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ABSTRACT

Scheduler side-channels can leak critical information in real-time
systems, thus posing serious threats to many safety-critical applica-
tions. The main culprit is the inherent determinism in the runtime
timing behavior of such systems, e.g., the (expected) periodic behav-
ior of critical tasks. In this paper, we introduce the notion of “sched-
ule indistinguishability”, inspired by work in differential privacy,
that introduces diversity into the schedules of such systems while
offering analyzable security guarantees. We achieve this by adding a
sufficiently large (controlled) noise to the task schedules in order to
break their deterministic execution patterns. An “e-Scheduler” then
implements schedule indistinguishability in real-time Linux. We
evaluate our system using two real applications: (a) an autonomous
rover running on a real hardware platform (Raspberry Pi) and (b) a
video streaming application that sends data across large geographic
distances. Our results show that the e-Scheduler offers better pro-
tection against scheduler side-channel attacks in real-time systems
while still maintaining good performance and quality-of-service
(QoS) requirements.

1 INTRODUCTION

Real-time systems (RTS) have existed for decades in numerous forms,
such as avionics systems, nuclear power plants, automobiles, space
vehicles, medical devices, power generation and distribution sys-
tems as well as industrial robots. Today, however, with the advent
of new domains such as autonomous cars, drones, the Internet-of-
Things (IoT), and remote monitoring and control, RTS have moved
front and center in modern society. Most such systems have safety-
critical properties, i.e., any problems at run-time could result in
significant harm to humans, the system, or even the environment.
Imagine a situation in which your car’s airbag, a real-time system
with stringent timing constraints, fails to deploy in time; such a fail-
ure can have disastrous results. Despite their importance, security
has rarely received adequate attention in the design of real-time
cyber-physical systems (CPS). There are many reasons for the lack
of robust security: the use of custom hardware/software/protocols,
a lack of computing power and memory, and even the notion that
such systems lack inherent value to adversaries have limited the de-
velopment of security mechanisms for them. Since many RTS now
use commodity-off-the-shelf (COTS) components and are often
connected to each other or even the Internet, they expose addi-
tional attack surfaces. In fact, over the past decade, there has been
a significant uptick in attacks against cyber-physical systems with
real-time properties (e.g., [11, 15, 35, 47, 50, 51, 53, 61]).

RTS have stringent timing requirements for ensuring their correct
operation. For instance, a typical window for airbag deployment,
after a collision is detected, is around 50-60 ms [31] (less than
the time it takes to blink!). Such requirements, often driven by

the physical constraints on the system! require that systems be
deterministic at run-time. Hence, designers take great care to ensure
that (a) their constituent software tasks execute in an expected
manner [39], e.g., to exhibit periodic behavior as shown in Figure 2;
(b) interrupts are carefully managed [63]; (c) memory management
is deterministic [37]; and (d) running time, on specific processor
platforms, is analyzed very carefully at compile/run time (e.g., [9,
12, 26, 59]). However, timing and design constraints further inhibit
the addition of security solutions to RTS.

In fact, the very determinism that is an inherent characteristic of
RTS can be used against them as an attack surface, say, via timing-
based side channels. Figure 7(a) shows the discrete Fourier transform
(DFT) of a real-time system. The graph shows that the determinis-
tic behavior, coupled with the periodic design of RTS, results in a
clear demarcation of frequencies (and hence timing behaviors) of
critical real-time tasks. This property — that RTS have determin-
istic behavior — has been used to leak critical information using
side channels such as scheduling behavior [14, 52], power con-
sumption traces [33], electromagnetic (EM) emanations [3] and
temperature [5]. In particular, ScheduLeak [14], demonstrated (a)
how to leak timing information from real-time schedules and (b)
how an adversary can use it to compromise autonomous CPS (i.e.,
take control of them, or cause them to crash).

Intuitively, one way to reduce determinism (and hence, poten-
tially, increase indistinguishability) in systems is by adding noise
to system components, for instance, to the schedule. Figures 7(c)
and 7(d) show the result of adding Laplacian noise to the system
in Figure 7(a). It thereby becomes much more difficult to identify
the frequencies of certain tasks because no peaks stand out among
the amplitudes. Adding noise to reduce the identification of an
individual in a database has been explored in the area of differential
privacy [18, 19]. The concept of e-differential privacy is used to
measure the confidence with which an individual can be identified
in the context of statistical queries in a database. The privacy pro-
tection is then quantifiable based on the foundations of mechanisms
used to increase the randomness, e.g., drawing noise to be added to
the output from, say, the Laplace distributions. Hence, we propose
similar ideas to protect RTS by increasing the indistinguishability
of system behaviors, e.g., the schedule. Hence, at a high level, we
propose that:

Systems with predictable behaviors are highly sus-
ceptible to side-channel attacks; we can protect them
by reducing the ability to discern deterministic
properties.

To that end, we introduce the notion of “e-indistinguishability” (Sec-
tion 4) to measure the probability of: information leakage by ob-
servation of system behaviors such as schedules and other timing
information.

!E.g., if a physical component must be actuated at a certain frequency, then some
software tasks must also match the rate.
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Figure 1: A high-level overview of this paper. The task schedule on the top left depicts a periodic execution pattern (hence
predictable and distinguishable) that can be seen in many real-time systems. With the e-Scheduler introduced in this paper,
the task schedule is injected with uncertainty (based on Laplace distributions), as depicted on the bottom left. e-Scheduler
offers analyzable security and is effective in protecting RTS against scheduler-focused side-channel attacks.

We introduce indistinguishability and noise models in the re-
source management algorithms and, in particular, schedulers in real-
time CPS. Those components form the core of any RTS and control
the precise timing and scheduling behaviors of tasks and resources.
Hence, they are the ideal vehicle for (i) introducing noise into the
system, and (ii) measuring the probability of information leakage.
We also develop a class of “e-schedulers” that incorporate the notion
of e-indistinguishability (Section 4). Figure 1 shows an overview of
the concepts in this paper using a real world attack from literature.

While some work (e.g., [4, 36, 60]) has proposed the use of ad
hoc randomization methods in real-time schedulers, their effect
is severely restricted since they must adhere to all of the timing
constraints in RTS; for instance, these solutions are not allowed to
miss even a single deadline. In addition, they do not work well in
heavily loaded (i.e., high utilization) systems. This, in conjunction
with their ad hoc nature, also limits the calculation of any formal
security guarantees w.r.t. the degree of protection offered. In con-
trast, our e-schedulers, (a) can protect a wider class of RTS, since
we propose a modified system model (Section 5.1) that allows for
some deadlines to be missed, (b) can provide formal guarantees
(Section 4.2) built off the body of work in differential privacy and
(c) works on all types of systems, including heavily loaded ones.

The e-Scheduler is implemented on Linux, on both: a hardware
platform (Raspberry Pi) running real-time Linux as well as a sim-
ulation platform. We evaluate our work using two real applica-
tions (an autonomous rover and a video streaming application). We
further evaluate the e-Scheduler using simulations to explore the
design space as well as potential limitations of our system. The
results demonstrate that e-Scheduler is able to not only offer a
higher degree of protection (as compared to the state-of-the-art,
see Section 8.2), but also do so with actual guarantees while still
maintaining a high degree of performance and quality-of-service
(QoS). In summary, the main contributions of this paper are:

(1) the notion of schedule indistinguishability that captures
the difficulty of identifying information about individual
tasks in a task schedule [Section 3.3].

(2) ane-Scheduler that implements the schedule indistinguisha-
bility concepts based on bounded Laplace distributions
[Section 4 and 5].

(3) Implementation on a real hardware platform running real-
time Linux that is open-sourced [Section 6].

Note: Our aim is to modify system states to deter side-channel attacks
and not the leakage of private data, the latter being the typical use
case for differential privacy.

2 BACKGROUND AND RELATED WORK

2.1 Real-Time Systems and Scheduler
Side-Channels

Real-Time Systems. Time-critical systems such as self-driving
cars, medicine/vaccine delivery drones, space rovers (e.g., NASA’s
Opportunity and Spirit), industrial robots, autonomous tractors and
unmanned aerial vehicles (UAV), etc., play a vital role in shaping
today’s technological evolution from everyday living to space ex-
ploration. In such systems, tasks® delivering critical functionality
rely on an operating system (typically an operating system that
supports a real-time scheduling policy) to fulfill their timing require-
ments (e.g., the task must complete within a predefined time limit).
Oftentimes, these tasks (e.g., system heartbeat keepers, PID control
processes, sensor data collectors, motor actuators, etc.) are designed
to execute in a periodic fashion to guarantee responsiveness. Such
real-time tasks are usually associated with a set of predefined timing
constraints such as () minimum inter-arrival times (i.e., periods),
(b) deadlines and (c) worst-case execution times (WCET). They
are scheduled using well-known real-time scheduling algorithms
e.g., fixed-priority preemptive scheduling, earliest deadline first
scheduling [39]. These real-time constraints help system designers
ensure that all safety guarantees are met (e.g., no real-time tasks
will miss their deadlines). As a result, the system schedule becomes
deterministic and highly predicable.

Scheduler Side-Channels. The aforementioned determinism and
predictability, though favorable for the system safety, is a double-
edged sword - they create side-channels in RTS. There has been an
increasing focus (e.g., [22, 23, 34, 52, 54, 55, 57, 62]) on studying and
demonstrating the existence of side-channels and covert-channels
(as consequences of the determinism) in RTS. In this paper, we are

2A task in typical real-time systems corresponds to a process/thread in generic operat-
ing systems. In this paper, we will use “task” and “process” interchangeably.
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particularly interested in the side-channels that leak system timing
behavior via task schedules. In the RTS domain, Chen et al. [14]
first introduced the scheduler side-channels using the ScheduLeak
algorithms. They extract execution behavior of critical real-time
tasks from an observed task schedule at run-time. Liu et al. [42] used
the same attack surface (i.e., the task schedule) and showed that
precise timing values of critical real-time tasks can be uncovered
using frequency spectrum analysis (e.g., Discrete Fourier Transform,
DFT, analysis) as shown in Figure 7. Such timing information, while
seemingly subtle, is a crucial stepping stone to launching many
attacks against RTS. Consequently, additional side-channels such
as power consumption traces [33], schedule preemptions [14, 52],
electromagnetic (EM) emanations [3] and temperature [5] have
been demonstrated in RTS. In Chen et al. [14] have also shown how
such information leakage can be used to launch more deliberating
attacks, e.g., taking control of autonomous systems.

