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Abstract—In the present Noisy Intermediate-Scale
Quantum (NISQ), hybrid algorithms that leverage clas-
sical resources to reduce quantum costs are particu-
larly appealing. We formulate and apply such a hy-
brid quantum-classical algorithm to a power system
optimization problem called Unit Commitment, which
aims to satisfy a target power load at minimal cost.
Our algorithm extends the Quantum Approximation
Optimization Algorithm (QAOA) with a classical min-
imizer in order to support mixed binary optimization.
Using Qiskit, we simulate results for sample systems
to validate the effectiveness of our approach. We also
compare to purely classical methods. Our results indicate
that classical solvers are effective for our simulated
Unit Commitment instances with fewer than 400 power
generation units. However, for larger problem instances,
the classical solvers either scale exponentially in runtime
or must resort to coarse approximations. This opens the
door to potential quantum advantage for systems with
several hundred units, though quantum error correction
may be necessary at this scale.

Index Terms—QAOA, hybrid algorithm, unit commit-
ment, smart grid

I. BACKGROUND

Quantum computing has the potential to revolu-

tionize computation in specific domains. Google’s

recent quantum supremacy experiment demonstrated

that quantum computers have the potential to perform

computations that outclass the world’s fastest super-

computers [1]. Though still in early stages, quantum

capabilities are advancing rapidly by providing novel

ways to solve previously intractable problems. In this

paper, we aim to apply quantum computing to achieve

a practical advantage over current methods in a power

systems application.

Current quantum machines are limited in that they

are noisy and only accommodate a small number of

qubits, generally under 100. Additionally, gates are

prone to error. For this reason, current approaches

favor hybrid algorithms that combine classical and

quantum methods to minimize required qubit and gate

counts. We apply this hybrid architecture to smart

grid optimization, specifically for the unit commitment

problem.

A. Unit Commitment

Unit Commitment (UC) is an important optimiza-

tion problem in the electrical power industry. It aims

to minimize operational cost while meeting a target

power load using a number of power-generating units

that are subject to constraints [2]. As the size and com-

plexity of current energy systems increase, improving

efficiency of solving UC becomes more important to

industry.

In UC, the main goal is to meet the power load

L while minimizing the total cost. Each unit’s cost

function is defined by three coefficients: A is the fixed

cost coefficient that a unit necessarily incurs when it

is turned on, regardless of the power it contributes.

B and C are the linear and quadratic coefficients,

respectively, and contribute to the unit’s cost based

on its power level. Each unit is further subject to

a set of operational constraints, including but not

limited to minimum and maximum generation limits,

ramping up and down limits, minimum on and off time

constraints, and reserve. In this paper, we only focus on

minimum and maximum power generation limits, pmin

and pmax. Additionally, individual power units may be

turned on or off, adding another layer of complexity

to the problem. The total cost is given by the sum of

the costs only of the units that are on.

UC aims to determine the optimal combination of

units to use and the power levels at which they should

operate, all while minimizing the total cost, meeting

the load L, and following the constraints defined by

the coefficients pmin and pmax for each unit. Fig. 1

demonstrates two ways that the load of a 4-unit

system could be met while keeping within each unit’s

constraints, and gives the cost of each configuration.

B. Quantum Approximation Optimization Algorithm

The Quantum Approximation Optimization Algo-

rithm (QAOA) [3] is a quantum algorithm that can be

used to approximate solutions to optimization prob-

lems. It is a hybrid algorithm that uses both quantum

and classical resources with the aim of reducing the re-

source requirements on the quantum computer relative
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Figure 1. A diagram of two ways that units in a 4-unit system could meet a given power load, subject to the constraints of the units, in
one time step. The total cost of each configuration is given by the sum of the cost of each unit that is turned on. Out of these two systems,
the left is more cost efficient. More details on how the cost of a unit is calculated will be given in Sec. III.

to a quantum-only algorithm. QAOA is designed for

quadratic unconstrained binary optimization (QUBO)

problems, which are a specific kind of combinatorial

optimization problem that are somewhat similar to

UC. Both problems feature binary choices, although

QUBO is defined by only discrete variables, while UC

contains both continuous and discrete variables. The

similarities between QUBO and UC make QAOA a

compelling algorithm to use in solving UC.

