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Abstract—Quantum sensing is an important application of
emerging quantum technologies. We explore whether a hybrid
system of quantum sensors and quantum circuits can surpass
the classical limit of sensing. In particular, we use optimization
techniques to search for encoder and decoder circuits that
scalably improve sensitivity under given application and noise
characteristics.

Our approach uses a variational algorithm that can learn
a quantum sensing circuit based on platform-specific control
capacity, noise, and signal distribution. The quantum circuit is
composed of an encoder which prepares the optimal sensing state
and a decoder which gives an output distribution containing
information of the signal. We optimize the full circuit to maximize
the Signal-to-Noise Ratio (SNR). Furthermore, this learning
algorithm can be run on real hardware scalably by using the
“parameter-shift” rule which enables gradient evaluation on
noisy quantum circuits, avoiding the exponential cost of quantum
system simulation. We demonstrate up to 13.12x SNR improve-
ment over existing fixed protocol (GHZ), and 3.19x Classical
Fisher Information (CFI) improvement over the classical limit
on 15 qubits using IBM quantum computer. More notably,
our algorithm overcomes the decreasing performance of existing
entanglement-based protocols with increased system sizes.

Index Terms—Quantum sensing, quantum computation, circuit
learning, optimization, metrology
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I. INTRODUCTION

In recent years, we have seen enormous growth in emerging

quantum technologies that exploit quantum mechanics for

various applications, such as computation, communication,

and sensing. The sensitivity of quantum states to changes in the

external environment, while seen as an obstacle in computation

and communication, becomes a valuable advantage in sensing.

Quantum sensing is believed to have the most immediate real-

world impacts, likely before other quantum technologies [1].

The applications span a wide range of areas, including time-

keeping [2], spectroscopy [3], tests of fundamental physics [4],

and probing nanoscale systems such as condensed matter and

biological systems [5]. There has been exciting experimental

progress on various physical platforms, such as atomic vapor,

trapped ions, Rydberg atoms, superconducting circuits, and

nitrogen-vacancy centers in diamond. Even today, practical
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Fig. 1: SNR scaling. The classical parallel scheme (Classical

Limit) gives square root scaling of SNR versus the number

of sensing qubits. The theoretical upper bound of quantum

sensing is the Heisenberg Limit, which gives linear scaling.

Shaded region corresponds to entanglement-enhanced sensing.

Existing and optimized curves are based on experiments on

IBM hardware (dotted lines are extrapolations)—optimization

is able to overcome the decreasing performance of existing

entanglement-based protocols.

quantum sensors such as SQUID magnetometers [6], atomic

vapors, and atomic clocks [2] have already become the state-

of-the-art in magnetometry and timekeeping [7].

Quantum advantage is enabled by entanglement, which

allows for higher sensitivity than what can be achieved by

a classical parallelization of the sensing qubits—the classical

limit. As shown in Figure 1, the classical limit gives a

square root scaling of Signal-to-Noise Ratio (SNR) versus the

number of sensing qubits. By contrast, the theoretical limit—

the Heisenberg limit—achieves linear scaling [1], [8]–[10].

In recent years, there has been exciting experimental progress

beyond the classical limit in areas ranging from spectroscopy

[3] to precision measurement [11], [12] to the famous LIGO

experiment for gravitational wave detection [13], [14]. While

the state-of-the-art shows great promise in achieving quantum

advantage in sensing, we still expect further improvement—the

Hilbert space of entangled states is large and existing protocols

only explore a small set of sensing states. Furthermore, the

current state-of-the-art in entanglement-enhanced sensing is

still mostly proof-of-concept experiments, and such protocols

do not necessarily yield good performance on real hardware—

each platform is subject to a unique set of noise and control

constraints. Given the constraints of limited and imperfect con-

trol, device-specific noise, and readout errors of practical hard-

ware, theoretically-optimal sensing protocols yield suboptimal

performance. For example, the Greenberger–Horne–Zeilinger
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Fig. 2: Algorithm schematic. Given available gateset and connectivity graph, multiple ansatz’s are proposed. Each template

parameterizes a circuit into a continuous vector, upon which we run optimization to maximize sensitivity. Optimization could

be run on-device via the “parameter-shift” rule for gradient evaluation. Optimization across different circuit structures converges

upon a final optimized output.

state (GHZ state) is optimal without noise but decoheres easily

in noisy cases. Another theoretically optimal state, called the

spin-squeezed state, is hard to create if we do not have global

interaction or all-to-all qubit connectivity [7]. We believe that a

co-design optimization approach, which optimizes the sensing

apparatus circuit based on characteristics of the underlying

hardware, noise model, and signal can provide a solution.

We propose a flexible, architecture-aware circuit structure

design, as well as a hardware-based optimization procedure

that could be run under device noise.

The algorithm schematic is shown in Figure 2. We divide the

sensing circuit into four components: encoder, signal accumu-

lation, decoder, and measurement. Given the available control

gateset, platform-specific noise, and gate/readout errors, our

approach aims to find the optimal encoder/decoder pair. The

encoder prepares the sensing state prior to exposure to the

signal by applying superposition and entanglement to the

initial state. Then the sensing qubit(s) will be exposed to the

signal for a certain amount of time, which results in changes to

the state due to the signal as well as interrogation noise (noise

during signal accumulation). A long probing time magnifies

the signal but also brings in more noise. The decoder’s function

is to transform the post-signal state into some other state such

that measurement of the qubits yields the greatest information

about the signal. Prior work [15]–[18] focuses much more

on the encoder for preparing a sensing state, and not so

much on the decoder for extracting quantum information into

classical information. However, as we show in this paper,

given imperfect control and readout errors, decoder design has

considerable effects on sensitivity.

