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Coded Caching in the Presence of a Wire and a
Cache Tapping Adversary of Type II
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Abstract—This paper introduces the notion of cache-tapping
into the information theoretic models of coded caching. The wire-
tap channel II in the presence of multiple receivers equipped
with fixed-size cache memories, and an adversary which selects
symbols to tap into from cache placement and/or delivery is
introduced. The legitimate terminals know neither whether place-
ment, delivery, or both are tapped, nor the positions in which
they are tapped. Only the size of the overall tapped set is known.
For two receivers and two files, the strong secrecy capacity– the
maximum achievable file rate while keeping the overall library
strongly secure– is identified. Lower and upper bounds on the
strong secrecy file rate are derived when the library has more
than two files. Achievability relies on a code design which com-
bines wiretap coding, security embedding codes, one-time pad
keys, and coded caching. A genie-aided upper bound, in which
the transmitter is provided with user demands before placement,
establishes the converse for the two-files case. For more than two
files, the upper bound is constructed by three successive channel
transformations. Our results establish provable security guaran-
tees against a powerful adversary which optimizes its tapping
over both phases of communication in a cache-aided system.

Index Terms—Secure coded caching, cache-tapping, wire-
tap channel II, strategic adversaries, strong secrecy, security
embedding codes.

I. INTRODUCTION

CACHING aims to reduce network traffic congestion by
pro-actively storing partial contents at the cache memo-

ries of end users during off-peak times, providing local caching
gain [3]–[5]. Seminal work in [6] has shown that, careful
design of cache contents in a multi-receiver setting allows the
transmitter to send delivery transmissions that are simultane-
ously useful for many users, providing a further gain termed
as the global caching gain. This gain depends on the aggregate
cache memory of the network and demonstrates the ability of
coding over delivery transmission and/or cache contents.

In numerous works to date, coded caching has been
studied under various modeling assumptions and network
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configurations, including decentralized caching [7], non-
uniform demands [8], more users than files [9]–[11],
heterogeneous cache sizes [12], improved bounds [13]–[15],
hierarchical caching [16], interference networks [17]–[19],
combination networks [20], [21], device-to-device
communication [22], [23], coded placement [24], [25],
and delivery over noisy channels [26]–[30].

Coded caching with security guarantees has been studied
in [21], [31]–[38]. These, as they pertain to an external adver-
sary, i.e., a wiretapper, assume secure cache placement; the
adversary cannot tap into the cache nor the communication
which performs cache placement. At the other extreme, if
cache placement were to be public, i.e., if the adversary has
perfect access to the cache contents, it follows from [39], [40]
that the cache memories do not increase the secrecy capacity.
This paper considers an intermediate setting between these two
extremes in which the adversary may have partial access to
cache placement.

The wiretap channel II (WTC-II) in [41] provides a model
for an adversary with partial access to the legitimate com-
munication; in the form of a threshold on the time fraction
during which the adversary is able to tap into the communi-
cation. Specifically, the model considers a noiseless legitimate
channel and an adversary which selects a fixed-size subset of
the transmitted symbols to noiselessly observe. Reference [41]
has shown that, despite this ability to choose the locations of
the tapped symbols, with proper coding, the adversary can be
made no more powerful than nature, i.e., the secrecy capacity
of the WTC-II is identical to that of a binary erasure wiretapper
channel with the same fraction of erasures. Reference [42] has
generalized the WTC-II to one with a discrete memoryless–
noisy– legitimate channel, and derived inner and outer bounds
for its capacity-equivocation region. The secrecy capacity for
this model has been identified in [43]. In [44], we have intro-
duced a generalized wiretap model which includes both the
classical wiretap [45] and wiretap II [42] channels as special
cases. This generalized model has been extended to multi-
transmitter and multi-receiver networks in [46]–[48]. In all
these settings, the common theme is the robustness of stochas-
tic wiretap encoding [45] against a type II adversary which can
choose where to tap.

In this paper, we introduce an adversary model of type
II to a cache-aided communication setting. The adversary
noiselessly observes a partial subset of its choice of the trans-
mitted symbols over cache placement and/or delivery. We
term this model the caching broadcast channel with a wire
and cache tapping adversary of type II (CBC-WCT II). The
legitimate terminals do not know whether cache placement,
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delivery, or both phases are tapped; the relative fractions
of tapped symbols in each, nor their positions. Only the
overall size of the tapped set is known by the legitimate
terminals.

The challenge in caching stems from the fact that the trans-
mitter, which has access to a library of files, has no knowledge
about future demands of end users when designing their cache
contents. This remains to be the case when security against an
external adversary is concerned. Further, for the new model
introduced in this paper, the adversary might tap into cache
placement, delivery, or both, and where the tapping occurs
is unknown to the legitimate terminals. We show that even
under these unfavorable conditions, strong secrecy guarantees
that are invariant to the positions of the tapped symbols vary-
ing between cache placement, delivery, or both phases, can be
provided.

In coded caching literature up to date, the physical commu-
nication which populates the cache memories at end users is
not considered in the problem formulation, due to the assump-
tion of secure cache placement. For the setting we propose in
this work, in order to model cache placement that is tapped
by an adversary, we consider a length-n communication block
over a two-user broadcast WTC-II [47]. The sizes of cache
memories at the receivers are fixed in our setting. Introducing
variable memory sizes for which a rate-memory tradeoff can
be characterized, as in the usual setup for caching, requires
considering additional communication blocks for cache place-
ment. Being of future interest, we discuss this extension
to multiple communication blocks for cache placement in
Section VII. We as well provide reasoning for our choice of
the broadcast setting for cache placement.

The main contributions of this paper are summarized as
follows:

1) We introduce the notion of cache-tapping into the
information theoretic models of coded caching, in which
an adversary of type II is able to tap into a fixed-size
subset of its choice of the symbols transmitted during
either cache placement, delivery, or both phases.

2) We characterize the strong secrecy capacity– the maxi-
mum achievable file rate which keeps the overall library
strongly secure– for the instance of a transmitter’s
library with two files:

• We devise an achievability scheme which integrates
wiretap coding [41], security embedding codes [49],
[50], one-time pad keys [39], coded cache place-
ment and uncoded delivery [6].

• We use a genie-aided upper bound in which
the transmitter is provided with user demands
before placement, rendering the model to a
broadcast WTC-II [47], to establish the con-
verse.

3) We derive lower and upper bounds on the strong secrecy
file rate when the library has more than two files:

• We use the same channel coding scheme as for the
two files case. However, the cache placement and
delivery schemes we employ to achieve the rates
are different. In particular, we utilize here uncoded
cache placement and a partially coded delivery.

• We derive the upper bound in three steps: We
(i) consider a transformed channel with an adver-
sary which taps into a fraction of symbols equal to
our model, but is only allowed to tap into the deliv-
ery phase. Since this adversary has a more restricted
strategy space than the original one, its correspond-
ing secrecy capacity is at least as large; (ii) use
Sanov’s theorem in method of types [51, Th. 11.4.1]
to further upper bound the secrecy capacity of the
restricted adversary model by the secrecy capacity
when the adversary encounters a discrete memory-
less binary erasure channel, and finally (iii) upper
bound the secrecy capacity of the discrete mem-
oryless model by that of a single receiver setting
in which the receiver requests two files from the
library.

The remainder of the paper is organized as follows.
Section II describes the communication system proposed in
this paper. Section III presents the main results. The proofs
of these results are provided in Sections IV, V, and VI.
Section VII provides a discussion about the communication
model in question, the presented results, and the extension of
our model to arbitrary number of users and to variable memory
sizes. Section VIII concludes the paper.

II. SYSTEM MODEL

We remark the notation we use throughout the paper. N, Z,
R denote the sets of natural, integer, real numbers, respec-
tively. For a, b ∈ R, [a : b] denotes the set of integers
{i ∈ N : a ≤ i ≤ b}. A[1:n] denotes the sequence of vari-
ables {A1, A2, . . . , An}. For two sets A1, A2; A1 ×A2 denotes
their Cartesian product. AT denotes the T-fold Cartesian prod-
uct of the set A. For W1, W2 ∈ [1 : M], W1 ⊕ W2 denotes the
bit-wise XOR on the binary strings corresponding to W1, W2.
1A denotes the indicator function for the event A. D(px||qx)

denotes the Kullback-Leibler divergence between the probabil-
ity distributions px, qx, defined on the same probability space.
{εn}n≥1 denotes a sequence of positive real numbers such that
εn → 0 as n → ∞.

Consider the communication system depicted in Fig. 1, in
which the adversary is able to tap into both the cache place-
ment and delivery transmissions. The transmitter observes
D ≥ 2 independent messages (files), W1, W2, . . . , WD, each of
which is uniformly distributed over [1 : 2nRs ]. Each receiver
has a cache memory of size n

2 bits. The communication occurs
over two phases: cache placement and delivery. The broadcast
channel is noiseless during both phases. The communication
model is described as follows:

Cache Placement Phase: The transmitter broadcasts a
length-n binary signal, Xn

c ∈ {0, 1}n, to both receivers. The
codeword Xn

c is a function of the library files; Xn
c � fc(W[1:D]).

The transmitter does not know the receiver demands during
cache placement [6]. Each receiver has a cache memory of size
n
2 bits in which they store a function of Xn

c , Mc,j � fc,j(Xn
c);

fc,j : {0, 1}n 	→ [1 : 2
n
2 ], j = 1, 2.

Delivery Phase: At the beginning of this phase, the two
receivers announce their demands d � (d1, d2) ∈ [1 : D]2
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Fig. 1. The caching broadcast channel with a wire and cache tapping adver-
sary of type II (CBC-WCT II). The adversary chooses tapping sets S1 and S2
in placement and delivery.

to the transmitter. To satisfy these demands, the transmitter
encodes W[1:D] and d into a binary codeword Xn

d ∈ {0, 1}n:
For each d ∈ [1:D]2, the transmitter uses the encoder
fd : [1:2nRs ]D 	→ {0, 1}n and sends the codeword Xn

d �
fd(W[1:D]).

Decoding: Receiver j uses the decoder gd,j : [1 : 2
n
2 ] ×

{0, 1}n 	→ [1 : 2nRs ] to output the estimate Ŵdj �
gd,j(fc,j(Xn

c), Xn
d) of its desired message Wdj ; j = 1, 2.

Adversary Model: The adversary chooses two subsets
S1, S2 ⊆ [1 : n]. The size of the sum of cardinalities of S1
and S2 is fixed: For |S1| = μ1, |S2| = μ2, μ1, μ2 ≤ n, we
have μ1 + μ2 = μ. The subsets S1, S2 indicate the positions
tapped by the adversary during cache placement and deliv-
ery, respectively. Over the two phases, the adversary observes
the length-2n sequence Z2n

S = [Zn
S1

, Zn
S2

] ∈ Z2n, where
Zn

Sj
� [ZSj,1, . . . , ZSj,n] ∈ Zn, j = 1, 2,

ZS1,i =
{

Xc,i, i ∈ S1
?, i /∈ S1

, ZS2,i =
{

Xd,i, i ∈ S2
?, i /∈ S2.