The job of the classical computer in QAOA is

to optimize a set of variational parameters: γ =
(γ1, γ2, ..., γP ) and β = (β1, β2, ..., βP ) where

γi, βi ∈ [0, 2π). A quantum computer will execute a

circuit which is a function of these vectors of angles

γ and β. The length of parameter vectors, P , is pro-

portional to the depth (runtime) of the QAOA circuit

and does not depend on the total number of qubits.

Initially, the quantum computer puts the N qubits into

a uniform superposition over all 2N bitstrings. Next,

the quantum computer executes a two-step sequence.

First a cost Hamiltonian is applied that phases1 each

bitstring by a quantity related to that bitstring’s cost

and to γ1. Second, a mixing Hamiltonian is applied

so that probability amplitude can transfer between the

2N bitstrings. This two-step sequence—cost Hamil-

tonian parametrized by γi and mixing Hamiltonian

parametrized by βi—is repeated for i = 2, 3, ..., P .

By sampling from the output of the quantum circuit

with different γ,β vectors, a score can be recorded

for each choice of variational parameters. The classical

computer then performs an outer loop (with feedback)

to optimize over the 2P -dimensional space, with the

aim of producing the optimal parameters: γ∗,β∗.

1This is a uniquely quantum phenomenon that enables destructive
interference when summing bitstrings.

When the quantum computer is evaluated with these

optimal (or near-optimal parameters), it will output

bitstrings that approximately extremize the QUBO

objective function.

At P approaches ∞, QAOA can recover the Quan-

tum Adiabatic Algorithm, which would exactly solve

the target optimization problem [4]. However, this

would also take infinite circuit depth. Instead, we are

interested in the performance of QAOA at small, finite

P . Choices such as P = 1 or P = 2 are particularly

favorable because they require low gate count and

circuit depth. This is suitable for near-term quantum

hardware since (a) gates are significant error rates

and (b) qubit lifetimes are short, which prevents deep

circuits from running effectively.

II. PRIOR WORK

There are a variety of classical approaches to solv-

ing or approximating Unit Commitment instances.

For example, Generic Algebraic Modeling System

(GAMS) can solve mixed-binary optimization pro-

gramming problems like UC through tools like DI-

COPT a DIscrete and Continuous OPTimizer [5]. As

in our quantum approach presented in Section III,

DICOPT relaxes equality constraints and penalizing

violations of constraints using slack variables [5].

Thus, the program ultimately approximates a solution

to a given Unit Commitment instance. Other classical

solvers include IBM’s CPLEX which is a popular

choice for both exactly and approximately solving

MBO problems in addition to Mixed-Integer Program-

ming (MIP) problems and other more general linear

programming problems [6]. CPLEX makes use of a

branch-and-bound approach to solving these problems

classically.
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To the best of our knowledge, [2] is the only prior

work on solving Unit Commitment with a quantum

approach. The authors propose an algorithm based

on quantum annealing. To cope with the mixture of

continuous and binary variables, [2] opts to discretize

the continuous variables with a one-hot encoding. As a

result, N(ℓ+2) qubits are required to solve an N -unit

system discretized to have ℓ partitions between pmin,i

and pmax,i. While the results are promising at small-

scale, the one-hot encoding of continuous variables is

expensive in qubit count. Our approach aims to avoid

this discretization cost. In addition, we use QAOA

(instead of the quantum adiabatic algorithm), which

enables our approach to be executed on gate-model

quantum computers.

Finally, three recent papers have proposed quantum

algorithms for mixed binary optimization problems

more broadly. [7] uses QAOA as a lever for translating

the mixed binary optimization problem into a contin-

uous optimization problem. The approach is demon-

strated for transaction settlement, a financial applica-

tion. Though developed independently, our approach in

III is similar to [7], but applied to Unit Commitment.

[8] takes another approach, by using the Alternating

Direction Method of Multipliers (ADMM) to convert

an input mixed binary optimization problem into a

collection of QUBOs. Finally, [9] applies Bender’s

decomposition [10] to divide an input mixed-integer

linear program into a collection of quantumly-solvable

QUBOs and classically-solvable linear programs.