Our optimization approach is as follows: to constrain the ex-

ponentially large Hilbert space of all possible entangled states,

we propose ansatz’s based on both physics principles and

hardware capacities. The ansatz parameterizes a circuit into

a real-valued vector, framing circuit design into a multivariate

optimization problem. We use an objective function based on

estimation theory, as well as prior results on noisy gradient

estimation [19], which allows for efficient and scalable search

evaluated on real hardware.

We achieve 3.19x CFI improvement over classical limit,

and 13.12x SNR improvement over GHZ protocol on 15

qubits using an IBM quantum computer, with larger gains

expected for increased system size. More importantly, we are

able to overcome the decreasing performance of known

entanglement-based protocols, obtaining consistent sensi-

tivity gain from additional qubits. Compared to the classical

limit, our optimization result is equivalent to 3.19x savings in

the number of qubits needed, or 3.19x savings in total sensing

time to achieve the same SNR. Considering the increasing

difficulty of engineering large quantum systems, a 3.19x

reduction in system size has significant practical benefits.

Furthermore, a smaller system size also allows for smaller

sensing volume, which is key in invasive applications such as

biological sensing. Reduction of the sensing time, in addition,

allows for improved precision in sensing any time-dependent

signal.

We enable quantum sensing to be implemented with high

fidelity on real near-term noise-prone quantum hardware. Our

solution considerably extends the state-of-the-art by incorpo-

rating noise-awareness, realistic classical-quantum interfacing,

and adaptivity to diverse physical platforms and applications.

The main contributions of this work are as follows:

• Enabling a guided exploration of a larger space of entan-

gled states than existing protocols;

• Leveraging platform-specific information via on-device

training under realistic hardware and noise constraints;

• Optimizing full sensing circuit including information

extraction (rather than just state preparation), which we

show to have important effects on performance, especially

given gate noise and readout errors;

• Considering a holistic noise model including gate noise,

interrogation noise, and readout noise, and demonstrating

automatic adaptation to different relative magnitudes of

these noises;

• Exploiting non-uniform signal distributions to further

improve sensitivity;
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• Designing the algorithm to be scalable to large sys-

tems and generalizable to different sensing platforms and

applications—from nanoscale field sensing to timekeep-

ing to testing physics beyond the standard model.

The rest of the paper is organized as follows: Section II com-

pares this paper to prior work in quantum sensing, quantum-

classical hybrid algorithms, and NISQ quantum computing

architecture. Section III covers the background of quantum

sensing including the theoretical framework, as well as in-

troduces baseline protocols. Section IV describes our opti-

mization algorithm in detail, discussing the tradeoffs we need

to balance as well as our design decisions. Section V shows

experimental results on IBM hardware, and Section VI shows

simulation results under different noise combinations and with

different signal distributions. Section VII discusses various

sensing platforms and applications on which our methodology

can be applied, as well as future directions.

II. COMPARISON TO PRIOR WORK

Our work builds on prior work both in three areas: classical-

hybrid quantum sensing [15]–[17], [20], variational algo-

rithms, [6], [21], [22], and NISQ quantum computing architec-

ture [23]–[27].From the sensing perspective, existing classical-

hybrid sensing protocols are all evaluated in simulation, con-

sider only limited noise sources, use fixed ansatz structures

(thus cannot generalize easily to different platforms when addi-

tional constraints are necessary e.g. no individual addressibility

on NV platform). They also require deep circuits or global

interactions that are impractical on many platforms. Finally,

existing variational sensing work focuses on the ”encoding”

rather than “decoding” part, which we show to be important.

From the variational algorithm perspective, we borrow the

idea of alternating between execution on quantum hardware

and execution on a classical optimizer which guides subse-

quent iterations of quantum operations. By limiting the number

of operations on quantum hardware per iteration, variational

methods reduce errors while maintaining the quantum advan-

tage. Variational algorithms also allows for guided exploration

of the large Hilbert space for entanglement generation.

From the architecture perspective, quantum sensing is a

new architecture application on real emerging systems, yet

the goal for sensing circuit optimization is very different

from QC circuit optimization. For sensing we optimize the

protocol rather than the implementation of a fixed logical

circuit (as in QC), and can leverage noisy operations (if the

benefit from entanglement outweighs noise) rather than only

selecting a subset of best qubits/gates. Furthermore, we co-

optimize the signal accumulation time, the result of which

could be much longer than normal QC gates (depending on

the platform), meaning sensing circuit could operate in a

much higher-decoherence regime compared to QC, and have

much higher noise tolerance (as long as we are still able

to decode). Most existing circuit-level compilation methods

cannot directly apply to sensing, but we see this design space

as an exciting area of future architecture work (in aspects such

as scalable and noise-aware ansatz design, robust optimization,

pulse-level optimization with modified objectives), similar to

the recent innovations in QC architecture.

III. BACKGROUND

A. Theoretical Framework: Classical and Quantum Fisher

Information

Given a specific signal ω, the objective of quantum sensing

is to maximize the Signal-to-Noise Ratio (SNR), ω
σω̂

. SNR,

however, is not a good metric for a sensing circuit since it is

signal-dependent. If we view the sensing problem as parameter

estimation, i.e. constructing an estimator of the unknown

signal based on measured outcomes, we could use concepts

from estimation theory as better metrics. Based on estimation

theory, Classical Fisher Information (CFI) and Quantum Fisher

Information (QFI) are used as signal-independent metrics that

quantify information [28], [29]. In particular, QFI quantifies

information carried by the quantum state whereas CFI quan-

tifies information in the classical distribution obtained after

repeated quantum measurements.

