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Purpose: To improve the estimation of coil sensitivity functions from limited
auto-calibration signals (ACS) in SENSE-based reconstruction for brain imaging.
Methods: We propose to use deep learning to estimate coil sensitivity functions
by leveraging information from previous scans obtained using the same RF re-
ceiver system. Specifically, deep convolutional neural networks were designed
to learn an end-to-end mapping from the initial sensitivity to the high-resolution
counterpart. Sensitivity alignment was further proposed to reduce the geomet-
ric variation caused by different subject positions and imaging FOVs. Cross-
validation with a small set of datasets was performed to validate the learned
neural network. Iterative SENSE reconstruction was adopted to evaluate the
utility of the sensitivity functions from the proposed and conventional methods.
Results: The proposed method produced improved sensitivity estimates and
SENSE reconstructions compared to the conventional methods in terms of alias-
ing and noise suppression with very limited ACS data. Cross-validation with a
small set of data demonstrated the feasibility of learning coil sensitivity functions
for brain imaging. The network learned on the spoiled GRE data can be applied
to predict sensitivity functions for spin-echo and MPRAGE datasets.
Conclusion: A deep learning-based method has been proposed for improving the
estimation of coil sensitivity functions. Experimental results have demonstrated
the feasibility and potential of the proposed method for improving SENSE-based
reconstructions especially when the ACS data are limited.
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1 | INTRODUCTION

Parallel imaging has been widely used to accelerate MRI
data acquisition in many research and clinical applica-
tions." It exploits the spatial encoding effect of the RF re-
ceiver coil’s sensitivity functions to enable undersampling
of k-space.”™ In image reconstruction, knowledge of the
coil sensitivity functions is essential.

A common approach to determining high-quality coil
sensitivity functions is to acquire a high-resolution data
from a reference scan and use the sum of squares (SoS) or
adaptive combine’ method. But the sensitivity obtained may
not be exactly aligned with the imaging data collected sep-
arately due to subject motion. A more desirable approach is
to acquire a set of auto-calibration signals (ACS) within the
imaging scan. However, due to scan time constraint, only
a small set of ACS can be acquired with limited k-space
coverage in practical imaging experiments, resulting in in-
accurate sensitivity for SENSE reconstruction. To address
this issue, several approaches have been developed in the
previous literature: polynomial functions® were exploited
to represent the coil sensitivity with reduced degrees of
freedom and thus improve sensitivity estimation; iterative
reconstruction was developed to jointly estimate the sen-
sitivity and image function with sparsity and smoothness
constraints*®; GRAPPA was used to interpolate a larger k-
space for sensitivity estimation’; and the ESPIRiT method®
was developed to directly extract the coil sensitivity from
the calibration matrix composed by the ACS data using its
subspace structure. All these methods take advantage of
prior knowledge within the current scan.

An alternative approach is to exploit redundancy be-
tween multiple scans, which has not been fully developed.
For example, correlation imaging’ was introduced to ex-
ploit the correlation of coil sensitivities and anatomical
structures between multi-scans using a linear prediction
function. Inspired by the recent success of deep learning
(DL) in MR image reconstruction,'®'® we propose to use
deep neural networks to predict high-quality coil sensitiv-
ity functions from limited ACS data. The main assump-
tion is that variations of coil sensitivity for a given receiver
system under various experimental conditions reside on
a low-dimensional manifold. Based on this premise, a
3D deep convolutional neural network (CNN) with the
U-net'” architecture was designed and trained to learn
the manifold representation and the nonlinear mapping
between the low-resolution and high-resolution sensitiv-
ities. Sensitivity alignment was further proposed to re-
duce the geometric variation induced by different subject
positions and FOV settings. As a proof-of-concept study,
we demonstrated the feasibility of the sensitivity learn-
ing idea for brain imaging at 3T. Experimental results
have shown that the learning-based method can produce

high-quality sensitivity maps with very limited ACS data,
leading to improved SENSE reconstruction with less alias-
ing artifacts. A preliminary version of this work was previ-
ously reported in an abstract for the 2018 annual meeting
of the International Society for Magnetic Resonance in
Medicine'®; a detailed description of the method is given
in this paper.

