in a WDS or road network. The EBC is a good measure to
identify the most influential edges that control the performance
of the system.

Network Efficiency

Failure in the water pipeline will not only affect the dependent road
network but also will affect the WDS. Since failure of a component
of a network (both indirectly and directly, cascading failure) trig-
gers a change in the connectivity between some vertices and the rest
of the network, the shortest path–based network efficiency can
be a useful measure to analyze the effectiveness of connectivity-
based functionality of a network. The efficiency of a road network
and WDS is measured by the following expression (Latora and
Marchiori 2001; Guidotti and Gardoni 2018)

Fig. 5. Geospatial dependency analysis.

© ASCE 04021022-9 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2021, 147(5): 04021022 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
A

SE
 W

ES
TE

R
N

 R
ES

ER
V

E 
U

N
IV

 o
n 

01
/1

6/
22

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



ηðGÞ ¼ 1

nðn − 1Þ
Xn
i¼1

Xn
j¼1
i≠1

1

dij
ð11Þ

where ηðGÞ is the efficiency of a network graph G, dij is the short-
est path between vertex i and vertex j, and n is the number of ver-
tices in the network. When vertex i is disconnected from vertex j,
dij is equal to infinite (∞). The efficiency metric is recently applied
for functionality analysis of infrastructure networks after localized
attack (Hu et al. 2016) and can be used as a measure to determine
the extent of loss of system connectivity of a road network
and WDS.

The impact on network due to the failure of a particular pipeline/
road segment is evaluated as follows:

IηðlÞ ¼
ηðGÞ − ηðḠÞ

ηðGÞ ð12Þ

where Iη is the network impact index due to failure of pipeline/road
segment l, and ηðḠÞ is the efficiency of a network graph Ḡ, where
Ḡ is the subgraph of graph G after removing the failed pipeline/
road segment from the network.

Decision-Making

Both the risk equation and the risk matrix are used to assign the risk
to components. Decision alternatives are generated using the risk
equation and risk matrix separately. After determining the risk level
of an individual asset, the utility manager needs to understand how
a component plays a role in keeping the system functional. To pri-
oritize assets within a system, results from the risk assessment and
network impact index are used in the decision-making process. In
this study, two decision-making approaches are followed. In the
first approach, decision alternatives are generated by combining
the outcomes from the risk equation and the combined Iη for both
road network and WDS. The concept of compromise ranking
method (Opricovic and Tzeng 2004; Asadi et al. 2019) is utilized
to rank the components as follows:

DI ¼ Weight of Risk × Normalized Risk

þWeight of Iη × Normalized Iη ð13Þ

DI ¼ ωR ·
Rf − Rmin

f

Rmax
f − Rmin

f

þ ωIη ·
Iη − Iηmin

Iηmax − Iηmin
ð14Þ

where DI is the decision index, Rf is the risk value obtained from
the risk equation, Rmin

f is the minimum of Rf , Rmax
f is the maximum

of Rf, Iη is the combined impact index, Imin
η is the minimum of Iη,

Imax
η is the maximum of Iη, ωR is the weight of the risk, and ωIη is
the weight of the Iη. This approach provides a number of scenarios
based on various relative weights between risk output and network
criticality analysis (NCA) output. The decision maker can accept or
reject a decision based on their goals. In the second approach, com-
ponents are classified first into different risk levels using the risk
matrix. Then components are prioritized for maintenance actions
depending on their Iη values obtained from the NCA. This is
the simplest way to prioritize components for maintenance or re-
newal works.

Case Study

Network Description

In the current study, the water distribution system and road network
of Zone III of the Rancho Solano area of the city of Fairfield,
California, is used as a case study. The EPANET compatible water
network data file is obtained from the ASCE task committee
on research databases repository of the University of Kentucky
(Jolly et al. 2013; WDST 2019). The water network is composed
of 111 nodes (junctions), 126 elements (pipes), and 1 elevated
water tank, as shown in Fig. 6(a). The road network of Rancho
Solano is retrieved from OpenStreetMap using the OSMnx Python
tool (Boeing 2017). The road network consists of 205 vertices
(junctions) and 267 edges (road segments), as shown in Fig. 6(b).
Network topology, hydraulic model, diameter, material type, road
types, and number of lanes are readily available.