Because noise causes attenuation of signal information,

QFI decreases monotonically after each noisy operation. A

noiseless measurement in an optimal basis can extract full

quantum information into classical information, in which case

the CFI is equal to QFI of the final state. However, when

measurement cannot be performed on an arbitrary basis or is

noisy, the quantum information cannot be fully extracted, and

thus CFI is lower than QFI. We find this to be the case in

practical sensing applications. Therefore, while prior works

such as [15] focus on QFI, we adopt CFI as a more practical

metric.

Mathematically, CFI provides a lower bound on the variance

of signal estimator σω̂ via the Cramér-Rao Bound [30], there-

fore upper-bounding SNR. This bound tells us how good the

SNR could be given perfect post-processing. With M repeated

experiments, the full relation is written as:

σω̂ ≥
1

√

M × C̃FI(ω)
≥

1
√

M × QFI(ω)
(1)

where CFI is defined as

C̃FI(ω) = E

[

(
d log(Pr(X|ω))

dω
)2
]

(2)

where X is the measurement outcome with a distribution over

2N possible values for a N -qubit circuit. Whereas we find

the CFI-QFI bound hard to saturate on practical hardware,

we find it easy to saturate the first bound via a local 2-

degree polynomial fit. Since we are only estimating one signal

parameter, this bound is saturated by the Maximum-Likelihood

Estimator. Therefore, in this work, we study QFI to understand

the signal attenuation at each operation, but use CFI for the

final optimization objective because it’s more practical.

Note that the definition of CFI in Equation 2 requires

gradient evaluation, which is challenging on noisy hardware.

This could be resolved by using the “parameter-shift” rule

detailed in Section III-B.
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B. Parameter-Shift Rule for CFI Evaluation

As shown in Section III-A, CFI evaluation requires gradient

evaluation. Note that even if we don’t use a gradient-based op-

timizer, evaluation of our optimization objective still requires

gradient. The “parameter-shift” rule makes such evaluations

possible on noisy hardware. When running on real hardware,

we do not have the analytic form of output probabilities

and only have access to the noisy sensing circuit. Numerical

derivatives via finite differences fail to work since the shot

noise and machine noise result in larger fluctuation than a

slight change in the signal. A method called the “parameter-

shift” rule, similar to backpropagation in neural networks,

resolves this problem by enabling analytic gradient evaluation

[16], [17], [19]. As shown in Figure 3, the gradient at angle

value θ can be estimated with function values at θ + π
2 and

θ − π
2 , and this is proven to be true even with noise [16],

[17]. As detailed in Appendix A of [16], noises such as

dephasing and depolarizing channels satisfy this assumption.

Mathematically, in our application, gradient of probability of

measuring n on signal ω could be written as
dPr(n|ω)

dω
=

t2

2 (Pr(n|ω + π
2 ) − Pr(n|ω − π

2 )). Note that this formula is

for the single-qubit case. For an N -qubit sensing circuit, we

use a simple extension with 2N additional circuit evaluations,

each time adding/subtracting π
2 to one qubit and keeping

other qubits constant. The “parameter-shift” rule allows for

macroscopic step sizes instead of microscopic step sizes and

is therefore robust to noise.

Numerical Gradient Analytic Gradient (Parameter Shift)

Fig. 3: Parameter-shift rule for gradient estimation on noisy

circuits: to estimate the derivative of a quantum observable,

the naive finite-difference approximation fails on practical

hardware—true derivative is overshadowed by noise. The

“parameter-shift” rule proves that gradient at θ could be

estimated with function values at θ + π
2 and θ − π

2 , which

resolves this problem. Our CFI evaluation requires gradient of

the signal, which is a parameter used N times (on N qubits).

This requires a simple extension of the parameter-shift rule:

instead of two additional evaluations, we need 2N additional

evaluations, each time adding/subtracting π
2 to one out of the

N qubits. The ”parameter-shift” rule gives numerically-stable

gradient values, allowing for optimization on real hardware.

C. Baseline Protocols

We use parallel Ramsey experiments [7] and two real-

izations of GHZ states [31] as baseline protocols. Ramsey

has classical scaling but is more robust, whereas GHZ states

achieve high theoretical QFI (Heisenberg scaling) but 1) suffer

entanglement gate error and 2) decohere easily.

Two types of decoder could be constructed for GHZ states,

both optimal in the noiseless case, as shown in Figure 4.

We use a comparison of the two as a motivating example to

show how two theoretically identical decoders are affected by

practical hardware constraints differently. The first decoder is

a uniform Hadamard rotation on all qubits which transforms

information in parity (GHZ-H), the other one is symmetric to

the state prepration circuit - chained CNOT gates followed by

a Hadamard gate (GHZ-INV).

GHZ: Uniform-H Decoder

H • Rz(φ) H

• Rz(φ) H

Rz(φ) H

GHZ: Inverse-symmetric Decoder

H • Rz(φ) • H

• Rz(φ) •

Rz(φ)

Fig. 4: Two GHZ decoders. Both are optimal in the noiseless

case, but in practical scenarios, they are subject to different

noise tradeoffs. The uniform-H decoder avoids higher-error

CNOT gates but requires parity readout, which is susceptible

to readout errors. The inverse-symmetric decoder uses more

CNOT gates, but concentrates information on one qubit, and

is thus more robust to readout errors. A comparison of the

two shows that different noise combinations favor different

decoder designs, and it is not sufficient to only consider QFI

of the encoded state.

The drawbacks of existing protocols motivate the need to

optimize circuits that give relatively high QFI while being

robust to system noise/errors, which we demonstrate with

variational optimization with a practical objective function.

