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ABSTRACT

Scheduler side-channels can leak critical information in real-time

systems, thus posing serious threats to many safety-critical applica-

tions. The main culprit is the inherent determinism in the runtime

timing behavior of such systems, e.g., the (expected) periodic behav-

ior of critical tasks. In this paper, we introduce the notion of łsched-

ule indistinguishabilityž, inspired by work in differential privacy,

that introduces diversity into the schedules of such systems while

offering analyzable security guarantees.We achieve this by adding a

sufficiently large (controlled) noise to the task schedules in order to

break their deterministic execution patterns. An ł𝜖-Schedulerž then

implements schedule indistinguishability in real-time Linux. We

evaluate our system using two real applications: (a) an autonomous

rover running on a real hardware platform (Raspberry Pi) and (b) a

video streaming application that sends data across large geographic

distances. Our results show that the 𝜖-Scheduler offers better pro-

tection against scheduler side-channel attacks in real-time systems

while still maintaining good performance and quality-of-service

(QoS) requirements.

1 INTRODUCTION

Real-time systems (RTS) have existed for decades in numerous forms,

such as avionics systems, nuclear power plants, automobiles, space

vehicles, medical devices, power generation and distribution sys-

tems as well as industrial robots. Today, however, with the advent

of new domains such as autonomous cars, drones, the Internet-of-

Things (IoT), and remote monitoring and control, RTS have moved

front and center in modern society. Most such systems have safety-

critical properties, i.e., any problems at run-time could result in

significant harm to humans, the system, or even the environment.

Imagine a situation in which your car’s airbag, a real-time system

with stringent timing constraints, fails to deploy in time; such a fail-

ure can have disastrous results. Despite their importance, security

has rarely received adequate attention in the design of real-time

cyber-physical systems (CPS). There are many reasons for the lack

of robust security: the use of custom hardware/software/protocols,

a lack of computing power and memory, and even the notion that

such systems lack inherent value to adversaries have limited the de-

velopment of security mechanisms for them. Since many RTS now

use commodity-off-the-shelf (COTS) components and are often

connected to each other or even the Internet, they expose addi-

tional attack surfaces. In fact, over the past decade, there has been

a significant uptick in attacks against cyber-physical systems with

real-time properties (e.g., [11, 15, 35, 47, 50, 51, 53, 61]).

RTS have stringent timing requirements for ensuring their correct

operation. For instance, a typical window for airbag deployment,

after a collision is detected, is around 50ś60 ms [31] (less than

the time it takes to blink!). Such requirements, often driven by

the physical constraints on the system1 require that systems be

deterministic at run-time. Hence, designers take great care to ensure

that (a) their constituent software tasks execute in an expected

manner [39], e.g., to exhibit periodic behavior as shown in Figure 2;

(b) interrupts are carefully managed [63]; (c) memory management

is deterministic [37]; and (d) running time, on specific processor

platforms, is analyzed very carefully at compile/run time (e.g., [9,

12, 26, 59]). However, timing and design constraints further inhibit

the addition of security solutions to RTS.

In fact, the very determinism that is an inherent characteristic of

RTS can be used against them as an attack surface, say, via timing-

based side channels. Figure 7(a) shows the discrete Fourier transform

(DFT) of a real-time system. The graph shows that the determinis-

tic behavior, coupled with the periodic design of RTS, results in a

clear demarcation of frequencies (and hence timing behaviors) of

critical real-time tasks. This property Ð that RTS have determin-

istic behavior Ð has been used to leak critical information using

side channels such as scheduling behavior [14, 52], power con-

sumption traces [33], electromagnetic (EM) emanations [3] and

temperature [5]. In particular, ScheduLeak [14], demonstrated (a)

how to leak timing information from real-time schedules and (b)

how an adversary can use it to compromise autonomous CPS (i.e.,

take control of them, or cause them to crash).

Intuitively, one way to reduce determinism (and hence, poten-

tially, increase indistinguishability) in systems is by adding noise

to system components, for instance, to the schedule. Figures 7(c)

and 7(d) show the result of adding Laplacian noise to the system

in Figure 7(a). It thereby becomes much more difficult to identify

the frequencies of certain tasks because no peaks stand out among

the amplitudes. Adding noise to reduce the identification of an

individual in a database has been explored in the area of differential

privacy [18, 19]. The concept of 𝜖-differential privacy is used to

measure the confidence with which an individual can be identified

in the context of statistical queries in a database. The privacy pro-

tection is then quantifiable based on the foundations of mechanisms

used to increase the randomness, e.g., drawing noise to be added to

the output from, say, the Laplace distributions. Hence, we propose

similar ideas to protect RTS by increasing the indistinguishability

of system behaviors, e.g., the schedule. Hence, at a high level, we

propose that:

Systems with predictable behaviors are highly sus-

ceptible to side-channel attacks; we can protect them

by reducing the ability to discern deterministic

properties.

To that end, we introduce the notion of ł𝜖-indistinguishabilityž (Sec-

tion 4) to measure the probability of: information leakage by ob-

servation of system behaviors such as schedules and other timing

information.

1E.g., if a physical component must be actuated at a certain frequency, then some
software tasks must also match the rate.
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particularly interested in the side-channels that leak system timing

behavior via task schedules. In the RTS domain, Chen et al. [14]

first introduced the scheduler side-channels using the ScheduLeak

algorithms. They extract execution behavior of critical real-time

tasks from an observed task schedule at run-time. Liu et al. [42] used

the same attack surface (i.e., the task schedule) and showed that

precise timing values of critical real-time tasks can be uncovered

using frequency spectrum analysis (e.g.,Discrete Fourier Transform,

DFT, analysis) as shown in Figure 7. Such timing information, while

seemingly subtle, is a crucial stepping stone to launching many

attacks against RTS. Consequently, additional side-channels such

as power consumption traces [33], schedule preemptions [14, 52],

electromagnetic (EM) emanations [3] and temperature [5] have

been demonstrated in RTS. In Chen et al. [14] have also shown how

such information leakage can be used to launch more deliberating

attacks, e.g., taking control of autonomous systems.

