
Magn Reson Med. 2021;00:1–9.	 ﻿	    | 1wileyonlinelibrary.com/journal/mrm

Received: 24 May 2021  | Revised: 25 October 2021  | Accepted: 28 October 2021

DOI: 10.1002/mrm.29085  

T E C H N I C A L  N O T E

DeepSENSE: Learning coil sensitivity functions for SENSE 
reconstruction using deep learning

Xi Peng1 |   Bradley P. Sutton2,3   |   Fan Lam2,3,4  |   Zhi-Pei Liang2,5

1Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
2Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
3Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
4Cancer Center at Illinois, Urbana, Illinois, USA
5Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

© 2021 International Society for Magnetic Resonance in Medicine

Correspondence
Xi Peng, Department of Radiology, Mayo 
Clinic, Rochester, MN, USA.
Email: stevep1120@gmail.com;peng.xi@
mayo.edu

Funding information
Foundation for the National Institutes 
of Health, Grant/Award Number: 
P41-EB002034, R21-EB021013-01 and 
1R21EB029076A; National Science 
Foundation, Grant/Award Number: 
1944249

Purpose: To improve the estimation of coil sensitivity functions from limited 
auto-calibration signals (ACS) in SENSE-based reconstruction for brain imaging.
Methods: We propose to use deep learning to estimate coil sensitivity functions 
by leveraging information from previous scans obtained using the same RF re-
ceiver system. Specifically, deep convolutional neural networks were designed 
to learn an end-to-end mapping from the initial sensitivity to the high-resolution 
counterpart. Sensitivity alignment was further proposed to reduce the geomet-
ric variation caused by different subject positions and imaging FOVs. Cross-
validation with a small set of datasets was performed to validate the learned 
neural network. Iterative SENSE reconstruction was adopted to evaluate the 
utility of the sensitivity functions from the proposed and conventional methods.
Results: The proposed method produced improved sensitivity estimates and 
SENSE reconstructions compared to the conventional methods in terms of alias-
ing and noise suppression with very limited ACS data. Cross-validation with a 
small set of data demonstrated the feasibility of learning coil sensitivity functions 
for brain imaging. The network learned on the spoiled GRE data can be applied 
to predict sensitivity functions for spin-echo and MPRAGE datasets.
Conclusion: A deep learning-based method has been proposed for improving the 
estimation of coil sensitivity functions. Experimental results have demonstrated 
the feasibility and potential of the proposed method for improving SENSE-based 
reconstructions especially when the ACS data are limited.
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1  |   INTRODUCTION

Parallel imaging has been widely used to accelerate MRI 
data acquisition in many research and clinical applica-
tions.1 It exploits the spatial encoding effect of the RF re-
ceiver coil’s sensitivity functions to enable undersampling 
of k-space.2–4 In image reconstruction, knowledge of the 
coil sensitivity functions is essential.

A common approach to determining high-quality coil 
sensitivity functions is to acquire a high-resolution data 
from a reference scan and use the sum of squares (SoS) or 
adaptive combine5 method. But the sensitivity obtained may 
not be exactly aligned with the imaging data collected sep-
arately due to subject motion. A more desirable approach is 
to acquire a set of auto-calibration signals (ACS) within the 
imaging scan. However, due to scan time constraint, only 
a small set of ACS can be acquired with limited k-space 
coverage in practical imaging experiments, resulting in in-
accurate sensitivity for SENSE reconstruction. To address 
this issue, several approaches have been developed in the 
previous literature: polynomial functions3 were exploited 
to represent the coil sensitivity with reduced degrees of 
freedom and thus improve sensitivity estimation; iterative 
reconstruction was developed to jointly estimate the sen-
sitivity and image function with sparsity and smoothness 
constraints4,6; GRAPPA was used to interpolate a larger k-
space for sensitivity estimation7; and the ESPIRiT method8 
was developed to directly extract the coil sensitivity from 
the calibration matrix composed by the ACS data using its 
subspace structure. All these methods take advantage of 
prior knowledge within the current scan.