IV. VARIATIONAL OPTIMIZATION

In Section III-C we introduced three baseline protocols:

parallel Ramsey (independent Ramsey experiments on each

sensing qubit), GHZ with uniform-H decoder (GHZ-H), and

GHZ with inverse-symmetric decoder (GHZ-INV). These pro-

tocols are suboptimal on practical hardware: parallel Ramsey

only gives classical (square-root) scaling, and GHZ states tend

to decohere easily in noise. Considering imperfect control,

interrogation noise, and readout error of each specific platform,

we believe an architecture-aware and noise-aware circuit op-

timization approach can achieve the highest sensitivity under

practical constraints. In all our experiments and simulations,

we compare our optimization algorithm with the above three

baselines.
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A. Objective Function

As mentioned in Section III-A, we base the objective

function on CFI. The signal is a Rz rotation on the sensing

qubit(s) proportional to time, with angle φ = ωt. Since we

ultimately care about signal ω rather than φ, this means an

extra factor of t2: CFI(ω) = t2CFI(φ). Based on Equation 1,

maximizing SNR per unit time is equivalent to maximizing

σ−2
ω̂ ≤ Nexp · C̃FI(ω) =

t2CFI(φ)

t+ toverhead

· Tunit (3)

where t is signal accumulation time, a parameter we can con-

trol, and toverhead is the time overhead for encoding, decoding

and measurement, a parameter determined by hardware and

dependent on circuit structure. Nexp is the number of repeated

experiments, and Tunit is unit time. We use Equation 3 as the

objective function for optimization.

Due to noise, there is a tradeoff between CFI(φ) and t.

Both terms contribute positively to the objective function, yet

a large t means longer exposure to interrogation noise, which

causes a decrease in CFI(φ) (CFI(φ) is upper-bounded by N2

for a N-qubit circuit, according to the Heisenberg Limit). We

aim to balance this tradeoff by finding a state whose CFI(φ)
decreases slowly with t, meaning the state decoheres slowly

in the given noise channel.

The objective function Equation 3 provides a direct bound

on SNR and requires a joint optimization of circuit and probe

time t in the noisy case.

B. Constraining the Design Space

The Hilbert space of entangled states is exponentially large.

To explore such a space, the first step is to constrain the design

space by proposing an ansatz. An ansatz specifies the encoder

and decoder structures. Seen from an optimization perspective,

an ansatz creates a one-to-one mapping from a parameter

vector θ to a sensing circuit. Thus, for a fixed ansatz, any

circuit metric Cθ is simply a function of θ, and circuit design

becomes a multivariate optimization problem.

The ansatz generation rules are based on both physics prin-

ciples and hardware capacities. From a physics perspective,

since both the initial state and the final measurement are in Z-

basis, we stipulate the encoder and decoder structures (though

not parameters) to be symmetric. From a co-design perspec-

tive, we base our ansatz on the native gates and connectivity

graph of hardware. We define three hyperparameters: l circuit

layers, k single-qubit gates per layer, and m entanglement

gates per layer. By setting these hyperparameters, we could

control how local/global we want the entanglement to be,

and sequentially explore circuits with increasing depths. Any

ansatz that contains redundant, canceling, or spurious gates are

discarded. These design choices, while preserving structural

flexibility, constrains possible circuit structures to a tractable

amount.

C. Optimization Algorithm

Combining the components in the sections above, we have

the full optimization procedure in Algorithm 1. In each itera-

tion, an ansatz is proposed and then optimized with evaluation

on real hardware using the “parameter-shift” rule.

Given N qubits, available gateset U , connectivity graph

G, and hyper-parameters l (number of layers), k (number

of single qubit gates per layer), m (number of two-qubit

entanglement gates per layer), the optimization algorithm

could be divided into two steps per iteration. The first step

is ansatz structure proposal - the algorithm generates random

ansatz structures which satisfy platform constraints and create

meaningful entanglements. The specific rules for ansatz gener-

ation is platform-dependent, and we show an example based on

the IBM gateset with our pseudo-code. The proposed ansatz

structure parametrizes the circuit into a number of rotation

angles, and turns the problem into a continuous multivariate

optimization. The second step is continuous optimization.

Evaluation of objective function could be done on real hard-

ware using the ”parameter-shift” rule, and we choose some

classical optimizer (e.g. Powell, COBYLA), considering both

the speed of convergence (since hardware evaluation could be

expensive) and quality of solution (to avoid local optima).

Algorithm 1 Sensing Circuit Optimization (with IBM gateset)

For N -qubit system, given hyper-parameters k, l,m

for i = 1, ..., itermax do

// Ansatz Construction

for j = 1, ...l do

1. Randomly choose k out of N qubits, q1, ...qk to

apply a single-qubit U3 gate on each. U3 gate on qp
parameterized by (θj,p,0,θj,p,1,θj,p,2) (p=1,...k).

2. Based on connectivity graph G, randomly choose m

non-repeating (control, target) pairs out of N qubits to

do an entanglement operation on each pair. If j = 1,

make sure control qubit either 1) has been chosen in

step 1, or 2) has been chosen as the target in a prior

entanglement operation in the current step.

end for

// Continuous Optimization

1. Initialize θ ∈ [0, 2π]6kl, t ← 10μs (or some value

between 1
10T2 and T2).

2. Use a classical optimizer (e.g. Powell, COBYLA) to

obtain maxθ,t Cθ,t =
t2CFI(φ)
t+toverhead

·Tunit. CFI(φ) obtained via

2N + 1 circuit runs using the “parameter-shift” rule.

