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Abstract—Critical natural resources and processes in the
Arctic depend heavily on sea ice. Thus, accurate and timely
predictions of Arctic sea ice changes is important. Arctic sea
ice forecasting involves two connected tasks: predicting sea ice
concentration (SIC) at each pixel and predicting overall sea ice
extent (SIE). Instead of having two separate models for these
two forecasting tasks, in this paper we study how to use multi-
task learning techniques and leverage the connections between
ice concentration and ice extent to improve accuracy for both
forecasting tasks. Because of the spatiotemporal nature of the
data, we designed two novel multi-task learning models based on
the CNN and ConvLSTM, respectively. Further, in conjunction
with multi-task models, we developed custom loss functions
which train the models to ignore land pixels and optimize for
both concentration and extent when making predictions. Our
experiments show that multi-task models provide better accuracy
for a 1-month lead time than models that predict sea ice extent
and concentration separately. Our accuracies are better than
or comparable to results in related state-of-the-art studies. Our
best model in SIC prediction outperformed the best existing SIC
prediction model in the literature with 1.78% less error, and our
best model in SIE prediction outperformed the best existing SIE
prediction model with 0.283 million km? less error.

Index Terms—arctic sea ice forecasting, convolutional neural
network (CNN), convolutional long short-term memory (ConvL-
STM) network, multi-task deep learning, custom loss function

I. INTRODUCTION

Arctic sea ice variations drive atmospheric processes,
oceanic circulation, and polar ecosystems. The albedo of sea
ice is much larger than that of open ocean. Thus, sea ice
regulates the Earth’s temperature by reflecting sunlight away
from the surface [21], [38]. However, since 1981, Arctic sea
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ice extent has declined at a rate of 13.1% per decade. This
trend has accelerated in recent years. In September 2012,
Arctic sea-ice extent (SIE) reached a record low of 3.57
million km? [37]. If current trends continue, the Arctic Ocean
may be ice-free by the middle of this century based on climate
model projections [5], [25], [31].

Melting of Arctic sea ice poses significant challenges for
local and global communities. Decreased ice extent increases
absorption of solar radiation by the ocean, which results in
warmer sea surface temperatures. This in turn accelerates sea
ice melting, leading to a feedback loop of warming [19]. Fur-
thermore, reduced ice formation inhibits oceanic circulation
and the transport of heat between continents [34]. On the local
scale, sea ice loss threatens native species and the livelihoods
of Indigenous people [9], [32]. In light of these consequences,
accurate predictions of future Arctic sea ice levels are essential
for planning mitigation and resilience measures for climate
change.

In this paper, we address the following two main challenges
in arctic sea ice forecasting. First, although there is a rela-
tionship between sea ice concentration and sea ice extent, re-
searchers have not yet created a model that can accurately and
simultaneously predict both spatial sea ice concentration (SIC)
images and temporal sea ice extent (SIE) values. Additionally,
remote sensing techniques often produce noisy values, making
it difficult for models to discriminate between land, sea and
ice pixels, resulting in increased prediction error.

The main goal of this study was to apply novel deep learning
methods to improve on the best sea ice prediction accuracies
in the literature with the following contributions. The software
implementations of our work are open-sourced at [1].

e We propose multi-task deep learning models, namely

Multi-Task CNN and ConvLSTM, to simultaneously pre-
dict both SIC and SIE. Each model is able to learn both



spatial information from SIC and temporal information
from SIE, and thus able to improve prediction ability
for both metrics. The results indicate that this multi-
task method improves ice forecasts compared to deriving
extent based on concentration or training two separate
models for concentration and extent.

« We propose a custom loss function in our models to
focus on relevant pixels by applying a land mask to
each epoch’s predicted SIC image. Models are thus able
to optimize more efficiently on the grid cells where ice
formation is possible.

¢ We conducted extensive experiments to evaluate our
work. Results show our approaches can attain comparable
or lower SIC and SIE errors than baseline methods and
related studies. The results confirm the ability of deep
learning methods to predict Arctic sea ice trends, and
the ability of multi-task models to provide the optimal
accuracy.

The rest of the paper is organized as follows. We first give an
overview of numerical, statistical, and deep learning methods
used in the literature to forecast Arctic sea ice in Section II.
This is followed by a description of the dataset in Section
III. Details about the deep learning model architectures and
model training and testing are provided in the Methods section
(Section 1V). A discussion of our SIC and SIE prediction
results and comparisons with results from related studies is
in Section V. Lastly, Section VI concludes this work.