For the simplicity of the fragility analysis, three types of pipe-
lines are assumed. The hydraulic performance of WDS is measured
by utilizing the WNTR (Klise et al. 2017). Other parameters are
randomly generated within a reasonable limit and assigned to illus-
trate the proposed framework. Table 4 provides a sample data set of
consequence parameters. Criticality of pipelines in a WDS graph
are identified using NetworkX (Hagberg et al. 2008).

Fragility Analysis Results

In this case study, only the physical failure of the water pipeline is
considered, and it is very likely that physical failure in water pipe-
lines will affect the traffic flow in the dependent road segments.
Hence, it is assumed that the dependent road will be fully closed
due to the failure of collocated buried water pipelines. Since the
majority of water pipelines in the United States are made of CI,
the current WDS is assumed to be composed of CI pipelines. Three
types of pipes are considered (type 1: D ¼ 300 mm, t ¼ 12 mm;
type 2: D ¼ 350 mm, t ¼ 15 mm; type 3: D ¼ 450 mm, t ¼
16 mm). An evenly distributed real random number was generated
over a range from 70 to 100 years for assigning the age of pipelines
(since most of the gray CI pipes were produced before 1948 until
ductile iron was introduced) (Rajani and Kleiner 2001). The fragil-
ity curves are determined using the physics-based limit state ap-
proach expressed by Eq. (1) where stress, σðTÞ is calculated
using the following equation (Robert et al. 2016):

σðTÞ ¼
�
W þ γsD2H

D2

�
α1

�
EP

ES

�
β1

�
ES

γsH

�
β2

×

2
664α2

�
PO
ES

�
β3

�
τðTÞ
D

�
β4

�
W

γsD2H þ 1
�
β5

þ α3

�
τðTÞ
D

�
β6

�
W

γsD
2H þ 1

�
β7

α4

�
EP
ES

�
þ α5

�
PO
ES

�
þ α6

�
H
D

�
þ α7κ

3
775 ð15Þ

where α and β are model coefficients and can be found in Robert
et al. (2016). Monte Carlo simulation with 100,000 sampling
points, was performed to obtain the time-variant failure probability
of the CI pipelines based on the random variables adapted from
Mazumder et al. (2019) and Ji et al. (2017). Definition of other
parameters in Eq. (15) and their statistical distributions are pro-
vided in Table 5. The Rajani et al. (2000) corrosion model is used
considering two types of corrosive soil environments (moderate
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and high). Figs. 7(a and b) show the fragility curves of pipelines
for moderate and high corrosive environments, respectively.
More details on the fragility analysis can be found in Mazumder
et al. (2019).

Risk Analysis Results

The risk of WDS is determined by combining the probability of
failure of pipeline and the consequence of failure. Fig. 8(a) shows
the failure probability of pipelines in the network. Since the young-
est pipeline age is randomly assigned as 70, the lowest value of the
failure probability is equal to 0.2. However, the probability of fail-
ure does not only depend on the pipeline age. As shown in Eq. (15)
and Table 5, the probability of failure depends on various factors,
such as pipe wall thickness and operating pressure inside pipelines.
Corrosion growth deterioration significantly dominants the pipe’s
performance. Increment of corrosion pit growth over time reduces
pipe wall thickness, leading to potential pipe failure (Robert et al.
2016; Mazumder et al. 2019). The integrated consequence is evalu-
ated on a scale of 0–1 using the fuzzy hierarchical inference system.
The consequence refers to the potential impact due to the failure
of the water pipeline. Integrated consequence due to failure of water

pipes is estimated for the closely collocated road and WDS seg-
ments only. Parameters associated with the road network are opted
out while estimating the consequence of water pipelines that are not
collocated with the road network. For instance, in addition to low

Fig. 6. Rancho Solano (a) WDS; and (b) road network.