An alternative approach is to exploit redundancy be-
tween multiple scans, which has not been fully developed. 
For example, correlation imaging9 was introduced to ex-
ploit the correlation of coil sensitivities and anatomical 
structures between multi-scans using a linear prediction 
function. Inspired by the recent success of deep learning 
(DL) in MR image reconstruction,10–16 we propose to use 
deep neural networks to predict high-quality coil sensitiv-
ity functions from limited ACS data. The main assump-
tion is that variations of coil sensitivity for a given receiver 
system under various experimental conditions reside on 
a low-dimensional manifold. Based on this premise, a 
3D deep convolutional neural network (CNN) with the 
U-net17 architecture was designed and trained to learn 
the manifold representation and the nonlinear mapping 
between the low-resolution and high-resolution sensitiv-
ities. Sensitivity alignment was further proposed to re-
duce the geometric variation induced by different subject 
positions and FOV settings. As a proof-of-concept study, 
we demonstrated the feasibility of the sensitivity learn-
ing idea for brain imaging at 3T. Experimental results 
have shown that the learning-based method can produce 

high-quality sensitivity maps with very limited ACS data, 
leading to improved SENSE reconstruction with less alias-
ing artifacts. A preliminary version of this work was previ-
ously reported in an abstract for the 2018 annual meeting 
of the International Society for Magnetic Resonance in 
Medicine18; a detailed description of the method is given 
in this paper.

2  |   METHODS

2.1  |  Subspace structure of coil 
sensitivity

According to the reciprocity principle, the coil receiving 
sensitivity can be approximated as proportional to the 
magnetic field B−

1
(r) that would be generated by the coil 

element. In general, the geometry of the coil elements, the 
tissue electric property (e.g., permeability) and coil loading 
will all affect the B−

1
 field. In this study, we hypothesize 

that the B−

1
 field from in vivo brain scans should have vari-

ations that can be well captured by a low-dimensional rep-
resentation.19 More specifically, when the RF wavelength 
is much larger than the imaging object, the geometry of 
the B−

1
 field is hardly affected by the presence of the im-

aging object and can be calculated by Biot–Savart integra-
tion.20,21 As is well known, RF wavelength on average for 
in vivo brain imaging is 27 cm at 3 T,22 which is greater 
than the typical human head sizes (16–24 cm). Therefore, 
given a specific receiver system, the sensitivity from in vivo 
brain scan at 3T can be well approximated by Biot–Savart 
integration and mainly varies on subject related permea-
bility and loading. Given well-defined range of permeabil-
ity of in vivo brain tissues and limited geometric variation 
within the coil, we presume that the variation introduced 
by different subjects should yield a low-dimensional rep-
resentation. The additional wave effects due to varying but 
similar head sizes may lead to additional sensitivity varia-
tions and slightly increase the dimensionality, but it will 
not invalidate the low-dimensional assumption. As shown 
in Figure 1A, the 3D coil sensitivity functions acquired in 
this study exhibit a low-rank structure in the linear sub-
space. Based on these observations, we believe that the coil 
sensitivity functions should reside on a low-dimensional 
manifold and can be learned using deep learning from pre-
vious scans obtained from the same receiver system.

2.2  |  Sensitivity alignment

Due to variations in subject position and FOV settings, the 
sensitivity maps obtained from different scans will likely 
capture different 3D portions of the underlying sensitivity 
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functions. In this study, we used a rigid-body motion TΘ(r) 
to align the sensitivity functions to reduce such variation. 
The inverse transformation is defined as T−1

Θ
(r) . Given a set 

of 3D sensitivity S(r), the deformed sensitivity is denoted as 
S�(r�) = S(TΘ(r)). r and r′ indicate the spatial coordinates 
before and after the transformation, Θ contains the rota-
tion and translation motion parameters. The mathemati-
cal description of the transformation TΘ(r) and sensitivity 
alignment can be found in Supporting Information. With 
proper alignment, the aligned sensitivity maps exhibited 

a lower-dimensional representation (Figure 1A). Note 
that the 3D transformation can work for both 3D imaging 
and multi-slice imaging, as long as volumetric images are 
available.