II. BACKGROUND AND RELATED WORK

A. Numerical and Statistical Methods

Recent studies have utilized numerical, statistical, and
machine learning methods to predict Arctic sea ice. Using
CFSv2 (Climate Forecast System, Version 2), a physics-based
numerical climate model, to predict September SIE for 2005
through 2014, Collow et al. obtained an RMSE in the range
of 0.55-0.65 million km? [39]. Wang et al. used CFSv2 to
conduct a detailed analysis of SIE prediction ability for 1982
through 2007, and obtained RMSE values between 0.2 and
0.6 million km? [42]. These numerical studies have attained
reasonable SIE predictions, but the computational resources
and complex physics expertise necessary to harness dynamical
models inhibit ready use of these methods.

Statistical methods, while much simpler to implement and
interpret than dynamical models, show limited potential for
predicting Arctic sea ice. Regression techniques have provided
adequate sea ice predictions results for up to 7 month lead
times, using only sea ice input [23] or additional predictors
[17]. Wang et al. used vector autoregression, a multivariate
time series model, to predict daily summertime sea ice at
an intraseasonal timescale of 20-60 days. The study reached
one month-ahead SIE prediction RMSE of approximately 0.45
million km? and one month-ahead SIC prediction RMSE
of 10-15%, depending on the specific region [41]. Greater
accuracy is desired for reliable long-term ice forecasts.

B. Deep Learning Methods

Deep learning models have demonstrated improved accura-
cies over statistical models for ice prediction. Chi et al. used
two deep learning models, a multilayer perceptron and a long-
short term memory model, to predict monthly 2015 Arctic SIC.
Sea ice concentration for the preceding 12 months was the only
input variable used for their models, but this study was able
to achieve an RMSE of 8.89% at 25km x 25km resolution [7].
Kim et al. trained a convolutional neural network (CNN) as
well as random forests to make one month-ahead monthly SIC
predictions. Prior meteorological measurements and ice values
were used as predictors. The CNN had the best performance,
with an overall RMSE of 5.76% for predictions of Arctic sea
ice from 2000-2017 [27]. Liu et al. compared the performance
of CNN and ConvLSTM models in predicting Arctic SIC at
the daily scale for 2018. The spatial domain was divided into
20 sub-grids, and the two previous days were used to predict
the next day’s ice concentrations. The CNN had an average
RMSE of 8.058%, and the ConvLSTM had an improved
6.942% RMSE for 2018 sea ice [28]. Ali et al. compared dif-
ferent machine/deep learning based SIE forecasting techniques
and proposed a multi-temporal ensemble model that achieved
the best forecast accuracy with an RMSE of 4.11% [2]. Most
recently, Andersson et al. proposed a U-Net based ensemble
model for predicting sea-ice probabilities for a lead time of 6
months [4]. Their model takes in images as input and forecasts
as output sea-ice concentration (SIC) maps in the form of
three classes (open-water region SIC < 15%, ice-edge region
15% < SIC < 80%, and confident ice region SIC > 80%).
These studies highlight the promise of deep learning models
for producing accurate ice predictions at a high spatiotemporal
resolution. Yet, to the best of our knowledge, there are still no
studies that simultaneously forecast spatiotemporal Arctic sea
ice in terms of both SIC and SIE.

III. DATASETS, PROBLEM DEFINITION AND DATA
PROCESSING

A. Datasets

This study uses sea ice, atmospheric, and meteorological
data from 1979 through 2020 covering the Arctic Ocean and
adjacent land areas. Sea ice concentration data with 25km by
25km grid cells were accessed from the National Snow and Ice
Data Center [6], [35]. The SIC dataset produces an uncertainty
of about +-5% in the Arctic winter when sea ice tends to
reach its peak in concentration levels. During summer months,
this uncertainty increases to about +-15% as there are more
melt ponds present which can skew data collection [0]. The
uncertainty comes from either instruments or satellite retrieval
algorithms. Here, for modeling purposes, the satellite-retrieved
SIC data were considered to be the ground truth.

Atmospheric and meteorological variables were obtained
from European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-5 global reanalysis product [14], [15]. In-
formation on these atmospheric variables along with sea ice
concentration are listed in Table I. The variables were chosen



because they demonstrated causal links with sea ice variations
[22].

The inclusion of each atmospheric and meteorological vari-
able was based on their physical impact on sea ice trends.
Air temperature is the main driver of changes in sea ice,
and record low sea ice extents during recent melting seasons
have been associated with warmer atmospheric temperatures
[36]. The inclusion of sea surface temperature and 2 meter air
temperature in the dataset provide the models with information
on oceanic and atmospheric heat. Studies have also shown that
Arctic circulation and wind patterns have seasonally varying
relationships with sea ice [10], [18]. For example, poleward
winds specifically play a key role in transporting heat to
the Arctic, which contributes to ice melt [3], [26], [40].
Precipitation trends are also connected to sea ice patterns.
In recent years, earlier rainfalls during spring have triggered
earlier snowmelt and, via feedback loops, earlier Arctic ice
melt [1 1], [29]. The complexity of atmospheric, oceanic, and
sea ice interactions is illustrated in [16], [20], which highlight
the pathway by which regional differences in atmospheric
pressure facilitate increased Arctic humidity, which in turn
enables higher levels of longwave radiation to reach the sea
surface, leading to earlier melting of sea ice. Thus, each
predictor impacts Arctic sea ice through complex physical
interactions in the ocean and atmosphere.

