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1 Introduction

Tele-operated robots are still widely used in Dangerous, Dirty, and Dull (DDD)
environmentswhere humanpresence is extremely difficult or impossible, due to those
environments’ mission-critical task execution and current technological limitations.
Projecting human presence in remote environments is still an effective approach to
leverage current technologies and actual field demand.However, onemajor challenge
of tele-operation is the insufficient situational awareness of the remote field, caused
by the onboard sensing limitations, such as relatively stationary and limited field of
view and lack of depth perception from the robot’s onboard camera. Therefore, the
emerging state of the practice for nuclear operations, bomb squad, disaster robots,
and other domains with novel tasks or highly occluded environments is to use two
robots, a primary and a secondary that acts as a visual assistant to overcome the
perceptual limitations of the sensors by providing an external viewpoint.

However, the usage of tele-operated visual assistants also causes problems: it
requires an extra human operator, or even an operating crew, to tele-operate the
secondary visual assistant. Human operators also tend to choose suboptimal view-
points based on experience only. Most importantly, communication between the two
operators of the primary and secondary robots requires extra teamwork demand, in
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addition to the task and perceptual demands of the tele-operation. In this research,
an autonomous tethered aerial visual assistant is developed to replace the secondary
robot and its operator, reducing the human-robot ratio from 2:2 to 1:2. The co-robots
team will then consist of one tele-operated primary ground robot, one autonomous
aerial visual assistant, and one human operator, whose situational awareness is main-
tained by the visual feedback streamed from a series of optimal viewpoints for the
particular tele-operation task.

Unmanned Ground Vehicles (UGVs) are stable, reliable, durable, and can thus
represent humans to actuate upon the real world, while Unmanned Aerial Vehicles
(UAVs) have superior mobility and workspace coverage and therefore are capable of
providing enhanced situational awareness [7]. Researchers have looked into utilizing
the advantages and avoiding the disadvantages by teaming up the two types of robots
[1, 3]. A more relevant area was to use a UAV to augment the UGV’s perception
or assist UGV’s task execution, such as “an eye in the sky” for UGV localization
[2], providing stationary third-person view for construction machines [6], improving
navigation in case of GPS loss [5], and UGV control with UAV’s visual feedback [10,
16] using differential flatness [9]. However, instead of prior works’ flight path execu-
tion in wide-open space or hovering at a stationary and elevated viewpoint, our aerial
visual assistant needs to navigate through unstructured or confined spaces in order
to provide visual assistance to the UGV operator from a series of good viewpoints. It
is able to reason about the motion execution risk in complex environments and plan
a path that provides good visual assistance. In particular, this work uses a tethered
UAV, with the purpose of matching its battery duration with UGV’s and as a fail-safe
in case of malfunction in mission-critical tasks. Our tethered visual assistant utilizes
the advantages and mitigates the disadvantages of the tether, in terms of tether-based
indoor localization, motion primitives, and environment contact planning.

The remainder of this article is organized as follows: Sect. 2 presents the hetero-
geneous co-robots team. The high-level visual assistance components are described
in Sect. 3, while low-level tether-based motion implementation in Sect. 4. System
demonstrations are provided in Sect. 5. Section 6 concludes the paper.

2 Co-Robots Team

This section presents the co-robots team: a tele-operated ground primary robot, an
autonomous tethered aerial visual assistant, and a human operator of the primary
robot under the visual assistance of the aerial vehicle (Fig. 1).

2.1 Tele-Operated Ground Primary Robot

In the co-robots team, the primary robot is a tele-operated Endeavor PackBot 510
(Fig. 1 upper left). PackBot has a chassis with two main differential treads that allow
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Fig. 1 The Co-Robots Team: tele-operated primary robot, Endeavor PackBot 510 (upper left), and
autonomous tethered visual assistant, Fotokite Pro (lower left), picking up a sensor and dropping it
into a radiation pipe in a confined staircase (right)

zero radius turn and maximum speed up to 9.3 km/h. Two articulated flippers with
treads are used to climb over obstacles or stairs (up to 40◦). PackBot’s three-link
manipulator locates on the topic of the chassis, with an articulated gripper on the
second link and an onboard camera on the third. The manipulator can lift 5kg at full
extension and 20kg close in. Motor encoders on the arm provide a precise position
of the articulated joints, including the gripper, the default visual assistance point
of interest. Four onboard cameras provide first-person-views, but are all limited to
the robot body. On the chassis, a Velodyne Puck LiDAR constantly scans the 3-D
environments, providing the map for the co-robots team to navigate through. The
map does not necessarily need to be global, with the unknown parts being assumed
as obstacles. Four BB-2590 batteries provide up to 8 hrs run time.

