

1 **Chemo-enzymatic synthesis of [2-¹³C, 7-¹⁵N]-ATP for**
2 **facile NMR analysis of RNA**

3 **Lukasz T. Olenginski • Theodore K. Dayie**

4

5 Received:/Accepted ...

6

7

8 **Abstract** We report the efficient chemo-enzymatic synthesis of an [2-¹³C, 7-
9 ¹⁵N]-adenosine 5'-triphosphate building block for incorporation into RNA
10 via T7 RNA polymerase-based *in vitro* transcription. Such atom-specific
11 labeling alleviates spectral crowding and simplifies the analysis of large
12 RNAs by solution NMR spectroscopy. Applications to probe adenosine C2
13 and N7 sites in a large 61 nucleotide viral RNA with two- and three-
14 dimensional NMR experiments are demonstrated.

15

16 **Keywords** Nucleotides • Nucleic acids • Isotopic labeling • Spectroscopy

17

18

19 Theodore K. Dayie

20

dayie@umd.edu

21

22

23

¹ Center for Biomolecular Structure and Organization, Department of
Chemistry and Biochemistry, University of Maryland, College Park, MD
20742, United States.

24

1 **Introduction**

2

3 Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful
4 biophysical technique capable of probing RNA structure and dynamics at
5 high-resolution [1–4]. A prerequisite for contemporary NMR analysis is the
6 introduction of stable isotope (e.g. ^2H , ^{13}C , ^{15}N , and ^{19}F) labels into RNA [5–
7 13]. This is most commonly achieved with isotope labeled ribonucleoside
8 5'-triphosphates (rNTPs) and T7 RNA polymerase (RNAP)-based *in vitro*
9 transcription (IVT) [14–17]. These rNTPs can either be uniformly ^2H , ^{13}C ,
10 ^{15}N , or $^{13}\text{C}/^{15}\text{N}$ or atom-specifically (e.g. adenosine $^{13}\text{C}2$) labeled. The
11 former is commercially available whereas the latter must be prepared in-
12 house. Numerous reports on the synthesis of atom-specifically labeled
13 rNTPs by biomass fermentation [18–21] or complete *de novo* synthesis [22–
14 24] exist in the literature. However, these procedures either require laborious
15 enzyme cloning, expression, and purification or lengthy chemical synthesis
16 schemes.

17 We have recently described our preferred synthetic routes for rNTPs
18 with [$8\text{-}^{13}\text{C}$]-adenine (A), [$8\text{-}^{13}\text{C}$]-guanine (G), [$6\text{-}^{13}\text{C}, 1,3\text{-}^{15}\text{N}_2$]-uracil (U),
19 and [$6\text{-}^{13}\text{C}, 1,3\text{-}^{15}\text{N}_2$]-cytosine labeling to permit simplified resonance
20 assignment strategies [25] and artefact-free dynamics probing [26–28]. Our
21 approach combines chemical nucleobase synthesis with enzymatic ribose

1 coupling and subsequent phosphorylation [27–29]. Importantly, this is
2 achieved with fewer enzymes and synthetic steps and at lower costs
3 compared to other labeling approaches [18–24]. Our method is compatible
4 with chemically synthesized or commercially available nucleobase and
5 ribose and yields a versatile assortment of atom-specifically labeled rNTPs.
6 Although a number of ^{13}C and/or ^{15}N -labeled adenine derivatives are known
7 [30–37], the specific combination of [2- ^{13}C , 7- ^{15}N]-adenine has only been
8 reported by Moody and co-workers to study toyocamycin biosynthesis [36].
9 However, this labeling pattern has yet to be implemented in the
10 corresponding rNTP building block for use in **IVT of RNA**.

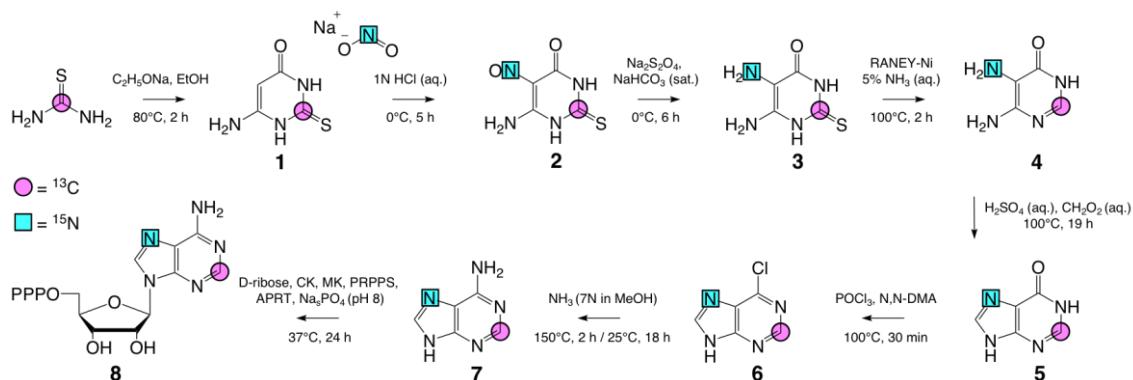
11 This particular nucleobase labeling is advantageous for NMR analysis
12 to detect canonical or noncanonical base pair interactions and ligand binding
13 that occur on the Watson-Crick (C2) or Hoogsteen (N7) face of adenosine
14 residues. This is especially true for large RNAs with complex folding or
15 ligand interactions where spectral crowding complicates resonance
16 assignment. Additionally, the removal of ^{13}C and ^{15}N **dipolar coupling**
17 partners permits straightforward and accurate probing of RNA dynamics [18,
18 20, 26, 38]. Here, we present a chemo-enzymatic procedure to synthesize [2-
19 ^{13}C , 7- ^{15}N]-ATP. Applications to probe adenosine C2 and N7 sites in a large
20 61 nucleotide (nt) viral RNA [39, 40] with two (2D)- and three (3D)-
21 dimensional NMR experiments are demonstrated. Importantly, these

1 experiments can be readily adapted to any RNA of interest for facile NMR
 2 analysis of structure, dynamics, and ligand interactions.

3

4 Results and Discussion

5


6 Synthesis

7

8 The atom-specifically labeled [2-¹³C, 7-¹⁵N]-ATP **8** was assembled with a
 9 hybrid chemical and enzymatic approach (Scheme 1). First, we chemically
 10 synthesized [2-¹³C, 7-¹⁵N]-adenine **7** following previous protocols [31, 36].
 11 Several routes to ¹⁵N-labeled adenine initiate from di- or
 12 triaminopyrimidines [32, 37] but they were not adopted in the present study
 13 due to our desired ¹³C(2) labeling.