TABLE I: Input Features for CNN and ConvLSTM models

Feature Source Units Range
Sea Ice Concentration NSIDC % per pixel 0-100
Surface Pressure ERAS Pa 40000-110000
10m Wind Speed ERAS m/s 0-40
Near-Surface Humidity ERAS kg/kg 0-0.1
2m Air Temperature ERAS K 200-350
Shortwave Radiation ERAS W/m? 0-1500
Longwave Radiation ERA5 W/m? 0-300
Rain Rate ERAS mm/day 0-800
Snow Rate ERAS mm/day 0-200
Sea Surface Temperature =~ ERAS K 200-350

All variables were averaged from a daily resolution to
the monthly scale. Prior to model-specific pre-processing, the
dataset had 504 images, each with 448 by 304 grid cells and
10 channels, corresponding to the 504 months in the dataset
and the 10 input features detailed in Table I.

B. Problem Statement

Given n months of historical data X comprising of the
above 10 atmospheric and ocean variable measurements in
Arctic region for each pixel, learn a function to forecast pixel-
wise sea-ice concentration Yo, shown in Equation (1), and
total sea-ice extent Yz, shown in Equation (2), for the next
month.

YC = fC(th’rL7Xt7n+17“‘>Xt) (1)

YE = fB(Xion, Xi—ntt1, -, X¢t) 2)

C. Data Prepreocessing

1) Convolutional Neural Network Data Prepreocessing:
CNN models were trained on the first 407 months of the data
(January 1979 - November 2012) and tested on the last 96
months (January 2013 - November 2020), with a one-month
lead time. Each image in the dataset was considered to be an
individual training example and was used to predict per-pixel
sea ice concentrations for the next month. For example, the
image corresponding to January 1979 was used to predict ice
concentrations for February 1979. Thus, the training dataset
learned per-pixel sea ice concentrations for February 1979 -
December 2012, and the testing dataset predicted per-pixel sea
ice concentrations for February 2013 - December 2020.

2) Convolutional LSTM Data Pre-Processing: In order to
fully capture the spatio-temporal nature of our data using a
convolutional LSTM model, heavy data preprocessing was
necessary. The model was trained on the first 407 months of
the data and tested on the last 96 months of the data. In Keras,
ConvLSTM2D layers require 5 dimensional inputs of shape
(samples, timesteps, rows, columns, features). To reshape the
data, a stateless rolling window was applied to the training and
testing data, creating 384 samples of 12 months each. Sample
one contained months 1-12, sample two contained months 2-
13, and the last sample contained months 372-384. The final
shape of the training input data was 384 samples with 12
months of 448x304 pixel images, each containing 10 feature
measurements at each pixel. Similarly, the final shape of the
test input data was 84 samples with 12 months of 448x304
pixel images each, all containing 10 feature measurements at
each pixel.

The data consisted of 384 images in the training set and 84
images in the test set. Each image contained the average sea
ice concentration for the corresponding month in each pixel.
The first sample of input data, consisting of the first 12 months
of images, was used to predict the sea ice concentrations in the
13th month in the output data; the second sample was used
to predict the SIC in the 14th month and so on. Including
such a rolling window with 12-month timesteps allows the
ConvLSTM to learn yearly variations and relationships in SIC.

D. Post-Processing

After model training, each SIC prediction image was post-
processed to obtain a more realistic result. SIC strictly ranges
from 0% to 100%, and can only have a non-zero value over
ocean pixels. Thus, any non-zero SIC prediction over land
pixels were set to 0, all SIC predictions over ocean pixels
below 0% were set to 0%, and all SIC predictions over 100%
were set to 100%.

IV. METHODS
A. Statistical Models

Vector Autoregression (VAR) is a family of multivariate
time series models. Each variable is used as an autoregressive
predictor for every other variable in the input data. A VAR
model with lag 10, selected using the Bayesian Information
Criterion (BIC), was used as a baseline for comparison with
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Fig. 1: CNN model architecture.

deep learning model results. As a temporal model, VAR was
only trained to predict SIE with a one-month lead time, taking
daily inputs from the 10 variables described in Table I.

B. Deep Learning Models

1) Comvolutional Neural Network: The first deep learning
technique this study implements is a Convolutional Neural
Network (CNN). CNNs are a type of deep learning models
particularly suited for images, speech, and audio signals.
Thus, we chose to implement it to process our per-pixel data,
which is in the form of images. The CNN input data for
this study is a three-dimensional array with the dimensions
height x width x channel (448,304, 10).