Schedule Obfuscation. Yoon et al. [60] attempted to tackle the

scheduler side-channels by introducing a randomized scheduling

algorithm that obfuscates the task schedules in fixed-priority pre-

emptive RTS. This idea has been extended to multi-core environ-

ments [4]. Similarly, Krüger et al. [36] developed a combined on-

line/offline randomization scheme to reduce determinisms for time-

triggered systems. Nasri et al. [48] conducted a comprehensive

study on the schedule randomization approach and argued that

such techniques can actually expose the fixed-priority preemptive

RTS to more risks. Burow et al. [10] explore several moving-target

defenses (randomization-based) against different types of attacks

in the context of RTS (including soft RTS). While this existing work

is centered on the problem of scheduler side-channels, they do not

provide analytical guarantees for the protection against such at-

tacks. Additionally, the work targets highly constrained real-time

systems and hence their effectiveness is often limited. In contrast,

we focus on a more realistic RTS model that has flexible and more

tolerable timing requirements. This enables us to explore a more

aggressive defense strategy to achieve higher (and analyzable) pro-

tection against the threats imposed by scheduler side-channels.

2.2 Differential Privacy and Randomized

Mechanisms

Differential Privacy. Differential privacy, along with the theo-

rems and algorithms that build the foundation for protecting data

privacy, was originally introduced [18, 19] in the context of statisti-

cal queries on databases. It can be seen that differential privacy is

used in many subjects addressing the issue of data privacy [13, 18].

There is also a growing trend to extend such concepts to the sys-

tems domain [17, 30, 58] to protect data privacy distributed among a

group of devices. While in this paper we focus on the system security

rather than data privacy, the high-level goal is somewhat similar to

differential privacy and hence relevant techniques may be adopted.

In our context, we define the notion of task/job indistinguisha-

bility that defines the probability of distinguishing the execution

states of one task/job from another in task schedules. Roughly speak-

ing, a low indistinguishability enables an adversary to identify a

task’s execution from an observed schedule with a high confidence

and hence the system is prone to compromises via scheduler side-

channels. To address such a problem, we propose an 𝜖-Scheduler

that offers ł𝜖-indistinguishabilityž at a job level and/or a task level,

subject to system constraints as well as the system designer’s secu-

rity goal. To the best of our knowledge this paper is the first work

that adopts the foundation of differential privacy in the design of

schedulers and especially to address the security issues in RTS.

Laplace Mechanism. The Laplace distribution has been used in

the classic differential privacy problems for generating random

noise to achieve desired privacy protections [19]. Conventionally,

the Laplace distribution has a probability density function defined

as Lap(𝑥 | 𝜇, 𝑏) = 1
2𝑏
exp(−

|𝑥−𝜇 |
𝑏

). In this paper, we use the Laplace

distribution to generate randomized inter-arrival times for each job

at run-time. While there can be random noise drawn from other

distributions (e.g.,Gaussian distribution [28, 41]) achieving the same

level of indistinguishability using the Laplace distribution allows us

to reuse existing mathematical and algorithmic components with

the theoretical foundations from the differential privacy domain.

3 SYSTEM AND ADVERSARY MODELS

3.1 Preliminaries

The sets of natural numbers and real numbers are denoted by N

and R. For a given 𝑛 ∈ N, the set [𝑛] represents {1, 2, ..., 𝑛}. We

denote the Laplace distribution with location 𝜇 and scale 𝑏 and

Lap(𝑏) by Lap(𝜇, 𝑏) and we write Lap(𝑏) when 𝜇 = 0. For a random

variable 𝑥 , drawing values from a Laplace distribution is denoted by

𝑥 ∼ Lap(·). As conventionally used, we sometimes abuse notation

and denote a random variable 𝑥 ∼ Lap(·) simply by Lap(·).

We consider a discrete timemodel [32]. In our context, wemainly

focus on the issue that is concerned with the timing in a single node

real-time system. We assume that a unit of time equals a timer tick

governed by the operating system and the corresponding tick count

is an integer. That is, all system and real-time task parameters are

multiples of a time tick. We denote an interval starting from time

point 𝑎 and ending at time point 𝑏 that has a length of 𝑏 − 𝑎 by

[𝑎, 𝑏) or [𝑎, 𝑏 − 1].

3.2 Real-Time System Model

In this paper, we consider a single processor, preemptive real-time

system in which some deadline misses are tolerable [16, 43]. Such

systems are very common, e.g., the system contains a set of 𝑁 real-

time tasks Γ = {𝜏𝑖 | 𝑖 ∈ [𝑁 ]}, scheduled by a dynamic-priority

scheduler (e.g., Earliest Deadline First, EDF, scheduler [39]). We

assume the real-time tasks are independent (i.e., no dependencies

between tasks). A real-time task can be a periodic task (with a fixed

period) or a flexible task (that has flexible period choices within

a predefined range)3 [44]. We model a real-time task 𝜏𝑖 by a tuple

(T𝑖 ,D𝑖 ,𝐶𝑖 , 𝜂𝑖 ) where T𝑖 = {𝑇𝑖,𝑘 | 𝑘 ∈ N} is a set of admissible peri-

ods, D𝑖 = {𝐷𝑖,𝑘 | 𝑘 ∈ N} is a set of implicit, relative deadlines (i.e.,

𝐷𝑖,𝑘 = 𝑇𝑖,𝑘 ,∀𝑘 ∈ N), 𝐶𝑖 is the worst-case execution time (WCET)