(1)

The alphabet is Z = {0, 1, ?}, where “?” denotes an erasure.
The legitimate terminals know neither the realizations of

S1, S2, nor the values of μ1, μ2. Only μ is known. Let α1 =
μ1
n , α2 = μ2

n , be the fractions of the tapped symbols in the
cache placement and delivery, and let α = α1 + α2 be the
overall tapped ratio. Note that α1, α2 ∈ [0, 1] and α ∈ (0, 2].

Remark 1: We consider that α > 0, i.e., the adversary is
present. For α = 0, i.e., no adversary, the problem considered
in this paper has been extensively studied in the literature, see
for example [6], [12], [52], [53].

A channel code C2n for this model consists of
• D message sets; Wl � [1:2nRs ], l = 1, 2, . . . , D,
• Cache encoder; fc : [1 : 2nRs ]D 	→ {0, 1}n,
• Cache decoders; fc,j : {0, 1}n 	→ [1 : 2

n
2 ], j = 1, 2,

• Delivery encoders; fd : [1 : 2nRs ]D 	→ {0, 1}n; where d ∈
[1 : D]2,

• Decoders; gd,j : [1 : 2
n
2 ] × {0, 1}n 	→ [1 : 2nRs ]; where

j = 1, 2, d ∈ [1 : D]2.

The file rate Rs is achievable with strong secrecy if there is a
sequence of codes {C2n}n≥1 such that

lim
n→∞ max

d∈[1 : D]2
P

⎛
⎝⋃

j=1,2

(Ŵdj �= Wdj)

⎞
⎠ = 0 (Reliability),

(2)

lim
n→∞ max

S1,S2⊆[1 : n]:
|S1|+|S2|≤μ

I(W[1:D]; Zn
S1

, Zn
S2

) = 0 (Strong Secrecy).

(3)

That is, Rs is the symmetric secure file rate, under any demand
vector and adversarial strategy. The strong secrecy capacity Cs

is the supremum of all achievable Rs.
Remark 2: While we consider the file rate Rs which guar-

antees reliability for the worst-case demand vector, the average
rate for which there exists a prior distribution on the demands
has been studied in coded caching literature as well; see for
example [8], [13], [54].

Remark 3: The condition in (3) guarantees strong secrecy
against all possible strategies for the adversary, i.e., choices
of S1, S2 that satisfy the condition |S1| + |S2| ≤ μ.

III. MAIN RESULTS

For clarity of exposition, we first study the model in
Section II when the transmitter’s library has two files; D = 2.
We then extend the ideas and analysis to D > 2. For D > 2, we
use a similar channel coding scheme to that we construct for
D = 2, but the placement and delivery schemes that achieve
the best rates are different. The following theorem presents
the strong secrecy capacity for D = 2.

Theorem 1: For 0 < α ≤ 2 and D = 2, the strong secrecy
capacity for the caching broadcast channel with a wire and
cache tapping adversary of type II (CBC-WCT II), described
in Section II, is given by

Cs(α) = 1 − α

2
. (4)

Proof: The proof is provided in Section IV.
Theorem 2 below presents an achievable strong secrecy file

rate for D > 2.
Theorem 2: For 0 < α ≤ 2, D > 2, an achievable strong

secrecy file rate for the CBC-WCT II is

Rs(α) ≥
{

1
2 + 3(1−α)

4D , 0 < α < 1
1 − α

2 , 1 ≤ α ≤ 2.
(5)

Proof: The proof is provided in Section V.
The following theorem upper bounds the secure file rate

when D > 2.
Theorem 3: For 0 < α ≤ 2, D > 2, the strong secrecy file

rate for the CBC-WCT II is upper bounded as

Rs(α) ≤
{ 1

2 + 2D−1
2D(D−1)

(1 − α), 0 < α < 1
1 − α

2 , 1 ≤ α ≤ 2.
(6)

Proof: The proof is provided in Section VI.
The following corollary is immediate from Theorems 1–3.
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Fig. 2. Bounds on the achievable strong secrecy file rate Rs, when α = 0.4
and D ≥ 3.

Corollary 1: For 1 ≤ α ≤ 2, that is when the adversary
can tap longer than one phase of communication, the strong
secrecy capacity for the CBC-WCT II is

Cs(α) = 1 − α

2
. (7)

Remark 4: When α ∈ [1, 2] (n ≤ μ ≤ 2n), two possible
strategies for the adversary are {S1 = [1 : n], S2 ⊂ [1 : n]} and
{S1 ⊂ [1 : n], S2 = [1 : n]}; the adversary taps into all symbols
in one phase and a subset of symbols in the other. Interestingly,
the secrecy capacity for this range of α is 1 − α

2 for any
library size. As we shall see in Sections IV-D and V, such
an adversary limits the communication for cache placement to
exchanging additional randomness (key bits) that allows for
communicating a positive secure rate over the two phases. The
cache memories are thus not used to store any information, and
hence the lack of knowledge about user demands during cache
placement is immaterial.

Unlike for 1 ≤ α ≤ 2, for 0 < α < 1, the lower and upper
bounds in (5) and (6) have a gap. For illustration purposes,
these bounds are plotted for α = 0.4 in Fig. 2.

Remark 5: When α = 0 (no adversary), our achievability
scheme for D > 2 in Section V reduces to the achievability
scheme in [6], which is shown to achieve the optimal rate-
memory tradeoff for this case [52], [53]. However, the upper
bound for D > 2 derived in this work is to address the intri-
cacies of the adversarial model and is useful only when the
adversary is present (α > 0); (6) is loose when α = 0.

IV. PROOF OF THEOREM 1

In this section, we prove Theorem 1 which identifies the
strong secrecy capacity when D = 2. Recall that the demand
vector is denoted by d = (d1, d2), where d1, d2 ∈ {1, 2}.

A. Converse

When d is known to the transmitter during cache place-
ment, the model in Theorem 1 reduces to a broadcast wiretap
channel II (WTC-II), over a length-2n communication block.
The strong sum secrecy rate for that model, 2Rs, is upper
bounded by

2Rs ≤ 2 − α, (8)

which follows from our recent work [47, Th. 1]. Note that (8)
holds for any d = (d1, d2) such that d1 �= d2, which represents
the worst-case demands. Since d is unknown for the model in
consideration, 1 − α

2 is an upper bound for its strong secrecy
capacity.

B. Restricted Adversary Models as Building Blocks

Before proceeding with the achievability proof, it is rele-
vant to take a step back and investigate the secrecy capacity
when a known fraction of cache placement, a known fraction
of delivery, or both, is tapped. In particular, we consider that
the adversary taps into (i) cache placement only, (ii) delivery
only, or (iii) both and the relative fractions of tapped sym-
bols in each are known. For these three models, we show
that the strong secrecy file rate in (4), i.e., 1 − α

2 , is achiev-
able, and hence determines their strong secrecy capacities. We
then use these models as building blocks for when the relative
fractions are unknown, and provide the achievability proof in
Sections IV-C and IV-D.

1) Setting 1 (The Adversary Taps Into Cache Placement
Only): This setting corresponds to α1 = α (α2 = 0) and
|S1| = μ (S2 = ∅). The transmitter and receivers know that
α1 = α. We show that 1 − α

2 is an achievable strong secrecy
file rate for this setting.

The transmitter divides Wl, l = 1, 2, into three indepen-
dent messages, W(1)

l , W(2)
l , Wl,s; W(1)

l , W(2)
l are uniform over

[1 : 2n 1−α−εn
2 ], Wl,s is uniform over [1 : 2n α+εn

2 ]. Define

Mc � {Mc,1, Mc,2};
Mc,1 = W(1)

1 ⊕ W(1)
2 , Mc,2 = W(2)

1 ⊕ W(2)
2 , (9)

Md �
{

W(2)
d1

, W(1)
d2

, Wd1,s, Wd2,s

}
, (10)

where Mc and Md are the messages sent by the transmit-
ter during cache placement and delivery phases, respectively.
Specifically, during placement, the transmitter maps Mc into
Xn

c using stochastic wiretap coding [45]. Since the rate of Mc

is less than 1 −α, Mc is strongly secure against the adversary
that observes nα symbols of Xn

c [43], [44]. During delivery,
the transmitter sends Xn

d as the binary representation of Md
which is of length n bits, since the delivery phase is noiseless
and secure.

Using Xn
c , noiselessly received during placement, receiver

j, j = 1, 2, recovers Mc,j and stores it in its cache memory.
The size of Mc,j is smaller than n

2 bits, which is the cache
size at each receiver. Using Xn

d, received noiselessly during
delivery, both receivers recover Md. Using Md, along with its
cache contents, Mc,j, and for n sufficiently large,1 receiver j
correctly recovers its desired message Wdj , j = 1, 2.

For secrecy, we show in Appendix A that (3) is satisfied.
Since εn → 0 as n → ∞, the achievable strong secrecy file
rate is given by

Rs(α) = 2 × 1 − α

2
+ α

2
= 1 − α

2
. (11)

1Large block-length n is needed to ensure a valid subpacketization of the
file Wl into the sub-files {W(1)

l , W(2)
l , Wl,s}, for l = 1, 2. That is, a bijective

map between the file and its sub-files is preserved.
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2) Setting 2 (The Adversary Taps Into the Delivery Only):
This setting corresponds to α1 = 0 and α2 = α, and the
transmitter and receivers possess this knowledge. Once again,
we show that 1 − α

2 is an achievable strong secrecy file rate.
The transmitter (i) performs the same division of Wl, l = 1, 2,

as in Setting 1, (ii) generates the keys K1, K2, each is uniform
over [1:2n α+εn

2 ], independent from one another and from W1,
W2. Define Mc, Md, M̃d, as follows:

Mc = {
Mc,1, Mc,2

}; Mc,1 =
{

W(1)
1 ⊕ W(1)

2 , K1

}
,

Mc,2 =
{

W(2)
1 ⊕ W(2)

2 , K2

}
, (12)

Md =
{

W(2)
d1

, W(1)
d2

}
, M̃d = {

Wd1,s ⊕ K1, Wd2,s ⊕ K2
}
.

(13)

During placement, the transmitter sends Xn
c as the binary

representation of Mc, and receiver j, j = 1, 2, stores Mc,j in its
cache memory. During delivery, the transmitter encodes Md
into Xn

d using wiretap coding, while using M̃d as the random-
ization message. Receiver j recovers Md, M̃d, using which,
along with Mc,j, it correctly decodes Wdj , for sufficiently large
n. By contrast, the adversary can only obtain M̃d using which
it can gain no information about W1, W2. In Appendix B, we
show that (3) is satisfied. The achievable strong secrecy file
rate is again 1 − α

2 .
3) Setting 3 (The Legitimate Terminals Know the Values of

α1 and α2): For this setting, neither α1 = 0 nor α2 = 0.
However, the transmitter and receivers know the values of α1,
α2. Under these assumptions, the scheme which achieves the
secrecy rate 1 − α

2 depends on whether α1 ≥ α2. For α1 ≥ α2
(α1 < α2), we use an achievability scheme similar to Setting 1
(Setting 2).