Schedule Obfuscation. Yoon et al. [60] attempted to tackle the
scheduler side-channels by introducing a randomized scheduling
algorithm that obfuscates the task schedules in fixed-priority pre-
emptive RTS. This idea has been extended to multi-core environ-
ments [4]. Similarly, Kriiger et al. [36] developed a combined on-
line/offline randomization scheme to reduce determinisms for time-
triggered systems. Nasri et al. [48] conducted a comprehensive
study on the schedule randomization approach and argued that
such techniques can actually expose the fixed-priority preemptive
RTS to more risks. Burow et al. [10] explore several moving-target
defenses (randomization-based) against different types of attacks
in the context of RTS (including soft RTS). While this existing work
is centered on the problem of scheduler side-channels, they do not
provide analytical guarantees for the protection against such at-
tacks. Additionally, the work targets highly constrained real-time
systems and hence their effectiveness is often limited. In contrast,
we focus on a more realistic RTS model that has flexible and more
tolerable timing requirements. This enables us to explore a more
aggressive defense strategy to achieve higher (and analyzable) pro-
tection against the threats imposed by scheduler side-channels.

2.2 Differential Privacy and Randomized
Mechanisms

Differential Privacy. Differential privacy, along with the theo-
rems and algorithms that build the foundation for protecting data
privacy, was originally introduced [18, 19] in the context of statisti-
cal queries on databases. It can be seen that differential privacy is
used in many subjects addressing the issue of data privacy [13, 18].
There is also a growing trend to extend such concepts to the sys-
tems domain [17, 30, 58] to protect data privacy distributed among a
group of devices. While in this paper we focus on the system security
rather than data privacy, the high-level goal is somewhat similar to
differential privacy and hence relevant techniques may be adopted.

In our context, we define the notion of task/job indistinguisha-
bility that defines the probability of distinguishing the execution
states of one task/job from another in task schedules. Roughly speak-
ing, a low indistinguishability enables an adversary to identify a
task’s execution from an observed schedule with a high confidence
and hence the system is prone to compromises via scheduler side-
channels. To address such a problem, we propose an e-Scheduler

that offers “e-indistinguishability” at a job level and/or a task level,
subject to system constraints as well as the system designer’s secu-
rity goal. To the best of our knowledge this paper is the first work
that adopts the foundation of differential privacy in the design of
schedulers and especially to address the security issues in RTS.
Laplace Mechanism. The Laplace distribution has been used in
the classic differential privacy problems for generating random
noise to achieve desired privacy protections [19]. Conventionally,
the Laplace distribution has a probability density function defined
as Lap(x | 1, b) = ﬁexp(— Ix;’ul ). In this paper, we use the Laplace
distribution to generate randomized inter-arrival times for each job
at run-time. While there can be random noise drawn from other
distributions (e.g., Gaussian distribution [28, 41]) achieving the same
level of indistinguishability using the Laplace distribution allows us
to reuse existing mathematical and algorithmic components with
the theoretical foundations from the differential privacy domain.

3 SYSTEM AND ADVERSARY MODELS
3.1 Preliminaries

The sets of natural numbers and real numbers are denoted by N
and R. For a given n € N, the set [n] represents {1,2,...,n}. We
denote the Laplace distribution with location y and scale b and
Lap(b) by Lap(y, b) and we write Lap(b) when p = 0. For a random
variable x, drawing values from a Laplace distribution is denoted by
x ~ Lap(-). As conventionally used, we sometimes abuse notation
and denote a random variable x ~ Lap(-) simply by Lap(-).

We consider a discrete time model [32]. In our context, we mainly
focus on the issue that is concerned with the timing in a single node
real-time system. We assume that a unit of time equals a timer tick
governed by the operating system and the corresponding tick count
is an integer. That is, all system and real-time task parameters are
multiples of a time tick. We denote an interval starting from time
point a and ending at time point b that has a length of b — a by
[a,b) or [a,b—1].

3.2 Real-Time System Model

In this paper, we consider a single processor, preemptive real-time
system in which some deadline misses are tolerable [16, 43]. Such
systems are very common, e.g., the system contains a set of N real-
time tasks I' = {r; | i € [N]}, scheduled by a dynamic-priority
scheduler (e.g., Earliest Deadline First, EDF, scheduler [39]). We
assume the real-time tasks are independent (i.e., no dependencies
between tasks). A real-time task can be a periodic task (with a fixed
period) or a flexible task (that has flexible period choices within
a predefined range)® [44]. We model a real-time task 7; by a tuple
(75, Di, Ci, ;i) where 7; = {T; i | k € N} is a set of admissible peri-
ods, D; = {D; ;. | k € N} is a set of implicit, relative deadlines (i.e.,
D; = Tix, Yk € N), C; is the worst-case execution time (WCET)
and n; is a task inter-arrival time function as defined below (a glos-
sary table is provided in Appendix Table 4 for reference). It can
be easily seen that a periodic task is then a flexible task where the
“choice of periods” is limited to a single value. That is, 7; = {T; 1}

3The system can also contain other sporadic and aperiodic tasks. Yet, these types of
tasks do not naturally demonstrate periodicity by design and thus are not of interest
in our context. For this reason, we intentionally exclude these types of tasks in our
task model to be focused on the periodic components.
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Figure 2: Illustration of the task execution model used in
this paper. Arrows represent the scheduled arrival time in-

stants. The distance between two adjacent arrival times of a
task is modeled by a task-specific function 7;.
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when 7; is a periodic task and we sometimes use T; to denote such
a fixed period for simplicity. A task’s execution instance is aborted
upon missing its current deadline and it does not impact the release
of the task’s next execution instance.

To formulate the problem better, let us assume that a task’s
execution behavior is modeled by a task inter-arrival time function
where each task has a dedicated function, as illustrated in Figure 2.

Definition 3.1. (Task Inter-Arrival Time Function.) For a task 7;
the inter-arrival time function is defined as

ni:N—7; (1)

where 7;(j) is the task’s inter-arrival time at the j* h instance. The
resulting inter-arrival time is one of the values in the task’s inter-
arrival time set, 5;(j) € 7. [ |

Note that a strict periodic task (i.e, 7; = {T;1}) always gets a
fixed output from its inter-arrival time function, ; (j) = T;,1,Vj € N.
Then, based on the above function, the system’s timing behavior
(w.r.t. the task deadlines and inter-arrival times) can be modeled
by 1;,Vr; € T. That is, when the j’h instance of task 7; arrives,
the scheduler computes its period from 7;(j) and configures its
deadline as well as the next arrival time accordingly.

3.3 Adversary Model

We are mainly concerned about scheduler side-channels that are ex-
posed by the deterministic nature of RTS as introduced in Section 2.
We assume that an adversary observes the system schedule via some
existing side-channels [3, 5, 14, 33, 52]. We further assume that the
adversary does not have access to the scheduler. Without this as-
sumption, the adversary can undermine the scheduler or directly
obtain the schedule information without using the side-channels.
Note that some existing attacks have demonstrated that period-
icity can be exploited to learn a targeted task’s execution state that
can be used to launch further, more critical attacks on the system
with higher precision [14, 42]. These types of attacks rely on the
fact that periodicity exists in the real-time tasks being targeted.
In this paper, we aim to eliminate such scheduler side-channels
by obscuring the task periodicity in the schedule. To this end, our
goal in this paper is to achieve schedule indistinguishability in the
system that can be further categorized into:
(i) Job-level indistinguishability refers to the difficulty of distinguish-
ing a task’s job from another of the same task in a task schedule. As
introduced in Section 3.2, a flexible task can have multiple prede-
fined periods that are associated to different execution modes and
purposes. For instance, a feedback control task in a cyber-physical
system can adjust its period based on the severity of error the phys-
ical asset under control is experiencing [44]. Leaking the current
period of the control task reveals the system’s internal state as

gl | Loy
\/\_/\/\/\_?

R, R(irj +1) RMij+2)  R@ij+3)

Inter-Arrival Time Randomized Mechanism: ‘ R ) = Lo (), —— ]ZA”‘ L THTT

Figure 3: Illustration of the task execution after injecting
noise. The inter-arrival times become irregular and unpre-
dictable with using a randomized mechanism.

well as the physical asset’s external state. Achieving a job-level
indistinguishability for such a task weakens the adversary’s ability
to reason about the task’s internal execution state.

(ii) Task-level indistinguishability, on the other hand, refers to the
difficulty of distinguishing a task from another in a schedule. In a
RTS in which all tasks are strictly periodic, it is generally not hard
to distinguish and identify individual tasks from a schedule (see
Section 8.2.1 for an example and analysis). As a result, tasks are
at risk of leaking critical information. For instance, in the Sched-
uLeak attack [14], the adversary exploits the periodicity to extract
the execution behavior of a critical real-time task. Achieving task-
level indistinguishability weakens the adversary’s ability to glean
information about a specific task from the schedule.

It’s intuitive to see that job-level indistinguishability is a nec-
essary condition for the task-level indistinguishability. That is, if
task-level indistinguishability can be achieved, then job-level in-
distinguishability is also achievable. It’s worth pointing out that
the inverse relation does not hold: achieving individual job-level
indistinguishability does not automatically grant the task-level in-
distinguishability. Yet, in practice, there exist real-time constraints
that restrict the degree of timing that we can tweak. In such cases,
the task-level indistinguishability may be infeasible to achieve. In
this paper, we propose an extended task model and a real-time
scheduler with an inter-arrival time randomized mechanism to
achieve job-level indistinguishability and, when feasible, task-level
indistinguishability.

4 SCHEDULE INDISTINGUISHABILITY

In this section we introduce the components (inter-arrival time
sensitivity and randomized mechanism) that achieve notions of
the job/task-level indistinguishability. These are fundamental to
developing the e-Scheduler that will be introduced in Section 5.