14

15 Scheme 1

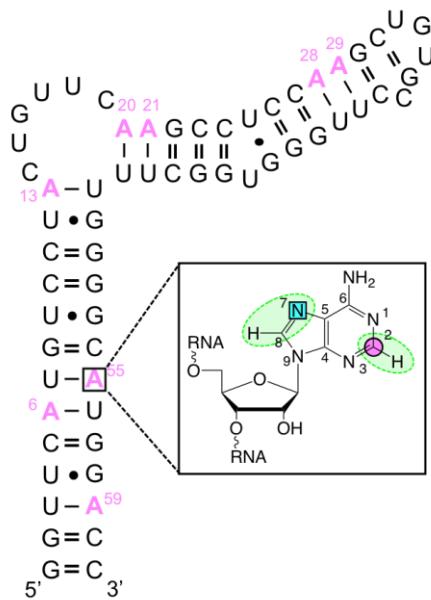
16 We therefore employed a sodium ethoxide mediated cyclization of ethyl
 17 We therefore employed a sodium ethoxide mediated cyclization of ethyl
 18 We therefore employed a sodium ethoxide mediated cyclization of ethyl

1 [30]. The subsequent nitrosylation of **1** installed the ^{15}N label by electrophilic
2 substitution using the cost-effective isotope source $\text{Na}^{15}\text{NO}_2$ to yield **2** [32].
3 A sodium dithionite mediated reduction of the nitroso group of **2** gave **3** and
4 desulfurization over RANEY®-Nickel formed the diaminopyrimidone **4**
5 [33]. Treatment of **4** with sulfuric and formic acids yielded hypoxanthine **5**
6 [32]. Subsequent reaction of **5** with phosphorus oxychloride and N,N-
7 dimethylaniline gave 6-chloropurine **6** which required chromatographic
8 purification [41]. In the final step, reaction of **6** with methanolic ammonia in
9 a microwave reactor yielded the desired adenine **7** [36]. All intermediate
10 compounds **1-7** displayed the expected ^1H and ^{13}C NMR spectra reported in
11 the literature [31, 32, 36].

12 We then used enzymes from the pentose phosphate and nucleotide
13 salvage biosynthetic pathways [24, 29] to couple our newly assembled
14 adenine **7** with D-ribose followed by subsequent phosphorylation to the
15 corresponding ATP **8**. This one-pot enzymatic reaction was used following
16 our previously published procedure [27] with minor alterations. In brief,
17 ribokinase (RK, E.C. 2.7.1.15) phosphorylates the C5 position of D-ribose
18 and then phosphoribosyl pyrophosphate synthetase (PRPPS, E.C. 2.7.6.1)
19 pyrophosphorylates the C1 site. Adenine phosphoribosyl transferase (APRT,
20 E.C. 2.4.2.7) then couples **7** to the 5-phospho-D-ribosyl- α -1-pyrophosphate
21 intermediate via nucleophilic attack of adenine N9. In the final step, creatine

1 kinase (CK, E.C. 2.7.3.2) phosphorylates the resulting monophosphate to
2 yield building block **8**. Complete triphosphate conversion of **7** to **8** was
3 monitored by ^{31}P NMR and is in agreement with previous reports [42].

4 Taken together, our synthetic route provides **8** in a 16% overall yield
5 with seven chemical steps and one enzymatic step and with two
6 chromatographic purifications. This route was impacted by the low yielding
7 (33%) formation of **5**, which resulted from complications with filtration in
8 our hands and not with overall conversion of **4** to hypoxanthine **5**.
9 Nevertheless, all other reactions proceeded with excellent yield to assemble
10 the first report of an [2- ^{13}C , 7- ^{15}N]-ATP. What is more, our approach enables
11 the rapid production of additional ATP building blocks by coupling **7** to
12 different ^2H and/or ^{13}C -labeled D-ribose sources.

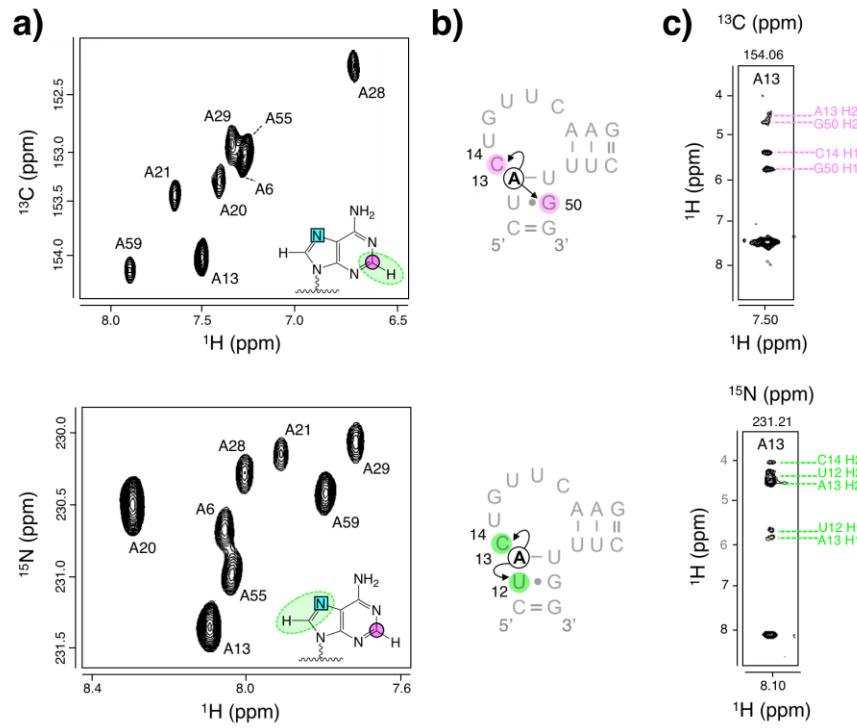

13

14 **NMR spectroscopy of atom-specifically labeled RNA**

15

16 Our motivation to synthesize building block **8** was for use in straightforward
17 and accurate NMR analysis of RNA. We therefore used **8** along with
18 unlabeled GTP, UTP, and CTP to make a 61 nt viral RNA by IVT (Fig. 1).

