

1 **Microstructure-Based Random FEM Simulation of Frost Heave: Theory and**
2 **Implementation**
3
4

5 Shaoyang Dong
6 Graduate Research Assistant
7 Department of Civil Engineering
8 Case Western Reserve University
9 Phone: (216) 280-0667, Email: shaoyang.dong@case.edu

10 Xiong (Bill) Yu, Ph.D., P. E.
11 Professor
12 Department of Civil Engineering
13 Case Western Reserve University
14 Phone: (216) 501-2155, Email: xiong.yu@case.edu

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 Paper Submitted to the Transportation Research Board for Presentation and Publication at the
42 2018 Annual Meeting in Washington, D. C.

43
44 Words: 4920 Tables: 1 Figures: 10 Total: 7420
45
46

1 **ABSTRACT**

2 Frost heave can cause serious damage to civil infrastructure. For example, interactions of soil
3 and water pipe under frozen conditions have been found to significantly accelerate the pipe
4 fracture. Frost heave may cause the retaining wall along highway to crack even failure in cold
5 climates. This paper describes a holistic model to simulate the temperature, stress and
6 deformation in frozen soil and implement the model to simulate the frost heave and stress in
7 water pipelines. The frozen soil behaviors are based on a microstructure-based random finite
8 element model, which holistically describes the mechanical behaviors of soils subjected to
9 freezing conditions. The new model is able to simulate the bulk behaviors by considering the
10 microstructure of soils. The soil is phase coded and therefore the simulation model only need the
11 corresponding parameters of individual phase. This significantly simplified the needs to obtain
12 parameters needed for the model. The capability of the model in simulating the temperature
13 distribution and volume change are firstly validated with laboratory scale experiments. Coupled
14 thermal-mechanical processes are introduced to describe the soil responses subjected to sub-zero
15 temperature on the ground surface. This subsequently changes the interaction modes between
16 ground and water pipe and leads to increase of stresses in the water pipe. The effects of cracks
17 along the water pipe further cause stress concentration, which jeopardizes the pipe performance
18 and leads to failure. The combined effects of freezing ground and traffic load are further
19 evaluated with the model.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1
2
3 **INTRODUCTION**

4 Frost heave is a phenomenon that soil swells upwards during freezing conditions. It mostly
5 happens in areas of freezing climates limited to frost susceptible soils such as silty soils or clayey
6 soils (1-2). Frost heave in cold regions may cause pavement upheaving and cracking, retaining
7 wall and pipeline failures and other serious damage to transportation infrastructure (3-6). Previous
8 theories to addressing the frost heave mainly include the Segregation Potential theory (4) and the
9 Discrete Icelens theory (7). Both theories can be applied to numerical models to predict the frost
10 heave. Frost heave of soils is a complex process which involves thermal flow, hydraulic conduction
11 and stress evolution. It is a coupled multi-physical process which is referred to as the thermal-
12 hydro-mechanical (THM) process (8-13). The THM process is coupled by extension of isothermal
13 theory that incorporates the thermal expansion of solid skeleton as well as the pore fluid (14-15).
14 Kurashige solved the problem of thermally induced stresses in a poroelastic cylinder by employing
15 the Crank-Nicholson implicit scheme (16). The THM process creates a coupling effect that is
16 critical to the behaviors of frozen soils. During the freezing process, the THM coupling effect can
17 lead to decreased water content, increased matric suction, the rise of water pressure head, and the
18 generation of internal stress. A number of researchers have applied the THM coupled finite
19 element analysis to soil. For example, Nishimura developed a coupled-THM model for frozen soil
20 to study the foundation stability, frost heave, and mass movements in cold regions (17). The
21 development of the coupled THM model to simulate frozen soil requires a sound foundation of
22 theoretical mechanisms, accurate parameters obtained from experimental measurements, and
23 reliable numerical methods to implement in the computational simulations.

24 The thermal, hydraulic, and mechanical properties of soil are quite sensitive to design
25 parameters. Some of the parameters are randomly distributed throughout the soil sample due to
26 complex geological processes. This random process can be simulated by the random-finite element
27 method (RFEM) (18-20). These properties may include parameters such as Young's modulus,
28 Poisson's ratio, density, thermal conductivity, heat capacity, coefficient of thermal expansion and
29 a variety of other parameters (21-23). The RFEM is an extension of the traditional FEM that adds
30 randomness to material properties. Fenton combined random field simulation with the non-linear
31 finite element to investigate the active earth pressure and stability of the retaining wall (24).

32 In the microstructural view, frozen soil is a four-phase material that includes soil particles,
33 ice, water, and air, arranged randomly due to complex geological processes (25). Researchers have
34 built a microstructural model for soil (26-27). Helliwell and Tracy obtained the structure of soil by
35 using X-ray Computed Tomography (CT) images (28-29). The microstructure extracted from the
36 high-resolution images provides a foundation for simulating the physical coupling process, which
37 could improve the understanding of THM coupled physics at a multiscale, i.e. micro-scale or pore-
38 scale of soil samples.

39 This paper describes the development and implementation of random finite element model
40 for the multiphysics thermo-hydro-mechanical processes in frozen soils. The spatial randomness
41 of soil parameters is described with this model. The results unveil interesting phenomena
42 associated with freezing/thawing due to the soil microstructure.

43
44 **THEORETICAL BASIS**

45 The theoretical basis for the thermo-hydro-mechanical processes has been established in past years.
46 Three types of physical fields (thermal field, hydraulic field, and mechanical field) fall into the

1 problems of continuum mechanics and the governing equations of these physical fields abide by
 2 the laws of energy conservation and mass conservation. The governing equation for the thermal
 3 fields (Equation 1) contains the convection and conduction terms, and is modified from Fourier's
 4 equation.

$$5 \quad \rho_j C_{p_j} \frac{\partial T}{\partial t} + \rho_j C_{p_j} q \cdot \nabla T = \nabla \cdot (k_j \nabla T) \quad (1)$$

6 Where the subscript j denotes different phases of the poromaterial; ρ_j is the density; C_{p_j} is
 7 the heat capacity; k_j is the thermal conductivity; T is the temperature; t is time and q is the flux.

8 The flow of moisture is described with the Darcy's law (Equation 2):

$$9 \quad q = -\frac{\kappa_j}{\mu} \nabla p \quad (2)$$

10 Where p is the pore-water pressure; κ_j is the intrinsic permeability; μ is the dynamic
 11 viscosity and q is the flux.

12 The governing equation for the mechanical field is the Navier's equation, which includes
 13 strain-displacement correlation (Equation 3), the constitutive relationship (Equation 4) and the
 14 equation of motion (Equation 5).