Case 1 (α1 ≥ α2): The transmitter divides Wl, l = 1, 2,

into the independent messages {W(1)
l , W(2)

l , Wl,s}; W(1)
l , W(2)

l

are uniform over
[
1 : 2n

1−α1−εn
2

]
and Wl,s is uniform over[

1 : 2n
α1−α2

2

]
. The transmitter forms Mc, Md, as in (9), (10),

and uses wiretap coding to map them into Xn
c , Xn

d, respec-
tively. As in setting 1, receiver j recovers Wdj . For the secrecy
constraint, note that Mc, Md are independent, and their rates
are 1−α1 −εn, 1−α2 −εn, respectively. Thus, wiretap coding
strongly secures both Mc and Md against the adversary. We
show in Appendix C that (3) is satisfied. The achievable strong
secrecy file rate is Rs(α) = 2 × ( 1−α1

2 ) + α1−α2
2 = 1 − α

2 .
Case 2 (α1 < α2): The transmitter (i) divides Wl

into {W(1)
l , W(2)

l , Wl,s}, where W(1)
l , W(2)

l are uniform over

[1 : 2n
1−α2−εn

2 ] and Wl,s is uniform over [1 : 2n
α2−α1

2 ], l = 1, 2;

(ii) generates the keys K1, K2, uniformly over [1 : 2n
α2−α1

2 ]
and independently from W1, W2; (iii) forms Mc as in (12) and
encodes it into Xn

c using wiretap coding; (iv) forms Md as
in (13) and forms M̃d as

M̃d = {
Wd1,s ⊕ K1, Wd2,s ⊕ K2, W̃

}
, (14)

W̃ is independent from all other variables and uniform over
[1 : 2n(α1+εn)], and finally (v) encodes Md into Xn

d using
wiretap coding, while using M̃d as the randomization message.

As in Setting 2, receiver j correctly recovers Wdj , and
the adversary can only recover M̃d using which it gains no

information about W1 and W2. In Appendix D, we show (3) is
satisfied. The achievable secrecy rate is Rs(α) = 2× ( 1−α2

2 )+
α2−α1

2 = 1 − α
2 .

With the aforementioned settings, we showed that the same
secrecy rate, 1 − α

2 , is achievable irrespective of where the
adversary taps as long as α1 and α2 are known. The ques-
tion then arises whether the lack of knowledge about relative
fractions of tapped symbols would decrease the secrecy capac-
ity. The following setting we propose provides a hint on the
answer.

4) Setting 4 (Either α1 = 0 or α2 = 0, the Legitimate
Terminals Do Not Know Which Is Zero): The adversary taps
into either cache placement or delivery, but not both. The legit-
imate terminals do not know which phase is tapped. We show
that the strong secrecy rate 1 − α

2 is again achievable.
The transmitter performs the same division of W1 and W2

as in Settings 1, 2, and generates independent keys K1 and K2
as in Setting 2. Define

Mc = {Mc,1, Mc,2};
Mc,1 = W(1)

1 ⊕ W(1)
2 , Mc,2 = W(2)

1 ⊕ W(2)
2 , (15)

M̃c = {M̃c,1, M̃c,2}; M̃c,1 = K1, M̃c,2 = K2 (16)

Md =
{

W(2)
d1

, W(1)
d2

}
, (17)

M̃d = {
M̃d,1, M̃d,2

}; M̃d,1 = Wd1,s ⊕ K1,

M̃d,2 = Wd2,s ⊕ K2. (18)

During placement, the transmitter encodes Mc into Xn
c using

wiretap coding, while using M̃c as the randomization message.
Receiver j, j = 1, 2, stores Mc,j, M̃c,j, in its cache. During
delivery, the transmitter uses wiretap coding to encode Md into
Xn

d, while using M̃d as the randomization message. Using its
cache contents, and Md, M̃d, receiver j correctly decodes Wdj .
By contrast, the adversary can only recover either {K1, K2} or
{Wd1,s ⊕K1, Wd2,s ⊕K2}, but not both, using which it gains no
information about W1, W2. We show in Appendix E that (3)
is satisfied. The achievable strong secrecy rate is 1 − α

2 .
The lack of knowledge about which phase is tapped is coun-

tered by encrypting pieces of information, {Wd1,s, Wd2,s}, with
one-time pad keys, K1, K2, while ensuring the adversary only
recovers either the keys or the encrypted bits but not both;
using which it gains no information about W1, W2.

We next generalize this idea to tackle the case when the
adversary taps into both phases, with no knowledge about
the relative fractions of tapped symbols in each (the model
in Fig. 1). Before continuing, let us first describe security
embedding codes [49], [50]. The transmitted message is split
into a number of layers, corresponding to different security
levels. All layers of the message are encoded into a single
codeword in an embedded fashion; each layer corresponds to
one index identifying the codeword. Lower security-level lay-
ers serve as randomization (stochastic coding) for protecting
higher security-level layers. The layers that can be securely
transmitted are determined by the wiretapper’s channel state.

Similar to [50] where the uncertainty about the wiretap-
per’s channel is treated using security embedding codes, here,
in each phase, we construct an embedding code in which nα

single-bit layers are embedded into one another. Doing so, we
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ensure that, no matter what the values for α1, α2 are, the adver-
sary gets no more than nα1 bits from cache placement, and nα2
bits from delivery. By designing what the adversary recovers
to be either a set of key bits and/or information bits encrypted
with a distinct set of key bits, we guarantee no information
on the messages is asymptotically leaked to the adversary. We
thus prove that the lack of knowledge about relative fractions
of tapped symbols does not decrease the secrecy capacity.

C. Achievability for α ∈ (0, 1)

We are now ready to present the achievability for the general
model when D = 2. Consider first α ∈ (0, 1). For simplicity,
assume that nα1

2 = μ1
2 and nα2

2 = μ2
2 are integers. A minor

modification to the analysis can be adopted otherwise. The
transmitter (i) divides Wl, l = 1, 2, into the independent mes-
sages W(1)

l , W(2)
l , Wl,s; W(1)

l , W(2)
l are uniform over [1 : 2n 1−α

2 ],
and Wl,s is uniform over [1 : 2n α

2 ]; (ii) generates the indepen-
dent keys K1, K2, uniform over [1 : 2n α

2 ], and independent
from W1, W2. For simplicity of exposition, we have ignored
the small rate reduction εn at this stage, as we will introduce
this later into the security analysis. The main ideas of the
achievability proof are:

1) The transmitter uses wiretap coding with a randomiza-
tion message of size nα bits in both placement and
delivery. As the adversary does not tap into more than
nα bits in each phase, a secure transmission rate of 1−α

is achievable, as long as the randomization messages in
the two phases are independent. Using coded placement
for {W(1)

l , W(2)
l }l=1,2, a secure file rate of 1 − α can be

achieved.
2) The randomization messages over the two phases can

deliver additional secure information, of rate α
2 per

file, via encryption. The overall achievable file rate is
Rs = 1 − α

2 . We use K1, K2, as the randomization
message for placement. Along with wiretap coding, we
employ a security embedding code [49], using bits of
K1, K2, in a manner that allows the adversary to recover
only the last nα1

2 bits from each. During delivery, we
encrypt Wd1,s, Wd2,s, with K1, K2, and use this encrypted
information as the randomization message. We employ
again a security embedding code in the reverse order so
that the adversary recovers only the first nα2

2 bits from
each of Wd1,s ⊕ K1, Wd2,s ⊕ K2.

3) With the aforementioned construction, the adversary, for
any values of α1, α2 it chooses, can only recover a set of
key bits and/or a set of information bits encrypted with
other key bits. Due to the reversed embedding order, the
adversary does not obtain, during delivery, any message
bits encrypted with key bits it has seen during place-
ment. In addition, since {K1, K2} is independent from
{Wd1,s⊕K1, Wd2,s⊕K2}, and is an independent sequence,
the adversary can not use the revealed key bits during
cache placement to obtain any information about the
bits of Wd1,s ⊕ K1, Wd2,s ⊕ K2 that need to be securely
transmitted during delivery.

We now explain the achievability scheme in more detail.
Let Mc, M̃c be as in (15), (16). Mc represents the message to

be securely transmitted during placement, regardless of the
adversary’s choice of α1. M̃c represents the randomization
message used for wiretap coding. The transmitter further
divides M̃c,1, M̃c,2 into sequences of independent bits,

{M̃(1)
c,1, . . . , M̃

(n α
2 )

c,1 }, {M̃(1)
c,2, . . . , M̃

(n α
2 )

c,2 }, and generates Xn
c as:

Cache Placement Codebook Generation: Let mc, m̃c,1 =
{m̃(1)

c,1, . . . , m̃
(n α

2 )

c,1 }, m̃c,2 = {m̃(1)
c,2, . . . , m̃

(n α
2 )

c,2 } be the realiza-
tions of Mc, M̃c,1, M̃c,2. We construct the codebook Cc,n, from
which Xn

c is drawn, as follows. We randomly and indepen-
dently distribute all the possible 2n length-n binary sequences
into 2n(1−α) bins, indexed by mc ∈ [1:2n 1−α

2 ]2, and each con-
tains 2nα codewords. Further, we randomly and independently
divide each bin mc into two sub-bins, indexed by m̃(1)

c,1, and

each contains 2nα−1 codewords. The two sub-bins m̃(1)
c,1 are

further divided into smaller bins, indexed by m̃(1)
c,2, and each

contains 2nα−2 codewords. The process continues, going over

m̃(2)
c,1, m̃(2)

c,2, · · · , m̃
(n α

2 −1)

c,1 , m̃
(n α

2 −1)

c,2 , m̃
(n α

2 )

c,1 , until the remaining
two codewords, after each sequence of divisions, are indexed

by m̃
(n α

2 )

c,2 . Cc,n is described in Fig. 3.
Remark 6: An alternative representation of the former bin-

ning procedure is: Each of the 2nα codewords in the bin
mc, mc ∈ [1 : 2n 1−α

2 ]2, is randomly assigned to an index

{m̃(1)
c,1, m̃(1)

c,2, . . . , m̃
(n α

2 )

c,1 , m̃
(n α

2 )

c,2 }. We chose to present the for-
mer description to provide a more detailed explanation of the
embedding structure; in particular, the order of embedding
which is a critical component in the achievability scheme.

Cache Encoder: Given w1, w2, the transmitter gener-
ates mc, m̃c = {m̃c,1, m̃c,2} as in (15), (16), and sends
xn

c , from Cc,n, which corresponds to mc, m̃c,1, m̃c,2, i.e.,

xn
c(mc, m̃(1)

c,1, m̃(1)
c,2, . . . , m̃

(n α
2 )

c,1 , m̃
(n α

2 )

c,2 ).
For the delivery phase, define Md and M̃d as in (17)

and (18). Md represents the message to be securely trans-
mitted during delivery no matter what the adversary’s choice
of α2 is. M̃d represents the randomization message. Similar
to cache placement, the transmitter further divides M̃d,1,

M̃d,2 into sequences of independent bits, {M̃(1)
d,1, . . . , M̃

(n α
2 )

d,1 },
{M̃(1)

d,2, . . . , M̃
(n α

2 )

d,2 }, and generates Xn
d as follows.