4.1 Randomizing Inter-Arrival Times

Let’s consider a task 7; and its inter-arrival time function #;. The
function produces consistent inter-arrival times. To break this pre-
dictable behavior, we intend to randomize each inter-arrival time. To
this end, we propose an inter-arrival time randomized mechanism,
denoted by R(-), that is attached to the scheduler to add random
noise. The inter-arrival time randomized mechanism is defined as:

th inter-arrival time of the task Ti

)
R(zi,j) = L mi(j) + Y] @)

the j

random noise drawn from some distribution centered at 0

where 7; € T, j € N represent the j* h inter-arrival time of the task
7j. Y is a random noise value drawn from some distribution centered
at 0. Note that the noise Y is presented separately for the purpose of
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illustration. Such a representation is the same as drawing a random
value from some distribution centered at 1;(j) — which is what the
e-Scheduler is eventually based on. The outcome is rounded to the
nearest integer and taken as the randomized inter-arrival time.

The added random noise Y creates inconsistent inter-arrival
times for a task and breaks a task’s periodicity. Yet, without specify-
ing a noise distribution, it may be insufficient to obscure the task’s
behavior, for example, when the noise’s variance is insignificant.
Before examining the noise addition mechanism, we first formally
define indistinguishability in our context.

4.2 Inter-Arrival Time Indistinguishability

As introduced in Section 3.3, we are concerned with job/task-level
indistinguishabilities. To analyze such indistinguishabilities with
the mechanism defined in Equation 2, we use a concept that’s similar
to the notion of differential privacy [18, 19].

Definition 4.1. (e-Indistinguishability Inter-Arrival Time Ran-
domized Mechanism.) An inter-arrival time randomized mechanism
R(-) is e-indistinguishable if

any randomized inter-arrival time for any given task 7

)
Pr[ R(z,j) €S] <ePr[ R(r,)') €S] ®)

any randomized inter-arrival time of any given task 7/
forallr,7’ €T, j,j/ € Nand S C Range(R). [ |

That is, R(-) enables inter-arrival time indistinguishability for a
single job instance if Equation 3 is satisfied.

Note that Definition 4.1 is general enough to consider both the
job-level and task-level indistinguishabilities. When 7 # 7’, task-
level indistinguishability is implied; when 7 = 7’, job-level indis-
tinguishability is implied. It is worth noting that we can maintain
an independent €; value for each task 7; and each of them achieves
their own ¢;-indistinguishability. The indistinguishability for the
whole task set is determined by the worst of the €; values [46] (that
corresponds to the task-level indistinguishability).

4.3 Inter-Arrival Time Sensitivity and Noise

To determine the degree of noise to be added to make two inter-
arrival times indistinguishable, We define “inter-arrival time sensi-
tivity”. Intuitively, the value of the inter-arrival time sensitivity is
assigned by the largest possible difference between two inter-arrival
times. However, the true assignment depends on the protection
goal (i.e., whether to achieve the job-level indistinguishability or
the job-level indistinguishability), as explained below.

Definition 4.2. (Inter-Arrival Time Sensitivity.) This reflects the
sensitivity of the function 1,(-) defined, depending on the desired
indistinguishability goal, as:

(i) Job-level indistinguishability: the inter-arrival time sensitivity
for the job-level indistinguishability, denoted by An,, for a given
task 7, is defined as
distance between any two inter-arrival times of the task 7
)
Ane = max | ne(j) = ne(j) | ©)
J,j’eN

’

J#j

that is task-specific.
(ii) Task-level indistinguishability: the inter-arrival time sensitivity,
denoted by Anr, is defined as:

distance between any two inter-arrival times

of any two tasks in the task set T’

)

Apr = max | n:(j) = e (') | ®)
7,7’ €l
J.J'eN
that is task-set-dependent. [ ]

For simplicity, we use An to represent either of the sensitivi-
ties when the context is clear. Then, the use of the Laplace dis-

tribution Lap(7y, %) for generating the randomized inter-arrival
times preserves the e-indistinguishability from Definition 4.1 for
a single job instance. This property can be easily proved by ex-
panding Equation 3 with the probability density function of the
Lap(n,, %) distribution [19, Theorem 3.6]. Therefore, the job-level
indistinguishability is achieved when An = An; and the task-level

indistinguishability can be achieved when Ay = Anr.

4.4 e-Indistinguishability in J Instances

The randomized mechanism R(-) with Laplace noise Lap( %) of-
fers e-indistinguishability for a single instance. However, an at-
tacker typically observes a longer sequence from the schedule.
Therefore, we are more interested in the conditions for achieving
e-indistinguishability for a certain duration (as opposed to a single
point in time). As a noise draw occurs for every job instance, based
on the theorem of Sequential Composition [46, Theorem 3], the
privacy degradation is cumulative as the number of draws increases.
A smart attacker may be able to sort out the distribution by col-
lecting sufficient samples. Therefore, it is crucial to understand the
condition for providing the required level of indistinguishability
for a certain duration. To this end, we measure the duration in
the number of job instances (that corresponds to the number of
noise draws for the corresponding inter-arrival times). Then we
use the following theorem to determine the scale of the noise for
preserving e-indistinguishability up to J job instances.

THEOREM 4.3. The Laplace randomized mechanism R(-) with the
scale ﬂ% is e-indistinguishable up to J job instances. [ ]

This theorem can be proved by expanding Equation 3 with J
invocations of R(-). The proof is given in Appendix A for reference.
The assignment of ] for a given task set is discussed in Section 5.3.

4.5 Bounded Laplace Randomized Mechanism

While the introduced Laplace randomized mechanism offers e-
indistinguishability, the unbounded output domain for the random-
ized inter-arrival times makes it infeasible to adopt in real systems.
To address this problem, we introduce the “bounded Laplace ran-
domized mechanism”, i.e., the randomized inter-arrival time drawn
from a Laplace distribution is bounded by a given range. There are
typically two solutions for bounding the value drawn from a distri-
bution: (i) truncation and (ii) bounding [40]. Truncation projects
values outside the domain to the closest value within the domain.
Bounding, used in this paper, is to continue sampling indepen-
dently from the distribution until a value within the specified range
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is returned. Let’s denote such a bounded Laplace distribution by
f(y, b, T+, TT) of which the drawn value is in the range [T+, TT].
Using such a bounded Laplace distribution allows a mechanism
to return randomized inter-arrival times within a range that’s feasi-
ble for the given constraints. However, it is known that the bounded
Laplace distribution cannot preserve the same level of probabilistic
guarantee (i.e., the e-indistinguishability in our context) with the
same scale parameter as a pure Laplace distribution and a doubling
of the noise variance is required to compensate for the loss [29, 40].
Based on this condition and Theorem 4.3, we define the bounded
inter-arrival time Laplace randomized mechanism as follows:

Definition 4.4. (Bounded Inter-Arrival Time Laplace Random-
ized Mechanism.) Let [T;", T;"] be the feasible inter-arrival time
range for a given task 7;, the bounded inter-arrival time Laplace
randomized mechanism is defined as

jt" inter-arrival time of 7;
~ = i 2JiAn;
Rz j) =L(mi(j) . =%, T, T) (6)

t 1

bounds for randomized inter-arrival time

scale of the noise distribution

where L(-) is the bounded Laplace distribution of which the drawn
values are bounded in the range [Tl.J', Tl.T] based on a pure Laplace

distribution Lap(#;(j), _zjieAi”i ). .

The variables T , T+, An;, J; and €; are extended task parameters
of 7; to be formalized in Section 5.1. Following Theorem 4.3, the
bounded inter-arrival time Laplace randomized mechanism R (73, J)
is e-indistinguishable up to J job instances.

5 €e-SCHEDULER

With the components described in Section 4, we now introduce
our proposed real-time scheduler, the e-Scheduler. In each task’s
arrival (the beginning of a new instance), the e-Scheduler uses ﬁ()
for generating the task’s next arrival time (i.e., randomizing inter-
arrival times). In this section we first introduce an extended RTS task
model that supports such an e-Scheduler, followed by discussion
for how the extended task parameters can be determined for a given
system to achieve job/task-level indistinguishability.

5.1 Extended Task Model

The basic task model presented in Section 3.2 is extended to include
parameters necessary for an e-Scheduler to achieve the desired
indistinguishability. In e-Scheduler, a task 7; is characterized by
(75, D, Ci, i, Tl.J', TiT, Ani, Ji, €i) where [Tl.J', Tl.T] is a range of toler-
able periods, An; > 0 is the inter-arrival time sensitivity parameter,
Ji is the task’s effective protection duration, and €; > 0 is the
indistinguishability scale parameter. At each new job arrival, the e-
Scheduler invokes R(z;, j) = L(n: (), ZJ’G—AI”’ Tl.J', Tl.T) to determine
the next job’s randomized arrival time point.

In this extended task model, the parameters 7;, D;, C;, r]i,TiJ'
and Tl.T are obtained from the system dynamics. The additional
parameters An;, J; and €; are to be given by the system designer.
As the degree of noise added to a task’s inter-arrival time relies
on the extended parameters, it is crucial to assign proper values
based on the desired indistinguishability goal. We now discuss the
considerations for determining these values.

5.2 Determining Inter-Arrival Time Sensitivity

An; represents the degree of random noise needed to make two inter-
arrival times indistinguishable and can be determined based on
Definition 4.2. The value of Ap; should be fixed for an execution in-
stance once assigned. In the case that we intend to achieve job-level
indistinguishability is to achieve for a given task z;, the value of
An; is determined solely by the task’s set of periods, 7;. In this case,
each task’s sensitivity is independent of each other. On the other
hand, task-level indistinguishability requires that the sensitivity re-
flects all tasks in the system. Hence, the sensitivity for the task-level
indistinguishability is task set specific and all tasks are assigned
with the same sensitivity value. It is straightforward to see that
task-level sensitivity will be greater than job-level sensitivity of
any task (and hence larger noise will be added). It is up the system
designer to decide, taking potential performance degradation into
account, which type of indistinguishability should be achieved.