and 𝜂𝑖 is a task inter-arrival time function as defined below (a glos-

sary table is provided in Appendix Table 4 for reference). It can

be easily seen that a periodic task is then a flexible task where the

łchoice of periodsž is limited to a single value. That is, T𝑖 = {𝑇𝑖,1}

3The system can also contain other sporadic and aperiodic tasks. Yet, these types of
tasks do not naturally demonstrate periodicity by design and thus are not of interest
in our context. For this reason, we intentionally exclude these types of tasks in our
task model to be focused on the periodic components.
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𝜂 𝑗 𝜂 𝑗 + 1 𝜂 𝑗 + 2 𝜂 𝑗 + 3 …

𝜂 :ℕ → 𝒯Regular Task Inter-Arrival Time Function: 

Figure 2: Illustration of the task execution model used in

this paper. Arrows represent the scheduled arrival time in-

stants. The distance between two adjacent arrival times of a

task is modeled by a task-specific function 𝜂𝑖 .

when 𝜏𝑖 is a periodic task and we sometimes use 𝑇𝑖 to denote such

a fixed period for simplicity. A task’s execution instance is aborted

upon missing its current deadline and it does not impact the release

of the task’s next execution instance.

To formulate the problem better, let us assume that a task’s

execution behavior is modeled by a task inter-arrival time function

where each task has a dedicated function, as illustrated in Figure 2.

Definition 3.1. (Task Inter-Arrival Time Function.) For a task 𝜏𝑖
the inter-arrival time function is defined as

𝜂𝑖 : N→ T𝑖 (1)

where 𝜂𝑖 ( 𝑗) is the task’s inter-arrival time at the 𝑗𝑡ℎ instance. The

resulting inter-arrival time is one of the values in the task’s inter-

arrival time set, 𝜂𝑖 ( 𝑗) ∈ T𝑖 . ■

Note that a strict periodic task (i.e., T𝑖 = {𝑇𝑖,1}) always gets a

fixed output from its inter-arrival time function,𝜂𝑖 ( 𝑗) = 𝑇𝑖,1,∀𝑗 ∈ N.

Then, based on the above function, the system’s timing behavior

(w.r.t. the task deadlines and inter-arrival times) can be modeled

by 𝜂𝑖 ,∀𝜏𝑖 ∈ Γ. That is, when the 𝑗𝑡ℎ instance of task 𝜏𝑖 arrives,

the scheduler computes its period from 𝜂𝑖 ( 𝑗) and configures its

deadline as well as the next arrival time accordingly.

3.3 Adversary Model

We are mainly concerned about scheduler side-channels that are ex-

posed by the deterministic nature of RTS as introduced in Section 2.

We assume that an adversary observes the system schedule via some

existing side-channels [3, 5, 14, 33, 52]. We further assume that the

adversary does not have access to the scheduler. Without this as-

sumption, the adversary can undermine the scheduler or directly

obtain the schedule information without using the side-channels.

Note that some existing attacks have demonstrated that period-

icity can be exploited to learn a targeted task’s execution state that

can be used to launch further, more critical attacks on the system

with higher precision [14, 42]. These types of attacks rely on the

fact that periodicity exists in the real-time tasks being targeted.

In this paper, we aim to eliminate such scheduler side-channels

by obscuring the task periodicity in the schedule. To this end, our

goal in this paper is to achieve schedule indistinguishability in the

system that can be further categorized into:

(i) Job-level indistinguishability refers to the difficulty of distinguish-

ing a task’s job from another of the same task in a task schedule. As

introduced in Section 3.2, a flexible task can have multiple prede-

fined periods that are associated to different execution modes and

purposes. For instance, a feedback control task in a cyber-physical

system can adjust its period based on the severity of error the phys-

ical asset under control is experiencing [44]. Leaking the current

period of the control task reveals the system’s internal state as

	ℛ(𝜂 , 𝑗) 	ℛ(𝜂 , 𝑗 + 1) 	ℛ(𝜂 , 𝑗 + 2) 	ℛ(𝜂 , 𝑗 + 3) …

	ℛ (𝜂 , 𝑗) = 𝐿(𝜂 𝑗 ,
2𝐽Δ𝜂

𝜖
, 𝑇

 ,𝑇
)Inter-Arrival Time Randomized Mechanism:

Figure 3: Illustration of the task execution after injecting

noise. The inter-arrival times become irregular and unpre-

dictable with using a randomized mechanism.

well as the physical asset’s external state. Achieving a job-level

indistinguishability for such a task weakens the adversary’s ability

to reason about the task’s internal execution state.

(ii) Task-level indistinguishability, on the other hand, refers to the

difficulty of distinguishing a task from another in a schedule. In a

RTS in which all tasks are strictly periodic, it is generally not hard

to distinguish and identify individual tasks from a schedule (see

Section 8.2.1 for an example and analysis). As a result, tasks are

at risk of leaking critical information. For instance, in the Sched-

uLeak attack [14], the adversary exploits the periodicity to extract

the execution behavior of a critical real-time task. Achieving task-

level indistinguishability weakens the adversary’s ability to glean

information about a specific task from the schedule.