Table 4. Sample data set of consequence parameters (10 out of 126 pipes)

Pipe
ID

Dia.
(mm)

Depth
(m) Mat

Degree of
access.

Road
type

Land
use BD HP

# of
Lanes

PA
(m) Soil type

Prox.
sensitive area

(m)
Avg. daily
traffic Pop:=km2 Age

119 300 4.1 CI 2.4 Collector Agr Health 0.010 2 6 Mod 5 Low 767 70
121 350 2.8 CI 1.5 Collector Res Health 0.000 2 20 Mod 19 Low 576 80
122 300 4.0 CI 4.7 Collector Park Com 0.008 2 4 Low-Mod 13 High 412 70
123 350 3.1 CI 1.3 Collector Com Other 0.000 2 14 Mod 18 Low 992 90
124 350 1.4 CI 1.1 Arterial Res Com 0.006 2 6 Low-Mod 10 Low 345 70
125 450 1.2 CI 2.3 Collector Ind Other 0.003 2 7 High 13 High 689 70
126 350 2.0 CI 1.3 Arterial Ind Major 0.003 2 9 Low-Mod 4 High 212 90
127 350 2.4 CI 4.1 Collector Agr Com 0.003 2 6 Low-Mod 19 High 386 90
130 300 3.5 CI 3.2 Collector Agr Health 0.001 2 12 Low-Mod 14 Low 685 70
137 450 4.3 CI 3.6 Collector Ind Health 0.000 2 20 Mod 4 High 1039 90

Note: Dia = diameter; access. = accessibility; BD = business disruption; HP = hydraulic performance; PA = proximity to asset; Avg. = average; and
Pop. = population.

Table 5. Statistical parameters and distributions

Parameters Mean COV Unit Distribution type

Wall thickness, t 12, 15, 16 — mm Deterministic
Pipe diameter, D 300, 350, 450 — mm Deterministic
Surface traffic
loads, W

70 0.3 kN Normal

Buried depth, h 0.8 0.25 m Normal
Elastic modulus
of soil, ES

25 0.3 MPa Lognormal

Unit weight of soil, γ 20 0.1 kN=m3 Lognormal
Tensile strength, σy 100 0.15 MPa Normal
Model coefficient, κ 1.0 0.15 — Normal
Operating
pressure, PO

1000 0.15 kPa Normal

Elastic modulus
of pipeline, EP

100000 — MPa Deterministic

Note: COV = coefficient of variation.
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Fig. 7. Fragility curves of pipelines considering: (a) average; and (b) high corrosion models.

Fig. 8. Risk estimated based on risk equation: (a) probability of failure; (b) consequence of failure; and (c) risk.
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failure probability, pipe #150 is not dependent to the water pipeline,
leading to a very low consequence for this pipe. Fig. 8(b) represents
the consequence of failure obtained through fuzzy hierarchical in-
ference. The nearness of the road and other assets to the water main
potentially increases the consequence. Some factors related to a
dependent asset, such as nearby assets and traffic volume are con-
sidered to account for determining consequences on dependent as-
sets. The economic consequence is the dominant consequence class
that contributes higher than other consequences to the total conse-
quences. This is because the weight of economic consequences is
considered relatively larger than the weights of other consequences.
Fig. 8(c) shows the risk estimated by utilizing the risk equation. Pipe
#220 and #247 have the highest level of risk because they have the
highest level of consequence and the highest failure probability. On
the other hand, pipe #221 has a low-risk level because it has a lower
probability of failure and moderate consequence.