15 The strain-displacement correlation is

$$16 \quad \varepsilon_j = \frac{1}{2} [\nabla u_j + (\nabla u_j)^T] \quad (3)$$

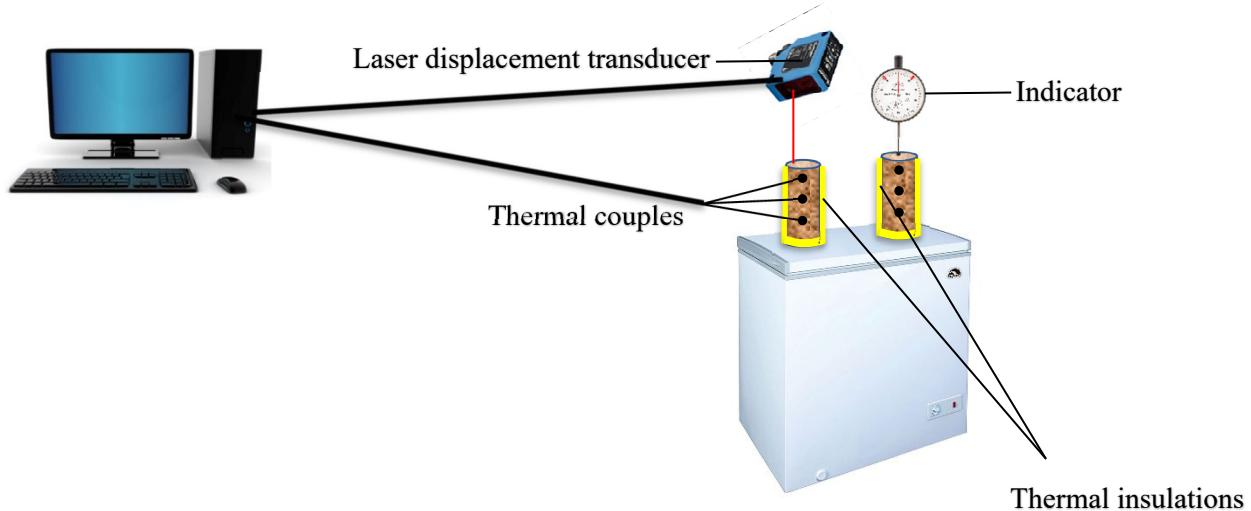
17 Where ε_j is the strain tensor; u_j is the displacement vector.

18 The constitutive relationship for phase j of the porous material is

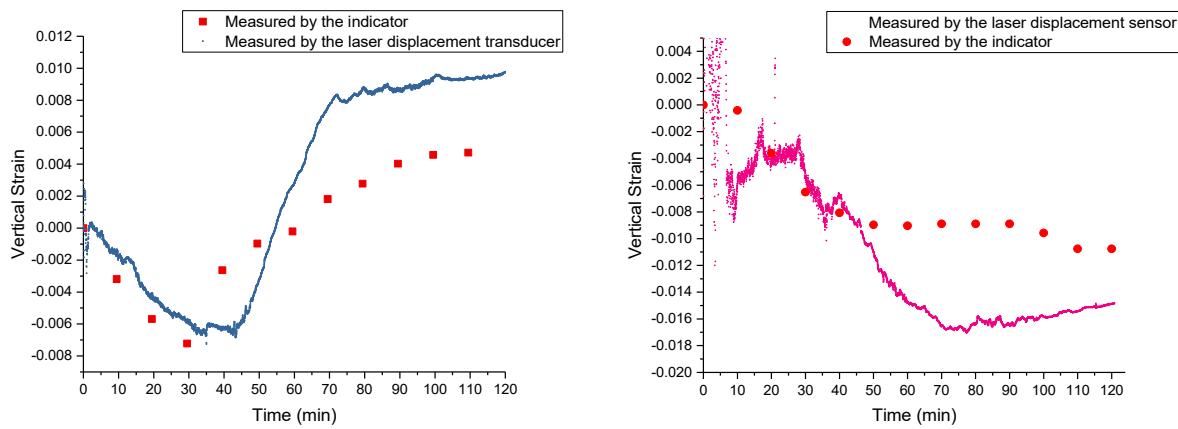
$$19 \quad \sigma_j = D_j (\varepsilon - \varepsilon_0 - \varepsilon_{th_j} - \varepsilon_{tr} - \varepsilon_{hp}) + \sigma_{0,j} \quad (4)$$

20 Where D_j is the stiffness matrix of phase j ; σ is the stress tensor; σ_0 is the initial stress
 21 tensor; ε is the total strain tensor; ε_0 is the initial strain; ε_{th_j} is the strain caused by thermal expansion
 22 of phase j ; ε_{tr} is the strain resulting from the phase change of water, which is $0.09Q$, where Q is
 23 the amount of water that changes into ice and 0.09 is the relative change of volume when water
 24 changes into ice; ε_{hp} is the strain caused by the change of matric suction, which is calculated by
 25 h/H , where h is the water head and H is the modulus related to the matric suction.

26 The equation of motion is


$$27 \quad \nabla \cdot (C_j \nabla u_j) + F = \rho_j \ddot{u}_j \quad (5)$$

28 Where C_j is the stiffness tensor of the material; u_j is the displacement vector; ρ_j is the
 29 density, and F is the body force.


31 EXPERIMENTAL MEASUREMENTS OF FROZEN SOIL

32 Two identical cylindered silt specimens of 3.3 cm in diameter and 7.2 cm in height were prepared
 33 with Harvard miniature compactor. The specimens have saturated gravimetric water content of
 34 22%. The dry density of the silt specimen is 1.708 g/cm³ and the initial temperature is 20 degrees
 35 Celsius. The specimens were thermally insulated on sides and at the bottom to create one
 36 dimensional thermal flow. The wrapped specimens were placed in the freezer with a temperature
 37 of -20 degrees Celsius. Thermal couples were installed in the silt specimen at the location of 10
 38 mm, 30 mm and 50 mm from top of the specimen to measure the temperature distribution of the
 39 silt specimens during the freezing process. Two different methods are utilized to measure the
 40 vertical deformations of the specimens during the freezing process, which include manual
 41 measurement with dial gauge indicator and automatic measurement with a laser displacement

1 transducer (Figure 1). The performance of these methods are compared from the measurement on
 2 two separate specimens.
 3

FIGURE 1 The schematic picture of the experimental system measuring the frozen soil