2.3  |  Proposed workflow

The workflow of the proposed method is summarized 
in Figure 1C. The ACS data were first zero-padded and 

F I G U R E  1   Main assumption and idea of DeepSENSE. A, Singular values of the Casorati matrix formed by stacking all the 3D sensitivity 
maps as its columns, demonstrating the low-dimensionality of the 3D coil sensitivity from the head coil. The 3D sensitivity maps are derived 
from the GRE dataset obtained from 15 subjects in this study. B, Example 2D sensitivity maps (i.e., same coil and same slice index) of each 
3D volumes from eight different subjects before (top row) and after (bottom row) sensitivity alignment with respect to the first scan. With 
proper alignment, intensity variation in the sensitivity maps towards those in the first scan can be observed, leading to a lower-dimensional 
representation in the linear subspace. C, Workflow of the proposed method for improved sensitivity estimation from limited ACS data using 
deep learning. D, Illustration of spatial masks M(r) and 1 - M(r) to combine the predictions from the two CNNs in the case of a clockwise 
rotation. The mask M(r), calculated using 1(T−1

Θ
(r)), indicates signals remaining in the FOV (intersected area between solid and dashed 

rectangles) that can be selected from the prediction of CNN1 while 1 −M(r), the area around the corner, corresponds to signals transformed 
out of the FOV, which can only be predicted from CNN2. E, The structure of the convolutional neural network used in the proposed 
method. The first orange and last red layers represent the input and output 3D sensitivity functions, respectively. The intermediate layers are 
color coded differently at different scales. The number of feature maps is listed on the top or at the bottom of the corresponding layer. Layers 
from the same scale have the same size of feature maps. Nx × Ny × Nz and Nc denote the spatial dimension in 3D and the number of head coil 
channels, respectively
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Fourier transformed (ZP-FFT) to the image domain to 
generate low-resolution coil sensitivity functions SL via 
dividing the individual coil images by the SoS coil com-
bined image. Its high-resolution counterpart SH was gen-
erated using fully sampled data. Sensitivity alignment was 
then performed to generate another set of sensitivity pairs 
(i.e., S′

L
 and S′

H
). Two 3D CNNs with identical architecture 

were trained separately using the original and the aligned 
sensitivity pairs, respectively. The prediction from CNN1 
using the aligned dataset was then inversely transformed 
to the original data space using S��

H
= S�

H
(T−1

Θ
(r)). Note that 

a rigid-body transformation in 3D space may have signal 
moved out of the FOV (denoted by 1 −M(r) in Figure 1D), 
which cannot be recovered by the inverse transformation. 
Therefore, the predictions from the two CNNs were finally 
combined with corresponding spatial masks, yielding 
ŜH = S��

H
⋅M + SH ⋅ (1 −M). An example was illustrated in 

Figure 1D.

2.4  |  Network architecture

The 3D U-net architecture23 was adopted for the CNNs 
described in the proposed method (Figure 1E) with a few 
modifications. Specifically, to maintain effective encoding 
along with downsampling by a factor of 2, 3D convolu-
tions with a stride of 2 were implemented replacing the 
max pooling used in the original segmentation task. An 
additive short cut was made between the input and output 
of the network for residual learning.24 Leaky ReLU with 
a slope of 0.1 was employed. To avoid overfitting, “drop-
out” was employed25 to randomly turn off neurons during 
training at a rate of 10%. L2 regularization with a param-
eter of 0.1 was also exploited. The training was generally 
done by minimizing the L2 loss function: 

where SH and SL are the corresponding input and output 3D 
sensitivity pairs, f ( ⋅ ) denotes the nonlinear mapping de-
fined by the CNN with learnable parameters �. � performs 
element-wise multiplication for each coil. � is the fully-
sampled coil combined image, compensating for the spa-
tially varying noise variation. In the spirit of reproducible 
research, the network code is available at: (https://github.
com/steve​peng1​120/DeepS​ENSE/).

2.5  |  Experimental set-up

In vivo brain experiments were conducted on a 3T MR 
scanner (SIEMENS Prisma) from 15 subjects using the 
standard 20-channel receive-only head/neck coil with 16 

head coil elements activated and the other 4 neck elements 
turned off. Written informed consents were obtained from 
all the subjects with approval by the institutional IRB. A 
3D spoiled gradient-echo (GRE) sequence (matrix size 160 
× 160 × 36, FOV 240 mm × 240 mm × 72 mm, FA 6◦, TR 5.2 
ms, TE 2.3 ms, Bandwidth 500 Hz/pixel) was performed on 
each subject 2–3 times with axial slices along the anterior 
commissure (AC)-posterior commissure (PC) orientation. 
In between each scan, the subjects were asked to stand up 
and walk around before going back into the scanner, pro-
ducing various head positions and FOV settings, in order 
to generate different permeability distributions within 
the coil, different sensitivity volumes, and probably dif-
ferent loading. To perform cross-validation, we randomly 
split our datasets into five groups. Each group contains 
data from 3 different subjects, yielding a set of 12 subjects 
(around 32 image volumes) and a set of 3 subjects (around 
8 image volumes) for training and testing each time.