It’s intuitive to see that job-level indistinguishability is a nec-

essary condition for the task-level indistinguishability. That is, if

task-level indistinguishability can be achieved, then job-level in-

distinguishability is also achievable. It’s worth pointing out that

the inverse relation does not hold: achieving individual job-level

indistinguishability does not automatically grant the task-level in-

distinguishability. Yet, in practice, there exist real-time constraints

that restrict the degree of timing that we can tweak. In such cases,

the task-level indistinguishability may be infeasible to achieve. In

this paper, we propose an extended task model and a real-time

scheduler with an inter-arrival time randomized mechanism to

achieve job-level indistinguishability and, when feasible, task-level

indistinguishability.

4 SCHEDULE INDISTINGUISHABILITY

In this section we introduce the components (inter-arrival time

sensitivity and randomized mechanism) that achieve notions of

the job/task-level indistinguishability. These are fundamental to

developing the 𝜖-Scheduler that will be introduced in Section 5.

4.1 Randomizing Inter-Arrival Times

Let’s consider a task 𝜏𝑖 and its inter-arrival time function 𝜂𝑖 . The

function produces consistent inter-arrival times. To break this pre-

dictable behavior, we intend to randomize each inter-arrival time. To

this end, we propose an inter-arrival time randomized mechanism,

denoted by R(·), that is attached to the scheduler to add random

noise. The inter-arrival time randomized mechanism is defined as:

R(𝜏𝑖 , 𝑗) = ⌊ 𝜂𝑖 ( 𝑗) + 𝑌 ⌉ (2)

the 𝑗𝑡ℎ inter-arrival time of the task 𝜏𝑖

random noise drawn from some distribution centered at 0

where 𝜏𝑖 ∈ Γ, 𝑗 ∈ N represent the 𝑗𝑡ℎ inter-arrival time of the task

𝜏𝑖 .𝑌 is a random noise value drawn from some distribution centered

at 0. Note that the noise𝑌 is presented separately for the purpose of
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illustration. Such a representation is the same as drawing a random

value from some distribution centered at 𝜂𝑖 ( 𝑗) ś which is what the

𝜖-Scheduler is eventually based on. The outcome is rounded to the

nearest integer and taken as the randomized inter-arrival time.

The added random noise 𝑌 creates inconsistent inter-arrival

times for a task and breaks a task’s periodicity. Yet, without specify-

ing a noise distribution, it may be insufficient to obscure the task’s

behavior, for example, when the noise’s variance is insignificant.

Before examining the noise addition mechanism, we first formally

define indistinguishability in our context.

4.2 Inter-Arrival Time Indistinguishability

As introduced in Section 3.3, we are concerned with job/task-level

indistinguishabilities. To analyze such indistinguishabilities with

themechanism defined in Equation 2, we use a concept that’s similar

to the notion of differential privacy [18, 19].

Definition 4.1. (𝜖-Indistinguishability Inter-Arrival Time Ran-

domizedMechanism.) An inter-arrival time randomizedmechanism

R(·) is 𝜖-indistinguishable if

Pr[ R(𝜏, 𝑗) ∈ S] ≤ 𝑒𝜖Pr[ R(𝜏 ′, 𝑗 ′) ∈ S] (3)

any randomized inter-arrival time for any given task 𝜏

any randomized inter-arrival time of any given task 𝜏′

for all 𝜏, 𝜏 ′ ∈ Γ, 𝑗, 𝑗 ′ ∈ N and S ⊆ Range(R). ■

That is, R(·) enables inter-arrival time indistinguishability for a

single job instance if Equation 3 is satisfied.

Note that Definition 4.1 is general enough to consider both the

job-level and task-level indistinguishabilities. When 𝜏 ≠ 𝜏 ′, task-

level indistinguishability is implied; when 𝜏 = 𝜏 ′, job-level indis-

tinguishability is implied. It is worth noting that we can maintain

an independent 𝜖𝑖 value for each task 𝜏𝑖 and each of them achieves

their own 𝜖𝑖 -indistinguishability. The indistinguishability for the

whole task set is determined by the worst of the 𝜖𝑖 values [46] (that

corresponds to the task-level indistinguishability).

4.3 Inter-Arrival Time Sensitivity and Noise

To determine the degree of noise to be added to make two inter-

arrival times indistinguishable, We define łinter-arrival time sensi-

tivityž. Intuitively, the value of the inter-arrival time sensitivity is

assigned by the largest possible difference between two inter-arrival

times. However, the true assignment depends on the protection

goal (i.e., whether to achieve the job-level indistinguishability or

the job-level indistinguishability), as explained below.

Definition 4.2. (Inter-Arrival Time Sensitivity.) This reflects the

sensitivity of the function 𝜂𝜏 (·) defined, depending on the desired

indistinguishability goal, as:

(i) Job-level indistinguishability: the inter-arrival time sensitivity

for the job-level indistinguishability, denoted by Δ𝜂𝜏 , for a given

task 𝜏 , is defined as

Δ𝜂𝜏 =: max
𝑗, 𝑗 ′∈N
𝑗≠𝑗 ′

| 𝜂𝜏 ( 𝑗) − 𝜂𝜏 ( 𝑗
′) | (4)

distance between any two inter-arrival times of the task 𝜏

that is task-specific.

(ii) Task-level indistinguishability: the inter-arrival time sensitivity,

denoted by Δ𝜂Γ , is defined as:

Δ𝜂Γ =: max
𝜏,𝜏′∈Γ
𝑗, 𝑗 ′∈N

| 𝜂𝜏 ( 𝑗) − 𝜂𝜏′ ( 𝑗
′) | (5)

of any two tasks in the task set Γ

distance between any two inter-arrival times

that is task-set-dependent. ■

For simplicity, we use Δ𝜂 to represent either of the sensitivi-

ties when the context is clear. Then, the use of the Laplace dis-

tribution Lap(𝜂𝜏 ,
Δ𝜂
𝜖 ) for generating the randomized inter-arrival

times preserves the 𝜖-indistinguishability from Definition 4.1 for

a single job instance. This property can be easily proved by ex-

panding Equation 3 with the probability density function of the

Lap(𝜂𝜏 ,
Δ𝜂
𝜖 ) distribution [19, Theorem 3.6]. Therefore, the job-level

indistinguishability is achieved when Δ𝜂 = Δ𝜂𝜏 and the task-level

indistinguishability can be achieved when Δ𝜂 = Δ𝜂Γ .