3. If Cθ,t higher than previous max, record optimal θ,t,

Cθ,t

end for

return optimal θ,t, Cθ,t

Here we describe the algorithm in more detail using the

example of the IBM machine gateset and connectivity. Note

that this could be easily generalized to other platforms, de-

tailed in Section VII-A. The native gateset of IBM machines is

comprised of general U3 gates on single qubits (with three free

parameters), and CNOT gates for entanglement operations. A

combination of U3 gates and CNOT gates per layer allows for

the flexibility of creating parallel (or weakly entangled) local

423

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 17,2022 at 15:06:04 UTC from IEEE Xplore.  Restrictions apply. 



structures—for N qubits, if we specify l = 1 layer, k = N

single-qubit gates per layer, and m = 0 entanglement gates

per layer, then a scheme similar to Parallel Ramsey could be

recovered. Similarly, if we specify l = 1 layer, k = 1 single-

qubit gates per layer, and m = n− 1 entanglement gates per

layer, with the correct order of entanglement gates the global

GHZ protocol could be recovered. Choosing different values

of l, k,m, we could obtain arbitrary entangled states. However,

a circuit that is too deep will likely incur high gate errors. In

our simulations as well as experiments, one layer is usually

sufficient.

This algorithm is designed to be generalizable to other

sensing platforms and applications. For a different platform,

e.g. when we have global twisting interactions which allow us

to create spin-squeezed states, we would modify the template-

generation part slightly, and no longer aim to create parallel

local structures. The continuous optimization part extends

naturally to determination of optimal twisting/untwisting, and

similar methods are seen in [20], [32]. In general, for sensing

platforms with more global and constrained controls, there will

be less flexibility in ansatz construction, but the continuous

optimization step becomes more important.

V. EXPERIMENT RESULTS

2 4 6 8 10 12 14
number of qubits

0

5

10

15

20

25

30

CF
I

CFI Scaling on IBM Hardware

Optimized
Classical Parallel
GHZ-H
GHZ-INV

Fig. 5: CFI scaling of baseline and optimized circuits up to

15 qubits on IBM’s machine “Paris”. Signal is applied with

small Rz rotation across the signal accumulation time. The

”echo” technique is used (negating the signal and applying

X) to suppress detuning, as in other sensing applications.

GHZ protocols yield decreasing performance at ≥ 4 qubits.

The optimized circuit employs local entangled structures and

overcomes this problem, achieving up to 3.19x CFI gain from

the classical limit, and up to 13.2x SNR improvement from

GHZ protocol. Due to limited hardware access, the the number

of total optimization iterations and repeats we can run is

limited. For this reason, we fix sensing time to be 0.355us in

experiment (whereas in simulation we are able to co-optimize

time, resulting in longer t and lower CFI(φ), seen in Figure 7).

The variance can also be expected to be smaller without such

limitations.

We demonstrate the optimization algorithm on IBM quan-

tum computer “Paris”, up to 15 qubits. Signal is applied

with small Rz rotations uniformly across all sensing qubits

throughout the signal accumulation time. We note that for

such a system size, simulation-based optimization is infeasible

due to the expensive computation of simulation of 15-qubit

circuits (which needs to be repeated thousands of times

as an optimization subroutine). Optimization outperforms all

existing baseline protocols, achieving up to 3.19x gain from

the classical limit. Furthermore, we note that the baseline

protocols are run with existing circuit compiler optimization to

unnecessary swap gates based on hardware connectivity map,

which shows the advantage of variational circuit optimization

compared to existing (fixed) compiler optimization.

We observe that for GHZ states, CFI starts to decrease when

we have more than three qubits, probably due to errors from

the chained CNOT gates and the short coherence time of multi-

qubit GHZ states. This might explain the significant drop in

performance of GHZ states (vastly underperforming classical

parallel) for more than four qubits.

While analyzing the result states returned by the adaptive

learning protocol, we noticed that variational optimization

never returned max entanglement chain of length greater than

5, and the circuit structure is generally not symmetric across

probe qubits—by taking advantage of local entanglements

and adapting to variation in qubit/gate qualities, adaptive

optimization achieves higher scalability. The circuit learning

approach enables more flexibility in balancing the tradeoffs

between a large number of entangled qubits (higher QFI

capacity) vs. gate noise from entanglement operations, as well

as the sensitivity of strongly-entangled states such as GHZ

vs. their susceptibility to noise. The effects of different noise

sources are studied in more detail in Section VI.

We also noticed the difference between experiment and

simulation with device statistics at long accumulation time

(Figure 5 and Figure 7)— although simulation suggests signal

accumulation time could be much longer (to maximize SNR),

in practice we observed that results can be quite inconsistent

across repeated trials when accumulation time is long, proba-

bly due to other fluctuating noise sources on the real device.

Due to this reason, accumulation time in experiment is kept

much shorter than simulation, resulting in more significant

effects of gate/read noise as opposed to T1/T2 noise in

experiment.

VI. OPTIMIZATION RESULTS UNDER DIFFERENT

PLATFORM CONDITIONS

A. Optimization with Different Noises

We demonstrate that our optimization algorithm is system-

adaptive by simulating different platform conditions, including

different noise decompositions, signal distributions, and gate-

set or connectivity constraints.

1) Noise Decomposition: Noise is incurred by each

operation—encoding, signal accumulation, decoding, and

readout. The contribution of each noise component depends on

specific circuit parameters (encoder/decoder depth, accumula-

tion time, whether the output distribution is “concentrated” on

some qubits, etc.). As mentioned in Section III-A, QFI quanti-

fies the amount of information contained in the quantum state

and decreases monotonically under noisy quantum channels.