Conventional ZP-FFT with hamming filtering and the 
ESPIRiT8 methods were also conducted. Sensitivity maps 
were compared given a various number of ACS lines (e.g., 
one central phase encoding line plus additional 24, 16, 8, 4 
surrounding PE lines) and evaluated by performing a sub-
sequent iterative SENSE reconstruction26 with uniform 
undersampling in the outer k-space. The ESPIRiT recon-
struction were performed using the “SPIRiT_v0.3” Matlab 
code provided by the authors with kernel size either 6 or 
5 (6 is preferred whenever feasible). Root mean square er-
rors (RMSEs) were computed for both the sensitivity maps 
and SENSE reconstructions for quantitative assessment. 
To demonstrate the generalizability of the proposed tech-
nique to other sequences, an MPRAGE scan (matrix size 
160 × 160 × 36, FA 9◦, TR 1900 ms, TE 3.06 ms, TI 900 ms, 
Bandwidth 200 Hz/pixel) was performed on all 15 subjects 
and a multislice spin-echo scan (matrix size 192 × 192 × 
36, TR 1500 ms, TE 7.5 ms, Bandwidth 250 Hz/pixel) was 
carried out on five new subjects. All scans performed in 
this study had the same FOV.

2.6  |  Implementation details

Our current implementation forces the network to learn 
the intercoil phase differences, which excludes any off-
resonance and RF related phase and thus are still slowly 
varying functions residing on a low-dimensional mani-
fold. More specifically, for both the input and output maps 
of all the training and testing datasets, we subtracted the 
phase of the first coil from all the coil sensitivities. The 
subtracted phase from the 1st coil, including the coil in-
dependent RF and off-resonance induced phase, will be 
absorbed into the final SENSE image. The 3D input and 
output labels to the network were formed by concatenating 

(1)Loss= ||� ⋅ [SH − f (SL;�)]||
2
2

https://github.com/stevepeng1120/DeepSENSE/
https://github.com/stevepeng1120/DeepSENSE/
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the real and the imaginary part of the corresponding coil 
sensitivity maps. Batch normalization27 was employed 
right after each convolution and deconvolution layer to 
improve stability and training speed. Polynomial fitting 
with a order of 5 was applied to the sensitivity maps when 
estimating the motion parameters to improve motion esti-
mation accuracy. The two CNNs were trained separately, 
where CNN2 was trained first using the original dataset, 
and CNN1 was trained afterwards using the aligned data-
set with the learned weights from CNN2 as initialization. 
Predictions from different number of ACS lines were 
trained separately. The neural network was constructed in 
Tensorflow 1.5.0 and trained using stochastic gradient de-
scent with an Adam optimizer28 for 1000 epochs using the 
GeForce Titan XP graphics processing unit (GPU), taking 
approximately 20 h. Before SENSE reconstruction, a rough 
background was estimated from the low-resolution image 
(using ACS data), and the predicted sensitivity values in 

such background were set to a very small constant num-
ber to further reduce image artifact.

3  |   RESULTS

The estimated sensitivity maps and SENSE reconstructions 
using 8 and 4 ACS lines were compared in Figures 2 and 
3, respectively. ZP-FFT with hamming filtering generated 
SENSE reconstructions with significant aliasing artifacts. 
The ESPIRiT method yielded inferior sensitivity estima-
tion due to insufficient number of calibration data, espe-
cially with 4 ACS lines where a smaller kernel size (e.g., 5) 
could only be used (manifested by the distorted coil phase 
information), resulting in evident aliasing in the SENSE re-
construction. Our method provided consistently superior 
sensitivity estimation in both cases with very limited ACS 
data, leading to improved reconstruction with suppressed 