Delivery Codebook Generation: Let md, m̃d,1 =
{m̃(1)

d,1, . . . , m̃
(n α

2 )

d,1 }, m̃d,2 = {m̃(1)
d,2, . . . , m̃

(n α
2 )

d,2 } be the realiza-
tions of Md, M̃d,1, M̃d,2. We construct Cd,n, from which Xn

d is
drawn, in a similar fashion as Cc,n, but with a reversed index-
ing of the sub-bins. We randomly and independently divide
all the 2n binary sequences into 2n(1−α) bins, indexed by
md ∈ [1:2n 1−α

2 ]2, and each contains 2nα codewords. We fur-
ther randomly and independently divide each bin md into two

sub-bins, indexed by m̃
(n α

2 )

d,1 , and each contains 2nα−1 code-
words. The process continues, going in reverse order over

m̃
(n α

2 )

d,2 , m̃
(n α

2 −1)

d,1 , m̃
(n α

2 −1)

d,2 , · · · , m̃(1)
d,1, until the remaining two

codewords, after each sequence of divisions, are indexed by
m̃(1)

d,2. The codebook Cd,n is shown in Fig. 4.
Delivery Encoder: Given w1, w2 and d = (d1, d2), the

transmitter generates md, m̃d = {m̃d,1, m̃d,2} as in (17), (18).
The transmitter sends xn

d, from Cd,n, which corresponds to md,

m̃d,1, and m̃d,2, i.e., xn
d(md, m̃

(n α
2 )

d,1 , m̃
(n α

2 )

d,2 , . . . , m̃(1)
d,1, m̃(1)

d,2).
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Fig. 3. Codebook construction for the cache placement phase, Cc,n.

Decoding: Using Xn
c , receiver j, j = 1, 2, recovers Mc,j,

M̃c,j, and stores them in its cache. For j = 1, 2, the combined
size of Mc,j and M̃c,j does not exceed n

2 bits. Using Xn
d, both

receivers recover Md, M̃d. Using Md, M̃d, Mc,j, M̃c,j, and for
n sufficiently large, receiver j correctly decodes Wdj .

Security Analysis: Let us first slightly modify the construc-
tion above as follows. Recall that {εn}n≥1 is a sequence of
positive real numbers such that εn → 0 as n → ∞. Define

αε = α + 2εn, α1,ε = α1 + εn, α2,ε = α2 + εn. (19)

That is, α1,ε +α2,ε = αε . We increase the sizes of K1, K2, into
nαε

2 bits, from nα
2 , and zero-pad the bit strings of Wd1,s, Wd2,s,

accordingly. We also decrease the sizes of W(1)
l , W(2)

l , l = 1, 2,

to n 1−αε

2 bits, instead of n 1−α
2 . We assume that nαε

2 , nα1,ε

2 are
integers; as minor modifications can be adopted otherwise.

Fix S1, S2 ⊆ [1 : n]. For the corresponding (fixed) values
of α1, α2, the cache placement codebook Cc,n can be viewed
as a wiretap code with 2n(1−α1,ε ) bins. Each bin is indexed by
the message

wc =
(

mc, m̃(1)
c,1, m̃(1)

c,2, m̃(2)
c,1, m̃(2)

c,2, . . . , m̃

(
n

α2,ε
2

)
c,1 , m̃

(
n

α2,ε
2

)
c,2

)
.

(20)

Each bin wc contains 2nα1,ε binary codewords which are
indexed by the randomization message

w̃c =
(

m̃

(
n

α2,ε
2 +1

)
c,1 , m̃

(
n

α2,ε
2 +1

)
c,2 , m̃

(
n

α2,ε
2 +2

)
c,1 , m̃

(
n

α2,ε
2 +2

)
c,2 ,

, . . . , m̃
(n αε

2 )
c,1 , m̃

(n αε
2 )

c,2

)
. (21)

Similarly, Cd,n can be seen as a wiretap code with 2n(1−α2,ε )

bins, each is indexed by the message

wd =
(

md, m̃
(n αε

2 )
d,1 , m̃

(n αε
2 )

d,2 , m̃
(n αε

2 −1)
d,1 , m̃

(n αε
2 −1)

d,2

, . . . , m̃

(
n

α2,ε
2 +1

)
d,1 , m̃

(
n

α2,ε
2 +1

)
d,2

)
. (22)

Each bin wd contains 2nα2,ε codewords, indexed by the
randomization message

w̃d =
(

m̃

(
n

α2,ε
2

)
d,1 , m̃

(
n

α2,ε
2

)
d,2 , m̃

(
n

α2,ε
2 −1

)
d,1 , m̃

(
n

α2,ε
2 −1

)
d,2

, . . . , m̃(1)
d,1, m̃(1)

d,2

)
. (23)

Let {Bwc : wc ∈ [1 : 2n(1−α1,ε )]}, {Bwd : wd ∈ [1 : 2n(1−α2,ε )]}
denote the partition (bins) of Cc,n, Cd,n, which correspond to

Authorized licensed use limited to: The Ohio State University. Downloaded on March 19,2021 at 21:31:18 UTC from IEEE Xplore.  Restrictions apply. 



72 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Fig. 4. Codebook construction for the delivery phase, Cd,n.

wc, wd in (20), (22), respectively. Let x2n � (xn
c, xn

d) denote
the concatenation of the two length-n binary codewords xn

c ,
xn

d. Define the Cartesian product of the bins Bwc and Bwd , as

Bwc,wd �
{
x2n = (

xn
c, xn

d

)
: xn

c ∈ Bwc , xn
d ∈ Bwd

}
. (24)

Since the partitioning of Cc,n and Cd,n is random, for every
wc, wd; Bwc,wd is a random codebook which results from
the Cartesian product of the random bins Bwc and Bwd .
Recall that Bwc contains 2nα1,ε and Bwd contains 2nα2,ε

length-n binary codewords. Thus, the product Bwc,wd con-

tains 2nαε length-2n binary codewords. Let {W(1)
dl,s

, . . . , W
(n αε

2 )

dl,s
}

and {K(1)
l , . . . , K

(n αε
2 )

l } denote the bit strings of Wdl,s and Kl,
l = 1, 2. In addition, for notational simplicity, define

W(1)
s =

{
W(1)

d1,s
, W(1)

d2,s
, . . . , W

(
n

α2,ε
2

)
d1,s

, W

(
n

α2,ε
2

)
d2,s

}
(25)

W(2)
s =

{
W

(
n

α2,ε
2 +1

)
d1,s

, W

(
n

α2,ε
2 +1

)
d2,s

, . . . , W
(n αε

2 )
d1,s

, W
(n αε

2 )
d2,s

}

(26)

K(1) =
{

K(1)
1 , K(1)

2 , . . . , K

(
n

α2,ε
2

)
1 , K

(
n

α2,ε
2

)
2

}
(27)

K(2) =
{

K

(
n

α2,ε
2 +1

)
1 , K

(
n

α2,ε
2 +1

)
2 , . . . , K

(n αε
2 )

1 , K
(n αε

2 )
2

}

(28)

W(1)
⊕K =

{
W(i)

d1,s
⊕ K(i)

1 , W(i)
d2,s

⊕ K(i)
2 : i = 1, 2, . . . , n

α2,ε

2

}
(29)

W(2)
⊕K =

{
W(i)

d1,s
⊕ K(i)

1 , W(i)
d2,s

⊕ K(i)
2 :

i = n
α2,ε

2
+ 1, n

α2,ε

2
+ 2, . . . , n

αε

2

}
. (30)

Let Wc, W̃c, Wd, and W̃d denote the random variables
that correspond to the realizations defined in (20)–(23).
Using (15)–(18), (20)–(23), and (27)–(30), we have

Wc =
{

Mc, K(1)
}

=
{

W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , K(1)
}
,

W̃c = K(2) (31)

Wd =
{

Md, W(2)
⊕K

}
=
{

W(2)
d1

, W(1)
d2

, W(2)
⊕K

}
, W̃d = W(1)

⊕K.

(32)

Notice that W̃c and W̃d are independent, and each is uniformly
distributed. {W̃c, W̃d} is thus jointly uniform. In addition,
{W̃c, W̃d} is independent from {Wc, Wd}. Thus, we can apply
the analysis in [43, eqs. (94)-(103)] to show that, for every S1,
S2, wc, and wd, and every ε > 0, there exists γ (ε) > 0 such
that

PBwc,wd

(
D

(
P

Zn
S1

Zn
S2

∣∣Wc=wc,Wd=wd
||PZn

S1
Zn

S2

)
> ε

)

≤ exp
(
−enγ (ε)

)
. (33)
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PZn
S1

Zn
S2

|Wc=wc,Wd=wd is the induced distribution at the adver-
sary when xn

c(wc, w̃c), xn
d(wd, w̃d) are the transmitted code-

words over placement and delivery. PZn
S1

Zn
S2

is the output
distribution at the adversary when the placement and delivery
codewords Xn

c , Xn
d are drawn independently and identically

at random according to the input distribution, which is uni-
form over {0, 1}. Equation (33) states that the probability
that these two distributions are not equal converges to zero
doubly-exponentially fast with the block-length n.

The number of the messages {wc, wd} is 2n(2−αε), and the
number of possible choices for the subsets S1, S2, is

(2n
αn

)
<

22n. The combined number of the messages and the subsets is
at most exponential in n. Using (33) and the union bound, as
in [43], [44], we have

lim
n→∞ max

S1,S2
I
(

Wc, Wd; Zn
S1

, Zn
S2

)
= 0. (34)

We also have, for any d = (d1, d2), d1, d2 ∈ {1, 2},
I
(

W1, W2; Zn
S1

, Zn
S2

)

= I
(

W(1)
1 , W(2)

1 , W(1)
2 , W(2)

2 , W1,s, W2,s; Zn
S1

, Zn
S2

)
(35)

= I
(

W(1)
1 , W(2)

1 , W(1)
2 , W(2)

2 , W(1)
s , W(2)

s ; Zn
S1

, Zn
S2

)
(36)

= I
(

W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , W(2)
d1

, W(1)
d2

,

W(1)
s , W(2)

s ; Zn
S1

, Zn
S2

)
(37)

= I
(

Mc, Md, W(1)
s , W(2)

s ; Zn
S1

, Zn
S2

)
(38)

≤ I
(

Mc, Md, W(1)
s , W(2)

⊕K; Zn
S1

, Zn
S2

)
(39)

= I
(

Mc, W(1)
s , Wd; Zn

S1
, Zn

S2

)
(40)

= H
(

Zn
S1

, Zn
S2

)
− H

(
Zn

S1
, Zn

S2

∣∣∣Mc, W(1)
s , Wd

)
, (41)

where (36) follows because Zn
S1

, Zn
S2

depend only

on {W(1)
1 , W(2)

1 , W(1)
2 , W(2)

2 , Wd1,s, Wd2,s}, and by
using (25), (26); (37) follows because there is
a bijection between {W(1)

1 , W(2)
1 , W(1)

2 , W(2)
2 } and

{W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , W(2)
d1

, W(1)
d2

}; (38) follows
from (15), (17); (39) follows due to the Markov chain
W(2)

s − {Mc, Md, W(1)
s , W(2)

