
Energy-Harvesting Distributed Machine Learning

Başak Güler
University of California, Riverside

Riverside, California
bguler@ece.ucr.edu

Aylin Yener
The Ohio State University

Columbus, Ohio
yener@ece.osu.edu

Abstract—This paper provides a first study of utilizing en-
ergy harvesting for sustainable machine learning in distributed
networks. We consider a distributed learning setup in which
a machine learning model is trained over a large number of
devices that can harvest energy from the ambient environment,
and develop a practical learning framework with theoretical
convergence guarantees. We demonstrate through numerical
experiments that the proposed framework can significantly out-
perform energy-agnostic benchmarks. Our framework is scalable,
requires only local estimation of the energy statistics, and can be
applied to a wide range of distributed training settings, including
machine learning in wireless networks, edge computing, and
mobile internet of things.

I. INTRODUCTION

The environmental impact of large-scale machine learning
is a major challenge against the sustainability of future smart
ecosystems. For instance, the carbon emission of training
a single machine learning model can get as large as the
lifetime of five cars [1]. The environmental impact will be even
greater with the emergence of machine learning in distributed
environments, where millions of devices are expected to
participate in training on a regular basis. This, combined
with the fact that state-of-the-art machine learning models
are trained over billions of parameters [2], calls for a novel
design paradigm for large-scale machine learning.

In this paper, we propose energy harvesting [3] for the
design of sustainable distributed machine learning systems. We
consider a distributed training scenario with N clients (users),
who wish to collaborate to train a machine learning model. Each
user holds a local dataset Di, and the goal is to train a machine
learning model over the joint dataset D1, . . . ,DN . Training
is performed through distributed stochastic gradient descent
(SGD) coordinated through a central server, who maintains a
global model. At each iteration of training, the server sends the
current estimate of the model parameters to the users. Users
then locally update the global model by computing a local
gradient on their local dataset, and send their local updates to
the server. The server then aggregates the local updates from
the users, updates the global model, and sends the updated
model back to the users. Unlike the conventional distributed
SGD setting, in this work, users receive energy through an
energy harvesting process [3]–[15], and can only participate
in training if they have energy available to do so.

Energy and resource efficiency in machine learning has been
studied in various notable works [16], [17]. Broadly, these
settings can be categorized into two. The first line of work
focuses on minimizing the energy consumption of the compute
or communication framework [16]. The second line of work, on
the other hand, is focused on minimizing the training loss within

a given energy budget, where all of the energy is available at
the beginning of training [17]. In contrast, our work focuses
on training with devices that can harvest small amounts of
energy from the ambient environment, where energy arrivals
are intermittent and non-homogeneous across different devices.

Prior to this work, user sampling for distributed machine
learning has been primarily investigated in the context of
improving communication efficiency or convergence rate [18]–
[26]. In these works, the primary goal is to either select a
small set of users to participate at a given training iteration
in order to reduce the overall communication overhead or
due to bandwidth limitations, or to select a few informative
users to maximize the convergence rate of training, with the
assumption that all users are available to participate in training
if selected. In contrast, in our setting, users can only participate
in training if they have available energy. Moreover, the energy
availability of different users can be different. Several notable
works have considered distributed learning when users have a
chance to drop out, unlike the current setup, in these settings,
user dropouts occur uniformly at random [27]–[29].

We demonstrate that energy-harvesting can be a good
candidate for machine learning in distributed networks, through
a practical distributed training framework with theoretical con-
vergence guarantees. Our experiments show that the proposed
framework significantly outperforms the alternative distributed
SGD benchmarks that are agnostic to the energy arrival process.
We hope our work to open up new research directions in
leveraging energy-harvesting for sustainable machine learning
in large-scale mobile and edge networks.