We created a CNN model in order to provide a baseline for
comparison with other, more complex deep learning models.
Figure 1 shows the CNN model architecture, which consists
of three types of layers: convolutional layers, pooling layers,
and fully connected layers [12]. The CNN we implemented
features 9 layers. The first part of the model is an alternating
sequence of 3 convolutional layers and 2 max-pooling layers.
The convolutional layers contain 128, 32, and 8 filters respec-
tively, all with kernels of size 5 x 5. The max-pooling layers
have kernels of size 2 x 2.

Once the data was fed through the convolutional and max-
pooling layers, it was then flattened and propagated through
two fully-connected layers. The first fully-connected layer con-
tained 256 neurons, while the next layer contained 448 x304 =
136192 neurons, corresponding to the dimensions of the output
images. The output vector is then reshaped into a matrix (Ix.J)
of 448 by 304 grid cells, representing a monthly SIC image
prediction. The number corresponding to each pixel in the
output image represents the sea ice concentration percentage
for that pixel.

Ali, 7],

The monthly SIE value was derived from SIC using Equa-
tion (3). A[i, j] is the area of the pixel at [¢, j]. If the predicted
SIC value of a pixel is greater than or equal to 15%, the pixel’s
value is set equal to 1; if the predicted SIC value is less than
15%, the value is set equal to 0. Each pixel is multiplied by
its corresponding area, and the resultant matrix is summed to

if Ye[i, j] > 15%
otherwise

3

ouputLayer - produce the predicted SIE. This calculation is also used by the

National Snow and Ice Data Center [33].

The model is optimized with the Adamax optimizer, and
it utilizes a custom masked loss function, detailed in section
IV-C1. All layers in the model use ReLU activation with the
exception of the output layer, which uses linear activation.
Early stopping with a patience of 10 was used to reduce
training time.

2) Long Short-Term Memory Network: This study also
implements a Long Short-Term Memory Network (LSTM) in
order to obtain a baseline for comparison with convolutional
and multi-task deep learning models. LSTM is a type of
Recurrent Neural Network (RNN) that is used in analyzing
time-series data with proficiency in forecasting longer lead
times. An LSTM network comprises a special memory gate
that gathers and processes input from previous time steps to
influence the output value of successive time steps. Since our
data possess spatial and temporal properties, the use of an
LSTM was suitable to be considered for baseline experiments.
The architecture of our baseline LSTM comprises two many-
to-one LSTM layers, one dropout layer and three fully-
connected layers. As a temporal model, we have implemented
the LSTM to only forecast monthly SIE with a one-month
lead time, taking daily inputs from the 10 variables described
in Table I. The input dimensions for the model were NxE'xT'.
Here, N is the number of samples, F' is the number of
features, that is 11, and T is the timestep, that was kept 1. The
training and test split was same as other models to keep fair
comparison. The model was trained on 500 epochs using early
stopping method, the optimizer used was ’Adam’, whereas the
batch size was kept 12.

1/t-i-l = f(Xt—’ruXt—n-‘rh '-'7Xta }/t) (4)

Equation (4) represents the functionality of our baseline
LSTM model. The outcome of the model is Yy, that is
the predicted sea-ice extent for next month ¢ + 1, given the
atmospheric data and sea-ice extent for previous month ¢.

3) Comvolutional Long Short Term Memory Network:
ConvLSTM architecture combines the spatial recognition ca-
pabilities of convolutional neural networks and the temporal
modeling capabilities of long short-term memory models
(LSTM) to produce an output which takes both spatial and
temporal patterns into account. LSTMs use matrix multiplica-
tion on each gate in an LSTM cell; ConvLSTMs replace this
matrix multiplication with convolutions, allowing the model to
capture underlying spatial features in multi-dimensional data
[13].

We created a ConvLSTM model to give us a baseline for
comparison with our Multi-Task models. Figure 2 shows the
ConvLSTM model architecture. Our ConvLSTM model had 9
layers. The first layer is a ConvLSTM layer with 16 filters of
size 5 x 5. Following this layer is a set of two alternating max-
pooling and convolutional layers. Both max-pooling layers
have a 2 x 2 kernel. The first convolutional layer features 128
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Fig. 2: ConvLSTM model architecture.

filters, while the second contains 32; both layers have a kernel
size of 5 x 5.

After propagation through the ConvLSTM and convolu-
tional layers, the model’s output is flattened and fed through
three fully-connected layers. The first layer contains 256
neurons, the second contains 512 neurons, and the output layer
contains 448x304 = 136192 neurons, equal to the number
of pixels in each output image. The final output vector is
then shaped into a 448 by 304 image, corresponding to a
monthly SIC image output. The number corresponding to each
pixel in the output image represents the sea ice concentration
percentage for that pixel. As with the CNN models, the
monthly SIE value was derived from SIC using Equation (3).