5.3 Calculating Protection Duration

Using the bounded Laplace mechanism, R(-), an e-Scheduler is able
to preserve €;-indistinguishability up to J; job instances for a given
task. As pointed out in Section 4.4, the more noise samples collected,
the more likely an attacker is able to reconstruct the distribution
and reveal a task’s behavior. Therefore, €;-indistinguishability can’t
be guaranteed for an infinite time. For this reason, the e-Scheduler
should be used with other security measures for comprehensive pro-
tection against scheduler side-channels. There exist some security
schemes that work well together in this context. For instance, one
can perform periodic security checks to detect possible intrusions
and anomalies [27]. With such a scheme, the distance between two
security checks can be used as a reference to compute the protection
duration parameter J;. Another feasible scheme is the restart-based
mechanism [1, 2] that enforces a reboot once a while. In such a case,
the maximum time to reset the system can be used to compute J;.
In both schemes, the adversary’s attack progress is disrupted once
the corresponding security measure kicks in and the e-Scheduler
offers further security guarantees from compromise via scheduler
side-channels. Note that J; is defined in the number of job instances
as each job arrival draws a random value from the distribution.
When the job-level indistinguishability is considered, each task’s
Ji is computed independently so the value can be different across

tasks. Let A be the protection duration in time, then
desired protection duration

!

A
(7) Ji = max(| ———

min(7})

—_— lzjel) (8)
min(7;)

the smallest period of 7; the smallest period in the task set T’

Equation 7 offers €;-indistinguishability to 7; within A time. For task-
level indistinguishability, J; for all tasks must be equal to offer the
desired indistinguishability guarantee (subject to ¢;) as calculated
by Equation 8 where A is a global protection duration in time.

5.4 Choosing Indistinguishability Parameter

With the noise level (An;) and protection duration (J;) determined
for a given task set, ¢; is the major remaining variable that a system
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Figure 4: (a) The noise scale of Lap(0, ZJiG—Ai'”) at 95" percentile
with An; = 190ms and varying ¢; and J;. Both axes are dis-
played in a base 10 logarithmic scale. (b) Probability density
of the randomized inter-arrival times for the task 7; with
i = {33.33ms, 100ms}. The blue and green lines show the dis-
tribution when the desired period is at 33.33ms and 100ms
respectively. In this case, e-Scheduler offers a job-level ¢-
indistinguishability for 7; with ¢; = 100, Ap; = 190 and J; = 16.

designer must specify to secure the desired degree of protection.
Ideally, a smaller €; value provides a better indistinguishability by
generating randomized inter-arrival times with larger noise scale.
However, a large noise scale may sometimes be impractical for real-
time applications. Figure 4(a) shows examples of noise scales (the
y-axis, represented by the 95° h percentile) with varied €; values (the
x-axis) for a fixed An; = 190ms and various J; settings. It suggests
that an ¢; value above an order of magnitude can be practical to
most RTS. Figure 4(b) shows an example of the distributions of the
inter-arrival times for a task that has 7; = {33.33ms, 100ms} with
Ani = 190ms, J; = 16 (with assuming A = 500ms) and €; = 100. It
shows how a task’s inter-arrival times are randomly generated by
an e-Scheduler in a typical RTS setting.

Nevertheless, a suitable value for ¢; is highly system-dependent.
Ultimately, it is up to the system designer to select a value based
on the overall security and performance goals. Note that all tasks
must be assigned an identical € value to achieve task indistinguisha-
bility while each task can have an independent e value for job
indistinguishability.

6 IMPLEMENTATION IN LINUX

We implemented e-Scheduler in both (a) real-time Linux kernel
running on Raspberry Pi and (b) an open-source* simulation plat-
form that we developed. The simulation is used for design space
exploration (Section 8) and the real-time Linux kernel is used for
demonstration with real hardware and applications and also to ana-
lyze overheads. In this section we provide the platform information
(also summarized in Table 5 in Appendix) and an overview of the
implementation in the real-time Linux kernel.

6.1 Platform and Operating System

We used a Raspberry Pi 4 (RPi4) Model B> development board as
the base platform for our implementation. RPi4 runs a vendor-
supported open-source operating system, Raspbian (a variant of
Debian Linux). We forked the Raspbian kernel and modified it to
implement the proposed e-Scheduler. Since we focus on the single

*https://github.com/epsilon-scheduler
Shttps://www.raspberrypi.org/products/raspberry-pi-4-model-b/.

core environment in this paper, the multi-core functionality of RPi4
was deactivated by disabling the CONFIG_SMP flag during the Linux
kernel compilation phase. The boot command file was also set with
maxcpus = 1 to further ensure the single core usage.

Real-time Environment. The mainline Linux kernel does not pro-
vide any hard real-time guarantees even with the custom scheduling
policies (e.g., SCHED_FIFO, SCHED_RR, SCHED_DEADLINE). However
the Real-Time Linux (RTL) Collaborative Project®maintains a kernel
(based on the mainline Linux kernel) for real-time purposes. This
patched kernel (known as the PREEMPT_RT) ensures real-time be-
havior by making the scheduler fully preemptable. In this paper, we
use a PREEMPT_RT-patched kernel (4.19.71-rt24+) to enable real-
time functionality. To further enable the fully preemptive function-
ality for the PREEMPT_RT patch, the CONFIG_PREEMPT_RT_FULL
flag was enabled during the kernel compilation phase. Furthermore,
the variable sched rt_runtime_us was set to —1 to disable the
throttling of the real-time scheduler. This setting allows the real-
time tasks to use up the entire 100% CPU utilization if required’.
Also, the active core’s scaling_governor was set to performance
mode to disable dynamic frequency scaling during the experiments.
Vanilla EDF Scheduler. Since Linux kernel version 3.14, an EDF
implementation (i.e., SCHED_DEADLINE) is available in the kernel
code base [21]. Therefore, we used this built-in scheduler as the
baseline EDF implementation and extended it to implement an e-
Scheduler. In Linux the system call sched_setattr() is invoked
to configure the scheduling policy for a given process. By design,
the EDF scheduler in Linux has the highest priority among all the
supported scheduling policies (e.g., SCHED_NORMAL, SCHED_FIFO
and SCHED_RR). It’s also worth noting that the Linux kernel main-
tains a separate run queue for SCHED_DEADLINE (i.e,, struct d1_rq).
Therefore, it is possible to extend SCHED_DEADLINE while keeping
other scheduling policies untouched.

6.2 Implementation of e-Scheduler

We implement the e-Scheduler as a scheduling mode under the
existing SCHED_DEADLINE. The mode can be switched by setting a
custom kernel parameter /proc/sys/kernel/sched_dl_mode. The
e-Scheduler’s main functionality is implemented in the function
replenish_dl_entity() that is invoked whenever a new job of a
real-time task arrives. In this function, the e-Scheduler generates
a randomized inter-arrival time based on the Laplace distribution
associated with the current task (described below). The generated
inter-arrival time is used to compute the deadline for the newly ar-
rived job. This value is also used in the function start_dl_timer()
to schedule the arrival of the next job.

Laplace Distribution. e-Scheduler requires the generation of ran-
dom numbers based on Laplace distribution for obtaining random-
ized inter-arrival times. However, the Linux kernel code is self-
contained (i.e., it does not depend on the standard or any other
C libraries) and thus a random number generator that’s based on
Laplace distribution is not natively supported. While it is possible
to build such a generator out of the existing random number genera-
tion function get_random_bytes(), the required computations(e.g.,

Chttps://wikilinuxfoundation.org/realtime/

"This change in system variable settings was mainly configured for the purpose of
experimenting with the ideas of e-Scheduler only. For most real use-cases, users can
keep this system variable untouched for more flexibility.
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Figure 5: The trajectory of the autonomous rover through
predefined way points running under e-Scheduler. The re-
sult indicates that larger diversification and higher protec-
tion with € = 10 can result in larger offsets in trajectory. The
worst observed deviations are 0.027m and 0.057m in the cases
of € = 10° and € = 10 respectively, compared to the trajectory
of Vanilla EDF. These deviations are reasonably small and
the autopilot performance is deemed acceptable.

logarithm calculations) will be costly. Considering that the task set
parameters are fixed at the design stage, the Laplace distributions
needed by each task are fixed and known as well. Therefore, rather
than building a common Laplace distribution-based random num-
ber generator, we may convert each required Laplace distribution’s
percent point function (PPF) into an array and store each of them in
the kernel. Then, a Laplace distribution-based random number can
be drawn by randomly picking (with using get_random_bytes())
a number from the array that’s associated with the desired Laplace
distribution. The details of the aforementioned conversion and the
algorithm for the PPF-based Laplace distribution random number
generator are presented in Appendix B.

While this method allows us to draw a Laplace distribution-based
random number with a cost of a get_random_bytes() call, each
distribution requires some memory to store an array converted
from the PPF. Yet, as demonstrated by our implementation, an u32
(i.e, unsigned int) array storing 100 PPF points (which takes up
to 400 bytes) is sufficient to produce the desired distribution. An
example of the histogram for the generated random inter-arrival
times drawn by the implemented e-Scheduler in RT Linux for a task
with a target period 100ms can be found in Figure 11 in Appendix.

7 EVALUATION ON REAL APPLICATIONS

In this section we evaluate the e-Scheduler with using two diverse,
real applications to demonstrate its usability and understand its
security and performance impact in a real-world setting. A design
space exploration using simulated tasks is presented in Section 8.