2.2 Autonomous Aerial Visual Assistant

A tetheredUAV, Fotokite Pro, is used as the autonomous aerial visual assistant (Fig. 1
lower left). It could be deployed from a landing platform mounted on the ground
robot’s chassis. The UAV is equipped with an onboard camera with a 2-DoF gimbal
(pitch and roll). The camera’s yaw is controlled dependently by the vehicular yaw.
The main purpose of the tether is to match the run time of the aerial visual assistant
with that of the ground primary robot, since flight power could be transmitted via the
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(a) PackBot uPoint Controller Interface (b) Visual Assistant Interface

Fig. 2 Interfaces with the human operator

tether. Additionally, the tether serves as a fail-safe in mission-critical environments.
The UAV’s flight controller is based on the tether sensory feedback, including the
tether length, azimuth, and elevation angles. The six-dimensional coverage of the
workspace makes the UAV suitable for the visual assistance purpose.

2.3 Human Operator

The human operator tele-operates the primary ground robot with the visual assistance
of the UAV. In addition to the default PackBot uPoint controller with onboard first-
person-view, the visual feedback from the visual assistant’s onboard camera is also
available for enhanced situational awareness. For example, the visual assistant could
move to a location perpendicular to the tele-operation action, providing extra depth
perception to the operator. The visual assistant could be either manually controlled
or automated. For the focus of this research, autonomous visual assistance, a 3-D
map is provided by the primary robot’s LiDAR, and a risk-aware path is planned
using a pre-established viewpoint quality map (discussed in the following sections).
The uPoint tele-operation and visual assistance interfaces are shown in Fig. 2.

3 Visual Assistance Components

This section introduces the key components of autonomous visual assistance, includ-
ing a viewpoint quality map based on the cognitive science concept of affordances,
an explicit path risk representation with a focus on unstructured or confined environ-
ments, and a planning framework to balance the trade-off between reward (viewpoint
quality) and risk (motion execution).
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3.1 Viewpoint Quality Reward

The cognitive science concept of affordances is used to determine viewpoint quality,
where the potential for an action can be directly perceived without knowing intent
or models, and thus is universal to all robots and tasks [8]. For this work, four affor-
dances are used: manipulability, passability, reachability, and traversability (Fig. 3).
In order to determine the viewpoint quality (reward) for each affordance, we use
a computer simulation to collect performance data with 30 professional PackBot
operators. A hemisphere centered at each affordance is created, with 30 viewpoints
evenly distributed on it. The 30 viewpoints are divided into five groups: left, right,
front, back, and above the affordance. For each affordance, every test subject is ran-
domly given one viewpoint within each of the five groups and tries to finish the
tele-operation task in an error-free and fast manner. The number of errors, such as
colliding with the wall for passability or falling off the ledge for traversability, and
the completion time are recorded. The average value of the product of error and time
collected by all subjects is the metric to reflect the viewpoint quality. Given any point
in the 3-D space, its viewpoint reward is assigned to be the viewpoint quality of the
closest point on the hemisphere. This study is still ongoing and its results will be
reported in a separate paper.