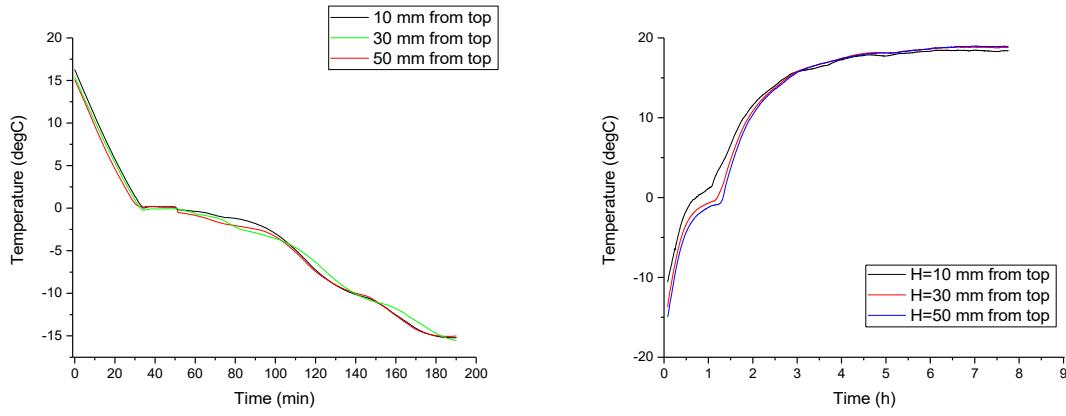


FIGURE 2 The vertical strains of the saturated silt specimen during the freezing and thawing processes

The laser displacement transducer and the thermal couples were connected to the computer to monitor and record the vertical deformation and temperature distribution of the silt specimens during the freezing process. The vertical strains and the temperature distribution of the silt specimen during the freezing process are plotted in Figure 2 and Figure 3, respectively.

For the silt specimen measured by the indicator, the vertical strain decreased from 0 to -0.007 in the first half hour due to the compaction of matric suction, then the vertical strain of the specimen increased from -0.007 to 0.005 for the rest of the time due to the frost heave. For the silt specimen measured by the laser displacement transducer, the vertical strain decreased from 0 to -0.0065 in the first 35 minutes due to the compaction of matric suction, then the vertical strain of the specimen increased from -0.0065 to 0.01 for the rest of the time due to the frost heave. From Figure 2, it is observed that the vertical strain measured by the indicator is smaller than that

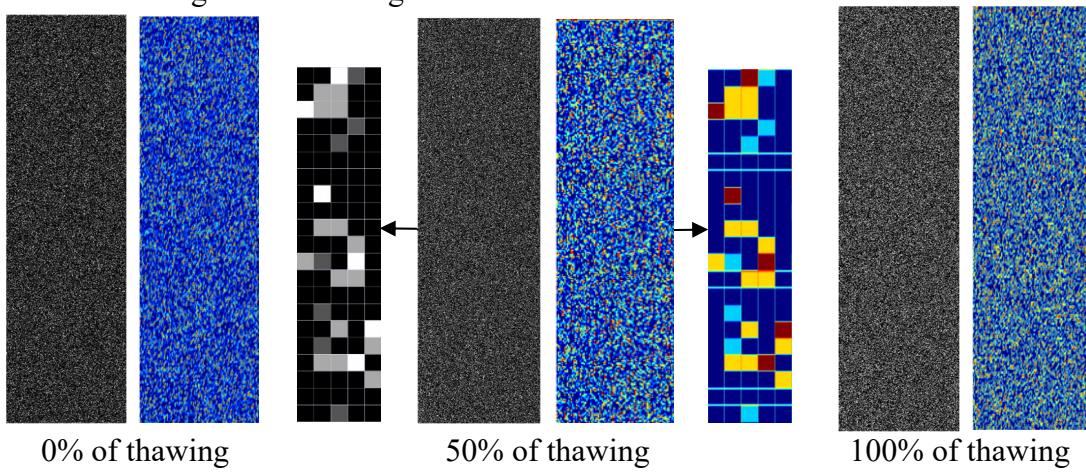
1 measured by the laser displacement transducer because the silt specimen was pressed by the
 2 indicator so that the vertical deformation was reduced; while the vertical strain measured by the
 3 laser was non-contact measurement. It is also observed that the vertical strain measured by the
 4 indicator reached to the lowest value 5 minutes earlier than that measured by the laser displacement
 5 transducer. It is due to contact between the metal stick of the indicator and the silt specimen, the
 6 measuring point on the silt specimen froze faster and arrived at the frozen point earlier. So it can
 7 be concluded that during the freezing process, the vertical strain measured by the indicator is less
 8 reliable than that measured by the laser displacement transducer.

9
 10 Freezing Thawing
 11 **FIGURE 3 The temperature of the saturated silt specimen during the freezing and**
 12 **thawing processes**

13 As shown in Figure 3, the temperature decreased fast above 0 degrees Celsius, and then it
 14 decreased at a slower rate at around 0 degrees Celsius due to the latent heat of fusion. The
 15 temperature decreased fast again below the 0 degrees Celsius and gradually approach to the
 16 temperature in the freezer. Comparing Figure 3 and Figure 2 we can find that during the phase
 17 change period (35 min to 80 min), the vertical strain of the silt specimen sharply increased due to
 18 the expansion of the ice phase.

19 The frozen silt specimens with thermal couples were taken out from the freezer to the
 20 laboratory with a temperature of 19 degrees Celsius, at the same time, the thermal couples were
 21 connected to the computer to monitor and record the temperature during the thawing process. The
 22 laser displacement transducer and indicator were also applied to measure the vertical deformation
 23 of the silt specimens. The vertical strains and the temperature distribution of the silt specimen
 24 during the thawing process are plotted in Figure 2 and Figure 3, respectively.

25 For the silt specimen measured by the indicator, the vertical strain decreased from 0 to -
 26 0.009 in the first 50 min, then, the vertical strain came to a stable level during 50 min to 90 min
 27 because the matric potential decreased which caused volume expansion counteracting the
 28 decreases in the volume due to phase change of ice. The vertical deformation continued to decrease
 29 and gradually became stable to be -0.01 for the rest of the time. For the silt specimen measured by
 30 the laser displacement sensor, the measured data were not stable in the first half hour. It was
 31 observed that the ice crystal on top of the silt specimen melted into water in the first half hour. It
 32 is speculated that the ice crystal melting accounts for the unstable measurement of the vertical strain.
 33 The vertical strain decreased during 30 min to 80 min of thawing due to phase change of ice. The
 34 vertical deformation became stable to be -0.015 for the rest of the time. The absolute value of


1 vertical strain measured by the indicator is smaller than that measured by the laser displacement
2 transdusor.