⊕K} − {Zn
S1

, Zn
S2

}, and the data
processing inequality. This Markov chain holds because
{Mc, Md, W(1)

s } are independent from {W(2)
s , K(2)}, and only

the encrypted information W(2)
⊕K is transmitted. (40) follows

from (32). The second term on the right hand side of (41) is
lower bounded as

H
(

Zn
S1

, Zn
S2

∣∣Mc, W(1)
s , Wd

)

= H
(

Zn
S1

, Zn
S2

, W(1)
s

∣∣Mc, Wd

)
− H

(
W(1)

s

∣∣Mc, Wd

)
(42)

= H
(

Zn
S1

, Zn
S2

, W(1)
s , W(1)

⊕K

∣∣Mc, Wd

)

− H
(

W(1)
⊕K

∣∣Mc, Wd, W(1)
s , Zn

S1
, Zn

S2

)
− H

(
W(1)

s

)
(43)

= H
(

Zn
S1

, Zn
S2

, K(1), W(1)
⊕K

∣∣Mc, Wd

)

−H
(

K(1)
∣∣Mc, Wd, W(1)

s , Zn
S1

, Zn
S2

)
− H

(
W(1)

s

)
(44)

≥ H
(

Zn
S1

, Zn
S2

, K(1), W(1)
⊕K

∣∣Mc, Wd

)
− H

(
W(1)

s

)
− ε′

n (45)

≥ H
(

K(1)
∣∣Mc, Wd

)
+ H

(
Zn

S1
, Zn

S2

∣∣Mc, K(1), Wd

)

−H
(

W(1)
s

)
− ε′

n (46)

= H
(

Zn
S1

, Zn
S2

∣∣Wc, Wd

)
+ H

(
K(1)

)
− H

(
W(1)

s

)
− ε′

n (47)

= H
(

Zn
S1

, Zn
S2

∣∣Wc, Wd

)
− ε′

n, (48)

where ε′
n → 0 as n → ∞; (43) follows since W(1)

s is inde-
pendent from {Mc, Wd}; (44) follows because there is a bijec-
tion between {W(1)

s , W(1)
⊕K} and {K(1), W(1)

⊕K}; (47) follows
from (31), and since K(1) is independent from {Mc, Wd}; (48)
follows since K(1), W(1)

s are independent and identically
distributed.

The inequality in (45) follows since, given {Mc,W(1)
s ,Wd},

and for n sufficiently large, the adversary can decode K(1)

using its observations Zn
S1

, Zn
S2

. In particular, {Mc, W(1)
s , Wd}

determine a partition of the codebook into bins, each of which
contains 2nαε codewords. For n large enough, and given the
values of Mc, W(1)

s , Wd, i.e., the bin index, the adversary can
determine the codeword index inside the bin, and hence decode
K(1). We conclude that, H(K(1)|Mc, Wd, W(1)

s , Zn
S1

, Zn
S2

) ≤ ε′
n,

where ε′
n → 0 as n → ∞.

Substituting (48) in (41) gives

I
(

W1, W2; Zn
S1

, Zn
S2

)
≤ I

(
Wc, Wd; Zn

S1
, Zn

S2

)
+ ε′

n. (49)

Using (34) and (49), the secrecy constraint in (3) is satisfied.
Since εn → 0 as n → ∞, we conclude that, the achievable
strong secrecy file rate is

Rs(α) = 2 × 1 − α

2
+ α

2
= 1 − α

2
. (50)

Remark 7: Although the codebooks Cc,n, Cd,n are designed
and generated disjointly, in the security analysis, we consid-
ered the Cartesian products of the individual bins of the two
codebooks. We were able to do so since the input distribu-
tions for generating the codebooks are identical, i.e., uniform
binary.

D. Achievability for α ∈ [1, 2]

For α ∈ [1, 2], we adapt the scheme in Section IV-C as fol-
lows: W1, W2 are uniform over [1 : 2n 2−αε

2 ]; αε is as in (19).
The transmitter (i) generates the independent keys K1, K2,
uniform over [1 : 2n 2−αε

2 ] and independent from W1, W2; (ii)
generates the independent randomization messages W̃, W̃K ,
uniform over [1 : 2n(αε−1)] and independent from W1, W2,
K1, K2. The messages for placement at receivers 1, 2 are

Mc,1 = K1, Mc,2 = K2, (51)

i.e., receiver j stores the key Kj in its cache. The message to
be securely transmitted during delivery is

Md = {
Md,1, Md,2

}; Md,1 = Wd1 ⊕ K1, Md,2 = Wd2 ⊕ K2.

(52)

Note that, for α ∈ [1, 2], the adversary can see all symbols
in at least one of the phases. Therefore, unlike Section IV-C,
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we cannot utilize randomization messages, W̃, W̃K , to carry
any information; only keys are stored in the cache memories
of the receivers. In addition, the placement and delivery code-
books for this case have a different embedding structure than
for α ∈ (0, 1) in Section IV-C. In particular, the embedding
here is performed on the bits of the messages Mc, Md, while
the embedding in Section IV-C is performed on the bits of the

randomization messages M̃c, M̃d. Let {W(1)
dl

, . . . , W
(n 2−αε

2 )

dl
},

{K(1)
l , . . . , K

(n 2−αε
2 )

l }, {M(1)
d,l , . . . , M

(n 2−αε
2 )

d,l } denote the bit
strings of Wdl , Kl, Md,l, l = 1, 2.

Cache Placement Codebook: The codebook Cc,n is gener-
ated as follows: The transmitter randomly and independently
divides all the 2n length-n binary sequences into 2 bins,
indexed by K(1)

1 , and each contains 2n−1 codewords. These
bins are further randomly and independently divided into two
sub-bins, indexed by K(1)

2 , and each contains 2n−2 codewords.

The process continues, going over K(2)
1 , K(2)

2 , . . . , K
(n 2−αε

2 )

1 ,

K
(n 2−αε

2 )

2 , until the remaining 2n(αε−1) codewords, after each
sequence of divisions, are indexed by W̃K .

Cache Encoder: The transmitter sends Xn
c which corre-

sponds to the keys K1, K2, and the randomization message

W̃K , i.e., Xn
c(K

(1)
1 , K(1)

2 , . . . , K
(n 2−αε

2 )

1 , K
(n 2−αε

2 )

2 , W̃K).
Delivery Codebook: The codebook Cd,n is generated as fol-

lows. The transmitter randomly and independently divides all
the 2n length-n binary sequences into two bins, indexed by

M
(n 2−αε

2 )

d,1 , and each contains 2n−1 codewords. These bins are
further randomly and independently divided into two sub-bins,

indexed by M
(n 2−αε

2 )

d,2 , and each contains 2n−2 codewords. The

process continues, going in reverse order over M
(n 2−αε

2 −1)

d,1 ,

M
(n 2−αε

2 −1)

d,2 , · · · , M(1)
d,1, M(1)

d,2, until the remaining 2n(αε−1) code-
words, after each sequence of divisions, are indexed by the
randomization message W̃.

Delivery Encoder: Given W1, W2, K1, K2, W̃, d =
(d1, d2), the transmitter forms Md,1, Md,2, as in (52)
and sends Xn

d which corresponds to Md,1, Md,2, W̃, i.e.,

Xn
d(M

(n 2−αε
2 )

d,1 , M
(n 2−αε

2 )

d,2 , . . . , M(1)
d,1, M(1)

d,2, W̃).
Decoding: Using Xn

c , receiver j = 1, 2, recovers Mc,j = Kj

and stores it in its cache. Using Xn
d, both receivers recover

Md = {Md,1, Md,2}. Using Md,j, Kj, and for n large enough,
receiver j recovers Wdj .

Security Analysis: Fix S1, S2. Recall that α1, α2 ≤ 1. Since
α ≥ 1, α1, α2 ≥ α − 1. If α1 = 1, then α2 = α − 1, and vice
versa. In addition, notice that 1 − α1, 1 − α2 ≤ 2 − α. As in
Section IV-C, for a fixed value of α1, the codebook Cc,n is a
wiretap code with 2n(1−α1,ε ) bins, indexed by

Wc =
(

K(1)
1 , K(1)

2 , . . . , K

(
n

1−α1,ε
2

)
1 , K

(
n

1−α1,ε
2

)
2

)
. (53)

Each bin Wc contains 2nα1,ε binary codewords, indexed by

W̃c =
(

K

(
n

1−α1,ε
2 +1

)
1 , K

(
n

1−α1,ε
2 +1

)
2 , . . . ,

K

(
n 2−αε

2

)
1 , K

(
n 2−αε

2

)
2 , W̃K

)
. (54)

Similarly, for a fixed value of α2, Cd,n is a wiretap code with
2n(1−α2,ε ) bins, each is indexed by

Wd =
(

M̃

(
n 2−αε

2

)
d,1 , M̃

(
n 2−αε

2

)
d,2 , . . . ,

M̃

(
n

1−α1,ε
2 +1

)
d,1 , M̃

(
n

1−α1,ε
2 +1

)
d,2

)
. (55)

Each bin Wd contains 2nα2,ε codewords, indexed by

W̃d =
(

M̃

(
n

1−α1,ε
2

)
d,1 , M̃

(
n

1−α1,ε
2

)
d,2 , . . . , M̃(1)

d,1, M̃(1)
d,2, W̃

)
. (56)

Let us re-define K(1), K(2), W(1)
⊕K, and W(2)

⊕K and define
W(1) and W(2) as

K(1) =
{

K(i)
1 , K(i)

2 : i = 1, . . . , n
1 − α1,ε

2

}
(57)

K(2) =
{

K(i)
1 , K(i)

2 : i = n
1 − α1,ε

2
+ 1, . . . , n

2 − αε

2

}
(58)

W(1)
⊕K =

{
W(i)

d1
⊕ K(i)

1 , W(i)
d2

⊕ K(i)
2 :i = 1, . . . , n

1 − α1,ε

2

}

(59)

W(2)
⊕K =

{
W(i)

d1
⊕ K(i)

1 , W(i)
d2

⊕ K(i)
2 :

i = n
1 − α1,ε

2
+ 1, . . . , n

2 − αε

2

}
(60)

W(1) =
{

W(i)
d1

, W(i)
d2

: i = 1, . . . , n
1 − α1,ε

2

}
(61)

W(2) =
{

W(i)
d1

, W(i)
d2

: i = n
1 − α1,ε

2
+ 1, . . . , n

2 − αε

2

}
.