2 | METHODS
2.1 | Subspace structure of coil
sensitivity

According to the reciprocity principle, the coil receiving
sensitivity can be approximated as proportional to the
magnetic field By (r) that would be generated by the coil
element. In general, the geometry of the coil elements, the
tissue electric property (e.g., permeability) and coil loading
will all affect the B[ field. In this study, we hypothesize
that the By field from in vivo brain scans should have vari-
ations that can be well captured by a low-dimensional rep-
resentation.” More specifically, when the RF wavelength
is much larger than the imaging object, the geometry of
the By field is hardly affected by the presence of the im-
aging object and can be calculated by Biot-Savart integra-
tion.?>*" As is well known, RF wavelength on average for
in vivo brain imaging is 27 cm at 3 T,”* which is greater
than the typical human head sizes (16-24 cm). Therefore,
given a specific receiver system, the sensitivity from in vivo
brain scan at 3T can be well approximated by Biot-Savart
integration and mainly varies on subject related permea-
bility and loading. Given well-defined range of permeabil-
ity of in vivo brain tissues and limited geometric variation
within the coil, we presume that the variation introduced
by different subjects should yield a low-dimensional rep-
resentation. The additional wave effects due to varying but
similar head sizes may lead to additional sensitivity varia-
tions and slightly increase the dimensionality, but it will
not invalidate the low-dimensional assumption. As shown
in Figure 1A, the 3D coil sensitivity functions acquired in
this study exhibit a low-rank structure in the linear sub-
space. Based on these observations, we believe that the coil
sensitivity functions should reside on a low-dimensional
manifold and can be learned using deep learning from pre-
vious scans obtained from the same receiver system.

2.2 | Sensitivity alignment

Due to variations in subject position and FOV settings, the
sensitivity maps obtained from different scans will likely
capture different 3D portions of the underlying sensitivity
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FIGURE 1
maps as its columns, demonstrating the low-dimensionality of the 3D coil sensitivity from the head coil. The 3D sensitivity maps are derived

Main assumption and idea of DeepSENSE. A, Singular values of the Casorati matrix formed by stacking all the 3D sensitivity

from the GRE dataset obtained from 15 subjects in this study. B, Example 2D sensitivity maps (i.e., same coil and same slice index) of each
3D volumes from eight different subjects before (top row) and after (bottom row) sensitivity alignment with respect to the first scan. With
proper alignment, intensity variation in the sensitivity maps towards those in the first scan can be observed, leading to a lower-dimensional
representation in the linear subspace. C, Workflow of the proposed method for improved sensitivity estimation from limited ACS data using
deep learning. D, Illustration of spatial masks M(r) and 1 - M(r) to combine the predictions from the two CNNs in the case of a clockwise
rotation. The mask M(r), calculated using 1(T(;1(r)), indicates signals remaining in the FOV (intersected area between solid and dashed
rectangles) that can be selected from the prediction of CNN1 while 1 — M(r), the area around the corner, corresponds to signals transformed
out of the FOV, which can only be predicted from CNN2. E, The structure of the convolutional neural network used in the proposed
method. The first orange and last red layers represent the input and output 3D sensitivity functions, respectively. The intermediate layers are
color coded differently at different scales. The number of feature maps is listed on the top or at the bottom of the corresponding layer. Layers
from the same scale have the same size of feature maps. N, X N, X N, and N, denote the spatial dimension in 3D and the number of head coil
channels, respectively

functions. In this study, we used a rigid-body motion T (r)
to align the sensitivity functions to reduce such variation.
The inverse transformation is defined as Ty I(r). Given aset
of 3D sensitivity S(r), the deformed sensitivity is denoted as
S'(r') = S(Te(r)). r and ¥’ indicate the spatial coordinates
before and after the transformation, ® contains the rota-
tion and translation motion parameters. The mathemati-
cal description of the transformation T(r) and sensitivity
alignment can be found in Supporting Information. With
proper alignment, the aligned sensitivity maps exhibited

a lower-dimensional representation (Figure 1A). Note
that the 3D transformation can work for both 3D imaging
and multi-slice imaging, as long as volumetric images are
available.