As previously mentioned, the risk information obtained through
the risk equation is unable to differentiate between components

with a low probability of failure and higher consequence of failure
and those with a higher probability of failure and lower conse-
quence of failure. Hence, the risk matrix is applied to assign risk
levels based on the combination of the probability of failure and
consequence of failure. Using the risk matrix, the decision maker
will be able to differentiate between pipelines having low failure
probability and high failure consequences and pipelines having high
failure probability and low failure consequences. The risk matrix is
popular within utility agencies for combining the consequence of
failure and the condition of pipes to determine the risk of failure
(Miles et al. 2007). Figs. 9(a–c) show the assigned rating for the
failure probability of pipelines, the consequence of failure, and
the risk of components obtained utilizing the risk matrix, respec-
tively. It can be seen that pipe #174 has a lower consequence of
failure (level 2) and a high probability of failure (level 5) that made
the pipe at high risk (level 4). On the other hand, pipe #177 has a
lower probability of failure (level 2) and moderate consequence of
failure (level 3) that made the pipe at moderate risk (level 3).

Fig. 9. Risk estimated based on risk matrix: (a) probability of failure; (b) consequence of failure; and (c) risk.
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Figs. 8(a–c) and 9(a–c) show that the risk levels of various com-
ponents vary notably if different risk approaches are used. For ex-
ample, if the risk matrix is used instead of the risk equation, pipe
#174 moves from moderate risk level to high risk level. In the risk
equation approach, the multiplication of a higher failure probability
value by a lower failure consequence value resulted in a moderate
risk level for pipe #174. On the other hand, the risk matrix first
classifies the failure probability and the consequence of failure
to severe and low levels, respectively, which resulted in a high risk
level for pipe #174. The number of components with higher risk
levels in Figs. 9(a–c) (using risk matrix) is relatively higher than
the number of components with higher risk levels in Figs. 8(a–c)
[using risk Eq. (8)].

Dependency Assessment Results

The relationship of the geospatial dependency of the road network
on the WDS is modeled using the geometry and asset location in a
GIS environment. The geospatial dependency is modeled by creat-
ing a buffer layer to all the assets. A 10-m offset buffer was generated
from the centerline of the roads for determining the intersecting

water asset within the buffer zone. Buffer layers of water and road
segments are presented in Figs. 10(a and b), respectively. Fig. 10(c)
shows spatially collocated components. Out of 126 water pipelines,
111 are identified as closely interdependent with the road network.
In other words, dependent road segments will be impacted due to the
failure of any of these 111 pipelines.

Network Criticality Analysis Results

Impact on Networks
Vehicles typically follow the shortest travel distance between origin
and destination points. In a road network, the road links associated
with a high EBC value hold a high number of shortest paths and
will carry a higher volume of traffic flow than other parts of the
network. In case there is a road segment closure in the shortest
travel path, a vehicle is likely to travel a longer distance to reach
its destination. Fig. 11(a) shows the vulnerability of the pipelines.
The failure of the most vulnerable pipelines will have a significant
impact on the network. For instance, if there is a failure in pipelines
#217 and #218, this will potentially affect the dependent road

Fig. 10. Dependency analysis: (a) WDS; (b) road network; and (c) collocated segments.
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segments #132 and #133. Since these roads (#132 and #133) have a
high EBC, their closure will significantly affect the other parts of
the road network and will force traffic to take a detour to a longer
travel path. If there is a closure of road segment #132 due to the
failure of pipe #217, the shortest distance from point D1 to point D2
in Fig. 11(b) increases significantly, as shown in Fig. 11(c).

Due to the failure in a water pipeline, the road segment above
the damaged pipeline is likely to be interrupted. This process can be
illustrated by analyzing the EBC and shortest path efficiency of the
network. To illustrate the dependency phenomena, a random failure
sequence is assumed based on the failure probability of pipelines.
Pipelines with higher failure probability, #218, #196, and #166, are
assumed to fail in a cascading sequence. It is assumed that failure
will initiate in pipe #218 (state-II) followed by cascading failure in
pipelines #196 (state-III) and #166 (state-IV), as shown in Fig. 12.
At the initial stage (state-I in Fig. 12), the network efficiencies
[using Eq. (11)] of the WDS and road network are estimated to
be 0.146 and 0.115, respectively. At state-II, due to the failure
of water pipe #218 and dependent road segment #132, the network
efficiencies of WDS and road network are decreased by 7.5% and

9.6%, respectively. For the cascading failure state-III, due to the
failure of pipe #196 and collocated road segment #38, the network
efficiencies of WDS and the road network will be further reduced
by 2.7% and 3.8%, respectively. If failure further propagates to pipe
#166 and collocated road segment #160 at state-IV, network effi-
ciencies of the WDS and road network will again drop by 2.1% and
2.9%, respectively. As a whole, for the assumed cascading se-
quence, failure in pipelines and road links would reduce network
efficiencies of the WDS and road network by 16.3% and 12.3%,
respectively.