3.2 Explicit Risk Representation

In contrast to the traditional state-dependent risk representation or probabilistic
uncertainty modeling, this work uses an explicit risk representation as a function of
the entire path. The workspaceW of the robot could be constructed by an occupancy
grid from theLiDAR, excluding a set of obstaclesOB = {obi|i = 1, 2, ..., o},whereo
is the number of obstacles.Given a start location of the visual assistantS, a simple path
P could be defined as P = {s0, s1, ..., sn} where si denotes the ith state on the path P
while s0 = S, ∀1 ≤ i ≤ n, 1 ≤ j ≤ o, si ∩ obj = ∅, and ∀i �= j, 1 ≤ i, j ≤ n, si �= sj.
In a conventional state-dependent risk representation, risk at state si is defined based
on a function mapping from one state to a risk index r : si �→ ri and the risk of exe-
cuting a path P is a simple summation of all individual states risk(P) = ∑n

i=1 r(si).
In the proposed path-dependent risk representation, however, risk at state si can be
evaluated by not only the state, but also the path leading to si, Pi = {s0, s1, ..., si} and
the risk at si is computed through the mapping R : (s0, s2, ..., si) �→ ri. The path-
level risk is relaxed from the simple summation to a more general representation
risk(P) = risk(s0, s1, ..., si).

Our explicit path risk representation does not exclude traditional state-dependent
risk elements. Those risk functions r : si �→ ri include risk elements caused by the
distance to the closest obstacles rdi = dis(si), visibility from isovist lines (Fig. 4 upper
left) rvi = vis(si), altitude due to propeller ceiling or ground effect rai = alt(si), and
tether singularity rsi = sig(si). Those risk elements are additive along the path. Path-
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(a) Good Manipulability Viewpoint (b) Bad Manipulability Viewpoint

(c) Good Passability Viewpoint (d) Bad Passability Viewpoint

(e) Good Reachability Viewpoint (f) Bad Reachability Viewpoint

(g) Good Traversability Viewpoint (h) Bad Traversability Viewpoint

Fig. 3 Ongoing viewpoint quality study in simulation with professional PackBot operators
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Fig. 4 Examples of risk elements: visibility (upper left), tortuosity (lower left), tether length,
number of contacts, and azimuth (right)

dependent risk elements include action length, access element, tortuosity, number
of tether contacts, tether length, and azimuth (Table1). In order to define these risk
elements, we further define the action between two consecutive states si−1 and si
to be Ai. So the whole sequence of actions to execute the entire path P is defined
as A = {A1,A2, ...,An}. For action length, ‖Ai‖ denotes the length of the executing
action Ai. For access elements, the function AE evaluates the difficulty of entering
from the void where si−1 is located to the void of si. The only positive difficulty is
added to the risk index. Tortuosity characterizes the number of “turns” necessary to
reach the state. More generally speaking, this is the difference by somemeasurement
between two consecutive actions ‖Ai − Ai−1‖. Tether length is a function of the entire
path, e.g., taking path 1 and path 2 in Fig. 4 right will have a completely different
tether length. The number of contact points and azimuth angle are also different. Risk
index should never decrease with the execution of a path, which is guaranteed by
the norm and max operations for the first three elements in Table1. Thus, they only
need to be evaluated once for each path (unitary). For the last three, however, the risk
associated with each state may decrease, e.g., contact points may be relaxed [15] and
tether length may decrease. But this does not cancel the previous risk. Therefore,
those three elements need to be added to all states. Given a path P, its execution risk
could be evaluated based on each risk element. Weighted sum or fuzzy logic could
be used to combine all elements into one total risk index, quantifying the difficulty
of executing that path. Detailed information on the explicit risk representation could
be found in [13].
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Table 1 Path-dependent risk elements

Risk element Risk index Property

Action length RAL(P) = ∑n
i=1‖Ai‖ Unitary

Access element RAE(P) =∑n
i=2 max(AE(void(si−1), void(si)), 0)

Unitary

Tortuosity RT (P) = ∑n
i=2‖Ai − Ai−1‖ Unitary

Tether length RTL(P) = f (s0, s1, ..., sn) Additive

Number of contacts RNC(P) = g(s0, s1, ..., sn) Additive

Azimuth RA(P) = h(s0, s1, ..., sn) Additive

3.3 Risk-Aware Reward-Maximizing Planning

Given a viewpoint quality map as a reward and motion execution risk as a function
of the path, the risk-aware reward-maximizing planner plans a minimum-risk path to
each state [14], evaluates the reward collected, and then picks the one with optimal
utility value, defined as the ratio between the reward and the risk. Executing the
optimal utility path approximates the optimal visual assistance behavior.