7.1 Autonomous Rover System

7.1.1  Experiment Setup. We first conducted a set of experiments
on a 1/24 scale rover running an autopilot application, RoverBot®,
on the RPi4 platform introduced in Section 6. The autopilot appli-
cation consists of 7 tasks (i.e., Actuator, RCInput, BatteryMonitor,
AHRS, Localizer, Navigator and GroundControl). Each task runs as
a process in Linux and can be configured as a real-time or non-real-
time task. The system is equipped with an Intel RealSense T265

Shttps://github.com/bo-rc/Rover

Table 1: K-S Test and Average Minimum L2 Distance

Way Points | Comparison | K-S | p-val | Min Dist (Meters)
€ =103, vanilla | 0.016512 | 0.9997 0.006885
Irregular € =10, vanilla | 0.015882 | 0.9998 0.009288
€=10%€e=10 [ 0.018564 | 0.9982 N/A

tracking camera® that enables precise indoor localization as well
as indoor navigation. With such features, we let the rover steer
through a series of predefined way points that form a closed loop
and record the resulting trajectory under both (a) Vanilla EDF and
(b) e-Scheduler, both with € = 10 and e = 10°. An additional test
that uses a different set of predefined way points and associated
results are presented in Appendix C.1 for reference. In each test,
we let the rover run three rounds following the ways points. To
analyze the performance of the system, we focus on adding noise to
the Actuator task that receives control commands and sends PWM
updates for driving, steering and throttle (at 100Hz), while keeping
other tasks as non-real-time tasks.

7.1.2  Results. The experiment results are shown in Figure 5.
In all test cases, the rover always starts at the coordinate (0,0).
As the results suggest, € = 10 demonstrated a larger deviation in
the trajectory compared to € = 103. The mean task frequency is
65.06Hz with € = 10° and 10.22Hz with € = 10. On the other hand,
the trajectories show that the rover is still able to hit the target way
points in both € = 10% and € = 10 cases. In particular, the trajectory
of € = 10® matches that of Vanilla EDF with small deviations. This
shows that the e-Scheduler can be applied to real applications and
also meet users’ needs (e.g., better protection or better performance)
using the adjustable € parameter.

Table 1 shows the values obtained from the kolmogorov-smirnov
(K-S) tests [45] (detailed in Appendix C.2) and the average mini-
mum distance between the paths followed by the rover with the
respective schedulers. The very small K-S statistic values and very
large corresponding p-values confirm that the rover paths with
both e-Schedulers (€ = 10® and € = 10), closely follow the original
way points as Vanilla EDF and that the former two paths closely
resemble each other. The last column in the table shows the aver-
age minimum distance between a point in the observed path (with
e-Scheduler € = 10° or € = 10) and a point in the reference path
(Vanilla EDF). Firstly, for each point in the observed path, we find
a point in the reference path that corresponds to the minimum
distance. Then, we simply take the average of all such minimum
distances. The very small values of average minimum distances
show that the observed paths closely follow the reference path.

Hence, we can conclude from our evaluation above that although
running the rover with our e-Scheduler (e = 103 or € = 10) causes
small deviations from the expected trajectory, the deviations them-
selves are negligible, making the performance drop relatively in-
significant. However, the security improves greatly due to the ran-
domization introduced by our e-Scheduler.

7.2 Video Streaming over the Internet

7.2.1  Experiment Setup. We conducted another set of experi-
ments to test the effectiveness of our e-Scheduler on RTS. We built
a video streaming application using Dynamic Adaptive Streaming

https://www.intelrealsense.com/tracking-camera-t265
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Figure 6: The similarity distance measures for 15 traffic samples with the server running on RPi4. We shaded the region
between the maximum and the minimum distances. Clearly, the similarity distances between the traffic patterns and video
1’s fingerprints are rarely the minimum across the 15 tests with e-Scheduler (2 out of 15 with ¢ = 10> and 0 out of 15 with
€ = 10), while they are the minimum with Vanilla EDF in 13 out of 15 tests. This shows that the random noise added to the
traffic patterns under e-Scheduler reduces the effectiveness of the traffic-based video identification attack.

Table 2: FPS Observed by The Client (Video 1)

Scheduler | Max | Mean I Min | Std | Ccv
Vanilla EDF 32.00 | 29.90 | 28.00 | 0.68 | 0.02
e-Scheduler (e = 10%) | 28.00 | 25.87 | 22.00 | 1.71 | 0.07
e-Scheduler (e = 10) | 14.00 | 9.23 6.00 | 2.07 | 0.22

over HTTP (DASH) as the video streaming standard and flask [24]
for our web application. Our goal was to show that the e-Scheduler
is useful in negating traffic-based attacks (types of data leakage
attacks as presented by Gu et al. [25]°) on such video streaming
applications without significantly affecting the performance of the
application itself. The video stream is hosted by a server and the
client is the receiver of the video stream that is transmitted via
the application over the internet over a distance of 1800 miles. Our
attacker is placed in between the server and the client, so that
eavesdropping on the network traffic can be easily carried out. The
performance of the application is measured using the frames per
second (FPS) of the video. Ideally, the FPS of the video at the client’s
end is similar to the FPS of the video sent from the server. It is
important to note that the e-Scheduler only randomizes the arrival
time of video frames to the client and does not change the content
of the video. An attack can be devised on such applications by ex-
ploiting some key properties of DASH video streaming. The details
of how the attack works are presented in Appendix D.

In this experiment, we set e-Scheduler with Ap = 190ms, J = 16
with the desired protection duration to be A = 500ms!! for the video
streaming task running at 30Hz. Our evaluation verifies whether
the video identification attack in the case of the e-Scheduler shows
results that are random at best. In our setup, we use five videos
with varying content, frame rates and resolutions (see Appendix D).
We consider a total of five streaming scenarios, each scenario being
the event when only one of the five videos is being streamed via
our application, i.e., only video x is being streamed, where x €
{1,2,...,5}. Eavesdropping is done for 30 seconds with 2 seconds
as the segment length and the corresponding traffic patterns are
captured using Wireshark. For repeatability, this is done fifteen
times for each scheduler (Vanilla EDF, e-Scheduler with € = 10 and
€ = 10%), resulting in 45 traffic pattern samples for each scenario.

10We created the attack from scratch as the authors denied us access to the source
code.

1t is shown that the security tasks are typically assigned periods in the range
[250ms, 500ms] [27]. In our evaluation, we take 500ms (i.e., the worst protection) to
estimate protection duration J.

7.2.2  Experiment Results. For identification purposes, we calcu-
late the distance metric dist, which is representative of the similar-
ity between a given traffic pattern and a video fingerprint. Hence,
given a traffic pattern and a dataset containing n videos, there are
n distances generated (n = 5 in our case). The smaller the value
of dist, the greater the probability for the traffic pattern matching
the video fingerprint, which is equivalent to the probability of the
corresponding video being streamed during the eavesdropping. In
order to compensate for our relatively short eavesdropping time,
instead of setting thresholds on distances to identify the target
video as done by Gu et al. [25], we simply identify the target video
as being the one that had the minimum distance out of the five
calculated distances. Figure 6 shows the similarity distances for the
traffic samples collected when video 1 was being streamed. The
results obtained when the other videos (2,3,4 and 5) were being
streamed, closely match that of video 1.

Table 2 shows the FPS statistics observed at the client’s end over
a duration of 30 seconds for video 1 in which an FPS data point is
computed using the number of frame packets received from the
Internet per 0.5 seconds. The FPS of video 1 sent from the server
is 30. The CV (Coeflicient of Variation) value represents relative
variability of the FPS in each scheduler configuration. It reveals
that FPS in the case of Vanilla EDF has the smallest variability as
there is no randomization while it shows the largest variability in
the case of e-Scheduler with € = 10. In the case of e-Scheduler with
€ = 10%, it has a reasonably small CV value and slightly decreased
mean FPS with a good protection against the eavesdropping attack
that’s comparable to € = 10 (see Figure 6). As a result, it shows
that a balance between performance (i.e., FPS) and security can be
reached by using e-Scheduler with € = 10° in this experiment.

8 DESIGN SPACE EXPLORATION

Besides the evaluation with real applications, we also conduct an
evaluation with using simulations as well as a real hardware plat-
form (i.e,, RPi4). The simulation enables us to explore a larger design
space while the hardware platform enables us to understand the
true scheduling overheads in a realistic environment.

8.1 Experiment Setup

8.1.1  Simulation. A set of simulated tasks with timing parame-
ters of avionics system [49] (total task utilization 0.64) is used to
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Figure 7: Results of the DFT analysis for the avionics tasks
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for detecting outstanding peaks. The results suggest that e-
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spectrum and is effective in obscuring the periodic elements
enclosed in the original schedule.
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examine the outcome of the e-Scheduler in the first part of our
evaluation. The tasks’ parameters are shown in Table 6 in Appen-
dix. The e-Scheduler is also tested extensively using simulation
tasks generated from a mechanism is commonly used in litera-
ture [7, 14, 27, 60]. The details for the generation of the 6000 tested
task sets are provided in Appendix E.

To explore the best-case protection as well as the impact on the
system performance, we configure the extended task parameters to
achieve the task-level indistinguishability. The efficacy of job-level
indistinguishability is specifically examined against the ScheduLeak
attack [14] (results presented in Section 8.2.3). To achieve the task-
level indistinguishability, Ay is assigned to 200ms — 10ms = 190ms.
Ji for each task is calculated using Equation 8 with a protection
duration of 500ms (demonstrated to be practical to perform periodic
security checks RTS [27]). We consider two e settings 10 and 103
that represent values that one may reasonably choose based on the
noise range shown in Figure 4. In our experiments, we use a fixed
simulation duration (5000ms) so that we are able to compare the
experiment results across different task sets.

We also include the vanilla EDF scheduler and a state-of-the-art
randomization-based scheduler for comparison. The randomization-
based scheduler, labeled as “TaskShuffler EDF”, is an EDF-based
scheduler that ports the TaskShuffler’s randomization protocol.

8.1.2 Measuring Scheduling Overheads. To evaluate the sched-
uling overheads, we conduct experiments on the RPi4 platform
running RT Linux. We use the built-in SCHED_DEADLINE scheduler
as the Vanilla EDF scheduler and an implementation of TaskShuf-
fler EDF for comparison. The timing overheads for a function is
measured using the trace-cmd command. For evaluating power
consumption, we use a High Voltage (HV) Power Monitor man-
ufactured by Monsoon'? that supplies a 5.2V power to the RPi4
board. The power consumption is then monitored in the monitor’s
software, PowerTool version 5.0.0.25.