19


1

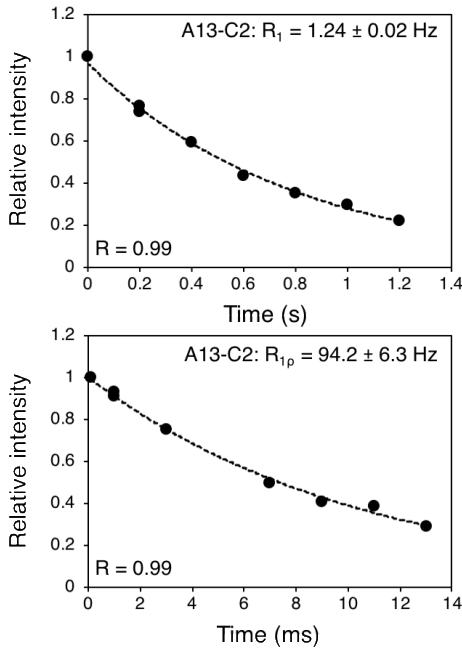
2 **Fig. 1** Secondary structure of a 61 nt viral RNA made from IVT with
 3 building block **8** incorporated.

4

5 As a first application, we implemented 2D heteronuclear single quantum
 6 spectroscopy (HSQC) experiments using one ($^1J_{H2C2}$)- and two ($^2J_{H8N7}$)-bond
 7 couplings for coherence transfer. All eight adenosine H8-N7 resonances
 8 were clearly resolved whereas H2-C2 resonances from palindromic A6 and
 9 A55 residues showed overlap (Fig. 2a).

10

1 **Fig. 2** HSQC and NOESY HSQC experiments in **8**-labeled RNA. **a** 2D
 2 ^1H , ^{13}C and ^1H , ^{15}N HSQC spectra showing H2-C2 and H8-N7 resonances. **b**
 3 ^1H , ^1H slice along a single ^{13}C and ^{15}N frequency. Overlapped H1' and H2'
 4 NOE cross-peaks are resolved by the C2 and N7 chemical shift. All spectra
 5 are annotated with RNA residue assignments.


6
 7 An important source of inter-proton distances for determining RNA
 8 structure by NMR spectroscopy is the nuclear Overhauser effect (NOE).
 9 Therefore, as a second application we sought to resolve ^1H , ^1H NOEs into a
 10 third dimension using ^{13}C and ^{15}N edited 3D NOESY HSQC experiments to
 11 uncover all protons within ~ 5 \AA of adenine H2 and H8 protons. In A-
 12 helical RNA, adenine H2 protons show cross-peaks to 3'-neighboring H1'
 13 protons on both sides of the helical strand and to their own H2' protons (Fig.
 14

1 2b) [43]. Adenosine H8 protons, on the other hand, show cross peaks to 5'-
2 neighboring H1' protons as well as to their own H1' and H2' protons (Fig.
3 2b) [43]. Correspondingly, we used the chemical shift of adenosine C2 and
4 N7 to resolve NOE cross-peaks to H1' and H2' protons of H2 and H8
5 resonances, respectively (Fig. 2c).

6 As a final application, we measured dynamics in our 61 nt viral RNA.
7 The two main dynamics parameters are the longitudinal (R_1) and transverse
8 (R_2) relaxation rates [2]. The former measures the return of the longitudinal
9 magnetization to thermal equilibrium whereas the latter measures the decay
10 of x- and y- magnetization [44]. An alternative method to measure R_2 in
11 RNA is a transverse rotating-frame (R_{1p}) experiment whereby radio
12 frequency field pulse spin-locks the magnetization in the rotating-frame and
13 the relaxation rate constant along the effective field is measured [2, 45]. Due
14 to the large adenosine $^1J_{H2C2}$ (203 Hz) as compared to $^2J_{H8N7}$ (11 Hz) coupling
15 [43], we focused on ^{13}C relaxation rates.

16 For uniformly $[^{13}\text{C}/^{15}\text{N}]\text{-ATP}$ labeled RNAs, adenosine C2 R_1 and R_2
17 auto-relaxation rates include dipolar interactions with H2 and nearby ^{13}C
18 (C4, C5, and C6) and ^{15}N (N1 and N3) nuclei (Fig. 1). Our building block **8**
19 thereby facilitates dynamics measurements free from these unwanted dipolar
20 couplings. To capitalize on our isolated spin pair, we used transverse
21 relaxation optimized spectroscopy (TROSY)-detected pulse schemes to
22 measure ^{13}C R_1 and R_2 (from R_{1p}) rates in our RNA. All adenosine C2 nuclei
23 showed monoexponential decay and the corresponding relaxation rates were
24 easily obtained (Fig. 3). These relaxation measurements can help identify
25 which RNA residues are flexible or in chemical exchange and are therefore
26 critical to understand RNA function [2].

27

1

2 **Fig. 3** Dynamics measurements in 8-labeled RNA. Representative ^{13}C R_1
3 and R_{1p} decay curves are shown for RNA residue A13. Extracted rate and
4 curve fit are shown.

5

6 Conclusion

7

8 We report the chemo-enzymatic synthesis of an $[2\text{-}^{13}\text{C}, 7\text{-}^{15}\text{N}]\text{-ATP}$ building
9 block for incorporation into RNA via IVT. The atom-specifically labeled
10 nucleobase was synthesized from cost-effective isotope sources and then
11 converted to the corresponding ATP in a one-pot enzymatic synthesis. To
12 showcase potential applications, we probed the structure and dynamics of a
13 61 nt viral RNA by solution NMR spectroscopy.

14

1 **Experimental**

2

3 Commercially available reagents were used throughout without further
4 purification. Isotope labeled [¹³C]-thiourea and [¹⁵N]-sodium nitrite were
5 purchased from Sigma Aldrich. All solvents were obtained as spectroscopic
6 grade and used as received. All reactions sensitive to air and/or moisture
7 were carried out under an atmosphere of argon in dry solvents using oven-
8 dried glassware. All non-commercial enzymes used were expressed and
9 purified in-house [29]. The microwave reaction was carried out in a CEM
10 DiscoverTM S-class (300 W) microwave reactor with IR temperature sensor.
11 Chromatographic purifications were carried out using silica gel or a boronate
12 affinity resin with eluent specified. Mass spectrometric data were collected
13 on a PerkinElmer AXION 2 TOF mass spectrometer with APCI source using
14 ESI positive mode. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX
15 300 MHz spectrometer. ³¹P NMR spectra were recorded on an Avance III
16 Bruker 800 MHz spectrometer with a triple resonance cryogenic probe.
17 Samples were maintained at a temperature of 25°C. All spectra were
18 recorded in deuterated solvents and chemical shifts δ are reported in parts
19 per million (ppm) relative to appropriate internal references. The following
20 abbreviations were used to denote multiplicities: s singlet, d doublet, t triplet,
21 m multiplet, b broad.