(62)

From (53)-(60), we have

Wc = K(1), W̃c =
{

K(2), W̃K

}
,

Wd = W(2)
⊕K, W̃d =

{
W(1)

⊕K, W̃
}
. (63)

Similar to Section IV-C, W̃c, W̃d, are independent and uni-
form, and hence {W̃c, W̃d} is jointly uniform. Also, {W̃c, W̃d}
is independent from {Wc, Wd}. Thus, (34) is satisfied. For any
d = (d1, d2), we have

I
(

W1, W2; Zn
S1

, Zn
S2

)
= I

(
W(1), W(2); Zn

S1
, Zn

S2

)
(64)

≤ I
(

W(1), W(2)
⊕K; Zn

S1
, Zn

S2

)
(65)

= I
(

W(1), Wd; Zn
S1

, Zn
S2

)
(66)

= H
(

Zn
S1

, Zn
S2

)
− H

(
Zn

S1
, Zn

S2

∣∣W(1), Wd

)
(67)

≤ H
(

Zn
S1

, Zn
S2

)
− H

(
Zn

S1
, Zn

S2

∣∣K(1), Wd

)
+ ε′

n (68)

= I
(

Wc, Wd; Zn
S1

, Zn
S2

)
+ ε′

n, (69)

where (65) follows due to the Markov chain W(2) −
{W(1), W(2)

⊕K} − {Zn
S1

, Zn
S2

}; (66), (69) follow from (63); (68)
follows by using similar steps as in (42)-(48). Using (34)
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and (69), the secrecy constraint in (3) is satisfied. Since εn → 0
as n → ∞, the achievable strong secrecy file rate is

Rs(α) = 2 − α

2
= 1 − α

2
. (70)

This completes the proof for Theorem 1.

V. PROOF OF THEOREM 2

In this section, we extend the achievability scheme in
Section IV and provide a lower bound on the strong secrecy
file rate when D > 2. The demand vector is d = (d1, d2),
where d1, d2 ∈ [1 : D]. As in Section IV, we divide the proof
into two cases for the ranges α ∈ (0, 1) and α ∈ [1, 2].

A. α ∈ [1, 2]

For α ∈ [1, 2], we use the same scheme as in Section IV-D.
For this range of α, only the keys K1, K2, are transmitted dur-
ing placement, and stored in receivers 1 and 2 cache memories.
That is, no information messages are stored in the caches, and
the user demands are known during delivery. Hence, D > 2 is
immaterial for this range of α. The achievable strong secrecy
file rate is 1 − α

2 .

B. α ∈ (0, 1)

The achievability scheme for this case has the same channel
coding structure as in Section IV-C. The difference however
lies in generating the messages to be securely communicated
over cache placement and delivery phases, i.e., Mc, Md. In
particular, we use here uncoded placement for designing the
cache contents, and a partially coded delivery transmission that
is simultaneously useful for both receivers.

The transmitter (i) divides Wl, l ∈ [1 : D], into the indepen-
dent messages {W(1)

l , W(2)
l , Wl,t, Wl,s}, where W(1)

l , W(2)
l are

uniform over [1 : 2n 1−αε
2D ], αε is as in (19), Wl,t is uniform over

[1 : 2n (2D−1)(1−αε )
4D ], and Wl,s is uniform over [1 : 2n αε

2 ]; (ii) gen-
erates the independent keys K1, K2, uniform over [1 : 2n αε

2 ]
and independent from W[1:D].

Let Mc = {Mc,1, Mc,2}. Unlike (15), we use here uncoded
placement for designing Mc,1, Mc,2:

Mc,1 =
{

W(1)
1 , W(1)

2 , . . . , W(1)
D

}
, (71)

Mc,2 =
{

W(2)
1 , W(2)

2 , . . . , W(2)
D

}
. (72)

The randomization message M̃c is identical to (16). Receiver
j stores Mc,j, M̃c,j in its cache memory.

Unlike (17), we use partially coded delivery. The message
to be securely transmitted in delivery is

Md =
{

W(1)
d2

⊕ W(2)
d1

, Wd1,t, Wd2,t

}
. (73)

Notice that we use the term partially coded since part of Md
is coded, i.e., W(1)

d2
⊕ W(2)

d1
, while the other part is uncoded,

i.e., Wd1,t, Wd2,t. The randomization message for delivery, M̃d,
is identical to (18).

Remark 8: Note that the sizes of Mc, Md, M̃c, and M̃d are
the same as in Section IV-C. In particular, the sizes of M̃c

and M̃d are both nαε bits. The size of Mc is 2 × D × n 1−αε

2D =

n(1−αε) bits and the size of Md is n 1−αε

2D +2×n (2D−1)(1−αε)
4D =

n(1 − αε) bits.
Codebooks Generation and Encoders: For the messages Mc,

Md, M̃c, M̃d defined above, the cache placement and delivery
codebooks, Cc,n and Cd,n, and the cache and delivery encoders,
are designed in the same exact manner as in Section IV-C, see
Figures 3 and 4.

Decoding: As in Section IV-C, using Md, M̃d, Mc,j, M̃c,j,
and for n sufficiently large, receiver j correctly decodes Wdj ,
j = 1, 2.

Security analysis: Let Wc, W̃c, Wd, W̃d, be defined as
in (20)-(23), (31), (32). Once again, W̃c and W̃d are indepen-
dent and uniform, and hence {W̃c, W̃d} is jointly uniform. In
addition, {Wc, Wd} are independent from {W̃c, W̃d}. Thus, (34)
holds for this case. For any d = (d1, d2),

I
(

W[1:D]; Zn
S1

, Zn
S2

)

= I

({
W(1)

l , W(2)
l , Wl,t, Wl,s

}D

l=1
; Zn

S1
, Zn

S2

)
(74)

≤ I

(
Mc,

{
W(1)

l , W(2)
l , Wl,t, Wl,s

}D

l=1
; Zn

S1
, Zn

S2

)
(75)

≤ I
(

Mc, W(1)
d2

⊕ W(2)
d1

, Wd1,t, Wd2,t, Wd1,s, Wd2,s; Zn
S1

, Zn
S2

)
(76)

= I
(

Mc, Md, Wd1,s, Wd2,s; Zn
S1

, Zn
S2

)
(77)

≤ I
(

Wc, Wd; Zn
S1

, Zn
S2

)
+ ε′

n, (78)

The inequality in (76) follows form the Markov chain W[1:D]−
{Mc, W(1)

d2
⊕W(2)

d1
, Wd1,t, Wd2,t, Wd1,s, Wd2,s}−{Zn

S1
, Zn

S2
}; (77)

follows from (73); (78) follows using similar steps as in (37)-
(48). Using (34), (78), the secrecy constraint in (3) is satisfied.
With εn → 0 as n → ∞, the achievable strong secrecy file
rate is

Rs(α) = (1 − α)

D
+ (2D − 1)(1 − α)

4D
+ α

2
= 1

2
+ 3(1 − α)

4D
.

(79)

This completes the proof for Theorem 2.
Remark 9: For D = 2, the achievable secrecy rate in (79)

is strictly smaller than the secrecy rate obtained by coded
placement and uncoded delivery in Section IV-C, i.e., 1 − α

2 .
Remark 10: An achievability scheme which utilizes coded

placement and uncoded delivery, as in Section IV-C, achieves
the same secure file rate as (79) for D = 3. However,
this scheme achieves a strictly smaller secure file rate for
D ≥ 4. In this scheme, W(1)

l , W(2)
l are uniform over

[1 : 2n 1−αε
2(D−1) ]. Wl,t is uniform over [1 : 2n (D−2)(1−αε )

2(D−1) ]. Wl,s,
K1, K2, are uniform over [1 : 2n αε

2 ]. Mc = {Mc,1, Mc,2},
where Mc,1 = {W(1)

1 ⊕ W(1)
2 , W(1)

2 ⊕ W(1)
3 , . . . , W(1)

D−1 ⊕ W(1)
D }

and Mc,2 = {W(2)
1 ⊕ W(2)

2 , W(2)
2 ⊕ W(2)

3 , . . . , W(2)
D−1 ⊕ W(2)

D }.
Md = {W(1)

d2
, W(2)

d1
, Wd1,t, Wd2,t}. Without loss of generality,

let d1 < d2. For any d = (d1, d2), using Mc,j, receiver j,
can restore W(j)

d1
⊕ W(j)

d2
by xor-ing {W(j)

d1
⊕ W(j)

d1+1}, {W(j)
d1+1 ⊕

W(j)
d1+2},· · · , {W(j)

d2−1⊕W(j)
d2

}. The achievable strong secrecy file
rate using this scheme is Rs(α) = 1

2 + 1−α
2(D−1)

.
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VI. PROOF OF THEOREM 3

When α ∈ [1, 2], the upper bound on Rs in Theorem 3
for D > 2 follows as in Section IV-A. It remains to prove the
upper bound for α ∈ (0, 1). The proof is divided into the three
following steps.

Step 1: We upper bound Rs by the secrecy capacity when
the adversary is restricted to tap into the delivery phase only,
denoted as CRes

s . That is, CRes
s is the maximum achievable

file rate when α1 = 0, α2 = α. Restricting the adversary to
only tap into the delivery phase cannot decrease the secrecy
capacity, i.e., Rs ≤ CRes

s , since this setting is included in its
feasible strategy space. Cache placement is secure, and each
receiver has a secure cache memory of size n

2 bits.
Step 2: We upper bound CRes

s by the secrecy capacity when
the delivery channel to the adversary is replaced by a discrete
memoryless binary erasure channel, with erasure probability
1−α, denoted as CDM

s . The proof for this step follows the same
lines as in [44, Sec. V]. The idea is when the binary erasure
channel produces a number of erasures greater than or equal to
(1 − α)n, the adversary’s channel in this discrete memoryless
setup is worse than its channel in the former model, i.e., when
it encounters exactly (1−α)n erasures and is able to select their
positions. Hence, CRes

s ≤ CDM
s for this case. The result follows

by using Sanov’s theorem in method of types [51, Th. 11.4.1]
to show that the probability of the binary erasure channel caus-
ing a number of erasures less than (1 − α)n goes to zero as
n → ∞.

Step 3: From Step 1, each receiver has a secure cache of size
n
2 bits. Since increasing the cache sizes cannot decrease the
achievable file rate, we upper bound CDM

s with the maximum
achievable file rate when each receiver has a cache of size
n bits, in which it stores Xn

c . Receiver j = 1, 2, uses Xn
c ,

Xn
d to decode Wdj , i.e., Ŵdj = gd,j(Xn

c, Xn
d). This setup is

equivalent to a single receiver, which has a cache of size n
bits, demands two files Wd1 , Wd2 , and uses the decoder gd �
{gd,1, gd,2}. Let CSR

s be the maximum achievable file rate for
this single receiver model. We have CDM

s ≤ CSR
s . Next, we

upper bound CSR
s .

Let MD denote the fraction of the size-n bits cache memory
dedicated to store (coded or uncoded) information bits, and
let MK denote the fraction dedicated to store key bits. That
is, MD + MK = 1. Let SD denote the information bits stored
in this memory, i.e., SD = fD(W[1:D]) and H(SD) = nMD. We
use the following lemma to upper bound CSR

s .
Lemma 1 [37, Lemma 1]: For a fixed allocation of MD, MK,

and a receiver who demands the files Wd1 , Wd2 , the secrecy
rate for the single receiver model is upper bounded as

2RSR
s ≤ min{1, 1 − α + MK} + 1

n
I
(
Wd1, Wd2; SD

)
. (80)

Notice that (80) holds for any demand pair d = (d1, d2)

such that d1 �= d2, i.e., the worst-case demands. Summing
over all such demands, we have

2RSR
s ≤ min{1, 1 − α + MK}
+ 1

nD(D − 1)

∑
d1,d2∈[1 : D], d1 �=d2

I
(
Wd1, Wd2; SD

)
. (81)

The second term on the right hand side of (81) can be written
as

1

nD(D − 1)

∑
d1,d2∈[1 : D], d1 �=d2

I
(
Wd1, Wd2; SD

)

= 1

nD

∑
d1∈[1 : D]

I
(
Wd1; SD

)

+ 1

nD(D − 1)

∑
d1,d2∈[1 : D], d1 �=d2

I
(
Wd2; SD|Wd1

)
(82)

≤ 1

nD

∑
d1∈[1 : D]

I(Wd1; SD)

+ 1

nD(D − 1)

∑
d1∈[1 : D]

⎛
⎝ ∑

d2∈[1 : D]

I
(
Wd2; SD|Wd1

)⎞⎠.