II. SYSTEM MODEL

A. Training Setup
We consider a distributed training setup in a network with

N devices (users). The users are connected through a central
server who coordinates the training. User i has a local dataset
Di, consisting of Di data points. We define the total number
of data points in the network as D =

∑
i∈[N]Di. The goal is

to train a model w that minimizes a global loss function

F (w) =
1

D

N∑
i=1

Di∑
j=1

l(w,xij) (1)

where l(w,xij) denotes the loss of data point xij from the
local dataset of user i. Note that the loss function in (1) is
evaluated with respect to the entire set of data points that belong
to the N users. As such, equation (1) can also be written as

F (w) =

N∑
i=1

piFi(w) (2)

320978-1-5386-8209-8/21/$31.00 ©2021 IEEE

where pi = Di

D such that
∑n
i=1 pi = 1, and

Fi(w) =
1

Di

Di∑
j=1

l(w,xij) (3)

represents the local loss function of user i.
Training is performed through distributed SGD, in which

the model parameters are updated iteratively in the negative
direction of the gradient. Each iteration is represented by a
discrete time instant t ∈ {0, 1, 2, . . .}. The current estimation
of the model parameters at iteration t is represented by a
d-dimensional vector w(t) ∈ Rd, where d is the model size.

We now review the conventional distributed SGD protocol.
In this setting, at the beginning of each iteration, the server
sends w(t) to the users. Then, user i ∈ {1, . . . , N} computes
a local stochastic gradient,

gi(w
(t), ξ

(t)
i) , ∇Fi(w(t), ξ

(t)
i) (4)

by using a (uniformly) random sample ξ
(t)
i from the local

dataset Di. Hence, the stochastic gradient is an unbiased
estimator of the true gradient of user i,

E
ξ
(t)
i

[∇Fi(w(t), ξ
(t)
i)] = ∇Fi(w(t)), (5)

where ∇Fi(w(t)) is the gradient of the local loss function in
(3). The gradient of the global loss function in (1) is given by,

∇F (w(t)) ,
N∑
i=1

pi∇Fi(w(t)). (6)

After the local computations, users send their local gradients
from (4) to the server. The server then updates the model,

w(t+1) = w(t) − η
N∑
i=1

pigi(w
(t), ξ

(t)
i) (7)

where η is the learning rate (step size), and sends the updated
model back to the users for the next iteration.

B. Energy Harvesting Profile of the Users

This work considers devices that are powered by the energy
harvested from the ambient environment, such as RF, solar, or
kinetic energy [3], [4]. We assume that one step of the SGD
protocol costs a unit amount of energy at each user, which
includes computing the local gradient from (4) and sending
it to the server. It is also assumed that each user has a unit
battery that can store enough energy for one step SGD.

We let Eti denote the energy arrival process at user i, in
particular Eti = 1 if user i receives energy at time t and
Eti = 0 otherwise. The specific distribution of the energy
arrivals depends on the harvesting process. Our focus is on the
following energy harvesting scenarios.

1) Deterministic Energy Arrivals: We first consider a deter-
ministic energy harvesting scenario in which energy arrivals
are known by each user in advance. We assume that energy
may arrive at arbitrary non-overlapping time instances, and let
Ii = {t : Eti = 1} denote the set of time instances at which
user i receives energy. We also define Iti = maxt′:t′≤t, t′∈Ii t

′

for the time of the most recent energy arrival up to t, and
Īti = mint′:t′>t, t′∈Ii t

′ for the time of the next energy arrival
after time t. Finally, for a given t, we define the duration
between Iti and Īti as T ti = Īti − Iti.

2) Stochastic Energy Arrivals: We next consider the stochas-
tic energy harvesting scenario where energy arrivals are
modeled through a stochastic process. Unlike the deterministic
setting, users do not know the exact time instant at which energy
will be received, but only the probabilistic model governing the
underlying harvesting process. Our focus is on the following
stochastic arrival scenarios.

(Binary Arrivals) In the binary energy arrival setup, at each time
instant, user i receives a unit amount energy with probability
βi. More specifically, we let Eti ∼ Bern(βi):

Eti =

{
1 with probability βi
0 with probability 1− βi

(8)

where βi ∈ (0, 1], to represent whether or not user i receives
energy at time t. Parameter βi quantifies how frequent user i
receives energy, and may vary from one user to another.

(Uniform Arrivals) We next consider a uniform energy arrival
scenario in which device i receives a unit amount of energy
at a uniformly random time instant every Ti time instants.
Formally, for any t such that t mod Ti = 0, user i receives
a unit amount of energy at a uniformly random time instant
within {t, . . . , t+ Ti − 1}.