3 As shown in Figure 3, the temperature increased fast below 0 degrees Celsius, and then it
4 increased slowly around 0 degrees Celsius due to the latent heat of fusion. The temperature grew
5 fast again above 0 degrees Celsius and gradually approached to the environment temperature. It
6 took about six hours for the silt specimen to reach a thermal balance condition (the temperature of
7 the silt specimen is the same to the environment). Since the thermal flow travelled from top of the
8 silt specimen to the bottom, the temperature at the higher location is larger than that of the lower
9 location on the silt specimen at a given time.

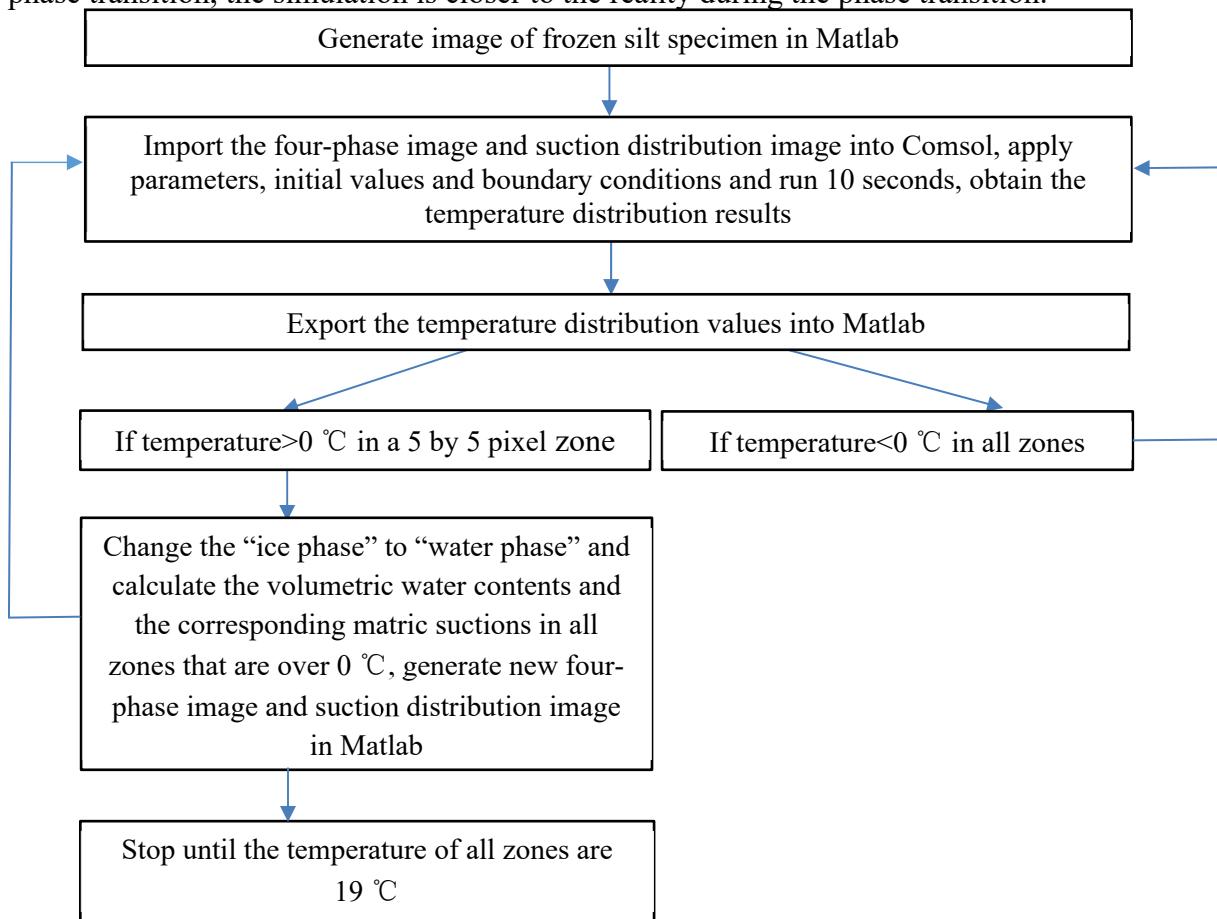
10 **NUMERICAL SIMULATION OF FROZEN SOIL**

11 The physical properties of a silt specimen prepared by harvard miniature compactor was
12 measured experimentally in the previous part. To simulate the microstructure of frozen soils,
13 firstly, the volumetric content of each phase is calculated from its dry density (1.708 g/cm^3),
14 initial gravimetric water content (22%), and specific gravity (2.65) of the silt specimen. The next
15 step is to generate an $m \times n$ matrix in Matlab. In the matrix, m is equal to the height of the silt
16 specimen divided by the diameter of the silt particle, while n is equal to the radius of the silt
17 specimen divided by the diameter of the silt particle. Thus, $m \times n$ equals the total number of
18 elements in the image of 2-D silt model. Each element in the matrix represents a particular phase
19 of the silt specimen, and different numbers (0, 1/3, 2/3, 1) are assigned to the elements in the
20 matrix to represent four different phases within the silt specimen. These numbers are randomly
21 assigned, and their probability of occurrence is equal to the volumetric content of each phase.
22 The final step is to generate an image from the matrix in Matlab. Each pixel of the image
23 represents each element in the matrix, and the color in the pixel corresponds to the number in the
24 element. Four different colors (black, dark grey, light grey, and white) represent the soil
25 particles, ice, water and air, respectively (Figure 4). The probability of occurrence of each color
26 equals the volumetric content of each phase.

27 The microstructure image is imported to COMSOL and material properties are assigned
28 based on the color scale of the image. Four different colors (dark blue, light blue, yellow, and red)
29 represent the soil particles, ice, water and air, respectively (Figure 4). Figure 4 shows the 2-D silt
30 images at different degrees of thawing after conversion from Matlab to Comsol model.

32
33 **FIGURE 4** 2-D silt microstructure-based image with different degrees of thawing
34 and the enlarged image with 50% of thawing (the gray-scale image is generated from
35 Matlab, the color image is converted into Comsol)
36

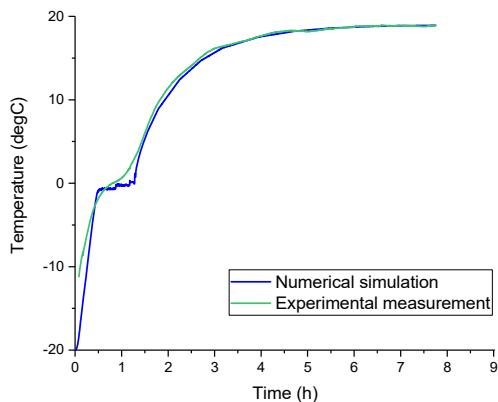
With the microstructure based random FEM model, the thermal parameters can be assigned to each pixel based on the color of the image, which represents individual phase. The heat capacity, thermal conductivity, and density of the air, water, ice, and silt particles are assigned to each pixel based on different colors corresponding to different phases in the silt specimen. The thermal parameter values of each phase are listed in Table 1.