III. OUR QAOA-BASED APPROACH

The critical insight behind our work is that QAOA

converts discrete optimization problems (e.g. over bit-

strings) into a continuous optimization problem (over

the variational parameters γ,β). Our approach to

solving UC combines quantum and classical methods.

We use QAOA to handle the binary variables of the

problem (whether a unit is on or off) and a classical

optimizer to handle the continuous variables (how

much power each unit should provide). The classical

optimizer comprises the outer loop of our algorithm,

and QAOA the inner. Thus, QAOA never needs to

discretize continuous variables into qubits. Meanwhile,

in the frame of reference of the classical optimizer, the

mixed integer problem becomes a continuous one. This

combination of classical and quantum algorithms ap-

proximates a solution while both limiting the number

of gates used in the quantum computation and allowing

for a plausible quantum advantage.

A. Formulation

In the Unit Commitment problem we have N units.

Each unit may be turned on or off, given by a binary

variable yi ∈ { 0, 1 }. When yi = 1, the power of

the unit pi is a continuous real value constrained as

pmin,i ≤ pi ≤ pmax,i. When yi = 0, pi = 0.

Together these restrictions gives a quadratic constraint:

pmin,iyi ≤ pi ≤ pmax,iyi. UC aims to turn on certain

units (decide which yi should be 1) and set their

corresponding power values (decide the value of pi)

so that the sum pi is exactly L.

Each power unit has a corresponding function

H(yi, pi) which specifies the cost of turning on unit i

and for generating a certain amount of power pi. This

cost function is quadratic for unit commitment:

H(yi, pi) = Aiyi +Bipi + Cip
2
i (1)

where Ai, Bi, Ci ∈ R are constant. This overarching

objective of a UC problem then is to minimize the

sum of these cost functions. The following equations

summarize a generic UC problem.

min

N
∑

i=1

H(yi, pi) (2)

s.t.

N
∑

i=1

pi = L (3)

piyi ≤ pmax,i, piyi ≥ pmin,i (4)

pi ∈ R yi ∈ { 0, 1 } (5)

We convert this formulation into a QUBO problem.

The goal is to convert the constrained variables yi, pi
to become unconstrained by modifying the objective

function to include penalty terms so that when the

values yi, pi are outside of their desired ranges the

objective suffers. Now we let pi ≥ 0. For each contin-

uous variable pi we introduce two slack variables si,1,

si,2 ∈ R≥0, the first to penalize if pi is less than the

minimum and the second to penalize if pi is larger than

its maximum. Consider the following penalty term

λ(pi − si,1 − pmin,iyi)
2 (6)

where λ is some fixed constant which must be set

empirically. Suppose yi = 1 and pi is greater than

pmin,i then this equation can be minimized by setting

si,1 = pi − pmin,i > 0 resulting in 0 penalty. How-

ever, if pi < pmin,i then this equation is minimized

when si,1 = 0 resulting in a positive penalty term.

This equation effective encodes the previous constraint

bounding pi ≥ pmin,i by guiding the objective into a

solution which minimizes this penalty term. We can

do the same by adding in a penalty term using si,2
to penalize values of pi > pmax,i. Finally, we need a

penalty term to encode the constrain that the sum of

the pi is the power load L. The following term

λ
(

N
∑

i=1

piyi − L
)2

(7)

is minimized when the sum is exactly L. In practice,

we may want to choose different λ values for each

penalty term to enforce certain constraints more or

less. Putting it all together we obtain the following
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objective function which ideally encodes the same UC

problem

min

N
∑

i=1

(Aiyi +Bipi + Cip
2
i )

+ λ1(
N
∑

i=1

piyi − L)2

+ λ2[
N
∑

i=1

(pi − si,1 − pi,minyi)
2]

+ λ3[

N
∑

i=1

(pi + si,2 − pi,maxyi)
2] (8)

Where si,j , pi ∈ R≥0, yi ∈ { 0, 1 } and empirically

determined λi. We have now rewritten the the UC

problem as a QUBO which will be useful for con-

verting to a QAOA formulation so that all constraints

are now contained in the objective. Since y2i = yi,

the above problem reduces to a quadratic program by

noting for fixed pi, si,j .
Once the problem is reformulated, we use a SciPy

classical minimizer to find the individual unit power

values that minimize the cost function, as well as the

optimal γ,β variational parameters to use in QAOA.