Fig. 12 shows how the EBC of the networks at different states
change and redistribute the vulnerability in the network systems.
For instance, due to the failure in pipe #218 and dependent road
segment #132, traffic flow is likely to change significantly. As such,
the EBC changes in a way that road segments with the highest EBC
at state-II (e.g., road segment #117) will experience the highest vol-
ume of traffic and will be more prone to having traffic disruption.
Similarly, due to the change in the EBC of pipelines, the WDS will
experience a similar impact in terms of connectivity, as shown in
Fig. 12. To develop an effective emergency response plan, the

Fig. 11. (a) Probability of failure of pipelines, the shortest path from point D1 to point D2; (b) before; and (c) after closure of road #132.
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shortest path can be utilized by repair crews to travel from the repair
station (origin) to the failure point (destination). Hence, any poten-
tial travel delay to initiate the repair process can be avoided. If driv-
ing speed limit of roads is known, then the fastest path can be
determined by assigning “driving speed” as a weight to road

segments. The failure of a pipeline and dependent road interruption
increases the travel burden to other parts of the road system.
Changes in traffic patterns may result in excessive traffic loads
on buried pipelines under the road segment and, therefore, increases
the vulnerability of pipelines (Liu et al. 2018).

Water Distribution System

Undamaged Network
E(G): 0.146

Failure #218 pipe
E(G): 0.135

Failure #196 pipe
E(G): 0.131

Failure #166 pipe
E(G): 0.128

Road Network

Undamaged Network
E(G): 0.115

Failure #132
E(G): 0.104

Failure #38
E(G): 0.0996

Failure #160
E(G): 0.0963

Fig. 12. Impact assessment of WDS and road network.

Fig. 13. Normalized network impact index: (a) Rancho Solano WDS; and (b) road network.

© ASCE 04021022-16 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2021, 147(5): 04021022 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
A

SE
 W

ES
TE

R
N

 R
ES

ER
V

E 
U

N
IV

 o
n 

01
/1

6/
22

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Criticality of Components
Figs. 13(a and b) show the normalized impact index obtained for
both Rancho Solano WDS and road network, respectively. This im-
pact is determined by removing pipelines or road segments sepa-
rately from the network, as expressed in Eq. (12). The pipeline and
road segment with higher values in Figs. 13(a and b) are more criti-
cal for the system because failure of these components will highly
impact the network.

Decision-Making Results

Four decision scenarios are then generated following two decision-
making approaches. The first three scenarios are generated follow-
ing the first approach [using Eq. (14)], and the fourth scenario is
developed following the second approach. A combined impact in-
dex for the water pipeline and corresponding dependent road seg-
ment are linearly added and further normalized while developing
decision alternatives.

The three decision scenarios using the first approach are gener-
ated using different combinations of weights of the risk and the
network impact index. The corresponding weights of the risk
and the network impact index, Iη, for decision-1, decision-2, and
decision-3 are taken as fωR∶0.9; ωIη∶0.1g, fωR∶0.8; ωIη∶0.2g, and
fωR∶0.7; ωIη∶0.3g, respectively. These combinations are chosen
based on expert opinions obtained through in-person interviews.
Then, the final decision index is estimated as per the combination
expressed by Eqs. (13) and (14). Figs. 14(a–c) show the results of
decision scenarios 1, 2, and 3, respectively. The fourth decision
scenario is generated by utilizing the risk matrix and the ωIη. In
addition to the assigned risk rating to an individual component,
the Iη value is linearly added to the risk values for prioritizing as-
sets. Fig. 14(d) indicates the criticality of the components. The most
critical components should be repaired first, followed by the least
critical components.