The model is optimized with the Adamax optimizer, and it
utilizes a custom masked loss function, detailed in IV-C1. All
layers in the model use ReLU activation with the exception
of the output layer, which uses linear activation. As with the
CNN, early stopping with a patience of 10 was used to reduce
training time.

4) Multi-Task Models: Multi-task learning is a subset of
machine learning where multiple tasks are learned by a shared
model [8]. Using a branched architecture, we trained multi-
task models to produce both monthly image predictions of
SIC for each pixel and monthly sea ice extent values.

Multi-task learning was integrated into both the CNN
and ConvLSTM models. Figure 3 shows the architecture for
our Multi-Task ConvLSTM model, which is nearly identical
to the Multi-Task CNN architecture. The models contain a
shared root, through which the input data are passed, and
two subsequent branches which produce the SIC image and
sea ice extent outputs. The input root for the ConvLSTM
comprises one ConvLSTM2D layer with 8 filters of size 5x5
and ReLU activation, followed by two alternating max pooling
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Fig. 3: Multi-Task ConvLSTM model architecture.

and convolution layers. The only difference for the Multi-Task
CNN is that the first layer is a convolutional layer; everything
else that follows replicates the architecture of the Multi-Task
ConvLSTM. The max pooling layers contain filters of size
4x4, while the convolutional layers contain 128 and 32 size
5x5 filters respectively. The convolutional layers use ReLU
activation. The data are then flattened and propagated through
a dense layer with 256 nodes and ReL.U activation.

The image branch of the architecture receives the model’s
root output and propagates it through a dense layer of size
448 x304 = 136,192 with linear activation. The data are then
reshaped into an image of size 448 rows by 304 columns. Each
pixel in the image has an associated SIC value.

The extent branch also receives the model’s root output; it
propagates the root output vector through 4 dense layers of
size 128, 32, 8, and 1 respectively, returning a single sea ice
extent result for each input sample. The first 3 dense layers
use a ReLU activation function, while the output layer utilizes
linear activation for regression.

Two loss functions are used to optimize the models. The
image branch is optimized using the custom masked loss
function described in section IV-C1, while the sea ice extent
branch is optimized using MSE loss. The performance of
the models are evaluated using the RMSE metric for both
branches.

C. Custom Loss Functions

1) Masked Loss Function: Neural networks use loss func-
tions to measure the error in their predictions after each epoch.
Once the error has been measured, the model optimizes the
loss function using back-propagation.

To improve the accuracy of our deep learning models, a cus-
tom masked loss function was implemented in the architecture
of each network, except the LSTM. A land mask was applied
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Fig. 4: Multi-Task ConvLSTM SIC predictions and true values for March, June, September, and December 2014.

to each output of the network before loss was evaluated. This
mask included one image for each month in the dataset; land
pixels were given a value of 0 and non-land pixels were given
a value of 1. Each predicted output and its corresponding
mask were multiplied elementwise. Thus, any predicted values
over land became 0, and any predictions over ocean pixels
were unchanged, resulting in land pixels being ignored when
calculating the loss.

In order to correctly apply each month’s land mask to
the corresponding sample, the model accepted the land mask
values and actual values as inputs. However, they were not
propagated through the model; instead, they were exclusively
used for the calculation purposes of the loss function.

2) Extent Loss Function: A separate convolutional neural
network model was trained with a loss function which adds a
penalty for SIE loss in addition to the land masking discussed
in section IV-C1. For each SIC image prediction, the SIE
value was derived using Equation (3), and the SIE RMSE was
calculated using Equation (6). This SIE RMSE was added to
the SIC RMSE for the loss function output value. This addition
to the custom loss function enabled the CNN model to better
optimize both SIC and derived SIE predictions.

V. RESULTS AND DISCUSSION
A. Models

Based on the methods described in section IV, we conducted
experiments to compare results of seven total models: one
statistical model, namely VAR in IV-A, and six deep learning
models. The six deep learning models evaluated were a CNN
with a masked loss function, an LSTM without a masked loss
function, a ConvLSTM with a masked loss function, a CNN

with an extent loss function described in IV-C2, a Multi-
Task CNN with a masked loss function, and a Multi-Task
ConvLSTM with a masked loss function. Since the LSTM
model outputs single values rather than images, the use of
a masked loss function is not applicable. We also tested a
CNN without a custom loss function and a Multi-Task CNN
with an extent loss function, but these results are not included
in this paper due to their poor performance. The CNN-based
models were trained over 400 epochs, and early stopping was
utilized to reduce training time. The base CNN had a batch
size of 4, while the Multi-Task CNN had a batch size of 32.
The ConvLSTM-based models were trained over 1000 epochs;
early stopping was also used in these models. The ConvLSTM
models had a batch size of 4. Our implementation code can
be accessed at the Big Data REU GitHub repository [1].