4.4 𝜖-Indistinguishability in J Instances

The randomized mechanism R(·) with Laplace noise Lap(
Δ𝜂
𝜖 ) of-

fers 𝜖-indistinguishability for a single instance. However, an at-

tacker typically observes a longer sequence from the schedule.

Therefore, we are more interested in the conditions for achieving

𝜖-indistinguishability for a certain duration (as opposed to a single

point in time). As a noise draw occurs for every job instance, based

on the theorem of Sequential Composition [46, Theorem 3], the

privacy degradation is cumulative as the number of draws increases.

A smart attacker may be able to sort out the distribution by col-

lecting sufficient samples. Therefore, it is crucial to understand the

condition for providing the required level of indistinguishability

for a certain duration. To this end, we measure the duration in

the number of job instances (that corresponds to the number of

noise draws for the corresponding inter-arrival times). Then we

use the following theorem to determine the scale of the noise for

preserving 𝜖-indistinguishability up to 𝐽 job instances.

Theorem 4.3. The Laplace randomized mechanism R(·) with the

scale
𝐽 Δ𝜂
𝜖 is 𝜖-indistinguishable up to 𝐽 job instances. ■

This theorem can be proved by expanding Equation 3 with 𝐽

invocations of R(·). The proof is given in Appendix A for reference.

The assignment of 𝐽 for a given task set is discussed in Section 5.3.

4.5 Bounded Laplace Randomized Mechanism

While the introduced Laplace randomized mechanism offers 𝜖-

indistinguishability, the unbounded output domain for the random-

ized inter-arrival times makes it infeasible to adopt in real systems.

To address this problem, we introduce the łbounded Laplace ran-

domized mechanismž, i.e., the randomized inter-arrival time drawn

from a Laplace distribution is bounded by a given range. There are

typically two solutions for bounding the value drawn from a distri-

bution: (i) truncation and (ii) bounding [40]. Truncation projects

values outside the domain to the closest value within the domain.

Bounding, used in this paper, is to continue sampling indepen-

dently from the distribution until a value within the specified range

5
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is returned. Let’s denote such a bounded Laplace distribution by

𝐿̃(𝜇, 𝑏,𝑇⊥,𝑇⊤) of which the drawn value is in the range [𝑇⊥,𝑇⊤].

Using such a bounded Laplace distribution allows a mechanism

to return randomized inter-arrival times within a range that’s feasi-

ble for the given constraints. However, it is known that the bounded

Laplace distribution cannot preserve the same level of probabilistic

guarantee (i.e., the 𝜖-indistinguishability in our context) with the

same scale parameter as a pure Laplace distribution and a doubling

of the noise variance is required to compensate for the loss [29, 40].

Based on this condition and Theorem 4.3, we define the bounded

inter-arrival time Laplace randomized mechanism as follows:

Definition 4.4. (Bounded Inter-Arrival Time Laplace Random-

ized Mechanism.) Let [𝑇⊥
𝑖 ,𝑇⊤

𝑖 ] be the feasible inter-arrival time

range for a given task 𝜏𝑖 , the bounded inter-arrival time Laplace

randomized mechanism is defined as

R̃ (𝜏𝑖 , 𝑗) = 𝐿̃( 𝜂𝑖 ( 𝑗) ,
2𝐽𝑖Δ𝜂𝑖
𝜖𝑖

, 𝑇⊥
𝑖 , 𝑇⊤

𝑖 ) (6)

𝑗𝑡ℎ inter-arrival time of 𝜏𝑖 scale of the noise distribution

bounds for randomized inter-arrival time

where 𝐿̃(·) is the bounded Laplace distribution of which the drawn

values are bounded in the range [𝑇⊥
𝑖 ,𝑇⊤

𝑖 ] based on a pure Laplace

distribution Lap(𝜂𝑖 ( 𝑗),
2𝐽𝑖Δ𝜂𝑖
𝜖𝑖

). ■

The variables𝑇⊥,𝑇⊤, Δ𝜂𝑖 , 𝐽𝑖 and 𝜖𝑖 are extended task parameters

of 𝜏𝑖 to be formalized in Section 5.1. Following Theorem 4.3, the

bounded inter-arrival time Laplace randomized mechanism R̃ (𝜏𝑖 , 𝑗)

is 𝜖-indistinguishable up to 𝐽 job instances.

5 𝜖-SCHEDULER

With the components described in Section 4, we now introduce

our proposed real-time scheduler, the 𝜖-Scheduler. In each task’s

arrival (the beginning of a new instance), the 𝜖-Scheduler uses R̃ (·)

for generating the task’s next arrival time (i.e., randomizing inter-

arrival times). In this sectionwe first introduce an extended RTS task

model that supports such an 𝜖-Scheduler, followed by discussion

for how the extended task parameters can be determined for a given

system to achieve job/task-level indistinguishability.