1

2 **Synthesis**

3

4 ^1H and ^{13}C NMR spectra of compounds **1-7** and high-resolution mass
5 spectrometry data for **7** can be found in the Supplemental Material. ^{31}P NMR
6 spectra of **8** can also be found in the Supplemental Material. All α , β , and γ
7 ^{31}P nuclei (denoted P(α), P(β), and P(γ) below) were detected, indicating
8 successful triphosphate formation [42]. Given this, and the fact that our **8**-
9 labeled RNA displayed the expected ^1H 8- ^{15}N 7 and ^1H 2- ^{13}C 2 chemical shifts
10 of ATP [43], no further compound validation of **8** was pursued.

11

12 **[2- ^{13}C]-6-amino-2-thioxo-2,3-dihydropyrimidin-4(3H)-one** (1,
13 $\text{C}_3\text{H}_5\text{N}_3\text{OS}$)

14 Sodium ethoxide (4.74 g, 69.61 mmol, 1.05 eq.) was dissolved in ethanol
15 (150 cm³) and then ethyl cyanoacetate (7.50 g, 66.30 mmol, 1.00 eq.) was
16 added. Next, [^{13}C]-thiourea (5.10 g, 66.1 mmol, 1.00 eq.) was added and the
17 suspension was refluxed at 80°C for 2 h. The solvents were removed under
18 reduced pressure and the residual solid was dissolved in water (90 cm³).
19 Acetic acid was then added until pH 7 was reached to precipitate the product.
20 The solid was vacuum filtered, successively washed with water (20 cm³),
21 ethanol (20 cm³), and acetone (20 cm³), and pure compound **1** was obtained

1 as a white powder. Yield: 6.76 g (71%); ^1H NMR (300 MHz, DMSO-d₆): δ = 11.60 (s, 1H, N(3)H), 11.51 (s, 1H, N(1)H), 6.36 (s, 2H, N(6)H₂), 4.70 (s, 1H, C(5)H) ppm; ^{13}C NMR (75 MHz, DMSO-d₆): δ = 175.07 (^{13}C (2)) ppm.

4

5 **[2- ^{13}C , 5- ^{15}N]- 6-amino-5-nitroso-2-thioxo-2,3-dihydropyrimidin-4(3H)-**
6 **one (2, C₃ $^{13}\text{CH}_4\text{N}_3^{15}\text{NO}_2\text{S}$)**

7 Compound **1** (6.76 g, 46.89 mmol, 1.00 eq.) was suspended in 1 N
8 hydrochloric acid (135 cm³) and a solution of sodium [^{15}N]-nitrite (3.45 g,
9 49.23 mmol, 1.05 eq.) (41 cm³) was added. The reaction was cooled to 0°C
10 with an ice bath and stirred at 0°C for 5 h until a red precipitate formed. The
11 solid was vacuum filtered and successively washed with cold water (50 cm³)
12 and ethanol (50 cm³) to give pure compound **2** as a red powder. Yield: 7.35
13 g (90%); ^1H NMR (300 MHz, DMSO-d₆): δ = 12.56 (s, 1H, N(3)H), 11.23
14 (s, 1H, N(1)H), 7.71 (s, 2H, N(6)H₂) ppm.

15

16 **[2- ^{13}C , 5- ^{15}N]-5,6-diamino-2-thioxo-2,3-dihydropyrimidin-4(3H)-one (3,**
17 **C₃ $^{13}\text{CH}_6\text{N}_3^{15}\text{NO}_2\text{S}$)**

18 Compound **2** (7.35 g, 42.20 mmol, 1.00 eq.) was suspended in saturated
19 sodium bicarbonate solution (200 cm³). The reaction was cooled to 0°C with
20 an ice bath and solid sodium dithionite (19.10 g, 109.72 mmol, 2.60 eq.) was
21 added in 4 equal portions at 0°C. The mixture was stirred for 6 h and then

1 acetic acid was added until pH 6 was reached. The resulting precipitate was
2 vacuum filtered and successively washed with ice cold water (50 cm³) and
3 ethanol (50 cm³) to give pure compound **3** as a pale yellow solid. Yield: 6.76
4 g (~99%); ¹H NMR (300 MHz, DMSO-d₆): δ = 5.68 (s, 4H, N(5)H₂, N(6)H₂)
5 ppm.

6

7 **[2-¹³C, 5-¹⁵N]- 5,6-diaminopyrimidin-4(3H)-one (4, C₃¹³CH₆N₃¹⁵NO)**
8 Compound **3** (5.37 g, 33.50 mmol, 1.00 eq) was dissolved in 5% aqueous
9 ammonia (100 cm³) and then RANEY® nickel (20 cm³ of a 50% slurry in
10 water) was added. The reaction mixture was refluxed at 100°C for 2 h with
11 vigorous stirring. The hot reaction mixture was filtered over celite and the
12 filter cake was washed with boiling water (30 cm³ total) several times. The
13 filtrate was removed under reduced pressure and the residual yellow solid
14 was co-evaporated with ethanol. Pure compound **4** was obtained as a pale
15 yellow solid. Yield: 4.29 g (~99%); ¹H NMR (300 MHz, DMSO-d₆): δ =
16 7.41 (d, ¹J_{H2C2} = 200.32 Hz, 1H, ¹³C(2)H), 5.42 (s, 4H, N(5)H₂, N(6)H₂) ppm;
17 ¹³C NMR (75 MHz, DMSO-d₆): δ = 140.01 (¹³C(2)) ppm.