4 Tethered Motion

With a high-level risk-aware optimal utility path, this section presents a low-level
motion suite to realize the path on the tethered aerial visual assistant.

4.1 Tether-Based Indoor Localization

Our aerial visual assistant uses its tether to localize in GPS-denied environments.
The sensory input is the tether length L, elevation angle θ , and azimuth angle φ.
The mechanics model M in [17] corrects the preliminary localization model under
taut and straight tether assumption (Fig. 5a) using the Free Body Diagram (FBD)
of the UAV (Fig. 5b) and tether (Fig. 5c) in order to achieve accurate localization of
the airframeM : (θ, φ,L) �→ (x, y, z), from tether sensory input to Cartesian space
location.
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(a) Localization Model (b) FBD of UAV (c) FBD ofTether

Fig. 5 Tether-based localization [17]

4.2 Motion Primitives

Two types ofmotion primitives are used, whichmap thewaypoints in Cartesian space
into tether-based motion commands: position control uses the inverse transformation
from polar to Cartesian coordinates and three independent PID controllers to drive
the position of L, θ , and φ to their desired values (Eq. 1). On the other hand, velocity
control based on the system’s inverse Jacobian matrix computes velocity commands
L′, θ ′, andφ′ using an instantaneous velocity vector pointing from the current location
to the next waypoint d−→x /dt (Eq. 2). The vehicular yaw and camera pitch and roll
reactively point at the center of the affordance along the entire path.

⎧
⎪⎨

⎪⎩

L = √
x2 + y2 + z2

θ = arc sin y√
x2+y2+z2

φ = a tan 2( xz )

(1)

⎛

⎝

dx
dt
dy
dt
dz
dt

⎞

⎠ =
⎛

⎝
cos θ sin φ −L sin θ sin φ L cos θ cosφ

sin θ L cos θ 0
cos θ cosφ −L sin θ cosφ −L cos θ sin φ

⎞

⎠

⎛

⎝
L′
θ ′
φ′

⎞

⎠ (2)

The vehicular yaw and camera gimbal pitch are controlled using the 3-D vehicular
position localization and the 3-D Cartesian coordinates of the visual assistance point
of interest. The camera gimbal roll is passively controlled to align with gravity so that
the operator’s viewpoint is in level with the ground. Therefore, the visual assistant’s
camera is pointing toward the point of interest along the entire motion sequence [4,
11]. Xiao et al. [12] report detailed benchmarking results of the motion primitives.

4.3 Tether Contact Planning

In the case when some good viewpoints are located behind an obstacle and the UAV
cannot reach with a straight tether, contact points of the tether with the environment
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Fig. 6 Motion execution with contact(s) planning and relaxation: given multiple contact points
along the tether, static tether length denotes the portion of the tether that wraps around the obstacles
(Eq. 3), while the effective length is the last moving segment (Eq. 4). Effective elevation and azimuth
angles (Eq. 4) are with respect to the last contact point (CPn), instead of the tether reel (CP0)

are necessary. The tether contact point(s) planning and relaxation framework in [15],
which allows the UAV to fly as if it were tetherless, is implemented on the tethered
visual assistant. A new contact is planned when the current contact is no longer
within the line-of-sight of the UAV, while the current contact is relaxed when the last
contact becomes visible again. Figure6 shows the motion execution with multiple
contact points (CPs).

Lsta =
n−1∑

0

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (3)

⎧
⎪⎨

⎪⎩

Leff = √
(x − xn)2 + (y − yn)2 + (z − zn)2

θeff = arc sin( y−yn√
(x−xn)2+(y−yn)2+(z−zn)2

)

φeff = a tan 2( x−xn
z−zn

)

(4)

5 System Demonstration

This section presents two system demonstrations in both indoor and outdoor envi-
ronments and shows the enhanced situational awareness of the operator achieved by
the visual assistance.
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(a) Entering the Scene (b) Deploying for Passability (c) Visual Assistant View