5.1 Extended Task Model

The basic task model presented in Section 3.2 is extended to include

parameters necessary for an 𝜖-Scheduler to achieve the desired

indistinguishability. In 𝜖-Scheduler, a task 𝜏𝑖 is characterized by

(T𝑖 ,D𝑖 ,𝐶𝑖 , 𝜂𝑖 ,𝑇
⊥
𝑖 ,𝑇⊤

𝑖 ,Δ𝜂𝑖 , 𝐽𝑖 , 𝜖𝑖 ) where [𝑇
⊥
𝑖 ,𝑇⊤

𝑖 ] is a range of toler-

able periods, Δ𝜂𝑖 ≥ 0 is the inter-arrival time sensitivity parameter,

𝐽𝑖 is the task’s effective protection duration, and 𝜖𝑖 > 0 is the

indistinguishability scale parameter. At each new job arrival, the 𝜖-

Scheduler invokes R̃ (𝜏𝑖 , 𝑗) = 𝐿̃(𝜂𝑖 ( 𝑗),
2𝐽𝑖Δ𝜂𝑖
𝜖𝑖

,𝑇⊥
𝑖 ,𝑇⊤

𝑖 ) to determine

the next job’s randomized arrival time point.

In this extended task model, the parameters T𝑖 ,D𝑖 ,𝐶𝑖 , 𝜂𝑖 ,𝑇
⊥
𝑖

and 𝑇⊤
𝑖 are obtained from the system dynamics. The additional

parameters Δ𝜂𝑖 , 𝐽𝑖 and 𝜖𝑖 are to be given by the system designer.

As the degree of noise added to a task’s inter-arrival time relies

on the extended parameters, it is crucial to assign proper values

based on the desired indistinguishability goal. We now discuss the

considerations for determining these values.

5.2 Determining Inter-Arrival Time Sensitivity

Δ𝜂𝑖 represents the degree of random noise needed to make two inter-

arrival times indistinguishable and can be determined based on

Definition 4.2. The value of Δ𝜂𝑖 should be fixed for an execution in-

stance once assigned. In the case that we intend to achieve job-level

indistinguishability is to achieve for a given task 𝜏𝑖 , the value of

Δ𝜂𝑖 is determined solely by the task’s set of periods, T𝑖 . In this case,

each task’s sensitivity is independent of each other. On the other

hand, task-level indistinguishability requires that the sensitivity re-

flects all tasks in the system. Hence, the sensitivity for the task-level

indistinguishability is task set specific and all tasks are assigned

with the same sensitivity value. It is straightforward to see that

task-level sensitivity will be greater than job-level sensitivity of

any task (and hence larger noise will be added). It is up the system

designer to decide, taking potential performance degradation into

account, which type of indistinguishability should be achieved.

5.3 Calculating Protection Duration

Using the bounded Laplace mechanism, R̃ (·), an 𝜖-Scheduler is able

to preserve 𝜖𝑖 -indistinguishability up to 𝐽𝑖 job instances for a given

task. As pointed out in Section 4.4, the more noise samples collected,

the more likely an attacker is able to reconstruct the distribution

and reveal a task’s behavior. Therefore, 𝜖𝑖 -indistinguishability can’t

be guaranteed for an infinite time. For this reason, the 𝜖-Scheduler

should be used with other security measures for comprehensive pro-

tection against scheduler side-channels. There exist some security

schemes that work well together in this context. For instance, one

can perform periodic security checks to detect possible intrusions

and anomalies [27]. With such a scheme, the distance between two

security checks can be used as a reference to compute the protection

duration parameter 𝐽𝑖 . Another feasible scheme is the restart-based

mechanism [1, 2] that enforces a reboot once a while. In such a case,

the maximum time to reset the system can be used to compute 𝐽𝑖 .

In both schemes, the adversary’s attack progress is disrupted once

the corresponding security measure kicks in and the 𝜖-Scheduler

offers further security guarantees from compromise via scheduler

side-channels. Note that 𝐽𝑖 is defined in the number of job instances

as each job arrival draws a random value from the distribution.

When the job-level indistinguishability is considered, each task’s

𝐽𝑖 is computed independently so the value can be different across

tasks. Let 𝜆 be the protection duration in time, then

𝐽𝑖 =



𝜆

min(T𝑖 )


(7)

desired protection duration

the smallest period of 𝜏𝑖

𝐽𝑖 = max(



𝜆

min(T𝑗 )


| 𝜏 𝑗 ∈ Γ) (8)

the smallest period in the task set Γ

Equation 7 offers 𝜖𝑖 -indistinguishability to 𝜏𝑖 within 𝜆 time. For task-

level indistinguishability, 𝐽𝑖 for all tasks must be equal to offer the

desired indistinguishability guarantee (subject to 𝜖𝑖 ) as calculated

by Equation 8 where 𝜆 is a global protection duration in time.

5.4 Choosing Indistinguishability Parameter

With the noise level (Δ𝜂𝑖 ) and protection duration (𝐽𝑖 ) determined

for a given task set, 𝜖𝑖 is the major remaining variable that a system

6
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Table 3: Summary of Scheduling Overhead Measurement

Mean of Measurement Vanilla EDF T.S. EDF 𝜖 = 103 𝜖 = 10

Context Switch Count Ratio 1 2.525 0.914 0.696
pick_next_dl_entity() 1.25𝑢𝑠 4.3𝑢𝑠 1.44𝑢𝑠 1.39𝑢𝑠
𝜖-Scheduler function* - - 5.79𝑢𝑠 5.41𝑢𝑠
Power Usage (performance) 2.37𝑊 2.39𝑊 2.38𝑊 2.36𝑊
Power Usage (ondemand) 2.20𝑊 2.3𝑊 2.08𝑊 2.05𝑊
* get_next_inter_arrival_time()

of Figure 10. As the result shows, only 1.37% of the tested task sets

have deadline misses. Among these cases, no consecutive deadline

miss has been observed.