Note that this is not an immediate generalization of the first
setting, as in the former setup there is a non-zero probability
that user i will never receive energy in Ti time instants. In
contrast, in the second setting, user i receives a unit amount
energy with probability 1 at every Ti time instants, but the
exact time instant at which energy is received is unknown.

As we demonstrate in our experiments, the conventional
distributed SGD strategy from Section II might bias the model
towards users that have more frequent energy arrivals, causing
a performance loss in training. As such, the training strategy
should take into account the energy arrival patterns of the users.

Main Problem. Given the above training and energy har-
vesting settings, the main problem we study in our work
is, “How to design a distributed stochastic gradient descent
framework for energy harvesting devices, where energy arrivals
are intermittent and heterogeneous, while ensuring theoretical
convergence guarantees?”.

In the sequel, we provide a simple energy harvesting dis-
tributed learning strategy with provable convergence guarantees.
The proposed strategy takes into account the intermittent
energy availability due to the energy harvesting process of
the individual users while ensuring that the model does not
bias towards any particular user.

III. ENERGY HARVESTING DISTRIBUTED SGD
A. Distributed SGD with Deterministic Energy Arrivals

We first study the deterministic energy harvesting scenario
and provide a simple distributed training framework with
theoretical convergence guarantees. The individual steps of
our framework is provided in Algorithm 1. Our framework
consists of three main components, user scheduling, local
gradient computations, and server-side model update.

1) User scheduling: The first component of our framework
is user scheduling for training. Conventional user selection
algorithms for distributed SGD are designed under the assump-
tion that all users are inherently available to participate in the

321

Algorithm 1 Distributed SGD with Deterministic Energy
Arrivals
input Number of devices N , local dataset Di of device i ∈ [N],

number of iterations T , initial model parameters w(0).
output Model parameters (weights) w(T).

1: for user i = 1, . . . , N do
2: Initialize U t

i = 0 for t ∈ [T].
3: for iteration t = 0, . . . , T − 1 do

Users i = 1, . . . , N :

4: if Et
i = 1 then

5: Sample an integer J uniformly random from {0, . . . , T t
i −1}.

6: Update U t+J
i = 1.

7: if U t
i = 1 then

8: Compute the local gradient gi(w(t), ξ
(t)
i).

9: Send T t
i gi(w

(t), ξ
(t)
i) to the server.

Server:
10: Update the model according to (10).
11: Send the model parameters w(t+1) to the users.

training process if selected, and employ a user sampling strategy
to reduce the communication load or aim at selecting the users
that will maximize the convergence rate for training [18]–[21].
In contrast, in our setup, not all users can participate in the
training process at all rounds. This is due to the intermittent
energy arrivals, if a user has no energy at a given time instant,
they will not be able to participate in training.

A naive approach would be to utilize the conventional
distributed SGD algorithm from (7). However, doing so may
bias the trained model towards users who have more frequent
energy availability. Another approach is to wait until all users
become available, and then use the conventional distributed
SGD algorithm from (7). However, waiting for all users to
have enough energy can significantly increase the total training
time needed to achieve a target performance level.

Instead, we propose a practical scheduling strategy that can
be performed locally by the users, while ensuring that the
model does not bias towards any user. In this setting, whenever
a user receives energy, i.e., Eti = 1 for some t, the user samples
an integer J uniformly at random from the set {0, . . . , T ti −1},
and participates at iteration t+ J .

2) Local gradient computation: At the beginning of each
training iteration, the server sends the current estimate of
the model parameters w(t) to the users. If a user decides to
participate in the current training iteration t, according to the
scheduling strategy from Section III-A1, it computes the local
gradient from (4). Then, the user sends to the server a scaled
version of their local gradient,

T ti gi(w
(t), ξ

(t)
i) = T ti∇Fi(w(t), ξ

(t)
i) (9)

3) Server-side model update: After receiving the local
computations from (9) from the participating users, the server
updates the model as:

w(t+1) = w(t) − η
∑
i∈St

pi

(
T ti gi(w

(t), ξ
(t)
i)
)

(10)

where St denotes the set of users who have participated at
round t. Note that due to the stochastic nature of the user
scheduling process, St is random.