(83)

For any d1 ∈ [1 : D], we have∑
d2∈[1 : D]

I
(
Wd2; SD

∣∣Wd1

)

=
D∑

d2=1

[
H
(
Wd2

∣∣Wd1

)− H
(
Wd2

∣∣Wd1, SD
)]

(84)

≤
D∑

d2=1

[
H
(
Wd2

∣∣W1, W2, . . . , Wd2−1, Wd1

)

− H
(
Wd2

∣∣W1, W2, . . . , Wd2−1, Wd1 , SD
)]

(85)

= I
(
W1, W2, . . . , WD; SD

∣∣Wd1

)
(86)

≤ H(SD) = nMD, (87)

where (85) follows because when d2 = d1, H(Wd2 |Wd1) =
H(Wd2 |W1, W2, . . . , Wd2−1, Wd1) = 0, and when d2 �= d1,
H(Wd2 |Wd1) = H(Wd2 |W1, W2, . . . , Wd2−1, Wd1) = H(Wd2).
Similarly, we have∑

d1∈[1 : D]

I
(
Wd1; SD

) ≤ H(SD) = nMD. (88)

Substituting (87) and (88) in (83) gives

1

nD(D − 1)

∑
d1,d2∈[1 : D]

d1 �=d2

I
(
Wd1 , Wd2; SD

) ≤ 2D − 1

D(D − 1)
MD.

(89)

Thus, using (81) and (89), RSR
s is further upper bounded as

RSR
s ≤ 1

2

[
min{1, 1 − α + MK} + 2D − 1

D(D − 1)
MD

]
. (90)

Finally, by maximizing over all possible allocations for MD,
MK such that MD + MK = 1, we get

CSR
s ≤ 1

2
max

MD,MK:
MD+MK=1

{
min{1, 1 − α + MK} + 2D − 1

D(D − 1)
MD

}

(91)

= 1

2

[
1 + 2D − 1

D(D − 1)
(1 − α)

]
. (92)
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Equation (92) follows because, for D ≥ 3, the maximum
occurs at MK = α and MD = 1 − α. This completes the
proof for Theorem 3.

Remark 11: An upper bound considering uncoded place-
ment only can be derived as follows. The same analysis as
in (80)-(92) carries through with I(Wd2; SD|Wd1) in (82) is
equal to I(Wd2; SD). Hence the right hand side of (89) is
replaced by 2MD

D . The resulting bound Rs ≤ 1
2 + (1−α)

D is
tighter than (92).

VII. DISCUSSION

A. Variable Cache Memories

While the fixed-size cache memory setup considered in this
work can be seen as a clean basic model for the intricate
problem in consideration, it also allows us to obtain results and
insights that are generalizable to more involved cache memory
models. The extension to variable memory sizes can be done
by considering multiple communication blocks for placement.
Our results and coding scheme readily apply to an adversary
model whose tapping capability during delivery is normalized
with respect to tapping during placement; μ1 +Bμ2 ≤ μ, B is
the number of communication blocks for placement. This is
a reasonable assumption given that cache placement generally
takes place in a longer period than delivery. The problem turns
to be more challenging when the adversary optimizes its tap-
ping uniformly over the multiple blocks for cache placement as
well as the delivery phase. This is left for future investigation.

B. Extension to More Than Two Users

The broadcast wiretap channel II in [47] can be generalized
to more than two users. In [47], the achievability scheme does
not depend on the number of receivers, and the converse proof
can be extended to any broadcast setting of known secrecy
capacity, see for example [55], [56]. It follows that the results
in this work can also be generalized to more than two users. In
particular, the key enabler for our achievability scheme is the
proposed channel coding structure which involves using secu-
rity embedding codes along with reversed embedding order
across the two communication phases. By carefully choosing
the messages and encryption keys to be transmitted over cache
placement and delivery, the same channel coding structure can
be applied to the case of more than two users.

C. The Broadcast Channel Model for Cache Placement

It is typical to model cache placement as a noiseless channel
since placement is assumed to occur when networks are not
congested and their rates are assumed to be large enough. Here
however we model the cache placement as a broadcast chan-
nel communication. The broadcast model avails a clean and
tractable solution without compromising its generalizability. A
time division multiple access (TDMA) model for cache place-
ment is a special case by imposing an additional constraint
in which each receiver has to decode its desired file using
only one half of the transmitted codeword. Additionally, the
broadcast model is in line with the network information theory
literature and it does not limit cache placement to occur over

low rate traffic. With the ever-growing user demands, place-
ment and delivery occurring in less asymmetric network loads
is likely to be expected in the near future.

D. Larger Cache Sizes Lead to Simple Achievability

For a library with two files, if the receivers were to have
cache memories of size n bits in which they store the trans-
mitted signal during placement, the strong secrecy file rate in
Theorem 1 is achievable using a simple wiretap code: The
transmitter encodes W = (W1, W2) ∈ [1 : 2n2Rs ] into a length-
2n binary codeword using a wiretap code, and sends the first
n bits of this codeword during cache placement and the last n
bits during delivery. Each receiver can thus decode both files,
and the secrecy of W1 and W2 against the adversary follows
by the results in [43], [44]. In caching problems, the relevant
setup however is when the receivers have cache memories of
limited size with respect to the overall transmission during
cache placement. This calls for the limited size cache memory
model considered in this paper, which in turn necessitates the
use of the more elaborate coding scheme in Section IV.

VIII. CONCLUSION

We have introduced the caching broadcast channel with a
wire and cache tapping adversary of type II. Each receiver is
equipped with a fixed-size cache memory, and the adversary
is able to tap into a subset of its choice of the transmitted
symbols during cache placement, delivery, or both. The legit-
imate terminals have no knowledge about the fractions of the
tapped symbols in each phase, nor their positions. Only the
size of the overall tapped set is known. We have identified the
strong secrecy capacity of this model– the maximum achiev-
able file rate while keeping the overall library secure– when
the transmitter’s library has two files. We have derived lower
and upper bounds for the strong secrecy file rate when the
transmitter has more than two files in its library. We have
devised an achievability scheme which combines wiretap cod-
ing, security embedding codes, one-time pad keys, and coded
caching techniques.

The results presented in this paper highlight the robust-
ness of (stochastic) coding in a cache-aided network, against
a smart adversary who is able to perform a strategic attack
jointly optimized over cache placement and delivery phases.
Future directions that can build on this work include explor-
ing variable cache memory sizes, models with more than two
end-users, other network topologies, and models with noisy
legitimate channels.

APPENDIX A
SECRECY CONSTRAINT FOR SETTING 1

For every S1 ⊆ [1 : n] satisfying |S1| = μ, we have

lim
n→∞I

(
W1, W2; Zn

S1

)

= lim
n→∞I

(
W(1)

1 , W(2)
1 , W(1)

2 , W(2)
2 , W1,s, W2,s; Zn

S1

)
(93)

= lim
n→∞I

(
W(1)

1 , W(2)
1 , W(1)

2 , W(2)
2 ; Zn

S1

)
(94)
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≤ lim
n→∞I

(
W(1)

1 ⊕ W(1)
2 , W(2)

1 ⊕ W(2)
2 ; Zn

S1

)
(95)

= lim
n→∞I

(
Mc; Zn

S1

)
= 0. (96)

The adversary’s observation over cache placement, Zn
S1

, results

from sending Mc = {Mc,1, Mc,2}; Mc,1 = W(1)
1 ⊕W(1)

2 . Mc,2 =
W(2)

1 ⊕ W(2)
2 . Thus, (94) follows since Zn

S1
does not depend

on {W1,s, W2,s} and (95) follows due to the Markov chain
{W(1)

1 , W(2)
1 , W(1)

2 , W(2)
2 } − {W(1)

1 ⊕ W(1)
2 , W(2)

1 ⊕ W(2)
2 } − Zn

S1
.

The second equality in (96) follows from [43, Th. 2], and since
the rate of Mc is less than 1 − α.

APPENDIX B
SECRECY CONSTRAINT FOR SETTING 2

For every S2 ⊆ [1 : n] satisfying |S2| = μ and any d =
(d1, d2), d1, d2 ∈ {1, 2},

I
(

W1, W2; Zn
S2

)
= I

(
W(2)

d1
, W(1)

d2
, Wd1,s, Wd2,s; Zn

S2

)
(97)

= I
(

Wd1,s, Wd2,s; Zn
S2

∣∣W(2)
d1

, W(1)
d2

)
+ I
(

W(2)
d1

, W(1)
d2

; Zn
S2

)
(98)

≤ I
(

Wd1,s, Wd2,s; Wd1,s ⊕ K1, Wd2,s ⊕ K2
∣∣W(2)

d1
, W(1)

d2

)

+ I
(

W(2)
d1

, W(1)
d2

; Zn
S2

)
(99)

= I
(
Wd1,s, Wd2,s; Wd1,s ⊕ K1, Wd2,s ⊕ K2

)
+ I

(
W(2)

d1
, W(1)

d2
; Zn

S2

)
(100)

= I
(

W(2)
d1

, W(1)
d2

; Zn
S2

)
(101)

= I
(

Md; Zn
S2

)
. (102)

The adversary’s observation over delivery, Zn
S2

, results from

sending Md = {W(2)
d1

, W(1)
d2

} and M̃d = {Wd1,s ⊕ K1, Wd2,s ⊕
K2}. Equation (97) follows because Zn

S2
depends only on

W(2)
d1

, W(1)
d2

, Wd1,s, Wd2,s. Equation (99) follows from the

Markov chain {Wd1,s, Wd2,s}−{W(2)
d1

, W(1)
d2

, Wd1,s⊕K1, Wd2,s⊕
K2} − Zn

S2
. Equation (100) follows because {W(2)

d1
, W(1)

d2
},

{Wd1,s, Wd2,s, K1, K2} are independent. The randomization
message for the wiretap code during delivery M̃d is indepen-
dent from the message Md. Using (102), [43, Th. 2],

lim
n→∞ max

S2⊆[1 : n] : |S2|=μ
I
(

W1, W2; Zn
S2

)

≤ lim
n→∞ max

S2⊆[1 : n] : |S2|=μ
I
(

Md; Zn
S2

)
= 0.