We next examine how close to the indistinguishable tasks per-

form to the desired frequencies. A task’s frequency error is calcu-

lated as the difference between the task’s mean and desired fre-

quencies. The mean of the frequency errors (grouped by task set

utilization) is shown in the bar chart in Figure 10. The result in-

dicates that task sets scheduled by 𝜖-Scheduler with 𝜖 = 10 has

frequency error significantly larger than that with 𝜖 = 103. It is

expected as 𝜖 = 10 yields a wider inter-arrival range (more noise

added). It is also worth pointing out that the frequency error is

due to the bounds in generating the noise-added inter-arrival times

that can lead to an asymmetric distribution (as an example, see the

distribution for 𝜇 = 33.3𝑚𝑠 in Figure 4(b)).

While the mean task frequency gives us an insight into the

overall performance of the service delivery, it is crucial to know how

often the task is performing at a frequency below what is expected

(i.e., with inter-arrival times larger than the desired period) as such

execution usually has a direct impact on the task’s commitment

to the service delivery. We measure such a property for a task

by calculating the ratio of the number of under-performing inter-

arrival times to the total number of generated inter-arrival times.

In this experiment, we first compute the worst under-performance

ratio for each task set (by measuring it for each task and selecting

the worst in the task set) and then calculate the mean of the worst

under-performance ratios. From our experiment results, the under-

performance ratio can be biased towards 0.5 and above, leading to

a degradation in the execution frequency (a detailed experiment

plot is provided in Appendix, Figure 16). This usually happens to

the task that has a small target period and hence, an asymmetric

distribution that tends to generate larger inter-arrival times (again,

see Figure 4(b) for an example). It hints that one should expect a

degradation in the service when using 𝜖-Scheduler, particularly

with a small 𝜖 value (i.e., larger noise and variation in the schedule).

8.2.5 Scheduling Overhead. We next evaluate the scheduling

overhead of the 𝜖-Scheduler, together with the Vanilla EDF and

TaskShuffler EDF schedulers as a comparison. The measurement

results are summarized in Table 3.

We set Vanilla EDF as the base and calculate the context switch

count ratio compared to TaskShuffler EDF and 𝜖-Scheduler in sim-

ulation. The result suggests that TaskShuffler EDF generates a

twofold increase in the number of context switches. This matches

the design of the TaskShuffler’s randomization protocol that aims to

obfuscate the schedule by introducing more scheduling points (i.e.,

more context switches). On the other hand, 𝜖-Scheduler produces

fewer context switches as the generated inter-arrival times can be

greater than Vanilla EDF (i.e., task executing less frequently). This

measurement generally matches the result shown in Figure 16.

Next, we execute a set of tasks (with parameters given in Table 6)

on RT Linux on the RPi4 platform to measure the mean cost of

scheduling. We first measure the execution time overheads of the

main scheduling function pick_next_dl_entity() that picks the

next task at a scheduling point. The result shows that TaskShuf-

fler EDF has larger overhead as it invokes get_random_bytes()

that takes an average 2.23𝑢𝑠 to generate a 64-bit random number.

On the other hand, the 𝜖-Scheduler has overheads that are very

similar to Vanilla EDF as the scheduling mechanism is identical

in pick_next_dl_entity(). To evaluate the true overhead of 𝜖-

Scheduler, we measure get_next_inter_arrival_time() where

randomized inter-arrival times are generated in our 𝜖-Scheduler

implementation. As shown in the table, the time cost is around

5.79𝑢𝑠 and is independent of the 𝜖 setting. This cost is mainly

due to the invocation of the random number generation func-

tion, get_random_bytes(). Note that this overhead is incurred

in the scheduler when a job arrives, which is not equivalent to

the context switch overhead as an arrival of a job in EDF (and 𝜖-

Scheduler) does not necessarily lead to a new scheduling event (i.e.,

a pick_next_dl_entity() call).

We also measured the power consumption of the platform for

each of the schedulers. When the scaling governor is configured

as scaling_governor = performance ( a typical setting for RTS

to maintain a predictable execution time and behavior), the power

consumption consistent for all schedulers. It is expected as the CPU

runs at the highest frequency at all times under the performance

setting. For a comparison purposes, we measure the power con-

sumptionwith scaling_governor = ondemand that lowers the CPU

frequency (i.e., less power consumption) when idling for a signifi-

cant amount of time. The resulting power consumption matches

what we have learned from the above experiments (e.g., lower con-

text switch ratio in 𝜖-Scheduler) and suggest that 𝜖-Scheduler does

not result in higher power consumption.

9 DISCUSSION AND CONCLUSION

From the evaluation, both 𝜖 = 103 and 𝜖 = 10 settings produce

promising results for obscuring the periodicity and diversifying the

schedule. However, as shown by the QoSmeasurements, the 𝜖 = 103

setting yields more reasonable variations in the task frequencies.

While 𝜖-Scheduler offers less protection with 𝜖 = 103 value, it may

not be unusual to choose such a large 𝜖 value in many RTS. The

same outcomes can be drawn from the evaluation using the two real

applications presented in Section 7. In both applications, the system

reaches a balance between performance and security with 𝜖 = 103.

On the other hand, with 𝜖 = 10, the results demonstrate how diverse

the performance impact could be for different applications. In such

a setting, the rover system performs with an acceptable error, while

the video streaming service becomes unusable. Considering that

every application has its unique tolerance to variations, the 𝜖 value

should be determined on a case-by-case basis in conjunction with

system designers.