B. Evaluation Metrics

Root-mean-squared error (RMSE) was the main metric for
evaluating model predictions. Equation (5) shows the RMSE
calculation for evaluating SIC results. The squared error was
calculated for each predicted pixel, where I = 448 and J =
304. Here, Y represents real SIC and Ye represents predicted
SIC values. Equation (6) shows the RMSE calculation for
evaluating SIE results. The squared error was calculated for
each month, where M = 84. Yy represents real or derived
SIE and Y represents predicted SIE values.

215, (Yeli. g~ Veli.g])’

RMSEsic = N

(&)



https://github.com/big-data-lab-umbc/big-data-reu/tree/main/2021-projects/team-1

TABLE II: SIC and SIE RMSE percentage values of our models. Values without * represent SIE predicted by the model; values with *

represent SIE derived based on Equation (3).

Method SIC Train RMSE | SIC Test RMSE | SIC Post-Proc RMSE | SIE Train RMSE | SIE Test RMSE
VAR - - - - 0.424
LSTM - - - 0.179 0.347
CNN 11.734 12.005 7.106 - 0.631*
Extent Loss CNN 11.911 12.228 7.150 - 0.571*
ConvLSTM 10.054 11.478 8.161 0.908* 0.938*
Multi-Task CNN 13.108 13.348 7.527 0.375 0.536
Multi-Task ConvLSTM 9.989 10.807 7.155 0.335 0.303
Arctic SIC Monthly Averaged RMSE, 2014-2020
N 2
\j 21\/1 (YE [m] — YE [m])
RMSEsig = N 6)

Normalized RMSE (NRMSE) was also utilized to im-
prove the comparability of predictions from different models.
NRMSE calculation involves dividing the RMSE value by the
mean of the predicted values.

C. Model Comparison on Sea Ice Concentration Forecasting

SIC prediction results of our models are shown in columns
2-4 of Table II. Note that all RMSE values stated in the
following section refer to test RMSE after post-processing,
unless otherwise specified. The base CNN model resulted in
the lowest SIC RMSE, 7.106%, followed by the CNN with
extent loss function, with SIC RMSE of 7.150%. The Multi-
Task ConvLSTM resulted in slightly less accurate predictions
than the CNN models, with an SIC RMSE of 7.155%. The
Multi-Task CNN had worse accuracy than the single-task CNN
models, while the Multi-Task ConvLSTM improved on the
single-task ConvLSTM’s accuracy.

Prior to post-processing, the Multi-Task ConvLSTM had
a significantly lower SIC test RMSE compared to all other
models. Additionally, each ConvLSTM model outperformed
all CNN models on SIC test RMSE prior to post-processing.
This indicates that the ConvLSTM models better avoided pre-
dicting SIC values over land or values beyond the [0%, 100%]
SIC range, possibly due to the additional temporal information.

Figure 4 shows Multi-Task ConvLSTM prediction and real
SIC values for March, June, September, and December 2014.
The model was able to capture the overall spatial distribution
of sea ice, as seen by the consistent concentration distribution
between predicted and real maps. Upon visual inspection,
the model performs particularly well for March and Decem-
ber, winter months for which SIC is relatively high. June
and September display worse model accuracy. Specifically,
the model underestimates June SIC towards the Canadian
Archipelago. As for September, the model underestimates the
SIC in the north of Greenland and Canadian Archipelago, and
overestimates SIC in the Pacific side of Arctic Ocean, partic-
ularly in the Beaufort Sea, Chukchi Sea and East Siberian
Sea. In addition, the sea ice-covered area in the predicted
September map is much larger than that of the real September
sea ice distribution.

The visual results gathered from the spatial plots are con-
firmed by the time-based RMSE plots in Figures 5 and 6. SIC
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Fig. 5: SIC monthly averaged RMSE values for each model.

Arctic SIC Yearly Averaged RMSE, 2014-2020
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Fig. 6: SIC yearly averaged RMSE values for each model.

test RMSE for each model was averaged over each month
for Figure 5. Overall, deep learning models predicted SIC
with higher accuracy during months with stable changes in
ice, and displayed poor accuracy during periods with high ice
variability. RMSE is high for February and March as well as
October through December. These periods mark the beginning
of the melting and freezing seasons, respectively [30]. The
models were not able to fully capture the rapidly changing
atmospheric and oceanic conditions during these periods [20].
SIC test RMSE for each model was averaged over each year
for Figure 6. This figure clearly shows a positive relationship
between RMSE and elapsed time since the end of the model
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Fig. 7: Multi-task CNN derived SIE predictions and Multi-task
ConvLSTM SIE predictions vs. actual SIE values in million km?.

training dataset. The increasing disparity between the testing
and training periods due to changing climatic conditions may
contribute to the trend seen in Figure 6. In order to obtain
accurate predictions, models may need to be re-trained on
more recent data.