Table 1 Constant parameters for the simulation

Constant	Value	Units	Description
R	1.65	cm	Radius of silt specimen
H	7.2	cm	Height of silt specimen
w_0	0.22	1	Initial water content
ρ	1708	kg/m ³	Dry density of silt specimen
d	150	μm	Diameter of silt particle
G_s	2.65	1	Specific gravity of silt specimen
E_s	12.7	GPa	Young's modulus of silt particle
E_i	9	GPa	Young's modulus of ice
E_w	3.9×10^{-5}	Pa	Young's modulus of water
E_a	0	Pa	Young's modulus of air
E_p	205	GPa	Young's modulus of the steel pipeline
μ_s	0.3	1	Poisson's ratio of silt particle
μ_i	0.3	1	Poisson's ratio of ice
μ_w	0.5	1	Poisson's ratio of water
μ_a	0	1	Poisson's ratio of air
μ_p	0.28	1	Poisson's ratio of the steel pipeline
ρ_s	2600	kg/m ³	Density of silt particle
ρ_i	917	kg/m ³	Density of ice
ρ_w	1000	kg/m ³	Density of water
ρ_a	1.29	kg/m ³	Density of air
ρ_p	7850	kg/m ³	Density of the steel pipeline
κ_s	10^{-17}	mm ²	Intrinsic permeability of silt particle
κ_i	10^{-17}	mm ²	Intrinsic permeability of ice
κ_w	3.08×10^{-13}	mm ²	Intrinsic permeability of water
κ_a	1.31×10^{-19}	mm ²	Intrinsic permeability of air
ϵ	0.3663	1	Porosity of silt specimen
χ_f	4.6×10^{-10}	1/Pa	Compressibility of water
μ	8.9×10^{-4}	Pa·s	Dynamic viscosity of water
k_s	2	W/m·K	Thermal conductivity of silt particle
k_i	2.2	W/m·K	Thermal conductivity of ice
k_w	0.58	W/m·K	Thermal conductivity of water
k_a	0.025	W/m·K	Thermal conductivity of air
k_p	44.5	W/m·K	Thermal conductivity of the steel pipeline
Cp_s	835	J/kg·K	Heat capacity of silt particle
Cp_i	1960	J/kg·K	Heat capacity of ice
Cp_w	4181.3	J/kg·K	Heat capacity of water
Cp_a	1005	J/kg·K	Heat capacity of air

Cp_p	475	J/kg·K	Heat capacity of the steel pipeline
L_f	334	kJ/kg	Latent heat fusion of water
α_s	9×10^{-6}	1/K	Volumetric coefficient of thermal expansion of silt particle
α_i	1.9×10^{-4}	1/K	Volumetric coefficient of thermal expansion of ice
α_{i-w}	-0.05	1/K	Volumetric coefficient of thermal expansion of a mixture of ice-water
α_w	2.07×10^{-4}	1/K	Volumetric coefficient of thermal expansion of water
α_a	3.43×10^{-7}	1/K	Volumetric coefficient of thermal expansion of air
α_p	1.23×10^{-5}	1/K	Volumetric coefficient of thermal expansion of the steel pipeline

1 To simulate the temperature distribution during the thawing process, thermal insulations
 2 are applied on sides and the bottom of the 2-D frozen silt model. The initial temperature of the silt
 3 specimen is set to -20 degrees Celsius. The boundary temperature is 19 degrees Celsius applied on
 4 top of the model during the thawing process.


5 The calculation procedure of the thermal flow simulation is shown in Figure 5. LiveLink
 6 for Comsol is used to link MATLAB process with COMSOL simulation. As indicated in the flow
 7 chart, phase changes from ice to water when temperature rises from below zero degrees Celsius to
 8 above zero degrees Celsius. The thermal parameters are not only a function of spatially distributed
 9 position, but also a function of temperature. By setting the thermal parameters as a step function
 10 of temperature and introducing the latent heat fusion of water, it considers the latent heat during
 11 phase transition, the simulation is closer to the reality during the phase transition.

1
2
3
4
5
6
7

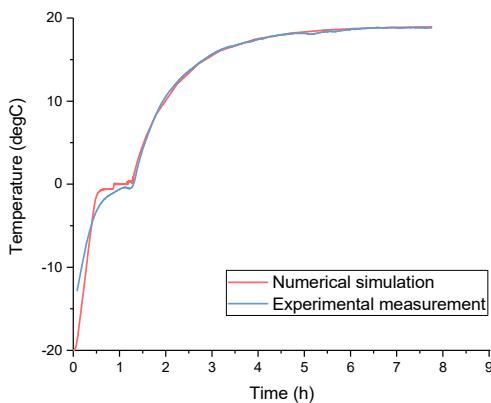
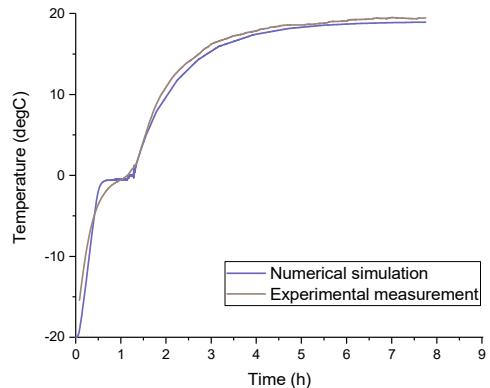

FIGURE 5 Flow chart of the calculation process of the thermal flow simulation

Figure 6 compares the numerical simulation and the experimental measurement at different heights of the silt specimen during the thawing process. It takes about 6 hours for the silt to reach a thermal balance condition of similar temperature across the specimen. The numerical simulation agrees quite well with the experimental measurement, which validates the reliability of this newly developed microstructure based random finite element model.