A possible improvement is to dynamically adjust the 𝜖 value

based on the QoS and protection demand at run-time. In such a

case, 𝜖 is particularly useful as a security parameter to be integrated

with a feedback control real-time scheduling algorithm (e.g., [43]).
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A PROOF OF THEOREM 4.3

Proof. Let R 𝐽 (𝜏𝑖 , 𝑗) = {R(𝜏𝑖 , 𝑘) | 𝑗 ≤ 𝑘 < 𝑗 + 𝐽 } be a set of R(·)

invocations. By the definition of the inter-arrival time indistinguish-

able, it must satisfy

Pr[R 𝐽 (𝜏, 𝑗) ∈ W] ≤ 𝑒𝜖Pr[R 𝐽 (𝜏 ′, 𝑗 ′) ∈ W] (9)

for all 𝜏, 𝜏 ′ ∈ Γ, 𝑗, 𝑗 ′ ∈ N and W ⊆ Range(R 𝐽 ).

Let 𝑤 = {𝜔𝑘 |𝑘 ∈ [𝐽 ]} be an inter-arrival time sequence gener-

ated by R 𝐽 (𝜏, 𝑗). Then

Pr[R 𝐽 (𝜏, 𝑗) = 𝑤] =
∏

𝑘∈[𝐽 ]

Pr[R(𝜏, 𝑗 + 𝑘 − 1) = 𝜔𝑘 ]

where 𝜔𝑘 is calculated by 𝜂𝜏 (·) + Lap(𝑏) in which 𝑏 is the Laplace

distribution parameter. Expanding with the probability density

function, the right term in the above equation can be rewritten as

∏

𝑘∈[𝐽 ]

1

2𝑏
exp(−

|𝜔𝑘 − 𝜂𝜏 ( 𝑗 + 𝑘 − 1) |

𝑏
)

Table 4: Glossary of Notations

Notation Definition

Real-Time Task Model

Γ a set of real-time tasks

𝜏𝑖 a real-time task in Γ

T𝑖 a set of admissible periods of 𝜏𝑖
D𝑖 a set of implicit, relative deadlines of 𝜏𝑖
𝐶𝑖 the worst-case execution time of 𝜏𝑖
𝜂𝑖 the inter-arrival time function of 𝜏𝑖

𝜖-Scheduler Extended Model

Δ𝜂𝑖 the inter-arrival time sensitivity of 𝜏𝑖
𝐽𝑖 effective protection duration for 𝜏𝑖
𝜖𝑖 indistinguishability scale of 𝜏𝑖

R̃ ( ·) bounded inter-arrival time Laplace randomized mechanism

Table 5: Summary of the Implementation Platform

Artifact Parameters

Platform ARM Cortex-A72 (Raspberry Pi 4)

System Configuration 1.5 GHz 64-bit processor, 4 GB RAM

Operating System Debian Linux (Raspbian)

Kernel Version Linux Kernel 4.19.71-rt24-v7l+

Kernel Configuration

(make defconfig)

CONFIG_SMP disabled

CONFIG_PREEMPT_RT_FULL enabled

Boot Commands maxcpus=1

Run-time Variables sched_rt_runtime_us=−1

scaling_governor=performance

Base Scheduler SCHED_DEADLINE

Then

Pr[R 𝐽 (𝜏, 𝑗) = 𝑤]

Pr[R 𝐽 (𝜏 ′, 𝑗 ′) = 𝑤]
=

∏

𝑘∈[𝐽 ]

1
2𝑏
exp(−

|𝜔𝑘−𝜂𝜏 ( 𝑗+𝑘−1) |
𝑏

)

1
2𝑏
exp(−

|𝜔𝑘−𝜂𝜏′ ( 𝑗
′+𝑘−1) |

𝑏
)

=

∏

𝑘∈[𝐽 ]

exp(
|𝜂𝜏 ( 𝑗 + 𝑘 − 1) − 𝜂𝜏 ( 𝑗

′ + 𝑘 − 1) |

𝑏
)

The term |𝜂𝜏 ( 𝑗 + 𝑘 − 1) − 𝜂𝜏 ( 𝑗
′ + 𝑘 − 1) | represents the difference

between two inter-arrival times which can be replaced with Δ𝜂

for the worst case (i.e., the largest possible difference defined in

Definition 4.2). The above becomes

∏

𝑘∈[𝐽 ]

exp(
Δ𝜂

𝑏
) = exp(

∑

𝑘∈[𝐽 ]

Δ𝜂

𝑏
)

= exp(
𝐽Δ𝜂

𝑏
)

Using Equation 9, we can derive 𝑏 from

exp(
𝐽Δ𝜂

𝑏
) ≤ exp(𝜖)

𝑏 ≥
𝐽Δ𝜂

𝜖
(10)

Therefore, the Laplace distribution with the scale𝑏 =
𝐽 Δ𝜂
𝜖 preserves

𝜖-indistinguishability up to 𝐽 instances. ■
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are in harmony with the true frequencies. These harmonic peaks

in fact are helpful for adversaries to identify and verify the true

frequencies of interest.

We are interested in the amount of information that an adversary

can learn from the DFT analysis w.r.t. a task’s periodic behavior.

By the nature of DFT, the amplitude in the spectrum has a positive

correlation with the periods and the peaks that stand out are par-

ticularly helpful to adversaries in gaining more knowledge about

the schedule. To this end, we use a Z-score based peak detection

algorithm [20, 38] to count the number of outstanding peaks in

the spectrum. The peak detection algorithm uses a moving mean

with a 10𝐻𝑧 window to detect the outstanding peaks that are 3.5

standard deviations away. As shown by the green line in Figure 7,

such a moving threshold can effectively identify the peaks that are

significant while filtering out the base noise.
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