Figures 5 and 6 confirm the relatively poor performance
of the Multi-Task CNN model for SIC prediction. The Multi-
Task CNN results in higher RMSE values than the base and
extent CNNs across all months and years in the testing period.
This confirms the high SIC RMSE value in Table II. The
Multi-Task ConvLSTM and base ConvLSTM models have
comparable performance across the time for SIC prediction.
However, a clear distinction can be seen for February and
October in Figure 5, for which the Multi-Task ConvLSTM
model maintains a stable RMSE of around 8%, while the base
ConvLSTM SIC RMSE spikes to greater than 9%.

D. Model Comparison on Sea Ice Extent Forecasting

The SIE forecating performance of all seven models are
shown in the last two columns of Table II. It indicates that
our Multi-Task ConvLSTM model has the best performance
with test data. Note that all RMSE values stated in this section
refer to test RMSE, unless otherwise specified. The lowest
SIE RMSE value was attained by the Multi-Task ConvLSTM
model, at 0.303 million km?. Two time series models, VAR
and LSTM, provided the next-best performance. The LSTM,
without any convolutional layers and thus without spatial
information, reached an SIE RMSE of 0.347 million kmZ2.
Vector Autoregression, the baseline model for SIE, reached
an RMSE of 0.424 million km?.

Each of the three aforementioned time series models had a
lower SIE RMSE than any CNN model. The best-performing
CNN model was the Multi-Task CNN, with an SIE RMSE
of 0.536 million km?, 0.233 million km? greater than the
Multi-Task ConvLSTM SIE RMSE. The extent loss CNN had
a marginally higher SIE RMSE of 0.571 million km?. The
base CNN, which was not provided any information about ice
extent in the input data or loss function, had an SIE RMSE of

0.868 million km?. The SIE predicted values for the base CNN
and extent loss CNN were calculated from the SIC predicted
values using Equation (3).

Figure 7 shows the Multi-Task CNN predicted SIE values in
blue and the real SIE values in black. The general time-series
trend of SIE is captured well. For the majority of months,
especially during periods of steady melting or freezing, the
model performance is exceptional. However, the Multi-Task
CNN overestimates SIE maximums and underestimates SIE
minimums. For September 2020, the Multi-Task CNN model
overestimates SIE by nearly 1 million km?. The significant
improvement in performance by the Multi-Task ConvLSTM
is clearly seen in Figure 7, which also shows Multi-Task
ConvLSTM predicted SIE in red and real SIE values in black.
This model again accurately captures the general 3time-series
trend of SIE, but the major improvement comes in predicting
the SIE maxima and minima. The Multi-Task ConvLSTM is
able to consistently predict SIE maxima with high accuracy,
and SIE minima with only slight overestimates. Predicting sea
ice during the March maximum and September minimum has
traditionally been a highly difficult task [24], highlighting the
particular benefits of the Multi-Task ConvLSTM.

These results indicate that 1) multi-task learning is greatly
beneficial for SIE prediction, 2) time-series models perform
significantly better for SIE prediction and 3) models cannot
accurately predict SIE solely based on SIC.

Based on conclusion 2), it is important to note the significant
underperformance in SIE prediction from one time-series
model, the ConvLSTM. This underperformance is due to the
fact that the ConvLSTM was predicting derived SIE values,
while all other time-series models made predictions based on
actual SIE values.

E. Discussion and Related Work Comparison

As shown in Table II, multi-task models offered the clearest
benefits for predicting SIE. During model training, learning to
optimize for SIC may have provided valuable information for
minimizing SIE error. On the contrary, the current results do
not indicate a benefit for SIC prediction from having models
learn SIE in conjunction. As mentioned in IV-C1, uncertainty
remains in the satellite-retrieved SIC dataset, and it should be
taken into account along with the prediction errors. However,
addressing uncertainties related to observational datasets was
beyond the scope of this study.