8.2 Experiment Results

8.2.1 Discrete Fourier Transform Analysis. First we try to un-
derstand the (deterministic) periodicity in the schedules produced

https://www.msoon.com/high-voltage- power-monitor

10

by: (a) Vanilla EDF scheduler, (b) TaskShuffler EDF scheduler and
(c) our e-Scheduler (with e = 103 and € = 10). Since we are con-
cerned about the periodic components in the task schedules, fre-
quency spectrum analysis tools such as Discrete Fourier Transform
(DFT) [42] can be useful (the details of measurement for DFT are
provided in Appendix F).

We conduct the DFT analysis on the schedules based on the
avionics task set ( Table 6 in Appendix) and the resulting frequency
spectra are shown in Figure 7. As revealed by the peaks displayed
in Figure 7(a), the task periods are easily identifiable in the sched-
ule generated by the vanilla EDF scheduler because of its work-
conserving nature. It’s worth pointing out that the 100ms (i.e., 10Hz)
value does not show up as a peak in the spectrum because the cor-
responding task has a very small execution time (i.e., 0.002ms).
Figure 7(b) shows the spectrum of the same task set scheduled
under the TaskShuffler EDF scheduler and the result is similar to
the vanilla EDF scheduler except with more base noise. This is due
to the high task set utilization (i.e., 0.64 in this case) that provides
fewer opportunities for obfuscating the schedule. While the task set
may not be exhaustive, it does demonstrate the shortcoming of the
TaskShuffler’s randomization protocol - it gets less effective when
the system utilization is high. This shortcoming can also be seen in
later experiments. On the other hand, Figure 7(c) and (d) show the
spectra when scheduled using the e-Scheduler with e = 103 and
€ = 10, respectively. Both settings add significant noise across the
entire frequency domain. As a result, no peaks stand out, especially
ones that match the task frequencies.

The green lines shown in Figure 7 are the moving peak threshold
calculated using the Z-score based peak detection algorithm (see
Appendix F for details). From the figures we can see that the thresh-
old is useful for identifying the outstanding peaks while filtering
out background noise. The outstanding peaks represent the true
periodicity coming out of the schedule and thus are particularly
useful for attackers to reconstruct timing information. Intuitively,
the more outstanding peaks that are collected, the more precise
information the attackers have available to them.

Next we use the aforementioned peak detection algorithm to
count the number of outstanding peaks and test with extensive
simulations to get a broader understanding of the effectiveness
of e-Scheduler in obscuring the task periodicity. The experiment
results are presented in Figure 8(a) where each point represents the
result of a task set for the corresponding scheduler. As expected,
the vanilla EDF scheduler yields systems with stronger periodicity
and more peaks that stand out. On the other hand, the TaskShuf-
fler EDF scheduler can effectively obscure the task periodicity for
most of the task sets except those with higher utilization. With e-
Scheduler, no significant peaks are detected due to the addition of
larger overall noise in both € = 10° and € = 10 settings. The result
also demonstrates that the efficacy of e-Scheduler is independent
of the task utilization, in contrast with Vanilla and TaskShuffler.

8.2.2  Average Slot Entropy. Next we analyze the schedules by
measuring their average slot entropy. The notion of Schedule En-
tropy was first introduced to calculate the randomness given to a
task schedule by the TaskShuffler scheduling algorithm [60]. They
then proposed the Upper-Approximated Schedule Entropy, Hr(S),
to empirically estimate the schedule entropy of a given task set. A
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Figure 8: The results indicate (a) Vanilla EDF yields a large
number of peaks that are useful for adversaries to learn the
schedule while there are no significant amount of peaks de-
tected with e-Scheduler and (b) e-Scheduler generates diver-
sified schedules with higher entropy (i.e., more randomness).

(b) Average slot entropy
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Figure 9: The inference precision results of 10 - LCM(T,, T;,)
grouped by the task set utilization. The experiment suggests
that e-Scheduler can offer effective protection against the
ScheduLeak attack. Such an effect is independent to the at-
tack duration and the task set utilization.

bound is then derived by Vreman et al. [56] showing the legitimacy
of such estimation. As the scale of the entropy depends on the
length of the schedule under analysis, in this paper we use Average
Slot Entropy [56] that calculates the mean slot entropy based on the
upper-approximated schedule entropy.

The results are shown in Figure 8(b). Similar to Figure 8(a), a
point represents the average slot entropy of a task set under the cor-
responding scheduler. The results indicate that e-Scheduler yields
higher entropy than the other two schedulers even when the system
utilization is high (note that TaskShuffler EDF fails to obfuscate the
schedules in these instances). For the e-Scheduler, € = 10 generally
performs better than e = 10° w.r.t. the entropy as the former has a
wider variation range for the noise-enhanced inter-arrival times.

8.2.3 Inference Precision. To understand the effectiveness of
our mechanisms against scheduler side-channel attacks, we carry
out the ScheduLeak attacks [14] against the simulation tasks. The
metric, inference precision [14, Definition 2], denoted by IY, was
introduced to evaluate the effectiveness of a side-channel attack
w.r.t. the task phase inference. It represents the precision of the
inferred phase $o compared to the true phase of a target task ¢,.

Ad

7 — 1| Alarger Ig
2

The inference precision is calculated by I =

indicates that the inference ;ﬁ; is more precise in inferring ¢,.

To illustrate, let us consider a task set consisting of N tasks
T = {11, 72, ...7n } Whose task IDs are ordered by their periods (i.e.,
T1 > Ty > ... > Ty,). The observer (attacker) task is then selected as
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Figure 10: Results of the mean frequency error ratio grouped
by the system utilization. It shows that a large € value can
lead to greater mean frequency error and also cause some
tasks to miss deadlines when the utilization is high, as dis-
played by the plot at the top section that shows the number
of task sets that have experienced deadline misses in each
utilization group with ¢ = 10.
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the ( [%J +1)-th task and the victim task is selected as the (n— L%J )-
th task. This assignment ensures that there exist other tasks with
diverse periods (i.e., some with smaller periods and some with larger
periods compared to T, and T,.)

We first run experiments for achieving task indistinguishabil-
ity. The results suggest that ScheduLeak shows better inference
precision as attack duration increases for both vanilla EDF and
TaskShuffler. On the other hand, e-Scheduler offers consistent pro-
tection throughout the entire course of the attack (a plot for this
experiment result is provided in Appendix Figure 15). Figure 9
shows the breakdown of the inference precision results grouped
by the utilization. It reveals that the TaskShuffler scheduler offers
less effective protection when the utilization is high due to limited
possible randomization. On the other hand, our e-Scheduler yields
consistent performance across all task utilizations leading to an
average inference precision (0.498 and 0.501 for € = 10 and € = 10
respectively) that is close to the outcome produced by a random guess.

Next, we test if job indistinguishability for the victim task is
sufficient to protect it against ScheduLeak. Here, all tasks have con-
sistent inter-arrival times based on their periods (i.e., €; = c0) except
the victim task. The results are presented as the 5th (e-Sched(103)*)
and 6" (e-Sched(10)*) bars in each group shown in Figures 9 and
15. As shown, the victim task is protected by job indistinguishability.
The ScheduLeak attack fails to take advantage of the side-channels
and yields inference precision at a level similar to a random guess.

8.24 QoS-Based Results. While the above results show that the
e-Scheduler is effective in increasing the noise in the schedule, we
are interested in the impact on the QoS of the tasks. We first examine
the case of deadline misses in our experiments. As expected, both
Vanilla EDF and TaskShuffler EDF obey strict real-time constraints
and thus do not experience any deadline misses. In e-Scheduler, no
deadline miss has been observed when € = 10. However, in the
case of € = 10, we observe intermittent deadline misses in some of
task sets with high utilization. The number of task sets that have
encountered deadline misses in such a setting is plotted at the top
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Table 3: Summary of Scheduling Overhead Measurement
[ VanillaEDF | TS.EDF [ e=10° | e=10

Mean of Measurement

Context Switch Count Ratio 1 2.525 0.914 0.696

pick_next_dl_entity() 1.25us 4.3us 1.44us | 1.39us
€-Scheduler function® - - 5.79us | 5.41lus
Power Usage (performance) 2.37TW 2.39W 2.38W | 2.36W
Power Usage (ondemand) 2.20W 2.3W 2.08W | 2.05W

*get_next_inter_arrival_time()

of Figure 10. As the result shows, only 1.37% of the tested task sets
have deadline misses. Among these cases, no consecutive deadline
miss has been observed.

We next examine how close to the indistinguishable tasks per-
form to the desired frequencies. A task’s frequency error is calcu-
lated as the difference between the task’s mean and desired fre-
quencies. The mean of the frequency errors (grouped by task set
utilization) is shown in the bar chart in Figure 10. The result in-
dicates that task sets scheduled by e-Scheduler with € = 10 has
frequency error significantly larger than that with e = 103, It is
expected as € = 10 yields a wider inter-arrival range (more noise
added). It is also worth pointing out that the frequency error is
due to the bounds in generating the noise-added inter-arrival times
that can lead to an asymmetric distribution (as an example, see the
distribution for y = 33.3ms in Figure 4(b)).

While the mean task frequency gives us an insight into the
overall performance of the service delivery, it is crucial to know how
often the task is performing at a frequency below what is expected
(i.e., with inter-arrival times larger than the desired period) as such
execution usually has a direct impact on the task’s commitment
to the service delivery. We measure such a property for a task
by calculating the ratio of the number of under-performing inter-
arrival times to the total number of generated inter-arrival times.
In this experiment, we first compute the worst under-performance
ratio for each task set (by measuring it for each task and selecting
the worst in the task set) and then calculate the mean of the worst
under-performance ratios. From our experiment results, the under-
performance ratio can be biased towards 0.5 and above, leading to
a degradation in the execution frequency (a detailed experiment
plot is provided in Appendix, Figure 16). This usually happens to
the task that has a small target period and hence, an asymmetric
distribution that tends to generate larger inter-arrival times (again,
see Figure 4(b) for an example). It hints that one should expect a
degradation in the service when using e-Scheduler, particularly
with a small € value (i.e., larger noise and variation in the schedule).