It can be seen from all the decision alternatives that pipe #247
has the highest decision index and hence needs to be rehabilitated

Fig. 14. Decision alternatives: (a) Decision-1 ðωR∶0.9; ωIη∶0.1Þ; (b) Decision-2 ðωR∶0.8; ωIη∶0.2Þ; (c) Decision-3 ðωR∶0.7; ωIη∶0.3Þ; and (d) Decision-
4 (from risk matrix).
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first. It can also be seen that pipes #217 and #221 belong to priority
class P2 in decision scenarios 1 and 2. However, the priority level
increases from P2 to P3 if decision scenario 3 is chosen. This is
because decision scenario 3 gives a higher relative weight to
EBC than the other two scenarios. It should be noted that the prior-
ity class P5 in Figs. 14(a–c) refers to the highest priority, and the
priority class P1 refers to the lowest priority for maintenance.

Conclusions

This paper presents a risk-informed decision support framework for
integrated water and road infrastructure asset management. The
proposed framework utilizes a physics-based pipe failure method,
fuzzy hierarchical inference, geoprocessing tool, and complex
network theory for generating the decision index of each individual
component.

In civil infrastructure management, decision makers are
interested to know the impact of component failure on system
performance. Hence, along with the risk assessment outputs,
topology-based network efficiency is used for developing mean-
ingful and better decision alternatives, which is an advancement to
the existing decision-making models. Also, the network effi-
ciency of the WDS and road network is estimated to measure
the impact on a damaged system separately due to the failure
of a collocated segment. The framework uses a number of Python
tools (e.g., WNTR, NetworkX, OSMnx) that are computationally
efficient to analyze large networks within a relatively short time.

The proposed model was implemented for the water and road
infrastructures of the Rancho Solano Zone III of the city of
Fairfield, California. Four decision scenarios are developed, com-
bining outputs from the risk analysis and the NCA. The case study
showed that the identification of critical components provides use-
ful information about the post-failure consequence at the system
level. For instance, due to the failure in the water pipeline and sub-
sequent closure of collocated road segments, the shortest path
length between two different points can be significantly increased,
which may result in traffic delay and other consequences. It was
observed that due to the failure of a single segment (one of the
riskiest pipelines and dependent road links) in the critical part, the
network efficiencies of the WDS and road network might drop by
7.5% and 9.6%, respectively.

Although a medium-sized network is considered in this case
study, the proposed framework can be applied to any network size
if the required parameters are available. The framework is expected
to assist utility decision makers in identifying the most critical seg-
ments for prioritizing maintenance tasks.

The decision-making process allows a decision maker to select
a decision alternative for optimizing the maintenance actions. It
should be noted that a decision maker may accept or reject any
alternatives based on their goals, available resources, and budget.
The decision-making process can be updated by including a re-
newal cost analysis, and multicriteria analysis can be performed
for selecting a decision from the decision alternatives. While esti-
mating the impact on both road and water networks, geospatial
interdependency analysis is performed to determine the dependent
road segment.

This study also has other limitations that need to be addressed in
future research. The effect of dependency was modeled, assuming
that water pipeline failure will trigger a failure in both systems.
Consequence factors are only classified depending on their signifi-
cant contribution to a specific consequence. Potential aspects of
these factors’ contribution to other consequences are ignored. In
the future, the effect of failures in road networks on water networks

can be considered explicitly. Also, in the WDS, only the failure of
the pipelines was considered. Effect of failure of other components
of WDSs, such as pressure reducing valves, isolation valves, water
pumps, reservoirs, and joints, need to be considered in future re-
search. Correlation among the parameters in a consequence class
and consequence classes is not accounted for in the consequence
analysis. The effect of correlation between consequence parameters
on consequences should be analyzed in future research. Depend-
ency analysis technique can be further updated by accounting
for other factors, such as burial depth, traffic volume, and flow-
based metric.
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analysis.
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