To further compare our work with related studies, Table
IIT presents the SIC RMSE values for related studies as well
as our best-performing models. From the table, we can see
different methods vary in terms of whether additional physical
variables except sea ice variable are used, temporal resolution,
forecast lead time and train/test data. Each model from this
study in Table III outperforms each model from related studies,
with the exception of 5.76% by [27]. Work [27] uses all
past data starting 1988 to forecast next month’s SIC, so its
train datasets range from 12 to 29 years. Because it does not
have static train/test data split like other studies, its result
is not directly comparable. So our best model (Base CNN)



TABLE III: Comparison with related studies on SIC prediction performance.
Physical Temporal ) .
Paper Model Data . . Lead Time | Train Data | Test Data RMSE NRMSE
Variables | Resolution
Liu et al. [28] ConvLSTM 25x25 km v Daily 1 day 9 years 1 year 11.2% NA
Liu et al. [28] CNN 25x25 km v Daily 1 day 9 years 1 year 13.7% NA
Kim et al. [27] CNN 25x25 km v Monthly Imonth | 12729 Ye4rS g vears | 5.76% | 0.1615
(dynamic)
Chi et al. [7] LSTM 25x25 km X Monthly 1 month 36 years 1 year 8.89% NA
This work ConvLSTM 25x25 km v Monthly 1 month 33 years 7 years 8.161% 0.396
This work Base CNN 25x25 km v Monthly 1 month 33 years 7 years 7.106 % 0.345
This work Multi-Task CNN 25x25 km v Monthly 1 month 33 years 7 years 7.527% 0.365
This work I(\I/I(;lrit/ll:g‘i;llt/l 25x25 km v Monthly 1 month 33 years 7 years 7.155% 0.347
TABLE IV: Comparison with related studies on SIE prediction performance.
Paper Model Data Ph)(slcal Train Data | Test Data RMSE NRMSE
Variables
Ali et al. [2] Attention-based Spatially averaged v 34 years 5 years 0.586 million km? 0.0567
Ensemble LSTM daily and monthly

inputs
This work LSTM Spatially averaged v 33 years 7 years 0.347 million km? 0.0305

daily inputs
This work Base CNN 25x25 km monthly v 33 years 7 years 0.631 million km? 0.0607

averaged
This work Multi-Task CNN ij:fg ;m monthly v 33 years | 7 years | 0.536 million km? | 0.0516

. Multi-Task 25x25 km monthly - 2

This work ConvLSTM averaged v 33 years 7 years 0.303 million km 0.0292

is 1.78% better than the best SIC prediction result, namely
[7], from related work. Table III also shows our model results
represent a major improvement over prior results using similar
ConvLSTM and CNN based models respectively.

Similarly, Table IV displays the SIE RMSE values for our
best-performing models and related work. The Multi-Task
ConvLSTM, and Multi-Task CNN outperform the work by
Ali et al. SIE RMSE of 0.586 million km?. Our best model,
namely Multi-Task ConvLSTM, has less RMSE by 0.283
million km?2. This confirms the value of multi-task learning,
which by simultaneously optimizing for both SIC and SIE
helps the model improve SIE prediction performance.

We also note that Tables III and IV show that none of the
related studies can can predict SIC and SIE simultaneously.
While our two multi-task deep learning models can achieve
both predictions with good performance.

VI. CONCLUSIONS

In this paper, we introduced two types of Multi-Task deep
learning models, Multi-Task CNN and Multi-Task ConvL-
STM, to simultaneously forecast spatial pixel-wise sea ice
concentration (SIC) and temporal total sea ice extent (SIE) val-
ues. We considered sea ice, atmospheric, and meteorological
data in image time-series form, allowing our models to learn
fluctuations in data’s spatial and temporal dimensions. Our
models included a branched multi-task architecture and custom
loss function. The models’ multi-task structures allowed them
to effectively learn to predict SIC images and SIE values,
making the optimization process more efficient with the use
of multiple branches and outputs. The use of a custom loss
function forced the model to ignore land pixels when making

image predictions; therefore, the models learned to only focus
on predicting sea-ice values. To assess the performance of our
models, we conducted experiments on 34 years of training data
and 7 years of testing data, comparing the results of the models
against each other and sea ice prediction models from other
literature. The results of our experiments indicated that multi-
task modeling performs comparably to or better than state-of-
the-art deep learning models in both SIC and SIE prediction
while learning both tasks simultaneously. We found that, out of
all models we developed, the Multi-Task ConvLSTM achieved
the best training and testing accuracies for SIC and SIE before
post-processing.

We anticipate that this work and results will be useful
for developing forecasts of ice extent alongside concentra-
tion forecasts, both of which are important characteristics of
Arctic ice. Additional analysis may elucidate spatiotemporal
relationships between SIC and SIE. We also believe that this
work highlights the merits of multi-task deep learning, and
provides a valuable template for further applications.

For future research, we will mainly focus on following
facets: 1) eliminate the need for model post-processing by
using a scaled activation function, 2) evaluate the performance
of multi-task models on lead times greater than one month, 3)
perform extensive hyperparameter tests to reduce overfitting
and achieve optimal model performance, 4) incorporate prob-
abilistic modeling to capture data and model uncertainties.
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