18

19 **[2-¹³C, 7-¹⁵N]-1,9-dihydro-6H-purin-6-one (5, C₄¹³CH₄N₃¹⁵NO)**
20 Compound **4** (1.75 g, 13.66 mmol, 1.00 eq.) was suspended in water (5.5
21 cm³) to form a pale-yellow mixture. Then, concentrated sulfuric acid (1.34

1 g, 13.66, 1.00 eq) and formic acid (0.94 g, 20.49 mmol, 1.50 eq.) were
2 successively added and the reaction was refluxed at 100°C for 19 h. The
3 mixture was allowed to cool to room temperature and neutralized with 28%
4 aqueous ammonia and acetic acid. The resulting red precipitate was vacuum
5 filtered and successively washed with water (10 cm³), ethanol (10 cm³), and
6 acetone (10 cm³) to give pure compound **5** as a red solid. Yield: 0.63 g
7 (33%); ¹H NMR (300 MHz, DMSO-d₆): δ = 12.56 (br, 2H, N(1)H, N(9)H),
8 8.12 (d, 1H, C(8)H) 7.98 (d, ¹J_{H2C2} = 204.56 Hz, 1H, ¹³C(2)H) ppm; ¹³C NMR
9 (75 MHz, DMSO-d₆): δ = 145.10 (¹³C(2)) ppm.

10

11 **[2-¹³C, 7-¹⁵N]-6-chloro-9H-purine (6, C₄¹³CH₃ClN₃¹⁵N)**

12 Compound **5** (0.63 g, 4.53 mmol, 1.00 eq.) was dissolved in POCl₃ (16.7
13 cm³) and N,N-dimethylaniline (1.4 cm³) and the mixture was refluxed at
14 150°C for 30 min. The resulting black solution was allowed to cool to room
15 temperature and the solvent was removed under reduced pressure to form a
16 black gum. Excess of POCl₃ was removed under high vacuum. The residual
17 oil was dissolved in 25% aqueous ammonia (6 cm³), silica gel (1.0 g) was
18 added, and the crude product was purified via column chromatography (18.0
19 g, SiO₂, ((CH₂Cl₂/MeOH = 7/3 (v/v)) to obtain pure compound **6** as a brown
20 solid; Yield: 0.71 g (~99%); R_f: 0.90 (CHCl₃/MeOH = 9/1 (v/v)); ¹H NMR
21 (300 MHz, DMSO-d₆): δ = 8.75 (d, ¹J_{H2C2} = 209.32 Hz, 1H, ¹³C(2)H), 8.69

1 (d, 1H, C(8)H) ppm; ^{13}C NMR (75 MHz, DMSO-d₆): δ = 151.95 (^{13}C (2))
2 ppm.

3

4 **[2- ^{13}C , 7- ^{15}N]-9H-purin-6-amine (7, $\text{C}_4\text{CH}_5\text{N}_4\text{N}^{15}$)**

5 Compound **6** (0.71 g, 4.53 mmol, 1.00 eq.) was dissolved in 7 N methanolic
6 ammonia (14 cm³) and heated at 150°C in a sealed tube in a microwave
7 reactor (300 W) for 2 h. The reaction was allowed to stand overnight at room
8 temperature until a precipitate formed. The solution was then vacuum
9 filtered, the filtrate was evaporated, and pure compound **7** was obtained as a
10 red solid. Yield: 0.54 g (87%); ^1H NMR (300 MHz, DMSO-d₆): δ = 8.12 (d,
11 $^1J_{H2C2}$ = 197.20 Hz, 1H, ^{13}C (2)H), 8.11 (d, 1H, C(8)H), 7.13 (s, 2H, N(6)H₂)
12 ppm; ^{13}C NMR (75 MHz, DMSO-d₆, 25°C): δ = 152.77 (^{13}C (2)) ppm; HR-
13 MS (ESI): *m/z* calculated for $\text{C}_4\text{CH}_5\text{N}_4\text{N}^{15}$ [M+H]⁺ 138.06271 Da, found
14 138.0629 Da.

15

16 **[2- ^{13}C , 7- ^{15}N]-((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-**
17 **dihydroxytetrahydrofuran-2-**

18 **yl)methoxy)oxidophosphoryl)oxidophosphoryl)phosphonate (8,**
19 **$\text{C}_9\text{CH}_{12}\text{N}_4\text{NO}_{11}\text{P}_3^{4-}$**

20 Compound **8** was enzymatically synthesized *in vitro*. The 10 cm³ reaction
21 was carried out in 50 mM Na₃PO₄ pH 8, 100 mM KCl, 0.2% NaN₃, 10 mM

1 MgCl₂, 10 mM DTT, 0.5 mM dATP, 0.1% BSA, 100 mM creatine phosphate
2 (CP), 8 mM **7**, 10 mM D-ribose, 0.05 mg/cm³ CK (E.C. 2.7.3.2), 0.01 U/mm³
3 myokinase (MK, E.C. 2.7.4.3), 0.1 U/mm³ thermostable inorganic
4 pyrophosphatase (TIPP, E.C. 3.6.1.1), 9x10⁻⁶ U/mm³ RK (E.C. 2.7.1.15),
5 9x10⁻⁶ U/mm³ PRPPS (E.C. 2.7.6.1), and 9x10⁻⁶ U/mm³ APRT (E.C.
6 2.4.2.7). The reaction was incubated at 37°C for 24 h. Crude compound **8**
7 was purified by boronate affinity chromatography (Eluent A: 1 M
8 triethylamine pH 9; Eluent B: acidified water pH 4), lyophilized to a powder,
9 and resuspended in Ultrapure water. Yield: 37 mg (~90%); ³¹P NMR (324
10 MHz, D₂O): δ = -5.74 (d, 1P, P(γ)), -10.92 (d, 1P, P(α)), and -21.26 (t, 1P,
11 P(β)) ppm.

12

13 **RNA preparation**

14

15 RNA was prepared as previously described [17]. IVT was carried out in 40
16 mM Tris-HCl pH 8 (at 37°C), 1 mM spermidine, 0.01% Triton-10, 80
17 mg/cm³ PEG, 0.3 μM DNA template, 1 mM DTT, 2 U/mm³ TIPP, 1.88 mM
18 **8**, 1.88 mM GTP, 1.88 mM UTP, 1.88 mM CTP, 7.5 mM MgCl₂, and 0.1
19 mg/cm³ T7 RNAP. Reaction proceeded for 3 h at 37°C. DNA template was
20 purchased from Integrated DNA Technologies. After IVT, the sample was
21 extracted with acid-phenol:chloroform, ethanol precipitated, and purified by

1 preparative denaturing gel electrophoresis and electroeluted. The sample
2 was subsequently dialyzed 3-5 times against UltraPure ddH₂O, folded in
3 NMR buffer (10 mM Na₃PO₄, 0.02% NaN₃, 0.1 mM DSS), lyophilized, and
4 resuspended in D₂O. The RNA sample used for NMR was 0.3 mM in 300
5 mm³.