2.3 | Proposed workflow

The workflow of the proposed method is summarized
in Figure 1C. The ACS data were first zero-padded and
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Fourier transformed (ZP-FFT) to the image domain to
generate low-resolution coil sensitivity functions S, via
dividing the individual coil images by the SoS coil com-
bined image. Its high-resolution counterpart S;; was gen-
erated using fully sampled data. Sensitivity alignment was
then performed to generate another set of sensitivity pairs
(i.e., S and S},). Two 3D CNNs with identical architecture
were trained separately using the original and the aligned
sensitivity pairs, respectively. The prediction from CNN1
using the aligned dataset was then inversely transformed
to the original data space using Sy; = S;,(Tg 1(r)). Note that
a rigid-body transformation in 3D space may have signal
moved out of the FOV (denoted by 1 — M(r) in Figure 1D),
which cannot be recovered by the inverse transformation.
Therefore, the predictions from the two CNNs were finally
combined with corresponding spatial masks, yielding
S, = S M + Sy - (1 — M). An example was illustrated in
Figure 1D.

2.4 | Network architecture

The 3D U-net architecture* was adopted for the CNNs
described in the proposed method (Figure 1E) with a few
modifications. Specifically, to maintain effective encoding
along with downsampling by a factor of 2, 3D convolu-
tions with a stride of 2 were implemented replacing the
max pooling used in the original segmentation task. An
additive short cut was made between the input and output
of the network for residual learning.** Leaky ReLU with
a slope of 0.1 was employed. To avoid overfitting, “drop-
out” was employed® to randomly turn off neurons during
training at a rate of 10%. L2 regularization with a param-
eter of 0.1 was also exploited. The training was generally
done by minimizing the L2 loss function:

Loss=||p-[Sy —f(SL;w)]Ilﬁ (1)

where S;; and S; are the corresponding input and output 3D
sensitivity pairs, f(+) denotes the nonlinear mapping de-
fined by the CNN with learnable parameters w. £ performs
element-wise multiplication for each coil. p is the fully-
sampled coil combined image, compensating for the spa-
tially varying noise variation. In the spirit of reproducible
research, the network code is available at: (https://github.
com/stevepeng1120/DeepSENSE/).

2.5 | Experimental set-up

In vivo brain experiments were conducted on a 3T MR
scanner (SIEMENS Prisma) from 15 subjects using the
standard 20-channel receive-only head/neck coil with 16

head coil elements activated and the other 4 neck elements
turned off. Written informed consents were obtained from
all the subjects with approval by the institutional IRB. A
3D spoiled gradient-echo (GRE) sequence (matrix size 160
X 160 x 36, FOV 240 mm X 240 mm X 72 mm, FA 6°, TR 5.2
ms, TE 2.3 ms, Bandwidth 500 Hz/pixel) was performed on
each subject 2-3 times with axial slices along the anterior
commissure (AC)-posterior commissure (PC) orientation.
In between each scan, the subjects were asked to stand up
and walk around before going back into the scanner, pro-
ducing various head positions and FOV settings, in order
to generate different permeability distributions within
the coil, different sensitivity volumes, and probably dif-
ferent loading. To perform cross-validation, we randomly
split our datasets into five groups. Each group contains
data from 3 different subjects, yielding a set of 12 subjects
(around 32 image volumes) and a set of 3 subjects (around
8 image volumes) for training and testing each time.