8.2.5 Scheduling Overhead. We next evaluate the scheduling
overhead of the e-Scheduler, together with the Vanilla EDF and
TaskShuffler EDF schedulers as a comparison. The measurement
results are summarized in Table 3.

We set Vanilla EDF as the base and calculate the context switch
count ratio compared to TaskShuffler EDF and e-Scheduler in sim-
ulation. The result suggests that TaskShuffler EDF generates a
twofold increase in the number of context switches. This matches
the design of the TaskShuffler’s randomization protocol that aims to
obfuscate the schedule by introducing more scheduling points (i.e.,
more context switches). On the other hand, e-Scheduler produces
fewer context switches as the generated inter-arrival times can be
greater than Vanilla EDF (i.e, task executing less frequently). This
measurement generally matches the result shown in Figure 16.

12

Next, we execute a set of tasks (with parameters given in Table 6)
on RT Linux on the RPi4 platform to measure the mean cost of
scheduling. We first measure the execution time overheads of the
main scheduling function pick_next_dl_entity() that picks the
next task at a scheduling point. The result shows that TaskShuf-
fler EDF has larger overhead as it invokes get_random_bytes()
that takes an average 2.23us to generate a 64-bit random number.
On the other hand, the e-Scheduler has overheads that are very
similar to Vanilla EDF as the scheduling mechanism is identical
in pick_next_dl_entity(). To evaluate the true overhead of e-
Scheduler, we measure get_next_inter_arrival_time() where
randomized inter-arrival times are generated in our e-Scheduler
implementation. As shown in the table, the time cost is around
5.79us and is independent of the e setting. This cost is mainly
due to the invocation of the random number generation func-
tion, get_random_bytes(). Note that this overhead is incurred
in the scheduler when a job arrives, which is not equivalent to
the context switch overhead as an arrival of a job in EDF (and e-
Scheduler) does not necessarily lead to a new scheduling event (i.e.,
apick_next_dl_entity() call).

We also measured the power consumption of the platform for
each of the schedulers. When the scaling governor is configured
as scaling_governor = performance ( a typical setting for RTS
to maintain a predictable execution time and behavior), the power
consumption consistent for all schedulers. It is expected as the CPU
runs at the highest frequency at all times under the performance
setting. For a comparison purposes, we measure the power con-
sumption with scaling_governor = ondemand that lowers the CPU
frequency (i.e., less power consumption) when idling for a signifi-
cant amount of time. The resulting power consumption matches
what we have learned from the above experiments (e.g., lower con-
text switch ratio in e-Scheduler) and suggest that e-Scheduler does
not result in higher power consumption.

9 DISCUSSION AND CONCLUSION

From the evaluation, both ¢ = 103 and € = 10 settings produce
promising results for obscuring the periodicity and diversifying the
schedule. However, as shown by the QoS measurements, the € = 103
setting yields more reasonable variations in the task frequencies.
While e-Scheduler offers less protection with € = 103 value, it may
not be unusual to choose such a large € value in many RTS. The
same outcomes can be drawn from the evaluation using the two real
applications presented in Section 7. In both applications, the system
reaches a balance between performance and security with € = 103,
On the other hand, with € = 10, the results demonstrate how diverse
the performance impact could be for different applications. In such
a setting, the rover system performs with an acceptable error, while
the video streaming service becomes unusable. Considering that
every application has its unique tolerance to variations, the ¢ value
should be determined on a case-by-case basis in conjunction with
system designers.

A possible improvement is to dynamically adjust the ¢ value
based on the QoS and protection demand at run-time. In such a
case, € is particularly useful as a security parameter to be integrated
with a feedback control real-time scheduling algorithm (e.g., [43]).
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A PROOF OF THEOREM 4.3

Proor. Let R/ (z;, j) = {R(r,k)|j < k < j+J} be aset of R()
invocations. By the definition of the inter-arrival time indistinguish-
able, it must satisfy

Pr[R/ (1, j) € W] < e°Pr[R/ (¢, ) € W] )

forall 7,7’ €T, j,j’ € Nand ‘W C Range(R/).
Let w = {wg|k € [J]} be an inter-arrival time sequence gener-
ated by R’ (7, j). Then

PrR)(z,j) =wl = [ | PrIR(zj+k-1) = o]
kelJ]

where wy. is calculated by 57 (-) + Lap(b) in which b is the Laplace
distribution parameter. Expanding with the probability density
function, the right term in the above equation can be rewritten as

1 log —n(j+k—1)]
[ Lok,
kelJl
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Table 4: Glossary of Notations

Notation [ Definition
Real-Time Task Model
T a set of real-time tasks
T a real-time task in T’
Ti a set of admissible periods of 7;
D a set of implicit, relative deadlines of z;
C; the worst-case execution time of ;
ni the inter-arrival time function of z;
e-Scheduler Extended Model
An; the inter-arrival time sensitivity of z;
Ji effective protection duration for 7;
€ indistinguishability scale of z;
R(-) bounded inter-arrival time Laplace randomized mechanism

Table 5: Summary of the Implementation Platform

Artifact H Parameters

Platform ARM Cortex-A72 (Raspberry Pi 4)
System Configuration || 1.5 GHz 64-bit processor, 4 GB RAM
Operating System Debian Linux (Raspbian)

Linux Kernel 4.19.71-rt24-v71+
CONFIG_SMP disabled
CONFIG_PREEMPT_RT_FULL enabled
maxcpus=1
sched_rt_runtime_us=-1
scaling_governor=performance
SCHED_DEADLINE

Kernel Version
Kernel Configuration
(make defconfig)
Boot Commands
Run-time Variables

Base Scheduler

Then

—n.(j+k—1
ﬁexp(— lwx—1 (bﬁ' )‘)

lwok=ns (j+k=1)| )
b

Pr[R/(z,j) =w] _

Pr[R/ (7", ') = w]

kelJ] 75XP(—

_ [ expzUtk =D -4k )
= [ exp - )

kelJ]

The term |n:(j + k — 1) — n;(j’ + k — 1)| represents the difference
between two inter-arrival times which can be replaced with Ap
for the worst case (i.e., the largest possible difference defined in
Definition 4.2). The above becomes

Ap Ap
n exp(T) exp( Z b
ke[J] kelJ]

JAn
exp( b
Using Equation 9, we can derive b from

A
exp(]Tr]) < exp(e)

JAn

€

b >

(10)

Therefore, the Laplace distribution with the scale b = ]AT" preserves
e-indistinguishability up to J instances. [ ]
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Table 6: Timing Parameters of a Avionics Demonstrator [49]

Task Name | WCET (ms) | Period (ms)
Software Control Task 2 20
Mission Planner 0.002 100
Encryption 3 42
Image Encoding 18 42
Image I/0 1.46 42
Network Manager 0.03 10
Ji=16, An;=190, & = 100
0.06
% 0.05
=
S 0.04
o
o
L 0.03
[
2
© 0.02
]
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0.01{"
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Figure 11: Histogram of the randomized inter-arrival times
generated by e-Scheduler for the task 7; with a desired period
100ms running in RT Linux. The extended task parameters
are assigned to be ¢; = 100, Ap; = 190 and J; = 16 (the same as
that shown in Figure 4(b)). The plot shows that the generated
inter-arrival times are distributed under the desired Laplace
distribution indicated by the dash line.

Ji=16, Ay =190, £ =100

400
300

Percent Point Function of X
o

-300

-400 |
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Cumulative Probability

Figure 12: Chart of the percent of function (PPF) based on a
Laplace distribution with €; = 100, Ay; = 190 and J; = 16 (the
same as that shown in Figure 4(b)). The dash line represents
the true PPF curve and the bars are reconstructed by the 100
PPF points stored in the PPF-based distribution array con-
verted using Algorithm 1.

B A LAPLACE RNG IN LINUX KERNEL

To create a Laplace distribution-based random number generator
in the Linux kernel, we convert the distribution’s PPF into an array
to store in the kernel code by using Algorithm 1. This algorithm
takes as input a function of PPF of the target distribution (centered
at 0) and the desired number of the points (steps) to convert into
an integer array as the output (arrayppr). In this algorithm, the
PPF function takes as input a percentile value (ranged from 0 to
1.0) and gives the corresponding distribution sample value at the
given percentile. An example of the PPF function is provided in
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Algorithm 1: PPF-Based Distribution and Array Conver-
sion
Input:
PPF =: the PPF of the target Laplace distribution
steps =: the number of PPF points to expand
Output:
arrayppr the array storing the PPF points
arrayppr = (]
2 step =0
resolution = (1 —0.5)/(steps — 1)
while step < steps do
percentile = step - resolution + 0.5
arrayppr|step] = int(PPF(percentile))
step = step +1

[

=T )

N1

o

return arrayppr

Algorithm 2: PPF-Based Random Number Generator
Input:
arrayppr =: an array storing expanded PPF points
Output:
sample =: a random value equivalent to the corresponding
distribution
sizeqrray = len(arrayppr)
rad;g, = RAND;p;(0,len(arrayppr - 2 — 1))
if rad;gy > (sizegrray — 1) then
’ sample = —arrayppr[rad;gy — sizearrayl
else
|_ sample = arrayppr[rad;gy|

return sample

-

)

PN

o v

N

Figure 12 as the dash curve. Line 3 computes the resolution of
the percentage each point in the array represents. Line4 to line
8 iterate through each of the computed percentile to obtain and
store the corresponding percent point value in the output array.
Line 9 returns the array which stores PPF points above the 50-th
percentile. In other words, the array contains only half part of the
distribution (as demonstrated by the bars shown in Figure 12). It is
done to save memory space as a Laplace distribution is symmetric.
We then use Algorithm 2 to obtain a random number from the PPF
array.

Algorithm 2 takes as input the aforementioned PPF array (arrayppr)

and draw a random number that is equivalent to a random draw
from the underlying distribution. Line 2 obtains a random number
from a common random number generator (based on a uniform
distribution) with a range of [0, 2 - len(arrayppr) — 1] (i.e., two
times of the length of the PPF array). Line 3 to line 7 convert the
random number into a feasible index to obtain a sample value from
the PPF array. If the random number is greater than the array’s
length, a negative sample value is generated. Otherwise a positive
value is obtained and returned.
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Figure 13: The trajectory of the rover system steering
through predefined way points with RoverBot running un-
der Vanilla EDF and e-Scheduler. The worst observed devia-
tions are 0.024m and 0.038m in the cases of € = 103 and € = 10
respectively, compared to the trajectory of Vanilla EDF.