6

7 **NMR spectroscopy**

8

9 2D HSQC, 3D NOESY HSQC, and R₁ and R_{1ρ} NMR experiments were
10 performed on an Avance III Bruker Ultrashield Plus 600 MHz spectrometer
11 with a room temperature triple resonance probe. For the 2D HSQC
12 experiments, the sweep widths were set to 2.5 (¹³C), 2.2 (¹⁵N), and 4.7 (¹H)
13 ppm with 64 scans and 64 transients. Carriers were centered at 150.55 (¹³C),
14 230.6 (¹⁵N), and 4.7 (¹H) ppm. The ¹³C [46] and ¹⁵N [47] edited 3D NOESY
15 HSQC experiments were recorded using previously described pulse
16 sequences. For the ¹³C edited experiment, INEPT transfer delays (1/(4J))
17 were set to 1.2 ms which is optimal for a 203 Hz ¹J_{H2C2} coupling [43]. The
18 sweep widths were set to 2.75 (¹³C) and 10.0 (¹H) ppm. Carriers were
19 centered at 150.55 (¹³C), 8.0 (indirect ¹H), and 4.7 (¹H) ppm. For the ¹⁵N
20 edited experiment, INEPT transfer delays (1/(4J)) were set to 16.7 ms, which
21 is optimal for a 15 Hz ²J_{H8N7} coupling [43]. The sweep widths were set to 2.2

1 (^{15}N) and 10.0 (^1H) ppm. Carriers were centered at 230.6 ppm (^{15}N), 10.0
2 (indirect ^1H), and 4.7 (^1H) ppm. For each 3D data set, 200x64 complex point
3 sampling matrices were used for the indirect ^1H and $^{13}\text{C}/^{15}\text{N}$ dimensions
4 along with 96 transients and non-uniform sine-weighted Poisson-gap
5 sampling of 10% was used [48]. TROSY-detected measurements of ^{13}C R_1
6 and $R_{1\rho}$ relaxation rates were adapted from previous pulse sequences [45,
7 49]. R_1 and $R_{1\rho}$ relaxation rates were determined by fitting intensities to a
8 monoexponential decay and errors were estimated from duplicated delay
9 points. For R_1 experiments, relaxation delays of 0.10, 0.20 (x2), 0.40, 0.60,
10 0.80, 1.00, and 1.20 s were used. For $R_{1\rho}$ experiments, relaxation delays of
11 1.0 (x2), 3.0, 5.0, 7.0, 9.0, 11.0, and 13.0 ms were used. The strength of spin-
12 lock field (ω_1) was 1.882 kHz. All NMR data were collected at 25°C with a
13 recycle delay of 1.5 s and analyzed using TopSpin 4.0 and NMRViewJ [50].

14

15 **Acknowledgements** This research was financially supported by NSF for
16 labeling work (1808705 to T.K.D.). We acknowledge Dr. Serge Beaucage
17 (FDA) for hosting L.T.O. for the synthetic work, Joshua Wilhide (UMBC)
18 for mass spectrometric analysis, and Dr. Jeffery Davis (UMD) for helpful
19 comments.

20

1 **References**

- 2
- 3 1. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) *ChemBioChem*
4 4:936–962.
- 5 2. Marušič M, Schlagnitweit J, Petzold K (2019) *ChemBioChem*
6 20:2685–2710.
- 7 3. Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) *Nature*
8 482:322–330.
- 9 4. Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM (2019) *Nat Rev*
10 *Mol Cell Biol* 20: 474–489.
- 11 5. Keyhani S, Goldau T, Blümller A, Heckel A, Schwalbe H (2018)
12 *Angew Chemie Int Ed* 57:12017–12021.
- 13 6. Scott LG, Hennig M (2016) *Methods Enzymol* 566:59–87.
- 14 7. Dayie KT (2008) *Int J Mol Sci* 9:1214–1240.
- 15 8. Becette O, Olenginski LT, Dayie TK (2019) *Molecules* 24:3476.
- 16 9. Asadi-Atoi P, Barraud P, Tisne C, Kellner S (2019) *Biol Chem*
17 400:847–865.
- 18 10. Le MT, Brown RE, Simon AE, Dayie TK (2015) *Methods Enzymol*
19 565:495–535.
- 20 11. Alvarado LJ, Longhini AP, Leblanc RM, Chen B, Kreutz C, Dayie TK
21 (2014) *Methods Enzymol* 549:133–162.

- 1 12. Lu K, Miyazaki Y, Summers MF (2010) *J Biomol NMR* 46:113–125.
- 2 13. Liu Y, Holmstrom E, Zhang J, Yu P, Wang J, Dyba MA, Chen D, Ying
- 3 J, Lockett S, Nesbitt DJ, Ferré-D’Amaré AR, Sousa R, Stagno JR,
- 4 Wang YX (2015) *Nature* 522:368–372.
- 5 14. Batey RT, Inada M, Kujawinski E, Puglisi JD, Williamson JR (1992)
- 6 *Nucleic Acids Res* 20:4515–4523.
- 7 15. Wyatt JR, Chastain M, Puglisi JD (1991) *Biotechniques* 11:764–769.
- 8 16. Nikonowicz EP, Sirr A, Legault P, Jucker FM, Baer LM, Pardi A
- 9 (1992) *Nucleic Acids Res* 20:4507–4513.
- 10 17. Milligan JF, Uhlenbeck OC (1989) *Methods Enzymol* 180:51–62.
- 11 18. Thakur CS, Dayie TK (2012) *J Biomol NMR* 52:65–77.
- 12 19. Thakur CS, Sama JN, Jackson ME, Chen B, Dayie TK (2010) *J Biomol*
- 13 *NMR* 48:179–192.
- 14 20. Johnson JE, Julien KR, Hoogstraten CG (2006) *J Biomol NMR*
- 15 35:261–274.
- 16 21. Hoffman DW, Holland JA (1995) *Nucleic Acids Res* 23:3361–3362.
- 17 22. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) *ACS*
- 18 *Chem Biol* 3:499–511.
- 19 23. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2011) *J*
- 20 *Am Chem Soc* 133:297–304.
- 21 24. Tolbert TJ, Williamson JR (1996) *J Am Chem Soc* 118:7929–2940.