Calculating the QFI at different points in the circuit allows us
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to see how much information is lost at each (noisy) step, as

shown in Figure 6. We compare 4 circuits: a circuit obtained

via optimization with full noise and three baseline baselines-

Parallel Ramsey, GHZ with uniform-H decoder, and GHZ with

inverse-symmetric decoder. We observe that parallel Ramsey

starts with low QFI but is more robust to noise, whereas

GHZ states start with high QFI (optimal in noiseless case),

but decohere easily during interrogation. The optimized result

starts with a QFI lower than GHZ, but is more robust to noise,

yielding a high QFI after all noisy operations.

2) Optimization Results: In this section, we consider four

different noise scenarios: full noise model including gate

noise, interrogation noise, and readout noise, and removing

(or suppressing) each noise source. In each noisy scenario,

we run our optimization algorithm to maximize SNR and

compare the optimized results with baseline sensing protocols:

parallel Ramsey, GHZ state with uniform-H decoder, GHZ

state with inverse-symmetric decoder. The optimization target

is Equation 3. For each baseline circuit, we only optimize on

the interrogation time parameter. For the optimized result, we

jointly optimize circuit and interrogation time.

For optimization, we use Powell [33] and COBYLA [34]

gradient-free optimizers. Powell allows for the exploration of

a relatively large parameter space and is less likely to return

a local maximum in our optimization application, although

at the cost of a larger number of iterations. COBYLA is

observed to converge much faster, although sometimes outputs

local maxima. The simulation results shown in this section

come from Powell optimizer which in general finds better

solutions, but in experiment (or for large simulation) where

circuit evaluations are more expensive, we use COBYLA for

its evaluation efficiency.

The orange (bottom) part shows the final QFI after all

noises, equal to CFI, which is our optimization objective.

Each colored region shows the additional QFI improvement

of given circuit if the labeled operation is perfect. Total height

denotes QFI in the ideal case. The optimized circuit has less

total QFI than GHZ states because we are optimizing for

the highest practical (orange) region. A comparison between

GHZ-H and GHZ-INV shows that decoder noise is higher in

GHZ-INV, which is expected since GHZ-INV has 2 CNOT

gates in decoder, whereas GHZ-H only has single-qubit gates.

The readout noise in GHZ-INV is expected to be smaller than

GHZ-H when the starting state is somewhat close to GHZ.

We suspect the stronger effect from readout noise to GHZ-INV

here is because the final state is already highly decohered, thus

making the effect of readout noise harder to predict. Overall,

our adaptive optimization found a protocol that performs 2-3x

better specifically under the given constraints.

As shown in Figure 7, under full noise, the classical parallel

circuit allows for the longest probe time, although with a

relatively low CFI. GHZ states give higher CFI but are limited

to a much shorter probe time. The parallel scheme gives square

root scaling, and the scaling of GHZ states approximately sat-

urates. It is also notable that GHZ with an inverse-symmetric

decoder achieves much higher sensitivity than the uniform-

H decoder, which shows that readout errors incurred by the

parity-readout for the uniform-H decoder outweigh the errors

from the N − 1 extra CNOT gates of the inverse-symmetric

decoder.

The optimized circuit achieves much better scaling than

baseline circuits. Theoretically, when we have depolarizing

channels which overlap with the signal direction, the asymp-

totic scaling cannot surpass square root [35]. Although we are

still in the few-qubit regime and far from asymptotics, this

might explain why we could not get a linear scaling.

Optimization yields up to 1.75x SNR gain in 5 qubits. The

optimized circuit obtains higher SNR largely by achieving a

high CFI, at the cost of a relatively short probe time. The

optimized results all come from one-layer ansatz’s. For 1

to 3 qubits, the optimized results entangle the full system,

whereas for 4-qubit and 5-qubit systems the optimal solutions

are two entangled subsystems. The reason is probably twofold:

1) gate errors during encoding/decoding accumulate when we

entangle too many qubits; 2) Strongly entangled states like

GHZ states are highly susceptible to noise and is no longer

optimal for sensing under a non-negligible amount of noise.

The high noise susceptibility leaves us with a shorter probe

time which hurts sensitivity. GHZ state can be seen as an

extreme case of both these effects. The optimized circuit, by

leveraging local rather than global entanglements, is able to

overcome these issues and achieve better scalability.

To better understand the effects of each noise source, we

also removed/suppressed each noise type, keeping the other

two sources constant. Gate and readout noises can be removed

by simulating perfect gates/readout. Interrogation noise is

decoherence noise coming from the characteristic lifetimes

of the qubit, called T1 and T2. Shorter interrogation times

(relative to T1 and T2) lead to lower decoherence error.

To suppress interrogation noise, (Note that we could not

remove interrogation (T1,T2) noise entirely, since that will

result in infinite probing time and thus infinite sensitivity.)

we simulate T1 and T2 as 10 times their actual value. Results

are shown in Figure 8. We obtain 1.75x, 1.74x, 1.15x SNR

improvements when removing gate noise, removing readout

noise, and suppressing T1/T2 noise, respectively.

Note that GHZ with inverse-symmetric decoder outperforms

the classical scheme once we remove gate noise, which shows

the effects of CNOT gate errors. What is surprising at first

sight is that after removing readout error, inverse-symmetric

decoder still performs better than uniform-H decoder for GHZ

states, even with the N − 1 extra CNOT gates. A closer QFI

analysis shows that although an H rotation before measurement

is optimal in the noiseless case, with interrogation noise H is

no longer the best rotation direction. Rotating each qubit in a

suboptimal direction, in this case, results in less system QFI

compared to a chain of CNOT gates followed by a rotation

of one qubit in a suboptimal direction. The advantage of

optimization becomes smaller if we suppress interrogation

errors while keeping gate and readout error constant. This

shows our optimization mainly targets interrogation noise,

which is the largest noise component shown in Figure 6. When
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Fig. 6: Decomposition of noise effects from each step: encoder, interrogation, decoder, readout. Although these noise sources

are independent, their effects need to be considered holistically—a state that is robust to one noise type usually is vulnerable

to others. Optimization aims to balance the tradeoff of these noise effects. The orange (bottom) part shows the final QFI after

all noises, equal to CFI, which is our optimization objective. Each colored region shows the additional QFI improvement of

given circuit if the labeled operation is perfect. Total height denotes QFI in the ideal case. The optimized circuit has less total