Fig. 7 Visual assistance for Passability

5.1 Indoor Test

In this demonstration, the co-robots team drives into a cluttered indoor environment,
with the aim of retrieving a hidden sensor. The ground robot is tele-operated and
creates a map of the environment. The entry points to the sensor are all blocked by
the clutter, leaving the only retrieval option through the narrow gap between the two
columns (shown in blue and white in Fig. 7a). Based on the viewpoint quality for
passability, the visual assistant takes off and deploys to a viewpoint from behind and
above to help perceive arm passability through a gap (Fig. 7b). The visual assistant
view is shown in Fig. 7c, where the relative location of the arm to the narrow gap
along with the hidden sensor is well perceived.

After the arm passes through the gap, the visual assistant switches to assist with
manipulability. Good viewpoints for manipulability are located at the side of the
gripper. After balancing the viewpoint quality reward and motion execution risk, the
planner finds a goal and a path leading to it, which contains two tether contact points
with the obstacles. Figure8a shows the obstacles (red), inflated space for UAV flight
tolerance (yellow), waypoints on the planned path (purple), and two contact points
on the obstacles (green). The tether configuration is illustrated with black lines. The
actual deployment is shown in Fig. 8b. The onboard camera view on the left of Fig. 8c
completely misses the depth perception. With this onboard view alone, the risk of
not reaching or even knocking off the sensor is high. This lack of depth perception
is compensated by the visual assistant view (right).

5.2 Outdoor Test

The co-robots team is also deployed in an outdoor disaster environment, Disaster
City® Prop 133 in College Station, Texas (Fig. 9). The environment simulates a
collapsed multi-story building and the mission for the co-robots team is to navigate
into the building and search for victims and threats in two stranded cars.
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(a) Path Planning with 2 Contacts (b) Deploying forManipulability

(c) Onboard Camera and Visual Assistant View

Fig. 8 Visual assistance for Manipulability

(a) View from Entry Point (b) View from End Point

Fig. 9 Disaster City ® Prop 133
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(a) Take-off and Deployment (b) No Victim in 1st Car

Fig. 10 Enhanced coverage through visual assistance for the first car

(a) Inspection for 2nd Car (b) Assisting Insertion Depth Perception

Fig. 11 Car inspection through open sunroof for the second car

After reaching the first stranded car, which was on the second floor but is now
squeezed down by the collapse, the primary robot’s onboard camera is not able to
reach the height to search for victims inside the car. The visual assistant takes off from
the landing platform and autonomously navigates to a manually specified viewpoint
to look inside the car (Fig. 10a). Through the elevated viewpoint provided by the
visual assistant, it is confirmed that no victim is trapped in the first car. The visual
assistant lands back on the primary robot and the team is tele-operated to the second
car.

The second car was tipped over during the collapse, with its sunroof open on the
side. The operator intends to insert themanipulator arm into the interior for a thorough
search and retrieval if necessary. For safety reasons, the goal is not automatically
selected, but manually specified above the side window (Fig. 11a). Looking down
through the side window, the depth of the arm insertion into the car interior is clearly
visible. No victim or hazardous material exists in the car. The visual assistant lands,
the co-robots team finishes the mission and navigates back.
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6 Conclusions

We present a co-robots team equipped with autonomous visual assistance for robot
tele-operations in unstructured or confined environments using a tethered UAV. The
tele-operated primary ground robot projects humanpresence to remote environments,
while the autonomous visual assistant provides enhanced situational awareness to
the human operator. The autonomy is realized through a formal study on viewpoint
quality, an explicit risk representation to quantify the difficulty of path execution,
and a planner that balances the trade-off between viewpoint quality reward and
motion execution risk. With the help of a low-level motion suite, including tether-
based localization, motion primitives, and contact(s) planning, the high-level path is
implemented on a tethered aerial visual assistant given the existence of obstacles. The
co-robots team is deployed in both indoor and outdoor search and rescue scenarios,
as a proof of the concept of the system. Future work will focus on quantitatively
measuring the performance of the co-robots team, including the reward collected, risk
encountered, flight accuracy of the autonomous visual assistant, and the improvement
in the tele-operation of the primary robot.
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