9

H=10 mm from top

H=30 mm from top

H=50 mm from top

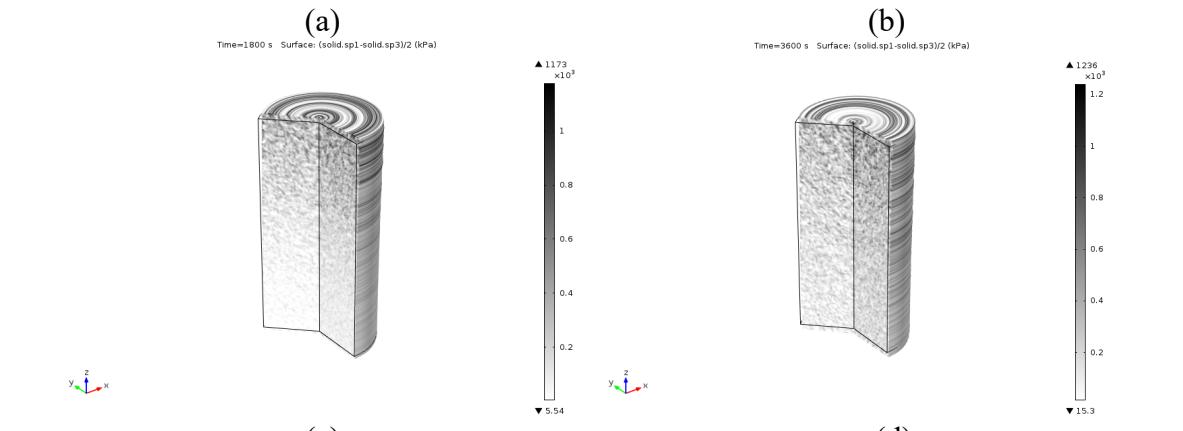
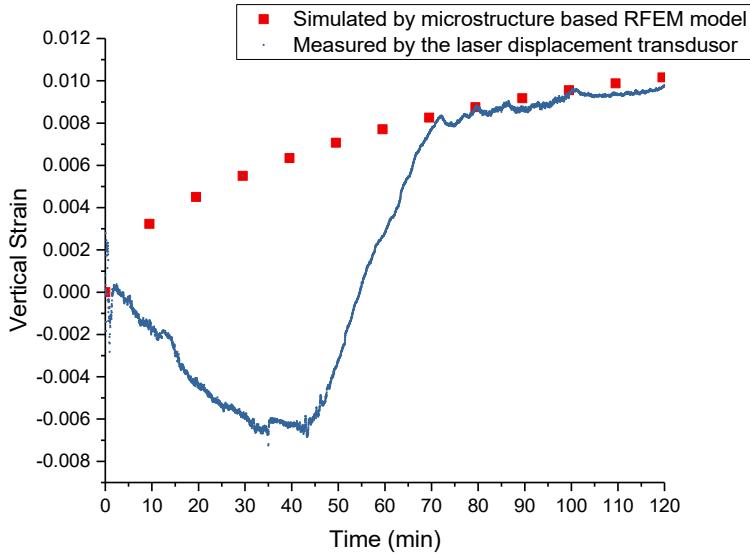

11

FIGURE 6 Comparison of the numerical simulation and the experimental measurement at different heights of the silt specimen during the thawing process

14 The mechanical parameters can also be assigned to each phase based on the microstructure
 15 of random FEM. The Young's modulus, Poisson's ratio, density, and volumetric coefficient of
 16 thermal expansion of the air, water, ice, and silt particles (Table 1) are assigned to each pixel based
 17 on different colors corresponding to different phases in the silt specimen. The thermal properties
 18 of water are modelled with a non-constant value to account for the volume change during phase
 19 transition (9% of volume expansion when water freeze into ice).


1 To demonstrate the production of internal stress and vertical strain during the freezing
 2 process, a simulation case is designed in Comsol where thermal insulations are applied on the sides
 3 and the bottom of the 2-D unfrozen silt model. The initial temperature of the silt specimen is set
 4 to 20 degrees Celsius. The boundary temperature of -20 degrees Celsius is applied on top surface
 5 of the model to start the freezing process. The Heat transfer module, the Solid mechanics module
 6 and the Poroelasticity module are applied to simulate the temperature distribution and frost heave
 7 in the soil specimen. The internal stress is generated by the development of matric suction and
 8 thermal expansion due to phase transition. Figure 7 shows the development of internal stress
 9 distribution of silt specimen during the freezing process. As the freezing process starts, there is
 10 continuous increases in the internal stress. Overall, the model describes the mechanism of internal
 11 stress generation based on physical mechanism.

12
13

14
15
16
17
18

FIGURE 7 The internal shear stress (Pa) distribution of 3-D silt specimen during the freezing process. (a) The microstructure-based image indicating the initial conditions before freezing (b) after 10 minute; (c) after 30 minutes; (d) after one hour

FIGURE 8 Comparison of the vertical strains of the silt specimen between experimental measurement and numerical simulation during the freezing process