QFI than GHZ states because we are optimizing for the highest practical (orange) region. Our optimization found a protocol

that performs 2-3x better specifically under the given constraints. This plot is based on a simulation of a 3-qubit sensor with

a 10kHz signal and a fixed probing time of 20μs.
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Fig. 7: Optimization results with full noise. Noise statistics are based average of hardware calibration data of IBM

superconducting hardware: single qubit 1% depolarizing channel, CNOT 3% (independent) depolarizing channels on both

qubits, readout 5% error, T1 52.2μs, T2 62.8μs. Signal strength is 10kHz. The optimization objective is
t2CFI(φ)
t+toverhead

(Equation 3)

with a hardware-determined toverhead. Optimization requires balancing the tradeoff between CFI and interrogation time t. In

addition to SNR derived from our objective function, we also plot out the optimal CFI and t which maximize the optimization

objective.

interrogation noise is suppressed, the dominant noise source

comes from the control itself, and simple protocols are highly

favored. Our optimization technique provides the greatest gain

when the control noise is not highly dominant, meaning we

can afford to create interesting (and probably slightly more

complex) states.

B. Optimization with different signal distributions

Different sensing applications concern input signals with

different distributions. By adaptively optimizing on the actual

signal, our optimization algorithm can exploit the non-uniform

signal distribution and find a circuit that works especially

well with the given distribution. In this section, we compare

baseline circuits with optimization run on uniform as well

as Gaussian signal distributions with different variances. We

observe that optimizing with different distributions yields the

same circuit structure, but different circuit parameters. As

shown in Figure 9 optimization run on non-uniform signal

distributions gives the best results (up to 1.51x CFI im-

provement), with increasing gain at small variances. This is

especially well-suited to applications where the signal has

frequency peaks, such as NMR spectroscopy [36].

C. Optimization with limited control

The other important flexibility given by our optimization

technique is that we could tailor to the available control

of each platform. On some platforms, the control is greatly

limited. Since our optimization technique takes gateset and

connectivity map as inputs and proposes ansatz’s based on

these constraints, it is also suitable for such applications.

1) Collective Control: For certain sensing applications, e.g.

dark spins of nitrogen-vacancy (NV) platform [37] (detailed in

Section VII-A1), we do not have individual addressability of

the probe spins. Each reporter spin will undergo roughly the

same transformations given the drive field, and thus the avail-

able control is an arbitrary rotation uniformly applied to all

probes. Likewise, the Sz-Sz entanglement operation between

NV and probes also applies simultaneously to all probes,

which could be modeled as simultaneous controlled-Rz gates
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Fig. 9: Optimization results under different signal distributions.

Since the signal is non-constant, we use CFI rather than the

signal-dependent SNR as the metric (see Section III-A). The

data is taken from a simulation of three qubits under the

full noise model. Signal (Rz rotation angles) are modeled

as Gaussians with unit mean and varying standard deviation,

as displayed on the x-axis. Note that although we vary the

distribution of signal magnitude, the signal is always applied

uniformly to each sensing qubit (i.e. the Rz rotation angles

on qubits i and j are kept the same). We compare baseline

protocols, a circuit optimized on uniformly-distributed signal

(“Optimized on Uniform”, orange), and a circuit optimized on

the actual signal distribution (“Optimized on Actual”, purple).

Optimizing on actual data gives the highest sensitivity, which

shows that our optimization technique can take advantage of

non-uniform signal distributions, yielding up to 1.51x CFI

improvement. We also observe that optimizing with different

distributions yields the same circuit structure, but different

circuit parameters.

with different rotation angles, and thus easily interface into

our optimization framework.

2) Limited Connectivity: On certain platforms, the qubit

connectivity is severely limited. Although in principle, by

“relaying” operations we are able to perform entanglement on

an arbitrary pair of qubits, the gate error and time overhead

could be considerable, and thus a good model should take

the connectivity constraints into consideration. For example,

nuclear spins around the NV center [38] could only entangle

with each other via the NV center. Such connectivity con-

straints are entirely handled by our optimization framework

in Algorithm 1 which specifies the ansatz based on the

connectivity map.

VII. OUTLOOK

A. Applications

Based on the variational optimization method’s capability of

achieving high sensing performance while considering noise,

gate error, and limited control, our method could be widely

applied to different sensing platforms and applications.

1) Nitrogen-Vacancy Sensing: The nitrogen-vacancy (NV)

center in diamond is a promising sensing platform due to its

long coherence time in room temperature [39] and photolu-

minescence property, which allows for easy initialization and

readout [40]. NV centers can be used to sense magnetic field

[41], [42], electric field [43] and temperature [44]–[46]. Sur-

face reporter spins [47], [48] and NV ensemble sensing [49]

show promise in increasing sensitivity and reducing sensing

volume. Circuit learning could be used to exploit probe spins

near the diamond surface for sensitivity enhancement. Ab-

stracted to a sensing circuit, this corresponds to a constrained

gateset of a time-dependent probes-NV entanglement gate and

uniform controls on probe spins. Via adaptive optimization, we

could adjust the circuit to the material-determined distribution

of probe spins, utilize the dipolar-dipolar interaction between

the probe spins, and optimize the orientation of the sensing

state as well as entanglement duration.