F I G U R E  2   Comparison of the sensitivity maps (e.g., 6-th coil) estimated using 8 ACS lines and the subsequent iterative SENSE 
reconstructions at R = 4 of a GRE testing dataset. RMSEs of the sensitivity maps and SENSE reconstructions are shown in the magnitude 
image. Error maps were scaled by 5 folds for better visualization
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F I G U R E  3   The coil sensitivity maps (e.g., 8-th coil) estimated using 4 ACS lines and the subsequent iterative SENSE reconstructions 
at R = 4 of a GRE testing data from another subject. RMSEs of the sensitivity maps and SENSE reconstructions are shown in the magnitude 
image. Error maps were scaled by 5-folds for better visualization. The ESPIRiT method generated inferior coil sensitivity information due to 
insufficient calibration data and the smaller kernel size (e.g., 5) that could only be used

F I G U R E  4   RMSEs of (A) the estimated sensitivity maps and (B) the subsequent SENSE reconstruction at R = 4 with varying number 
of ACS lines from a testing GRE dataset. Conventional methods degraded dramatically as the number of ACS lines decreases, while the 
learning-based method is much more robust since it takes advantage of information from previous scans
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noise and aliasing artifacts. The RMSEs of the sensitivity 
and SENSE reconstructions with varying number of ACS 
lines were reported in Figure 4. With moderate amount of 
calibration data (e.g., results from 24 ACS lines can be found 
in Supporting Information Figure S2), ESPIRiT and the 
learning-based method produced comparable results. As 
the amount of ACS lines decreases, conventional methods 
degraded dramatically, while the learning-based method is 
much more robust since it takes advantage of information 
from previous scans. To demonstrate the applicability of the 
proposed method in handling rapid phase transitions, re-
sults from a bottom brain slice with air-tissue interface was 
also provided in Supporting Information Figure S3.

Results of the 5-fold cross-validation is shown in 
Supporting Information Figure S4. Although we only em-
ployed a relatively small set of training data, the learned 
model was able to consistently improve the sensitivity to a 
similar level for all the validation groups, further validat-
ing our hypothesis that the coil sensitivity between scans 
reside on a low-dimensional manifold. Note that coil align-
ment may not be necessarily required in the case of small 
spatial misalignment (e.g., group 1–3), since the deep CNN 
should be able to handle certain extent of geometric vari-
ation due to its powerful representation capability. Lastly, 
the SENSE reconstructions of the spin-echo and MPRAGE 
datasets were carried out at various reduction factors (e.g., 
R = 3, 4, 5) using sensitivity estimated from 8 ACS lines and 
compared in Figure 5 and Supporting Information Figure 

S5. Although the model was trained on GRE dataset, the 
proposed method still produced improved sensitivity esti-
mation and superior SENSE reconstruction compared to 
the ESPIRiT method in terms of aliasing and noise sup-
pression across all undersampling cases.

4  |   DISCUSSION

In this short proof of concept study, we focused on using 
a head coil to demonstrate the feasibility of coil sensitivity 
learning by taking advantage of previous scans produced 
from the same receiving coil. The key assumption is that 
coil sensitivities from the same RF receiver system should be 
highly correlated between scans and reside on a low dimen-
sional manifold according to the underlying electromagnetic 
physics. The learning-based method has shown some robust-
ness to data obtained in this study from a limited number 
of subjects and sequences. More comprehensive studies are 
still needed to evaluate the generalizability of the proposed 
method in different application scenarios, for example, the 
presence of large pathological features (such as gadolinium 
enhanced tumors) which may alter the sensitivity function.

Although our initial evaluation is limited to brain im-
aging, the idea of learning sensitivity variations and using 
deep neural network for accurate prediction can be applied 
to different types of coils and applications, provided the 
availability of quality training data. Furthermore, based 