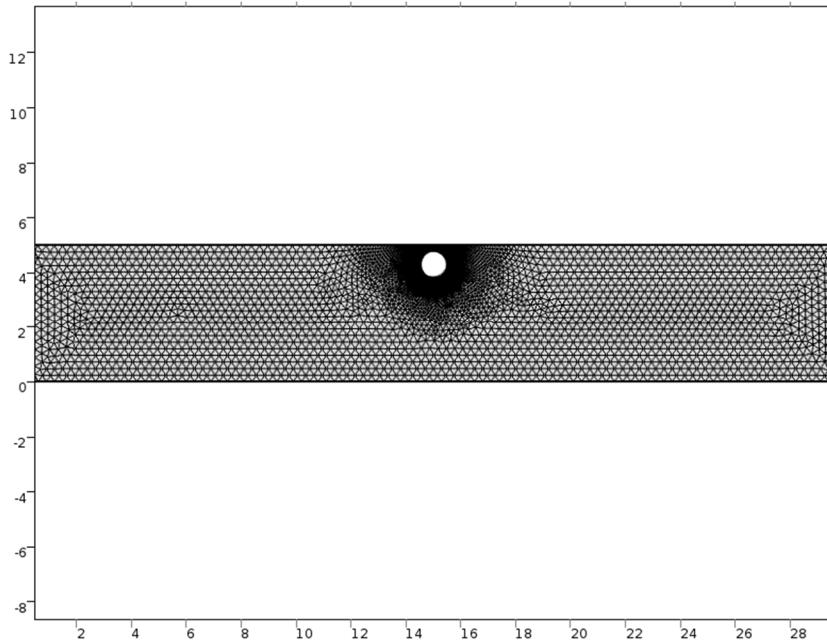
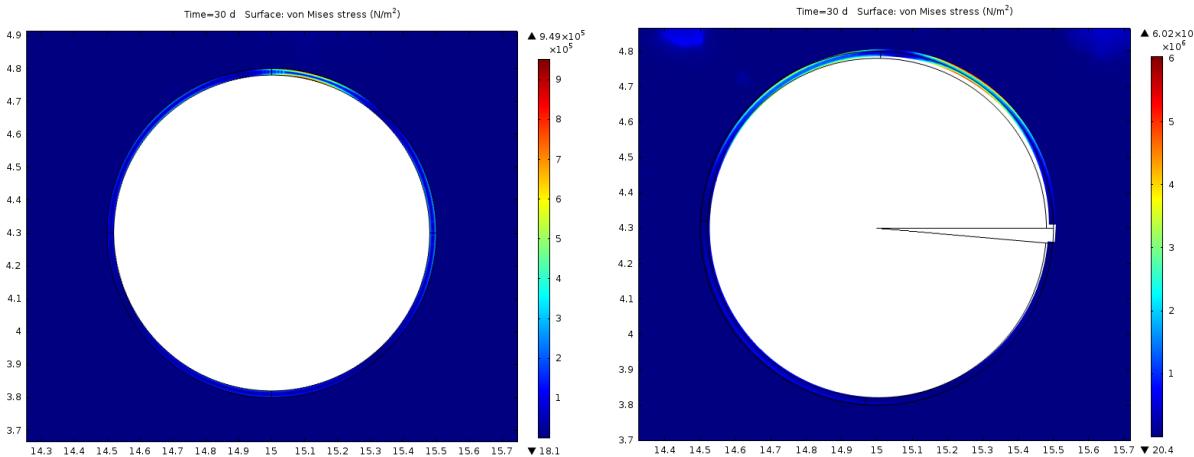
Figure 8 plots the maximum vertical strain simulated by the microstructure based RFEM and compared the results with experimental data. Overall the volume expansion at the end of freezing process predicted by the RFEM is close to the data measured by the laser displacement transducer. Compared with the experimental data, the simulation results does not show an initial decreases in the soil volume due to increases in the matrix suction. This is possibly as the RFEM model has not considered the effects of matric suction plus the variation of the stiffness of frozen soil with different extent of freezing is not accurately accounted for. This is an aspect in the RFEM model that will be further refined in the further work. Overall, the results of simulating experimental freezing/thawing process indicate that the RFEM model is able to accurately describe the internal stress and volume change due to phase transition associated with freezing.

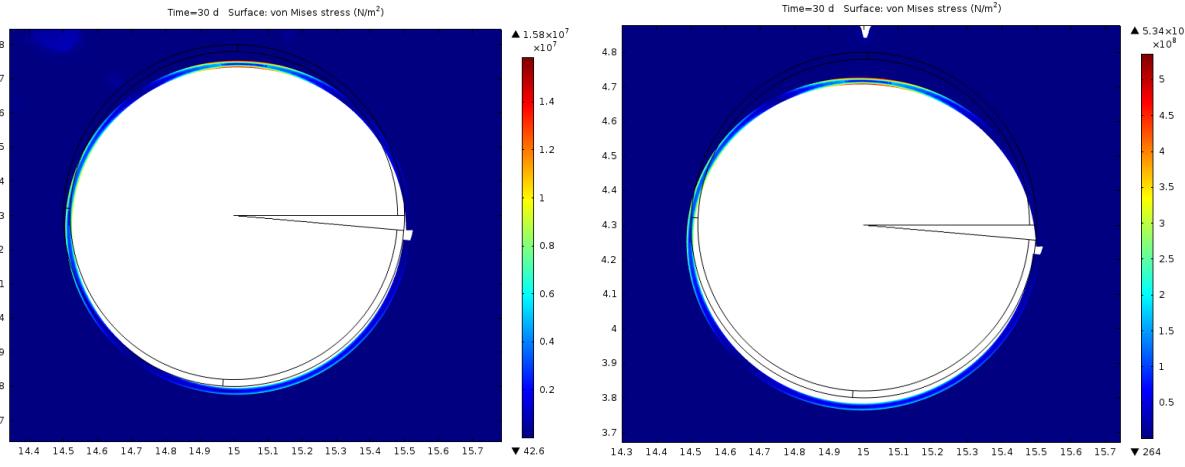
SIMULATION CASE STUDY

A water pipeline is buried 1.2m deep in a $30\text{m} \times 5\text{m}$ silt layer. The pipeline has a radius of 0.5m and thickness of 0.02m (Figure 9). The simulation parameters of the silt layer and the pipeline are shown in Table 1.

Thermal insulations are applied on sides and the bottom of the 2-D study region. The initial temperature of the study region is set to 5 degrees Celsius. The boundary temperature is -20 degrees Celsius applied on top of the region during the freezing process. Fixed constraint is applied at the bottom of the study region and rollers are applied on sides of the study region.

After 30 days of freezing, the stress distribution in the intact pipeline, in the defective pipeline, in the pipeline with a point load of 15kN and 480kN exerted on the silt layer surface above the pipeline are shown in Figure 9.


Figure 9 Simulation domain and mesh

As shown in Figure 10, after 30 days of freezing, frost heave leads to increase of stresses in the water pipe. The crack in the water pipe further leads to stress concentration, and increases the maximum stress in the water pipe. The defective pipeline with loads on the surface accelerates the internal stress generation, causes deformation and even failure of the water pipeline.

The intact pipeline

The defective pipeline

1
2 Point load of 15kN on surface
3 **FIGURE 10 Stress distribution in the water pipeline buried in a saturated silt layer after**
4 **30 days of freezing**

5 CONCLUSION

6 This research develops a microstructure-based random finite element simulation model to simulate
7 frost heave in saturated soils. This model is able to simulate the bulk behaviors by considering the
8 microstructures. The soil is phase coded and therefore only need the parameters of individual phase.
9 This therefore can direct the efforts to understand the behaviors of individual phase, which
10 represent a more uniform material. The results are consistent with experimental observations. The
11 model holistically accounts for volume change during water phase transition and simulate the
12 production of internal stress due to such process. The modeling approach combines the advantages
13 of discrete element model in simulating the mechanical behaviors of particulate system and the
14 computational efficiency of finite element model. With experimental validation, it provides a new
15 and reliable simulation tool to predict frost induced stress on infrastructures (such as pipelines,
16 retaining walls, etc.). The insight will help guide the engineering design in cold regions.