Conventional ZP-FFT with hamming filtering and the
ESPIRIiT® methods were also conducted. Sensitivity maps
were compared given a various number of ACS lines (e.g.,
one central phase encoding line plus additional 24, 16, 8, 4
surrounding PE lines) and evaluated by performing a sub-
sequent iterative SENSE reconstruction®® with uniform
undersampling in the outer k-space. The ESPIRIT recon-
struction were performed using the “SPIRIiT_v0.3” Matlab
code provided by the authors with kernel size either 6 or
5 (6 is preferred whenever feasible). Root mean square er-
rors (RMSEs) were computed for both the sensitivity maps
and SENSE reconstructions for quantitative assessment.
To demonstrate the generalizability of the proposed tech-
nique to other sequences, an MPRAGE scan (matrix size
160 % 160 X 36, FA 9°, TR 1900 ms, TE 3.06 ms, TI 900 ms,
Bandwidth 200 Hz/pixel) was performed on all 15 subjects
and a multislice spin-echo scan (matrix size 192 x 192 x
36, TR 1500 ms, TE 7.5 ms, Bandwidth 250 Hz/pixel) was
carried out on five new subjects. All scans performed in
this study had the same FOV.

2.6 | Implementation details

Our current implementation forces the network to learn
the intercoil phase differences, which excludes any off-
resonance and RF related phase and thus are still slowly
varying functions residing on a low-dimensional mani-
fold. More specifically, for both the input and output maps
of all the training and testing datasets, we subtracted the
phase of the first coil from all the coil sensitivities. The
subtracted phase from the 1st coil, including the coil in-
dependent RF and off-resonance induced phase, will be
absorbed into the final SENSE image. The 3D input and
output labels to the network were formed by concatenating
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the real and the imaginary part of the corresponding coil
sensitivity maps. Batch normalization?” was employed
right after each convolution and deconvolution layer to
improve stability and training speed. Polynomial fitting
with a order of 5 was applied to the sensitivity maps when
estimating the motion parameters to improve motion esti-
mation accuracy. The two CNNs were trained separately,
where CNN2 was trained first using the original dataset,
and CNN1 was trained afterwards using the aligned data-
set with the learned weights from CNN2 as initialization.
Predictions from different number of ACS lines were
trained separately. The neural network was constructed in
Tensorflow 1.5.0 and trained using stochastic gradient de-
scent with an Adam optimizer® for 1000 epochs using the
GeForce Titan XP graphics processing unit (GPU), taking
approximately 20 h. Before SENSE reconstruction, a rough
background was estimated from the low-resolution image
(using ACS data), and the predicted sensitivity values in

Ground Truth Hamming
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such background were set to a very small constant num-
ber to further reduce image artifact.

3 | RESULTS

The estimated sensitivity maps and SENSE reconstructions
using 8 and 4 ACS lines were compared in Figures 2 and
3, respectively. ZP-FFT with hamming filtering generated
SENSE reconstructions with significant aliasing artifacts.
The ESPIRIT method yielded inferior sensitivity estima-
tion due to insufficient number of calibration data, espe-
cially with 4 ACS lines where a smaller kernel size (e.g., 5)
could only be used (manifested by the distorted coil phase
information), resulting in evident aliasing in the SENSE re-
construction. Our method provided consistently superior
sensitivity estimation in both cases with very limited ACS
data, leading to improved reconstruction with suppressed

ESPIRIT DeepSENSE

Comparison of the sensitivity maps (e.g., 6-th coil) estimated using 8 ACS lines and the subsequent iterative SENSE

reconstructions at R = 4 of a GRE testing dataset. RMSESs of the sensitivity maps and SENSE reconstructions are shown in the magnitude