(103)

APPENDIX C
SECRECY CONSTRAINT FOR SETTING 3 WHEN α1 ≥ α2

For a fixed choice of S1, S2 ⊆ [1 : n] such that |S1|+|S2| =
μ, and any d = (d1, d2), d1, d2 ∈ {1, 2},

I
(

W1, W2; Zn
S1

, Zn
S2

)

= I
(

W(1)
1 , W(2)

1 , W(1)
2 , W(2)

2 , W1,s, W2,s; Zn
S1

, Zn
S2

)
(104)

= I
(

W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , W(2)
d1

, W(1)
d2

,

Wd1,s, Wd2,s; Zn
S1

, Zn
S2

)
(105)

= I
(

Mc, Md; Zn
S1

, Zn
S2

)
(106)

= I
(

Mc; Zn
S1

, Zn
S2

)
+ I
(

Md; Zn
S1

, Zn
S2

∣∣Mc

)
(107)

= I
(

Mc; Zn
S1

)
+ I
(

Mc; Zn
S2

∣∣Zn
S1

)
+ I
(

Md; Zn
S2

∣∣Mc

)

+ I
(

Md; Zn
S1

∣∣Mc, Zn
S2

)
. (108)

Equation (105) follows because, for any d1, d2 ∈ {1, 2},
there is a bijective map between {W(1)

1 , W(2)
1 , W(1)

2 , W(2)
2 } and

{W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , W(2)
d1

, W(1)
d2

}.
From (9), (10); Mc and Md are independent. Zn

S1
results

from sending Mc, while Zn
S2

results from sending Md. For a
fixed choice of S1, S2, {Mc, Zn

S1
} are independent from Zn

S2
.

Thus, we have

I
(

Mc; Zn
S2

|Zn
S1

)
= 0. (109)

In addition, {Md, Zn
S2

} are independent from Mc. Thus,

I
(

Md; Zn
S2

|Mc

)
= H

(
Zn

S2
|Mc

)
− H

(
Zn

S2
|Mc, Md

)
(110)

= H
(

Zn
S2

|Mc

)
− H

(
Zn

S2
|Md

)
(111)

≤ I
(

Md; Zn
S2

)
. (112)

Finally, using the Markov chain {Md, Zn
S2

} − Mc − Zn
S1

,

I
(

Md; Zn
S1

|Mc, Zn
S2

)

= H
(

Zn
S1

|Mc, Zn
S2

)
− H

(
Zn

S1
|Mc, Zn

S2
, Md

)
(113)

≤ H
(

Zn
S1

)
− H

(
Zn

S1
|Mc

)
= I

(
Mc; Zn

S1

)
. (114)

Substituting (109), (112), and (114) in (108),

I
(

W1, W2; Zn
S1

, Zn
S2

)
≤ 2I

(
Mc; Zn

S1

)
+ I

(
Md; Zn

S2

)
.

(115)

The rates of Mc, Md are 1−α1−εn, 1−α2−εn, respectively.
By applying [43, Th. 2] to (115),

lim
n→∞ max

S1,S2⊆[1 : n]:
|S1|+|S2|=μ

I
(

W1, W2; Zn
S1

, Zn
S2

)

≤ 2 lim
n→∞ max

S1⊆[1 : n]: |S1|=μ1
I
(

Mc; Zn
S1

)

+ lim
n→∞ max

S2⊆[1 : n]: |S2|=μ2
I
(

Md; Zn
S2

)
= 0. (116)

APPENDIX D
SECRECY CONSTRAINT FOR SETTING 3 WHEN α1 < α2

For notational simplicity, let us define

Mc,1\K1 = W(1)
1 ⊕ W(1)

2 , Mc,2\K2 = W(2)
1 ⊕ W(2)

2 (117)

Mc\K = {
Mc,1\K1 , Mc,2\K2

}
. (118)

For fixed S1, S2 ⊆ [1 : n] such that |S1|+ |S2| = μ, and any
d = (d1, d2), d1, d2 ∈ {1, 2},

I
(

W1, W2; Zn
S1

, Zn
S2

)

= I
(

W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , W(2)
d1

, W(1)
d2

,

Wd1,s, Wd2,s; Zn
S1

, Zn
S2

)
(119)
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= I
(

Mc\K, Md, Wd1,s, Wd2,s; Zn
S1

, Zn
S2

)
(120)

= I
(

Mc\K; Zn
S1

, Zn
S2

)
+ I
(

Md; Zn
S1

, Zn
S2

|Mc\K

)

+ I
(

Wd1,s, Wd2,s; Zn
S1

, Zn
S2

|Md, Mc\K

)
. (121)

From (12), (13), Mc is independent from
{Md, M̃d}. Zn

S1
results from sending Mc =

{Mc\K, K1, K2}, and Zn
S2

results from sending

Md = {W(2)
d1

, W(1)
d2

}, M̃d = {Wd1,s ⊕ K1, Wd2,s ⊕ W2}.
We upper bound each term on the right hand side of (121).

For the third term, we have

I
(

Wd1,s, Wd2,s; Zn
S1

, Zn
S2

∣∣Md, Mc\K

)
≤ I

(
Wd1,s, Wd2,s; M̃d

∣∣Md, Mc\K
)

(122)

= I
(
Wd1,s, Wd2,s; Wd1,s ⊕ K1, Wd2,s ⊕ K2

) = 0, (123)

where (122) follows due to the Markov chain {Wd1,s, Wd2,s}−
{Mc\K, Md, M̃d} − {Zn

S1
, Zn

S2
}, and (123) follows because M̃d

is independent from {Wd1,s, Wd2,s, Md, Mc\K}.
For fixed S1, S2, Zn

S2
is independent from {Mc, Zn

S1
}. Thus,

the first term is bounded as

I
(

Mc\K; Zn
S1

, Zn
S2

)
≤ I

(
Mc; Zn

S1
, Zn

S2

)
(124)

= I
(

Mc; Zn
S1

)
+ I

(
Mc; Zn

S2

∣∣Zn
S1

)
= I

(
Mc; Zn

S1

)
. (125)

For the second term on the right hand side of (121), we
have

I
(

Md; Zn
S1

, Zn
S2

∣∣Mc\K

)

= I
(

Md; Zn
S2

∣∣Mc\K

)
+ I
(

Md; Zn
S1

∣∣Mc\K, Zn
S2

)
. (126)

Notice that Mc\K and Zn
S2

are conditionally independent given
Md. Thus,

I
(

Md; Zn
S2

∣∣Mc\K

)
= H

(
Zn

S2

∣∣Mc\K

)
− H

(
Zn

S2

∣∣Md

)

≤ I
(

Md; Zn
S2

)
. (127)

In addition, using the independence between {Md, Zn
S2

} and
{Mc, Zn

S1
}, we have

I
(

Md; Zn
S1

∣∣Mc\K, Zn
S2

)

= H
(

Zn
S1

∣∣Mc\K, Zn
S2

)
− H

(
Zn

S1

∣∣Mc\K, Md, Zn
S2

)
(128)

≤ H
(

Zn
S1

)
− H

(
Zn

S1

∣∣Mc\K, K1, K2, Md, Zn
S2

)
(129)

= H
(

Zn
S1

)
− H

(
Zn

S1

∣∣Mc

)
= I

(
Mc; Zn

S1

)
. (130)

Substituting (127) and (130) in (126) gives

I
(

Md; Zn
S1

, Zn
S2

∣∣Mc\K

)
≤ I

(
Md; Zn

S2

)
+ I
(

Mc; Zn
S1

)
.

(131)

Finally, substituting (123), (125), (131) in (121), and apply-
ing [43, Th. 2], we have

lim
n→∞ max

S1,S2⊆[1 : n]:
|S1|+|S2|=μ

I
(

W1, W2; Zn
S1

, Zn
S2

)
= 0, (132)

since the rates of Mc and Md are 1 −α1 − εn and 1 −α2 − εn,
respectively.

APPENDIX E
SECRECY CONSTRAINT FOR SETTING 4

From(15)–(18), Mc is independent from M̃c; Md is indepen-
dent from M̃d, and {Mc, M̃c} are independent from {Md, M̃d}.
Conditioned on a fixed choice of S1, S2, satisfying {|S1| =
μ, |S2| = 0} or {|S1| = 0, |S2| = μ}, define the random
variable

Zn
S � Zn

S1
1{|S2|=0} + Zn

S2
1{|S1|=0}. (133)

Note that Zn
S only has a well-defined probability distribution

when conditioned on the event {S1, S2}, since a prior distribu-
tion on these subsets is not defined. For this fixed choice of
the subsets, and any d = (d1, d2), d1, d2 ∈ {1, 2}, we have

I
(

W1, W2; Zn
S1

, Zn
S2

)

= I
(

W(1)
1 ⊕ W(1)

2 , W(2)
1 ⊕ W(2)

2 , W(2)
d1

, W(1)
d2

,

Wd1,s, Wd2,s; Zn
S1

, Zn
S2

)
(134)

= I
(
Mc, Md, Wd1,s, Wd2,s; Zn

S

)
(135)

= 1{|S2|=0} I
(

Mc, Md, Wd1,s, Wd2,s; Zn
S

∣∣∣{|S2| = 0}
)

+ 1{|S1|=0} I
(

Mc, Md, Wd1,s, Wd2,s; Zn
S

∣∣∣{|S1| = 0}
)

(136)

= 1{|S2|=0} I(Mc, Md, Wd1,s, Wd2,s; Zn
S1

)

+ 1{|S1|=0} I
(

Mc, Md, Wd1,s, Wd2,s; Zn
S2

)
(137)

= 1{|S2|=0} I
(

Mc; Zn
S1

)

+ 1{|S1|=0} I
(

Md, Wd1,s, Wd2,s; Zn
S2

)
(138)

≤ 1{|S2|=0} I
(

Mc; Zn
S1

)
+ 1{|S1|=0} I

(
Md; Zn

S2

)
. (139)

Equation (138) follows because (i) Zn
S1

results from {Mc, M̃c}
which are independent from {Md, Wd1,s, Wd2,s}, and (ii) Zn

S2
is

conditionally independent from Mc given {Md, Wd1,s, Wd2,s},
due to the Markov chain Mc −{Md, Wd1,s, Wd2,s}−{Md, M̃d}−
Zn

S2
. Equation (139) follows using the same steps in (97)–(102).

Finally, since M̃c is independent from Mc; M̃d is indepen-
dent from Md, and the rates of Mc, M̃d are both equal to
1 − α − εn, we have

lim
n→∞ max

S1,S2⊆[1 : n]:
|S1|+|S2|=μ

I
(

W1, W2; Zn
S1

, Zn
S2

)

= lim
n→∞ max

S1,S2⊆[1 : n]:
|Si|=0, |Sj|=μ

i,j∈{1,2}, i �=j

I
(

W1, W2; Zn
S1

, Zn
S2

)
(140)

≤ lim
n→∞ max

{
max

S1⊆[1 : n]: |S1|=μ
I(Mc; Zn

S1
),

max
S2⊆[1 : n]: |S2|=μ

I(Md; Zn
S2

)

}
(141)

= max

{
lim

n→∞ max
S1⊆[1 : n]: |S1|=μ

I(Mc; Zn
S1

),

lim
n→∞ max

S2⊆[1 : n]: |S2|=μ
I
(

Md; Zn
S2

)}
= 0,

(142)
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Equation (141) follows from (139); (142) follows since both
limits exist and equal to zero, using [43, Th. 2].
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