- 1 25. Leblanc RM, Longhini AP, Le Grice SFJ, Johnson BA, Dayie TK
2 (2017) Nucleic Acids Res 45:146.
- 3 26. Nam H, Becette O, Leblanc RM, Oh D, Case DA, Dayie TK (2020) J
4 Biomol NMR <https://doi.org/10.1007/s10858-020-00315-z>.
- 5 27. Longhini AP, Leblanc RM, Becette O, Salguero C, Wunderlich CH,
6 Johnson BA, D'souza VM, Kreutz C, Dayie TK (2015) Nucleic Acids
7 Res 44:52.
- 8 28. Alvarado LJ, LeBlanc RM, Longhini AP, Keane SC, Jain N, Yildiz ZF,
9 Tolbert BS, D'Souza VM, Summers MF, Kreutz C, Dayie TK (2014)
10 ChemBioChem 15:1573–1577.
- 11 29. Arthur PK, Alvarado LJ, Dayie TK (2011) Protein Expr Purif 76:229–
12 237.
- 13 30. Traube W (1904) Liebig's Ann Chem 331:64–88.
- 14 31. Ouwerkerk N, Boom J van, Lugtenburg J, Raap J (2002) European J
15 Org Chem 2002:2356–2362.
- 16 32. Pagano AR, Lajewski WM, Jones RA (1995) J Am Chem Soc
17 117:11669–11672.
- 18 33. Sethi SK, Gupta SP, Jenkins EE, Whitehead CW, Townsend LB,
19 McCloskey JA (1982) J Am Chem Soc 104:3349–3353.
- 20 34. Kremser J, Strebitzer E, Plangger R, Juen MA, Nußbaumer F, Glasner
21 H, Breuker K, Kreutz C (2017) ChemComm 53:12938–12941.

- 1 35. SantaLucia J, Shen LX, Cai Z, Lewis H, Tinoco I (1995) Nucleic Acids
2 Res 23:4913–21.
- 3 36. Battaglia U, Long JE, Searle MS, Moody CJ (2011) Org Biomol Chem
4 9:2227–2232.
- 5 37. Gaffney BL, Rung PP, Jones RA (1990) J Am Chem Soc 112:6748–
6 6749.
- 7 38. Yamazaki T, Muhandiram R, Kay LE (1994) J Am Chem Soc
8 116:8266–8278.
- 9 39. Flodell S, Petersen M, Girard F, Zdunek J, Kidd-Ljunggren K, Rgen
10 Schleucher J, Wijmenga S (2006) Nucleic Acids Res 34:4449–4457.
- 11 40. Lee WM (1997). N Engl J Med 337:1733–1745.
- 12 41. Bendich A, Russell PJ, Fox JJ (1954) J Am Chem Soc 76:6073–6077.
- 13 42. Nardi-Schreiber A, Sapir G, Gamliel A, Kakhlon O, Sosna J, Gomori
14 JM, Meiner V, Lossos A, Katz-Bruyl R (2017) ChemComm 53:9121–
15 9124.
- 16 43. Wijmenga SS, Van Buuren BNM (1998) Prog Nucl Magn Reson
17 Spectrosc 32:287–387.
- 18 44. Palmer AG (2004) Chem Rev 104:3623–3640.
- 19 45. Hansen AL, Al-Hashimi HM (2007) J Am Chem Soc 129:16072–
20 16082.
- 21 46. Dieckmann T, Feigon J (1997) J Biomol NMR 9:259–72.

- 1 47. Hoffman DW (2000) J Biomol NMR 16:165–169.
- 2 48. Hyberts SG, Takeuchi K, Wagner G (2010) J Am Chem Soc 132:2145–
- 3 2147.
- 4 49. Lakomek NA, Kaufman JD, Stahl SJ, Louis JM, Grishaev A,
- 5 Wingfield PT, Bax A (2013) Angew Chemie Int Ed 52:3911–3915.
- 6 50. Johnson BA, Blevins RA (1994) J Biomol NMR 4:603–614.

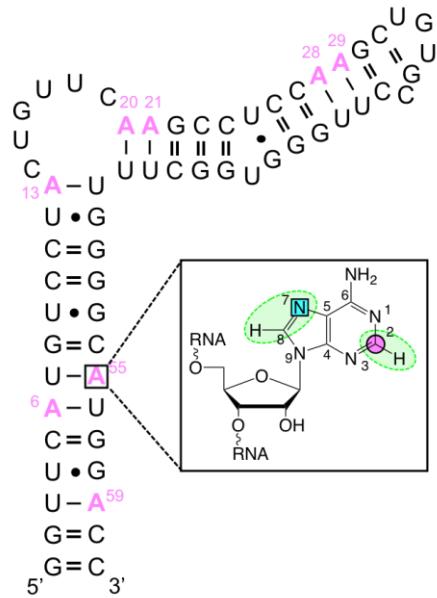
7

8 *Figure Captions*

9

10 **Fig. 1** Secondary structure of a 61 nt viral RNA made from IVT with
11 building block **8** incorporated.