image. Error maps were scaled by 5 folds for better visualization
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FIGURE 3 The coil sensitivity maps (e.g., 8-th coil) estimated using 4 ACS lines and the subsequent iterative SENSE reconstructions
at R = 4 of a GRE testing data from another subject. RMSEs of the sensitivity maps and SENSE reconstructions are shown in the magnitude
image. Error maps were scaled by 5-folds for better visualization. The ESPIRIT method generated inferior coil sensitivity information due to
insufficient calibration data and the smaller kernel size (e.g., 5) that could only be used
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FIGURE 4 RMSEs of (A) the estimated sensitivity maps and (B) the subsequent SENSE reconstruction at R = 4 with varying number
of ACS lines from a testing GRE dataset. Conventional methods degraded dramatically as the number of ACS lines decreases, while the
learning-based method is much more robust since it takes advantage of information from previous scans
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Iterative SENSE reconstructions of the multislice spin-echo dataset with uniform undersampling in the outer k-space at

various reduction factors (i.e., R = 3,4, 5). The ESPIRIT and the proposed DeepSENSE methods were used for sensitivity estimation from 8
ACS lines. Although the proposed model was trained on the GRE dataset, it still enables improved sensitivity estimation manifested by the
reduced aliasing in the SENSE reconstruction across all reduction factors

noise and aliasing artifacts. The RMSEs of the sensitivity
and SENSE reconstructions with varying number of ACS
lines were reported in Figure 4. With moderate amount of
calibration data (e.g., results from 24 ACS lines can be found
in Supporting Information Figure S2), ESPIRIT and the
learning-based method produced comparable results. As
the amount of ACS lines decreases, conventional methods
degraded dramatically, while the learning-based method is
much more robust since it takes advantage of information
from previous scans. To demonstrate the applicability of the
proposed method in handling rapid phase transitions, re-
sults from a bottom brain slice with air-tissue interface was
also provided in Supporting Information Figure S3.

Results of the 5-fold cross-validation is shown in
Supporting Information Figure S4. Although we only em-
ployed a relatively small set of training data, the learned
model was able to consistently improve the sensitivity to a
similar level for all the validation groups, further validat-
ing our hypothesis that the coil sensitivity between scans
reside on a low-dimensional manifold. Note that coil align-
ment may not be necessarily required in the case of small
spatial misalignment (e.g., group 1-3), since the deep CNN
should be able to handle certain extent of geometric vari-
ation due to its powerful representation capability. Lastly,
the SENSE reconstructions of the spin-echo and MPRAGE
datasets were carried out at various reduction factors (e.g.,
R = 3,4, 5) using sensitivity estimated from 8 ACS lines and
compared in Figure 5 and Supporting Information Figure

S5. Although the model was trained on GRE dataset, the
proposed method still produced improved sensitivity esti-
mation and superior SENSE reconstruction compared to
the ESPIRIT method in terms of aliasing and noise sup-
pression across all undersampling cases.

4 | DISCUSSION
In this short proof of concept study, we focused on using
a head coil to demonstrate the feasibility of coil sensitivity
learning by taking advantage of previous scans produced
from the same receiving coil. The key assumption is that
coil sensitivities from the same RF receiver system should be
highly correlated between scans and reside on a low dimen-
sional manifold according to the underlying electromagnetic
physics. The learning-based method has shown some robust-
ness to data obtained in this study from a limited number
of subjects and sequences. More comprehensive studies are
still needed to evaluate the generalizability of the proposed
method in different application scenarios, for example, the
presence of large pathological features (such as gadolinium
enhanced tumors) which may alter the sensitivity function.
Although our initial evaluation is limited to brain im-
aging, the idea of learning sensitivity variations and using
deep neural network for accurate prediction can be applied
to different types of coils and applications, provided the
availability of quality training data. Furthermore, based
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on the sources of coil sensitivity variations, we think that
it is actually beneficial to train separate network predic-
tors for different coils, since the manifold structure of the
sensitivities depends on the hardware. Adapting this idea
for other body parts can be pursued in future research, for
instance, the body coils without a fixed geometry and with
certainly larger wave effects would be more challenging.
Given a specific receiving coil, the variation of sensitivity
could also be different in various practical scenarios and it
would be better to train the network separately. For exam-
ple, in high-field imaging, the geometry of the sensitivity
map will contain more significant wave effects; in applica-
tions where the imaging space within the coil varies, the
orientation of ACS lines changes, or the subject loading
differs (e.g., pediatric imaging).