We use the minimize function from SciPy’s optimize

package [11], specifically using the Nelder-Mead al-

gorithm [12] with the γ,β,p, s as the arguments. For

each iteration that the classical minimizer completes,

we simulate a quantum processor with IBM Qiskit

to execute QAOA [13]. This returns a probability

distribution of the optimal combinations of units to

be used, given the power values that the classical

minimizer has designated to each unit.

B. Quantum Circuit

When the classical outer loop optimizer proposes

p and s, it induces a QUBO objective function, as

described by Equation 8. The classical optimizer is

also responsible for proposing the 2P continuous vari-

ational parameters, γ,β. To comply with the standard

form for QUBOs solved by QAOA, we convert from

yi ∈ {0, 1} binary variables to zi ∈ {+1,−1}
variables via the transformation zi = 2yi − 1.

The actual QAOA circuit, given γ,β, is depicted

in Fig. 2. Each Cost Hamiltonian step applies the op-

eration with diagonal unitary matrix eiγiH(γ,β) where

H(γ,β) is a diagonal unitary matrix corresponding

to Equation 8. This step is the most expensive oper-

ation. Since the objective function is a QUBO, the

sub-operations in the Cost Hamiltonian consist of

a sequence of eiγiZ⊗Z operations, where Z is the

Pauli-Z matrix. We used the sympy library [12] to

manage the construction of the QUBO and tracking of

its coefficients. After the Cost Hamiltonian step, the

mixing Hamiltonian is applied, which simply executes

Rx(βi) on each qubit. These Cost and Mixing Hamil-

tonian steps are repeated P times before terminating

measurements on each qubit.

IV. CLASSICAL BASELINE

To benchmark how existing classical approaches

perform on the Unit Commitment problem, we solved

UC instances of varying sizes both exactly and approx-

imately using IBM’s CPLEX Optimizer [6]. Experi-

ments were run using version 20.1 of IBM’s CPLEX

Optimizer on a single core of an Intel Core i7-8750H

CPU. We used CPLEX to solve the UC instances in

their MBO form. Fig. 3 shows results from solving

these various UC problems. Approximate solving was

done by searching for solutions with objective function

value within 8% of the optimal solution.

CPLEX uses a branch-and-bound approach to solv-

ing the UC problems in MBO form, which although

efficient in practice when compared to other classical

methods, still has worst-case exponential scaling in

runtime. The results show that, as expected, exact solv-

ing scales exponentially in runtime, quickly becoming

intractable for large problem sizes. We also observe

that approximate methods perform better in runtime

compared to exact solving at the cost of solution qual-

ity, however still eventually see exponential scaling for

larger problem sizes, as expected.

V. RESULTS

To confirm our algorithm does approximate solu-

tions to UC adequately, we ran different example sys-

tems and tracked the progress of numerous variables to

ensure our algorithm was converging on approximate

solutions each time it ran. One of our main examples

was a real 10-unit system, specified with the parame-

ters given in Table I.

Fig. 4 demonstrates the results of our quantum

approach on the 10-unit system in Table I. The left and

right plots corresponding to P = 1 and P = 2 depth

for QAOA respectively. The top plots show the total

probability of our algorithm returning a near-optimal

solution 2, i.e. an assignment of units to ON/OFF.

Given a near-optimal bitstring, the actual power level

assignments can be obtained by solving the induced

quadratic program.

As the plots indicate, the probability of near-optimal

solution increases over the course of variational op-

timization iterations in our hybrid approach. At iter-

ation 0, the probability of achieving a near-optimal

solution is essentially the same as random guessing.

After 1500 iterations, the probability of near-optimal

solution exceeds 4% for P = 1 and 6% P = 2. This

both validates our general approach and demonstrates

that increased performance is possible at higher P .