As we demonstrate in Section IV, this process provides

Algorithm 2 Distributed SGD with Stochastic Energy Arrivals
input Number of devices N , local dataset Di of device i ∈ [N],

number of iterations T , initial model parameters w(0).
output Model parameters (weights) w(T).

1: for iteration t = 0, . . . , T − 1 do
Users i = 1, . . . , N :

2: if Et
i = 1 then

3: Compute the local gradient gi(w(t), ξ
(t)
i).

4: Send γt
igi(w

(t), ξ
(t)
i) to the server.

Server:
5: Update the model according to (11).
6: Send the model parameters w(t+1) to the users.

theoretical convergence guarantees for the model. Moreover, the
user scheduling process does not require a central coordinator
and can be performed locally by the users, solely based on
local energy estimations, hence is scalable to large networks.

B. Distributed SGD with Stochastic Energy Arrivals

We next consider distributed training under the stochastic
energy harvesting setting. The training strategy again consists
of three main components, user scheduling, local gradient
computation, and server-side model update. We employ a best-
effort user scheduling strategy, where each user participates in
training as soon as they receive energy, by computing the local
gradient from (4), and sending to the server a scaled gradient
γtigi(w

(t), ξ
(t)
i), where γti = 1

βi
and γti = Ti for the binary

and uniform energy arrival settings, respectively.
After receiving the local computations from the participating

users, the server updates the model as,

w(t+1) = w(t) − η
∑
i∈St

pi

(
γtigi(w

(t), ξ
(t)
i)
)

(11)

The individual steps of this process are provided in Algorithm 2.

IV. CONVERGENCE ANALYSIS

We now state the convergence guarantees of our framework,
by first reviewing a few common technical assumptions [19],
[30] that will be needed for our convergence analysis.

Assumption 1. (Bounded variance) The variance of the
stochastic gradients from (4) are bounded:

E
ξ
(t)
i

[||gi(w(t), ξ
(t)
i)−∇Fi(w(t))||2] ≤ σ2 for i ∈ [N] (12)

Assumption 2. (Second moment bound) The expected squared
norm of the stochastic gradients from (4) are bounded:

E
ξ
(t)
i

[||gi(w(t), ξ
(t)
i)||2] ≤ G2 for i ∈ [N] (13)

We also assume that the local loss functions Fi(w) for
i ∈ [N] (and thus the global loss function F (w)) are µ-strongly
convex and L-smooth, as in [19, Assumptions 1 and 2]. Next,
we provide a key technical lemma.

Lemma 1. (Unbiasedness) For distributed SGD with deter-
ministic energy arrivals,

ESt

[∑
i∈St

piT
t
i gi(w

(t), ξ
(t)
i)

]
=

N∑
i=1

pigi(w
(t), ξ

(t)
i), (14)

322

hence the user scheduling scheme is unbiased. Moreover,
for distributed SGD with stochastic energy arrivals, the
unbiasedness condition from (14) holds by replacing T ti with
1
βi

and Ti for binary and uniform arrivals, respectively.

Proof. We first define a Bernoulli random variable αti to
represent whether or not user i participates at iteration t:

αti =

{
1 if user i participates at time t
0 otherwise (15)

Then, for any given t,

P [αti = 1] = P [J = t− Iti] =
1

T ti
(16)

By letting αt , (αt1, . . . , α
t
N), we find that,

ESt

[∑
i∈St

piT
t
i gi(w

(t), ξ
(t)
i)

]
=Eαt

[
N∑
i=1

αtipiT
t
i gi(w

(t), ξ
(t)
i)

]
(17)

=

N∑
i=1

piT
t
i

1

T ti
gi(w

(t), ξ
(t)
i) (18)

where (17) follows from St =
∑N
i=1 α

t
i, and (18) is from (16).

The proof for stochastic arrivals follows the same lines along
with the observation that, for the best-effort user scheduling
strategy P [αti = 1] = P [Eti = 1].

We now state our convergence guarantees.
Theorem 1. For training a machine learning model from (1),
using the distributed SGD algorithm with deterministic energy
arrivals and a constant learning rate η ≤ min

{
1
2µ ,

1
L

}
.