The current neural network has inherited features from
the U-net, but is by no means optimal yet. Free parame-
ters such as kernel size, number of layers, feature maps,
type of activation function and loss function can be fur-
ther adjusted and selected on a case-by-case basis. More
advanced neural networks like the Generative Adversarial
Neural Networks (GAN)*** certainly can lead to better
performance. Our method would also depend on the qual-
ity of the input sensitivity maps. For example, starting
with the ESPIRIT maps could be helpful in rejecting noise
and ringing artefacts. Furthermore, the proposed network
holds the potential to be integrated with other advanced
image reconstruction models, including the most recent
deep-learning based methods®'*® where sensitivity func-
tions are required. Finally, it would also be worthwhile
to build electromagnetics constraints into the learning
model and explore the complementary power of physics-
based and data-driven priors.

5 | CONCLUSION

We proposed and evaluated a deep learning based method
to improve the estimation of coil sensitivity functions from
limited ACS data for brain imaging. A deep neural network
is designed and trained to map low-resolution sensitivity
maps to its high-resolution counterparts by exploiting the
learnable coil geometry and subject-dependent sensitivity
variations. Experimental results have demonstrated the abil-
ity of the proposed idea in producing high quality sensitivity
functions with very limited ACS data. Future work may in-
clude network structure optimization and potential integra-
tion with deep learning based reconstruction methods.
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Additional supporting information may be found in the
online version of the article at the publisher’s website.
FIGURE S1 Estimated rotation and translation param-
eters of the sensitivity functions from the different GRE
scans with respect to the first scan. The largest rotation
occurs about the x-axis (pitch rotation), which is sensi-
tive to both the head position and axial slices selection.
The largest translation occurs along the z-axis (head foot
direction).

FIGURE S2 The sensitivity maps estimated using 24 ACS
lines and the subsequent iterative SENSE reconstructions
at R = 4 of a GRE testing dataset. RMSEs of the sensitivity
maps and SENSE reconstructions are shown in the mag-
nitude image.

FIGURE S3 The sensitivity maps estimated using 4 ACS
lines and the subsequent iterative SENSE reconstructions
at R =4 of a bottom brain slice with air-tissue interface.
RMSE:s of the sensitivity maps and SENSE reconstrutions
are shown in the magnitude image.

FIGURE $4 Sensitivity RMSEs from the 5-fold cross val-
idation estimated using 8 ACS lines. Results showed that
the learning-based method was able to improve the sensi-
tivity estimation to a similar level (approximately a mean
RMSE of 7.8%) for all the validation groups with a rela-
tively small set of training data, further validating our hy-
pothesis that the coil sensitivity between scans reside on a
low-dimensional manifold. Note that coil alignment im-
proved the sensitivity estimation for group 4 and 5 (possi-
bly larger spatial misalignment), but may not be necessar-
ily required in the case of small spatial misalignment (e.g.,
group 1-3), since the deep CNN should be able to handle
certain extent of geometric variation due to its powerful
representation capability.

FIGURE S5 Iterative SENSE reconstructions of the
MPRAGE dataset with uniform undersampling in the
outer k-space at various reduction factors (i.e., R = 3,4, 5).
The ESPIRIiT and the proposed DeepSENSE methods
were used for sensitivity estimation from 8 ACS lines.
Error maps were scaled by 5 folds for better visualization.
Although the proposed model was trained on the GRE
dataset, it still enables improved sensitivity estimation
manifested by the reduced aliasing and noise amplifica-
tion in the SENSE reconstruction.

How to cite this article: Peng X, Sutton B, Lam F,
Liang Z-P. DeepSENSE: Learning coil sensitivity
functions for SENSE reconstruction using deep
learning. Magn Reson Med. 2021;00:1-9.
do0i:10.1002/mrm.29085



https://doi.org/10.1002/mrm.29085