F I G U R E  5   Iterative SENSE reconstructions of the multislice spin-echo dataset with uniform undersampling in the outer k-space at 
various reduction factors (i.e., R = 3, 4, 5). The ESPIRiT and the proposed DeepSENSE methods were used for sensitivity estimation from 8 
ACS lines. Although the proposed model was trained on the GRE dataset, it still enables improved sensitivity estimation manifested by the 
reduced aliasing in the SENSE reconstruction across all reduction factors
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on the sources of coil sensitivity variations, we think that 
it is actually beneficial to train separate network predic-
tors for different coils, since the manifold structure of the 
sensitivities depends on the hardware. Adapting this idea 
for other body parts can be pursued in future research, for 
instance, the body coils without a fixed geometry and with 
certainly larger wave effects would be more challenging. 
Given a specific receiving coil, the variation of sensitivity 
could also be different in various practical scenarios and it 
would be better to train the network separately. For exam-
ple, in high-field imaging, the geometry of the sensitivity 
map will contain more significant wave effects; in applica-
tions where the imaging space within the coil varies, the 
orientation of ACS lines changes, or the subject loading 
differs (e.g., pediatric imaging).

The current neural network has inherited features from 
the U-net, but is by no means optimal yet. Free parame-
ters such as kernel size, number of layers, feature maps, 
type of activation function and loss function can be fur-
ther adjusted and selected on a case-by-case basis. More 
advanced neural networks like the Generative Adversarial 
Neural Networks (GAN)29,30 certainly can lead to better 
performance. Our method would also depend on the qual-
ity of the input sensitivity maps. For example, starting 
with the ESPIRiT maps could be helpful in rejecting noise 
and ringing artefacts. Furthermore, the proposed network 
holds the potential to be integrated with other advanced 
image reconstruction models, including the most recent 
deep-learning based methods31–36 where sensitivity func-
tions are required. Finally, it would also be worthwhile 
to build electromagnetics constraints into the learning 
model and explore the complementary power of physics-
based and data-driven priors.

5  |   CONCLUSION

We proposed and evaluated a deep learning based method 
to improve the estimation of coil sensitivity functions from 
limited ACS data for brain imaging. A deep neural network 
is designed and trained to map low-resolution sensitivity 
maps to its high-resolution counterparts by exploiting the 
learnable coil geometry and subject-dependent sensitivity 
variations. Experimental results have demonstrated the abil-
ity of the proposed idea in producing high quality sensitivity 
functions with very limited ACS data. Future work may in-
clude network structure optimization and potential integra-
tion with deep learning based reconstruction methods.
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FIGURE S1 Estimated rotation and translation param-
eters of the sensitivity functions from the different GRE 
scans with respect to the first scan. The largest rotation 
occurs about the x-axis (pitch rotation), which is sensi-
tive to both the head position and axial slices selection. 
The largest translation occurs along the z-axis (head foot 
direction).
FIGURE S2 The sensitivity maps estimated using 24 ACS 
lines and the subsequent iterative SENSE reconstructions 
at R = 4 of a GRE testing dataset. RMSEs of the sensitivity 
maps and SENSE reconstructions are shown in the mag-
nitude image.
FIGURE S3 The sensitivity maps estimated using 4 ACS 
lines and the subsequent iterative SENSE reconstructions 
at R = 4 of a bottom brain slice with air-tissue interface. 
RMSEs of the sensitivity maps and SENSE reconstrutions 
are shown in the magnitude image.
FIGURE S4 Sensitivity RMSEs from the 5-fold cross val-
idation estimated using 8 ACS lines. Results showed that 
the learning-based method was able to improve the sensi-
tivity estimation to a similar level (approximately a mean 
RMSE of 7.8%) for all the validation groups with a rela-
tively small set of training data, further validating our hy-
pothesis that the coil sensitivity between scans reside on a 
low-dimensional manifold. Note that coil alignment im-
proved the sensitivity estimation for group 4 and 5 (possi-
bly larger spatial misalignment), but may not be necessar-
ily required in the case of small spatial misalignment (e.g., 
group 1–3), since the deep CNN should be able to handle 
certain extent of geometric variation due to its powerful 
representation capability.
FIGURE S5 Iterative SENSE reconstructions of the 
MPRAGE dataset with uniform undersampling in the 
outer k-space at various reduction factors (i.e., R = 3, 4, 5 ). 
The ESPIRiT and the proposed DeepSENSE methods 
were used for sensitivity estimation from 8 ACS lines. 
Error maps were scaled by 5 folds for better visualization. 
Although the proposed model was trained on the GRE 
dataset, it still enables improved sensitivity estimation 
manifested by the reduced aliasing and noise amplifica-
tion in the SENSE reconstruction.
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