E[F (w(T))]− F (w∗)

≤ L

µ
(1− ηµ)T (F (w(0))− F (w∗)− ηC

2
) +

ηLC

2µ
(19)

in T iterations, where w∗ denotes the optimal model parame-
ters that minimize the global loss function in (1), and

C ,
(N∑
i=1

(
Ti,max − 1

)
p2i +

N∑
i=1

N∑
j=1

pipj

)
G2, (20)

where Ti,max , max{T 1
i , . . . , T

T
i } for i = 1 . . . , N .

Remark 1. The first term in the right hand side of (19)
vanishes as T →∞, whereas the second term ηLC

2µ represents
a non-vanishing error term due to the constant learning rate.
By using a decreasing learning rate as in [19], [21], this term
can also be made vanishing as T →∞.

Proof. (Sketch) The proof follows standard steps for the
convergence analysis of distributed SGD algorithms [18],
[19], [30], hence we provide a proof sketch in the sequel.
By letting gti , gi(w

(t), ξt), w∗ , arg minw F (w), and
ξt , (ξ

(t)
1 , . . . , ξ

(t)
N), from (10) we find that,

ESt,ξt [‖w(t+1)−w∗‖2] = ESt,ξt [‖w(t)−w∗‖2]

−2ηESt,ξt [〈w(t)−w∗,
∑
i∈St

piT
t
i g
t
i〉]+η2ESt,ξt [‖

∑
i∈St

piT
t
i g
t
i‖2]

(21)
From Lemma 1, (5), and µ-strong convexity, we observe that,

ESt,ξt [〈w(t)−w∗,
∑
i∈St

piT
t
i g
t
i〉]

= ESt,ξt [〈w(t)−w∗,
∑
i∈St

piT
t
i g
t
i −

N∑
i=1

pi∇Fi(w(t))〉]

+ ESt,ξt [〈w(t)−w∗,

N∑
i=1

pi∇Fi(w(t))〉] (22)

= 〈w(t)−w∗,∇F (w(t))〉 (23)

≥ F (w(t))− F (w∗) +
µ

2
‖w∗−w(t)‖2 (24)

We also have from Lemma 1 that,

ESt,ξt [‖
∑
i∈St

piT
t
i g
t
i‖2] = ESt,ξt [‖

∑
i∈St

piT
t
i g
t
i −

N∑
i=1

pig
t
i‖2]

+ ESt,ξt [‖
N∑
i=1

pig
t
i‖2] (25)

By combining (21), (24), and (25), we find that,
ESt,ξt [‖w(t+1)−w∗‖2]

≤(1−ηµ)ESt,ξt [‖w(t)−w∗‖2]− 2η(F (w(t))− F (w∗))

+η2ESt,ξt [‖
∑
i∈St

piT
t
i g
t
i−

N∑
i=1

pig
t
i‖2]+η2ESt,ξt [‖

N∑
i=1

pig
t
i‖2]

(26)
By defining αti as in (15) and αt = (αt1, . . . , α

t
N),

ESt,ξt [‖
∑
i∈St

piT
t
i g
t
i −

N∑
i=1

pig
t
i‖2]

= Eαt,ξt [‖
N∑
i=1

pi(α
t
iT

t
i g
t
i − gti)‖2] (27)

=

N∑
i=1

p2iEαt,ξt [‖αtiT ti gti − gti‖2]

+

N∑
i=1

N∑
j=1
j 6=i

Eαt,ξt [〈pi(αtiT ti gti − gti), pj(αtjT tj gtj − gtj)〉] (28)

=

N∑
i=1

p2iEαt,ξt [‖αtiT ti gti − gti‖2] (29)

=

N∑
i=1

p2i (T
t
i)2Eξt [Eαt|ξt [(α

t
i −

1

T ti
)2‖gti‖2|ξt]] (30)

≤
N∑
i=1

p2i (Ti,max − 1)G2 (31)

where (29) holds from (16) and that (αti, g
t
i) is independent

from (αtj , g
t
j) for all i 6= j; (31) is from (16) and (13). Finally,

η2ESt,ξt [‖
N∑
i=1

pig
t
i‖2]

≤
N∑
i=1

p2iEξt [‖gti‖2] +

N∑
i=1

N∑
j=1
j 6=i

pipjEξt [‖gti‖‖gtj‖] (32)

323

(a) (b) (c)

Fig. 1. Test accuracy of the proposed framework compared to the benchmark distributed SGD algorithms for N = 40 users on the CIFAR-10 dataset, for (a)
deterministic, (b) Bernoulli, and (c) uniform energy arrivals.