2) Dark Matter Detection: About 85% of the matter in

today’s universe consists of dark matter and dark energy [50].

Axions are one of the most promising dark matter candidates

[51], [52], and can be detected by the resonance frequency

shift of the qubit coupling to the superconducting cavity [4].

However, axion detection is difficult since long-distance entan-

glement is required [53]—one main challenge is photon loss

in long-distance fiber [54]. Our method could help alleviate

photon loss by optimizing for the optimal entangled photon

state in spatially separated superconducting cavity detectors

[55].

3) Squeezed States: Squeezed states improve sensitivity

by suppressing the uncertainty on one quadrature observ-

able while amplifying the uncertainty over another non-
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commutative quadrature observable. Experimental progress

includes LIGO for gravitational wave detection [13], [14] and

spin-squeezing using cold atoms for spectroscopy [11], [12],

[56]. Building upon previous works [20], [32], our method

can be used to optimize for twisting time, signal direction,

and measurement scheme for higher sensitivity.

4) Atomic Clocks: Atomic clocks are currently used to

define a second with the precision of 10−18 (which means

it will err by 1 second within the age of our universe) [57],

and play a central role in precision measurement applications

such as global positioning system (GPS). Finding and using

various techniques to keep the atomic transition stable is

crucial to sensitivity [2]. Atomic clocks use a feedback loop

to lock the frequency of a local oscillating field to the atomic

transition frequency, and the oscillating field frequency is

defined as the reference clock. Our circuit optimization can be

applied to the feedback loop system to potentially stabilize the

atomic transition and the laser frequency beyond the current

limitations.

B. Future Directions

We demonstrate an optimization algorithm which surpasses

the classical limit and overcomes the plateauing or decreasing

performance of existing entanglement-based protocols at in-

creased system sizes. We believe the algorithm could be further

improved by considering the following areas.

One of the challenges of running optimization on hardware

is the difficulty of obtaining convergence since device noise

fluctuates with time, and the optimal circuit at each given time

is different. For this reason, it is key that the optimization

routine does not take too long (so that the noise does not

fluctuate too much), and that the optimized sensing circuit

should be updated periodically. This means an optimizer that

is efficient in the number of objective function evaluations

is highly important. In our study, we did a preliminary

comparison of different optimizers, including Nelder-Mead

[58], Powell [33], COBYLA [34], and in general observed a

tradeoff between speed of convergence and solution quality.

The simulation results in this paper are based on Powell,

which converges slowly but outputs high-quality solutions,

whereas experiment results are based on COBYLA which is

more evaluation-efficient (by doing polynomial interpolation

with points explored in the parameter space) but sometimes

outputs suboptimal solutions. For the optimization algorithm

to be run in real sensing applications, we hope to find a robust

optimizer which strikes a good balance of convergence speed

and solution quality.

Another way to speed up the optimization is to reduce the

number of proposed ansatz’s. The advantage of our algorithm

comes largely from the flexibility of constructing various

circuit structures based on available gateset and connectivity.

However, without losing this flexibility, we would benefit

from automatically “ruling out” suboptimal ansatz’s, which

would be possible if we design some heuristics to guide

ansatz selection. The current algorithm does rule out some

obviously bad circuit structures, but by considering permuta-

tion symmetry, circuit transformation/simplification, we could

make the template construction step smarter, thereby saving

optimization cost.

We also hope to investigate whether having ancilla qubits

that are not exposed to the signal could help improve sensi-

tivity. This is relevant in some sensing applications, such as

the NV sensing platform, where we have control over nuclear

spins close to the NV center [38].

Finally, to make this optimization more applicable to real

sensing applications, we would like to consider more realistic

physical models, such as interactions between probe qubits.

We would also like to consider more complex and practi-

cal signal distributions, for example in NMR spectroscopy

applications. Our adaptive circuit optimization could also fit

into a Bayesian framework to fully take advantage of prior

knowledge of the signal.

VIII. CONCLUSIONS

Quantum sensing is an emerging area of quantum tech-

nology, which exploits quantum mechanical effects on dif-

ferent hardware platforms to achieve enhanced sensitivity.

Quantum sensing already has practical impacts in areas such

as magnetometry [59] and timekeeping [2]. Recent experi-

mental progress such as LIGO demonstrates the power of

entanglement-enhanced sensing [13], [14]. We are entering

the exciting transition from proof-of-concept experiments to

practical applications [1].

On practical hardware, where we have limited control ca-

pacity over a relatively small number of qubits and noise from

various sources, we find existing protocols that are optimal in

ideal cases to perform poorly. Thus, it is important to adopt

a co-design approach: find sensing circuits tailored to the

specific underlying hardware and exploit application-specific

noise and signal characteristics. We demonstrate a quantum-

classical hybrid algorithm for sensing circuit optimization.

Our approach mirrors the myriad of recent work [60] on

applying machine learning approaches to improve classical

system optimization and design optimization. Our optimiza-

tion algorithm surpasses the classical limit and overcomes

the plateauing/decreasing performance of existing protocols,

both in simulation and in experiment. We also show that

the algorithm is especially advantageous when trained on

a highly non-uniform signal distribution, which applies to

various sensing applications such as NMR spectroscopy. The

optimization method could easily be generalized to different

platforms with different types of control, even going beyond

the gate model abstraction and directly parameterizing the

control Hamiltonians. We propose extensions of our method

for different sensing applications range from nanoscale field

sensing to dark matter detection and timekeeping. We believe

that a systems design approach with noise-awareness, real-

istic classical-quantum interfacing, and adaptivity to diverse

physical platforms and applications is essential to achieving

quantum advantage on practical sensing hardware.
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