Table 7: K-S Test and Average Minimum L2 Distance

Way Points | Comparison | K-S | p-val | Min Dist (Meters)
€ =107, vanilla | 0.015038 | 0.9999 0.009458
Route “8” € =10, vanilla | 0.016958 | 0.9999 0.009940
€=10%€=10 | 0.013265 | 0.9999 N/A

C AUTONOMOUS ROVER SYSTEM
C.1 The Route “8” Test

With an experiment setup the same as introduced in Section 7.1,
we conduct another set of tests with a closed loop route that has
a shape “8”. The results are shown in Figure 13 and Table 7 which
suggest similar, promising performance outcomes. As the “8” route
has more rounded turns, the worst observed deviations (0.024m
and 0.038m in the cases of € = 10% and € = 10 compared to Vanilla
EDF) are generally smaller (i.e., better) compared to the irregular
route.

C.2 The Kolmogorov-smirnov (K-S) Test

We perform two types of K-S tests: the one sample test and the
two sample test. The one sample test is used to determine whether
the cumulative distributive function (CDF) of an observed random
variable is identical to the CDF of a reference random variable, also
known as the null hypothesis. Here, our observed random variable
is the y-axis of the rover paths with e-Scheduler (e = 10 or € = 10)
and our reference random variable is the y-axis of the rover paths
with Vanilla EDF. The two sample test is used to determine whether
two independent samples are drawn from the same continuous
distribution (null hypothesis). Hence, this test is used to compare
rover paths with e-Scheduler (¢ = 10%) and e-Scheduler (¢ = 10).
If the K-S statistic value is small and the corresponding p-value
large, then we cannot reject the null hypothesis. Instead, the null
hypothesis is almost certainly true.

D VIDEO STREAMING EAVESDROPPING
ATTACK

While streaming with DASH, each video segment is a certain seg-
ment length and quality level. This type of mechanism results in
a distinct traffic pattern due to the segment-based transmission.
This key property can be used to identify videos while streaming.
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Table 8: Video Description
Video | Content | Resolution | FPS

1 lecture 640 X 352 30
2 movie 640 X 360 30
3 street 480 X 360 25
4 soccer 640 X 480 25
5 cartoon 640 X 480 25
. Video 1 fingerprints
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Figure 14: The similarity between the eavesdropped traffic
pattern with Vanilla EDF when video 1 was being streamed
and video 1’s fingerprints. The similarity distance is calcu-
lated using temporal sequence analysis.

By eavesdropping on the network traffic during video streaming,
attackers can recognize certain patterns in the traffic. Video fin-
gerprints can be built on the other hand, using the pre-recorded
video files. Hence, attackers can utilize the fingerprints and the
observed traffic pattern to identify which video was being streamed
during eavesdropping. The idea is to merely compare the extracted
video fingerprints with the observed traffic pattern of the video
stream to deduce an individual video. A matching method is nec-
essary for effective outcomes post-comparison. In this way, the
eavesdropped traffic and the video fingerprints provide seamless
video identification.

Real-time video has many varying parameters which make it
difficult to implement an efficient yet accurate attack. There are
many quality levels of recorded video: some have noise, others
are clear. Fingerprinting often is not effective when there is too
much noise in a sample. This is because the fingerprints will not be
unique and are rarely representative of the sample. The bandwidth
plays a major role in the adaptive quality selection in the network.
A high bandwidth automatically transmits samples using higher
quality levels. This makes it problematic to observe a consistent
pattern for the same video in the traffic trace. Another obstacle
is the length of the eavesdropped sample. It is time-consuming to
eavesdrop on the entire video. Also most times, the host doesn’t
play the entire video, so only a part of the video is present in the
eavesdropped traffic. There is a workaround for this in DASH: the
bitrate variation trend is stable for a particular sample, hence a
bitrate based fingerprinting method is viable.

The systematic steps are: extracting the video fingerprints from
pre-recorded videos, obtaining the eavesdropped traffic pattern,
calculating a similarity estimate between the traffic pattern and the
fingerprints using temporal sequence analysis (p-DTW) and finally,
identifying the video using this similarity estimate. An example of
a fingerprint and an observed traffic pattern is shown in Figure 14.
Specifically, we use the fingerprint-based video identification attack
detailed in sections IV and V by Gu et al. [25], adapting it to the
video streaming application that we designed.
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The fingerprints that we obtain follow the segmentation rules of
DASH. Initially, we calculate the data per second in bits per second
(bps) for each video in a differential manner in order to eliminate the
impact of different quality levels on the fingerprints. This sequence
of fingerprints, which correspond to data per second, need to be
aggregated into segments before the matching step because DASH
transmits video data in segments. Each segment covers a certain
number of seconds; segment length is usually kept constant. Again
a differential strategy is used to collect the data per segment and
the resulting set is the set of video fingerprints available to the
attacker. For each video in the dataset, a set of video fingerprints is
calculated. Next comes the part where the attacker eavesdrops on
the network traffic to obtain traffic traces. This occurs during the
transmission of the video from the server to the client. Assuming
that there are no other processes that require a large bandwidth,
the attacker aggregates the obtained network traffic (in bps) into
data per segment in a differential manner. The objective is to find
a maximum match between the sequence of traffic traces and the
sequence of individual video fingerprints. The video corresponding
to the maximum match is identified to be the video that was being
streamed during the eavesdropping period.

The similarity measurement is a method to find out which set of
video fingerprints is likely to produce the extracted traffic pattern.
Since the assumption is that only one video is streamed at a time,
measuring the similarity of the pattern to each set of fingerprints
will reveal the closest match. We treat this as a time series matching
problem. Two important considerations before solving the prob-
lem have to be taken into account: eavesdropping can be short
and the eavesdropped period may correspond to only a portion of
the entire video. After normalizing the sequences using a sigmoid
function, a newly proposed method called “partial dynamic time
warping (P-DTW)” is used. There are several advantages of using
this method over the classic DTW [6] method. Classic DTW tries to
match the two sequences in their entirety, i.e., using the full length
of sequences to calculate the alignment cost. The series heads and
tails are required to be matched. On the other hand, P-DTW tries
to find the best local alignment between the two sequences, i.e., it
minimizes the distance between the traffic pattern and any proper
sub-sequence of the fingerprints. The sub-sequence that results in
this minimum is selected for calculating the final similarity between
the fingerprint and the traffic traces. As eavesdropping occurs only
for a part of the video, P-DTW is more suited to our attack. The
similarity is quantified using the minimum distance (cost) of align-
ing the two sequences. Whichever set of video fingerprints renders
the minimum distance is the identified video in our attack.

E GENERATION OF SIMULATION TASK SETS

A total of 6000 task sets are grouped by utilization from {[0.001+0.1-
x,0.14+0.1-x) | 0 < x < 9Ax € Z}. Each group contains subgroups
that have a fixed number of tasks from {5,7,9, 11, 13, 15}. A total
of 100 task sets are generated for each of the 60 subgroups. The
utilization for a task set is generated from a uniform distribution
using the UUniFast algorithm [8]. Each task’s period T; is randomly
drawn from [10ms, 200ms]| and the worst-case execution time C; is
computed based on the generated task utilization and period. The
task phase is randomly selected from [0, T;).

17

o4
@

Inference Precision of ¢,
o
o

[
~

o
N

ELEPH
& — Sched(103%)*
EEE € - Sched(10)*

Vanilla EDF =1 &— Sched(10%)
E=3 TaskShuffler EDF  [Z & — Sched(10)

0.0——

1 2 3 8 9 10

ll‘\ﬂack Dufalion (LC?W(TO, Tv);
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Figure 16: Results of the mean of the worst under-
performance ratio (y-axis) grouped by the task set utiliza-
tion (x-axis). The experiment gives us an insight into the
degradation a system may observe from its tasks. It suggests
that a task’s under-performance ratio can be biased towards
0.5 and above. The bias is noticeable when ¢ is large. This
often happens on the task that has a small period leading
to an asymmetric distribution that tends to generate larger

inter-arrival times.

F DISCRETE FOURIER TRANSFORM
ANALYSIS SETUP

To adequately utilize such a tool, the task schedule must be trans-
formed into a sequence of equal-spaced samples that represent the
states when CPU is busy and idle. In our analysis, a sample is taken
at each time tick and hence the Nyquist frequency is half of the tick
rate. In contrast to prior work [42] where busy and idle states are
translated into binary values 1 and 0, we translate them into 1.0 and
—1.0 to reduce noise in the spectrum caused by the positive-biased
sample values. The outcome of the transformation is a sequence
of 1.0 and —1.0 numbers that is then analyzed using DFT. In the
end, only the first half part of the analysis result is taken since
the DFT output is known to be conjugate symmetric. As shown in
Figure 7, the resulting frequency spectrum is useful for uncovering
the periodicity introduced by the scheduling of the real-time tasks.
Additionally, it can also be seen that peaks encapsulate the true fre-
quencies of the tasks (annotated by the red dashed lines). It’s worth
noting that the spectrum can contain aliasing frequency peaks that
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are in harmony with the true frequencies. These harmonic peaks
in fact are helpful for adversaries to identify and verify the true
frequencies of interest.

We are interested in the amount of information that an adversary
can learn from the DFT analysis w.r.t. a task’s periodic behavior.
By the nature of DFT, the amplitude in the spectrum has a positive
correlation with the periods and the peaks that stand out are par-
ticularly helpful to adversaries in gaining more knowledge about
the schedule. To this end, we use a Z-score based peak detection
algorithm [20, 38] to count the number of outstanding peaks in
the spectrum. The peak detection algorithm uses a moving mean
with a 10Hz window to detect the outstanding peaks that are 3.5
standard deviations away. As shown by the green line in Figure 7,
such a moving threshold can effectively identify the peaks that are
significant while filtering out the base noise.
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