≤
N∑
i=1

p2iEξt [‖gti‖2] +

N∑
i=1

N∑
j=1
j 6=i

pipj
2

Eξt [‖gti‖2 + ‖gtj‖2] (33)

≤
N∑
i=1

N∑
j=1

pipjG
2 (34)

where (32) is from the Cauchy-Schwarz inequality; (33) is from
the AM-GM inequality; (34) is from (13). By combining (26)
and (31) with (34) and noting that −2η(F (w(t))−F (w∗)) ≤ 0,

ESt,ξt [‖w(t+1)−w∗‖2]≤(1−ηµ)ESt,ξt [‖w(t)−w∗‖2]

+η2
(N∑
i=1

(
(Ti,max − 1)

)
p2i +

N∑
i=1

N∑
j=1

pipj

)
G2 (35)

The remainder of the proof follows from standard induction
arguments as in [19], [21], hence is omitted.

Corollary 1. For distributed SGD with stochastic energy
arrivals, Theorem 1 holds by replacing Ti,max with 1

βi
for

binary arrivals and with Ti for uniform arrivals, respectively.
The convergence analysis follows the same steps.

V. EXPERIMENTS

In our experiments, we consider a conventional image
classification task with 10 classes on the CIFAR-10 dataset
[31], distributed over 40 users uniformly at random. Training is
performed via distributed SGD using the convolutional neural
network architecture from [27] (about 106 model parameters).
To demonstrate the impact of non-homogeneous energy-arrivals,
users are partitioned into 4 equal-sized groups A0, . . . ,A3 such
that Ak = {i : i mod 4 = k}, and the energy profiles of users
in group Ak are set as:

Eti =

{
1 ∀t such that t mod τk = 0
0 otherwise (36)

for i ∈ Ak, where (τ0, τ1, τ2, τ3) = (1, 5, 10, 20). Therefore,
users in group A0 receive energy at every time-instant t,
whereas users in groups A1, A2, and A3 receive energy at
every 5, 10, and 20 time-instants, respectively. We compare our
framework with the following distributed SGD benchmarks:
Benchmark 1. We first implement the distributed SGD
framework from Section II when users participate in training as
soon as they have energy available, by computing the gradient

from (4) and sending it to the server, and then wait for the
next energy arrival. Note that in this setting users do not scale
the gradients with respect to the energy arrivals.
Benchmark 2. We then consider the distributed SGD frame-
work from Section II when the global model is updated only
if all users have enough energy to participate in training. That
is, the server waits until all users have energy, then sends
the current model parameters to the users, users compute the
stochastic gradient from (4) and send it back to the server, and
then the server updates the model as in (7). Hence, in this case,
the model is updated once every t = 20 iterations.

Finally, we also implement the conventional distributed SGD
framework from Section II when all users are available at
every iteration, which represents our target (desired) accuracy
level. We demonstrate our results in terms of the test accuracy
with respect to time t in Figure 1 (a). Our results show that
Algorithm 1 achieves the same accuracy level (about 80%) as
conventional distributed SGD, whereas the two benchmarks
achieve an accuracy of 64% and 52%, respectively, within t =
1000 iterations. This is due to the fact that the first benchmark
favors users with more frequent energy arrivals, hence the
model is biased. The second benchmark waits for all users to
have enough energy before making a single SGD update, hence,
even though the training algorithm is unbiased, its convergence
rate is very slow. In contrast, Algorithm 1 converges fast while
achieving good accuracy. Figures 1 (b) and (c) demonstrate
the test accuracy for the same group structure (4 equal-sized
groups) in the stochastic arrivals scenario from Algorithm 2,
where we consider Bernoulli and uniform arrivals, respectively,
and set βi = (1, 1/5, 1/10, 1/20), and Ti = (1, 5, 10, 20) for
the users in the 4 groups. The proposed algorithm achieves
the target accuracy level of standard SGD and outperforms the
two benchmarks also in the stochastic arrivals scenario.