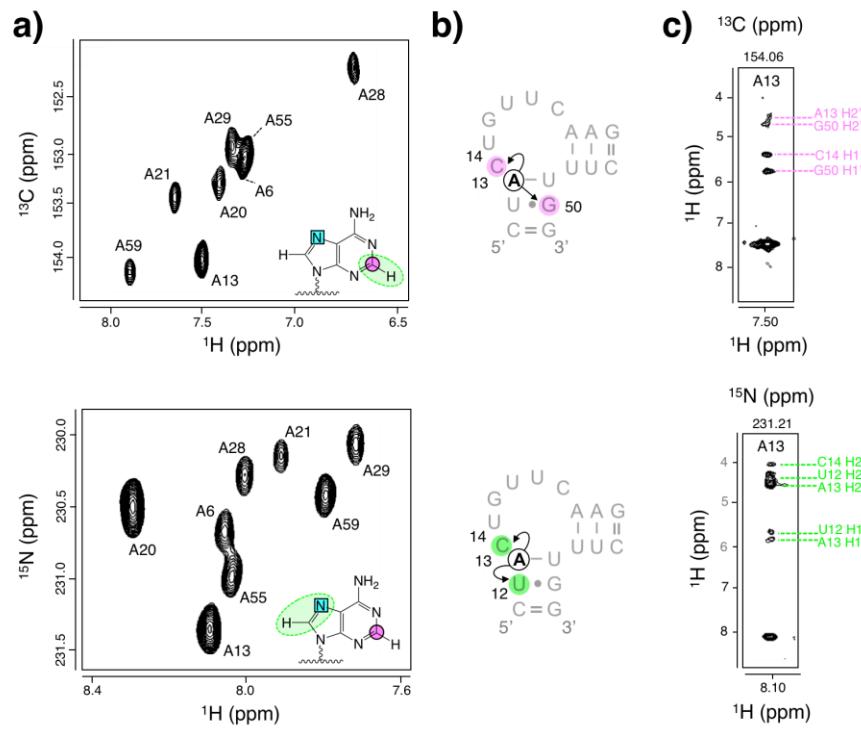
12


13 **Fig. 2** HSQC and NOESY HSQC experiments in **8**-labeled RNA. **a** 2D
14 ^1H , ^{13}C and ^1H , ^{15}N HSQC spectra showing H2-C2 and H8-N7 resonances. **b**
15 Representation of NOE contacts to H2 and H8 protons for residue A13. **c** 2D
16 ^1H , ^1H slice along a single ^{13}C and ^{15}N frequency. Overlapped H1' and H2'
17 NOE cross-peaks are resolved by the C2 and N7 chemical shift. All spectra
18 are annotated with RNA residue assignments.

19

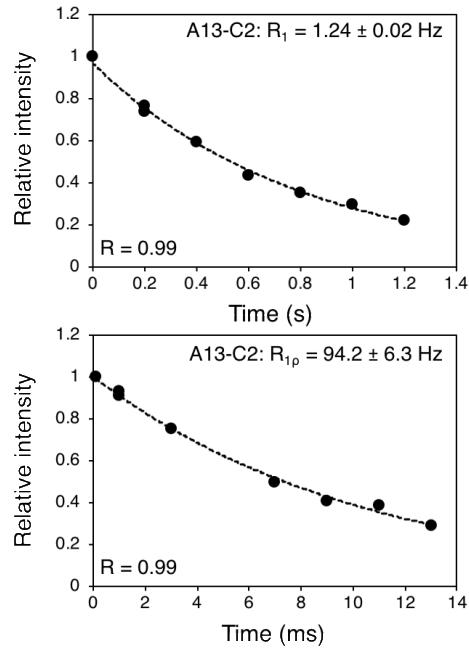
1 **Fig. 3** Dynamics measurements in **8**-labeled RNA. Representative ^{13}C R_1
2 and $\text{R}_{1\text{p}}$ decay curves are shown for RNA residue A13. Extracted rate and
3 curve fit are shown.

4

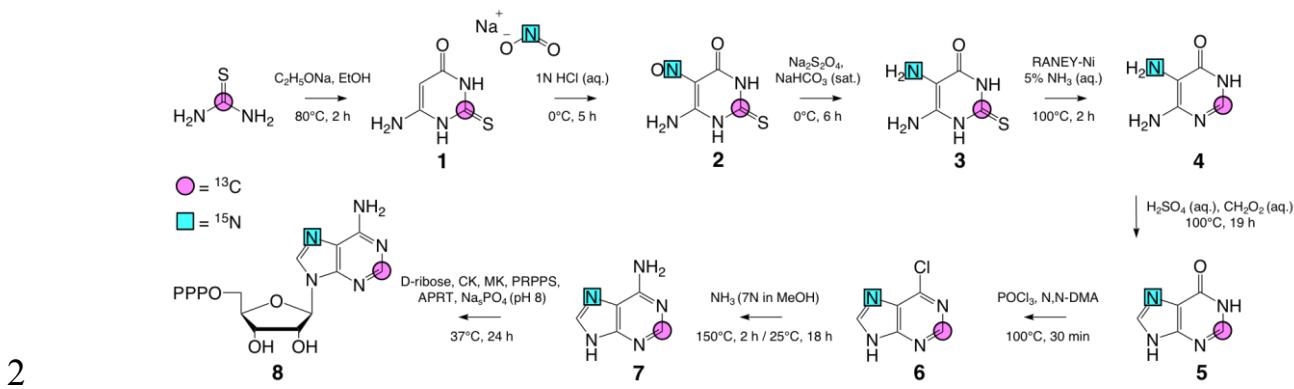

5 *Figure 1*

6

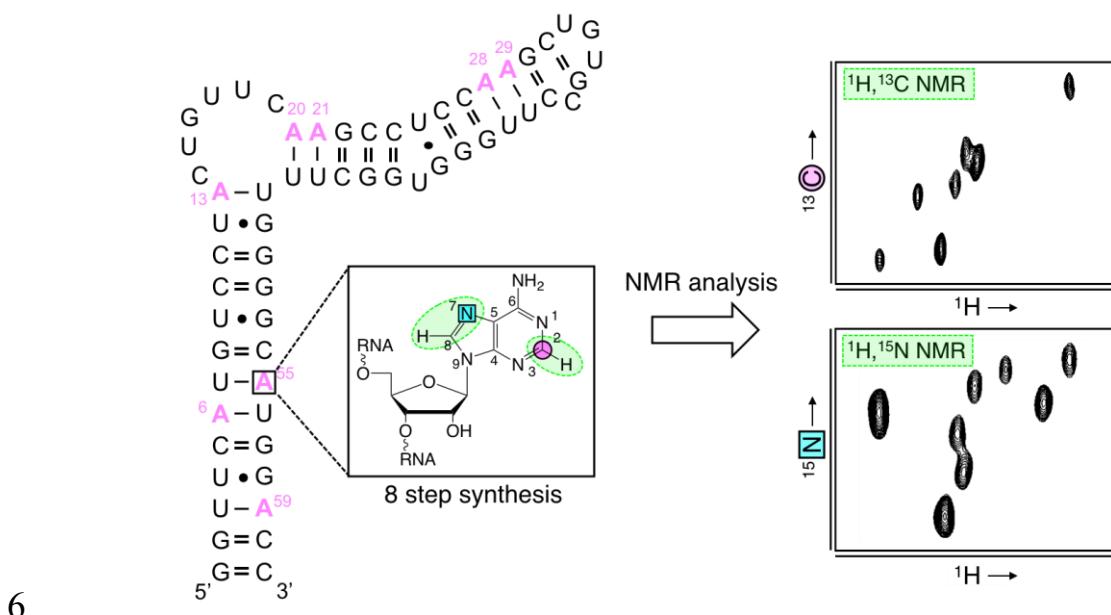
7


8 *Figure 2*

1


2

3 *Figure 3*



4

5

1 *Scheme 1*4 **Graphical abstract**

5