The bottom two plots show the average Hamming

distance between each of the top 50 bitstrings returned

by our algorithm and the near optimal solution that

2The set of near-optimal solutions were generated by classical
brute force, with a the cutoff for “near-optimal” determined by best
judgment. As a result, some systems may have many near optimal
solutions, while others have only a few. The cutoff selection was
done as fairly as possible, but note that these selections will affect
the shape of the plot.
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|0〉 H

CostHam(γ1,p, s)

Rx(β1) . . .

CostHam(γP ,p, s)

Rx(βP )

|0〉 H Rx(β1) . . . Rx(βP )

...
...

|0〉 H Rx(β1) . . . Rx(βP )

Figure 2. Circuit diagram

Figure 3. Classical solving of UC problems with IBM’s CPLEX optimizer. For approximate solving, the algorithm finished with an
objective function value within 8% of the optimal solution.

i 1 2 3 4 5 6 7 8 9 10
pmax,i (MW) 455 455 130 130 162 80 85 55 55 55
pmin,i (MW) 150 150 20 20 25 20 25 10 10 10

Ai ($) 1000 970 700 680 450 370 480 660 665 670
Bi ($/MW) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79
Ci ($/MW 2) .00048 .00031 .002 .00211 .00398 .00712 .0079 .00413 .00222 .00173

Table I
THE PARAMETERS OF THE 10-UNIT SYSTEM

Figure 4. For a 10-unit system, both using P = 1 (left) and P = 2 (right), the total probability of finding a near optimal bitstring increases
as our algorithm completes more iterations (top). Additionally, the average Hamming distance between each of the top 50 bitstrings and
their closest near optimal solution decreases over time (bottom).
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Figure 5. As in the case of the 10-unit system, when using P = 2 steps of QAOA for a 6-, 7- and 8-unit system, the total probability of
finding a near optimal bitstring increases over time (left), and the average Hamming distance between each of the top 50 bitstrings and
their closest near optimal solution decreases over time (right).

it is closest to. This metric decreases over the course

of the variational optimization iterations, corroborating

that our algorithm is converging to better solutions (i.e.

ON/OFF assignments).

We also produced similar plots for sample 6-, 7-,

and 8-unit systems. For each system, we used P =
2 QAOA, and we found the same trends as for the

10-unit system, further supporting that our algorithm

succeeds in driving towards a near-optimal solution

(assignment of units to ON/OFF). For brevity, we leave

out details of the parameters for these systems; the plot

of results are in Fig. 5.

VI. CONCLUSION

We have introduced a hybrid quantum-classical

approach to Unit Commitment. Our approach uses

QAOA to turn a QUBO instance into a continuous

optimization problem over variational parameters γ,β.

A classical optimizer is then able to simultaneously

optimize over these continuous parameters as well as

the power assignments for each unit.

Figures 4 and 5 validate the correctness and promise

our approach. As demonstrated for 6-, 7-, and 8-, and

10- unit sytems (which entails quantum simulation of

a circuit with equal number of qubits), our variational

approach boosts the probability of finding a near-

optimal bitstring (i.e. assignment of units to ON/OFF)

far beyond naive brute force or random guessing.

Moreover, increasing the QAOA depth parameter, P ,

improves performance.

For smaller systems with only a few hundred units,

existing classical solvers are able to perform well.

However, as our classical simulation results indicate,

these classical solvers are limited for larger systems,

because their runtime scales exponentially. By con-

trast, our hybrid quantum-classical algorithm could

maintain effectiveness at larger system sizes, since

each QAOA circuit has logical depth of just O(N2P ).
In the future, it will be important to run our al-

gorithm on a real machine rather than simulating the

quantum circuits. We anticipate that real evaluation

will pose a variety of challenges not seen in our ideal

classical simulation. For example, superconducting

qubits have sparse connectivity, which could incur a

large SWAP overhead (though this could be mitigated

with techniques like swap networks [14, 15]). In ad-

dition, the recently discovered phenomenon of noise-

induced barren plateaus [16] could hinder successful

execution in near-term quantum computers. However,

we expect quantum error correction to emerge in

hardware over the next decade; in this medium-term

era, noise would no longer be an obstacle.
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