VI. CONCLUSION

We have studied distributed machine learning when users
have intermittent energy availability, and demonstrated a
simple distributed learning strategy with provable convergence
guarantees. Future directions include exploring the impact of
energy accumulation, quantization, and stragglers. We hope
our study to open up further research on energy harvesting for
sustainable learning in distributed and mobile networks.

324

REFERENCES

[1] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consider-
ations for deep learning in NLP,” pp. 265–284, Jul 2019.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[3] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and
K. Huang, “Energy harvesting wireless communications: A review of
recent advances,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 3, pp. 360–381, 2015.

[4] H. B. Radousky and H. Liang, “Energy harvesting: an integrated view
of materials, devices and applications,” Nanotechnology, vol. 23, no. 50,
p. 502001, 2012.

[5] K. Tutuncuoglu, O. Ozel, A. Yener, and S. Ulukus, “The binary energy
harvesting channel with a unit-sized battery,” IEEE Transactions on
Information Theory, vol. 63, no. 7, pp. 4240–4256, 2017.

[6] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits
of energy harvesting communications,” IEEE Communications Magazine,
vol. 53, no. 4, pp. 126–132, 2015.

[7] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for
battery limited energy harvesting nodes,” IEEE Transactions on Wireless
Communications, vol. 11, no. 3, pp. 1180–1189, 2012.

[8] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission
with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 8, pp. 1732–1743, 2011.

[9] B. Varan and A. Yener, “Delay constrained energy harvesting networks
with limited energy and data storage,” IEEE Journal on selected Areas
in Communications, vol. 34, no. 5, pp. 1550–1564, 2016.

[10] K. Tutuncuoglu, B. Varan, and A. Yener, “Throughput maximization
for two-way relay channels with energy harvesting nodes: The impact
of relaying strategies,” IEEE Transactions on Communications, vol. 63,
no. 6, pp. 2081–2093, 2015.

[11] K. Tutuncuoglu and A. Yener, “Energy harvesting networks with
energy cooperation: Procrastinating policies,” IEEE Transactions on
Communications, vol. 63, no. 11, pp. 4525–4538, 2015.

[12] ——, “Sum-rate optimal power policies for energy harvesting transmitters
in an interference channel,” Journal of Communications and Networks,
vol. 14, no. 2, pp. 151–161, 2012.

[13] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in
energy harvesting communications,” IEEE Transactions on Communica-
tions, vol. 61, no. 12, pp. 4884–4898, 2013.

[14] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy har-
vesting communication system,” IEEE Transactions on Communications,
vol. 60, no. 1, pp. 220–230, 2011.

[15] O. Ozel and S. Ulukus, “Achieving AWGN capacity under stochastic
energy harvesting,” IEEE Transactions on Information Theory, vol. 58,
no. 10, pp. 6471–6483, 2012.

[16] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio
resource allocation for federated edge learning,” in 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2020, pp. 1–6.

[17] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[18] N. Agarwal, A. T. Suresh, F. X. Yu, S. Kumar, and B. McMahan, “cpSGD:
Communication-efficient and differentially-private distributed SGD,” in
Advances in Neural Information Processing Systems (Neurips 2018),
Montréal, Canada, 2018, pp. 7575–7586.

[19] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on Non-IID data,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
2020.

[20] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” arXiv preprint arXiv:2010.13723, 2020.

[21] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv
preprint arXiv:2010.01243, 2020.

[22] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling for
cellular federated edge learning with importance and channel awareness,”
IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp.
7690–7703, 2020.

[23] Y. Sun, S. Zhou, and D. Gündüz, “Energy-aware analog aggregation
for federated learning with redundant data,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC). IEEE, 2020, pp.
1–7.

[24] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Update aware
device scheduling for federated learning at the wireless edge,” in 2020
IEEE International Symposium on Information Theory (ISIT). IEEE,
2020, pp. 2598–2603.

[25] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021–2031.

[26] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[28] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[29] J. So, B. Guler, and A. S. Avestimehr, “Turbo-aggregate: Breaking
the quadratic aggregation barrier in secure federated learning,” IEEE
Journal on Selected Areas in Information Theory: Privacy and Security
of Information Systems, 2021.

[30] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv
preprint arXiv:1805.09767, 2018.

[31] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

325