17 ACKNOWLEDGMENTS

18 This research is partially supported by the Ohio Department of Transportation and US National
19 Science Foundation.

20 REFERENCE

- 21 1. O'Neill, K., and Miller, R. D. Exploration of a Rigid Ice Model of Frost Heave. *Water
Resources Research*, 1985, 21(3), pp. 281-296.
- 22 2. Chamberlain, E. J. A Freeze-Thaw Test to Determine the Frost Susceptibility of Soils, Special
Report 87-1, U. S. Army Corps of Engineers, Cold Regions Research and Engineering
Laboratory, 1987.
- 23 3. Nixon, J. F., Morgenstern, N. R., and Reeser, S. N. Frost Heave-Pipeline Interaction Using
Continuum Mechanics. *Canadian Geotechnical Journal*, 1983, 20(2), pp. 251-261.
- 24 4. Konrad, J. M., and Morgenstern, N. R. Frost Heave Prediction of Chilled Pipelines Buried in
Unfrozen Soils. *Canadian Geotechnical Journal*, 1984, 21(1), pp. 100-115.

1 5. Lai, Y., Wu, Z., Liu, S., and Den, X. Nonlinear Analyses for the Semicoupled Problem of
2 Temperature, Seepage, and Stress fields in Cold Region Retaining Walls. *Journal of thermal*
3 *stresses*, 2001, 24(12), pp. 1199-1216.

4 6. Wu., Q., Liu., Y., Zhang., J., and Tong C. A Review of Recent Frozen Soil Engineering in
5 Permafrost Regions along Qinghai-Tibet Highway, China. *Permafrost and Periglacial*
6 *Processes*, 2002, 13, pp. 199-205.

7 7. Nixon, J. F. Discrete Ice Lens Theory for Frost Heave in Soils. *Canadian Geotechnical*
8 *Journal*, 1991, 28(6), pp. 843-859.

9 8. Li, N., Chen, B., Chen, F., and Xu, X. The Coupled Heat-Moisture-Mechanic Model of the
10 Frozen Soil. *Cold Regions Science and Technology*, 2000, 31(3), pp. 199-205.

11 9. Neupane, K. M., and Yamabe, T. A Fully Coupled Thermo-Hydro-Mechanical Nonlinear
12 Model for a Frozen Medium. *Computers and Geotechnics*, 2001, 28(8), pp. 613-637.

13 10. Liu, Z., and Yu, X. Coupled Thermo-Hydro-Mechanical Model for Porous Materials under
14 Frost Action: Theory and Implementation. *Acta Geotechnica*, 2011, 6(2), pp. 51-65.

15 11. Liu, Z., Sun, Y., and Yu, X. Theoretical Basis for Modeling Porous Geomaterials under Frost
16 Actions: A Review. *Soil Science Society of America Journal*, 2012, 76(2), pp. 313-330.

17 12. Zhou, M. M., and Meschke, G. A Three-phase Thermo-hydro-mechanical Finite Element
18 Model for Freezing Soils. *International Journal for Numerical and Analytical Methods in*
19 *Geomechanics*, 2013, 37(18), pp. 3173-3193.

20 13. Zhang, Y., and Michalowski, R. L. Thermal-Hydro-Mechanical Analysis of Frost Heave and
21 Thaw Settlement. *Journal of Geotechnical and Geoenvironmental Engineering*, 2015, 141(7),
22 04015027.

23 14. Rabin, Y., and Steif, P.S. Thermal Stresses in a Freezing Sphere and its Application to
24 Cryobiology. *Journal of Applied Mechanics*, 1998, 65, pp. 328-333.

25 15. Brownell, D.H., Jr., Garg, S.K., and Pritchett, J.W. Governing Equations for Geothermal
26 Reservoirs. *Water Resources Research*, 1977, 13, pp. 929-934.

27 16. Kurashige, M. Thermal Stresses of a Fluid-Saturated Poroelastic Hollow Cylinder. *JSME*
28 *International Journal Series I*, 1992, 35(4), pp. 386-391.

29 17. Nishimura, S., Gens, A., Olivella, S., and Jardine, R. J. THM-Coupled Finite Element Analysis
30 of Frozen Soil: Formulation and Application. *Géotechnique*, 2009, 59(3), pp. 159-171.

31 18. Fenton, G. A., and Griffiths, D.V. Bearing Capacity Prediction of Spatially Random c- ϕ Soils.
32 *Canadian Geotechnical Journal*, 2003, 40(1), pp. 54-65.

33 19. Griffiths, D.V., Fenton, G. A., and Manoharan, N. Undrained Bearing Capacity of Two-strip
34 Footings on Spatially Random Soil. *International Journal of Geomechanics*, 2006, 6(6), pp.
35 421-427.

36 20. Griffiths, D.V., Huang, J., and Fenton, G. A. Probabilistic Infinite Slope Analysis. *Computers*
37 *and Geotechnics*, 2010, 38(4), pp. 577-584.

38 21. Bharrucha-Reid, A. T. ed. *Probabilistic Methods in Applied Mathematics*. Academic Press,
39 New York, N.Y, 1968.

40 22. Sobczyk, K. *Wave propagation in random media*. Elsevier, New York, N.Y, 1985.

41 23. Chamis, C. C. Probabilistic Structural Analysis Methods for Space Propulsion System
42 Components. *Probabilistic Engineering Mechanics*, 1987, 2(2), pp. 100-110.

43 24. Fenton, G. A., Griffiths, D. V., and Williams, M. B. Reliability of Traditional Retaining Wall
44 Design. *Geotechnique*, 2005, 55(1), pp. 55-62.

45 25. Andersland, O. B., and Ladanyi, B. *Frozen Ground Engineering*. Wiley, Hoboken, NJ, 2004.

1 26. Chang, C.S., and Hicher, P.Y. An Elasto-Plastic Model for Granular Materials with
2 Microstructural Consideration. *International Journal of Solids and Structures*, 2005, 42, pp.
3 4258-4277.

4 27. Ferber, V., Auriol, J., Magnan, J., Cui, Y., De Laure, E., and Gerente, C. A Microstructural
5 Model for the Volume Changes of Unsaturated Silty Soils Due to Wetting. *Unsaturated Soils*
6 2006, pp. 861-872.

7 28. Helliwell, J. R., Sturrock, C. J., Grayling, K. M., Tracy, S. R., Flavel, R. J., Young, I. M.,
8 Whalley, W. R., and Mooney, S. J. Applications of X-ray Computed Tomography for
9 Examining Biophysical Interactions and Structural Development in Soil Systems: a Review.
10 *European Journal of Soil Science*, 2013, 64, pp. 279-297.

11 29. Tracy, S. R., Daly, K. R., Sturrock, C. J., Crout, N. M. J., Mooney, S. J., and Roose, T. Three-
12 Dimensional Quantification of Soil Hydraulic Properties Using X-ray Computed Tomography
13 and Image-Based Modeling. *Water Resources Research*, 2015, 51(2), pp. 1006-1022.