Submodular Maximization via Taylor Series Approximation

Gozde Ozcan!

Abstract

We study submodular maximization problems with matroid
constraints, in particular, problems where the objective can
be expressed via compositions of analytic and multilinear
functions. We show that for functions of this form, the
so-called continuous greedy algorithm [1] attains a ratio
arbitrarily close to (1 — 1/e) ~ 0.63 using a deterministic
estimation via Taylor series approximation. This drastically

reduces execution time over prior art that uses sampling.

1 Introduction.

Submodular functions are set functions that exhibit a
diminishing returns property. They naturally arise in
data summarization [2-4], facility location [5], recom-
mendation systems [6], influence maximization [7], sen-
sor placement [8], dictionary learning [9,10], and active
learning [11]. In these problems, the goal is to maximize
a submodular function subject to matroid constraints.
This is generally NP-hard, but a celebrated greedy al-
gorithm [12] achieves a 1 — 1/e approximation ratio on
uniform matroids. For general matroids this approxima-
tion ratio drops to 1/2 [13]. The continuous greedy algo-
rithm [1,14] improves this: it maximizes the multilinear
relaxzation of a submodular function in the continuous
domain, guaranteeing a 1 — 1/e approximation ratio [1].
The fractional solution is then rounded to a feasible in-
tegral solution, e.g., via pipage rounding [15] or swap
rounding [16]. The multilinear relaxation of a submod-
ular function is its expected value under independent
Bernoulli trials; however, computing this expectation is
hard in general. The state of the art is to estimate the
multilinear relaxation via sampling [1,14]. Nonetheless,
the number of samples required in order to achieve the
superior 1 — 1/e guarantee is quite high; precisely be-
cause of this, the resulting running time of continuous
greedy is O(N®) in input size N [1].

Nevertheless, for some submodular functions, the
multilinear relaxation can be computed efficiently. One
well-known example is the coverage function, which we
describe in Sec. 4; given subsets of a ground set, the cov-
erage function computes the number of elements covered

Supported by NSF grant CCF-1750539.

1{gozcam, amoharrer, ioannidis}@ece.neu.edu, Electrical and
Computer Engineering Department, Northeastern University, Boston,
MA, USA.

Armin Moharrer

1 Stratis Ioannidis!

in the union of these subsets. The multilinear relaxation
for coverage can be computed precisely, without sam-
pling, in polynomial time. This is well-known, and has
been exploited in several different contexts [15,17,18].

We extend the range of problems for which the mul-
tilinear relaxation can be computed efficiently. First, we
observe that this property naturally extends to multilin-
ear functions, a class that includes coverage functions.
We then consider a class of submodular objectives that
are a summation over non-linear functions of these mul-
tilinear functions. Our key observation is that the poly-
nomial expansions of these functions are again multilin-
ear; hence, compositions of multilinear functions with
arbitrary analytic functions, that can be approximated
by a Taylor series, can be computed efficiently. A broad
range of problems, e.g., data summarization, influence
maximization, facility location, and cache networks (c.f.
Sec. 6), can be expressed in this manner and solved ef-
ficiently via our approach.

In summary, we make the following contributions:

e We introduce a class of submodular functions that
can be expressed as weighted compositions of ana-
lytic and multilinear functions.

e We propose a novel polynomial series estimator
for approximating the multilinear relaxation of this
class of problems.

e We provide strict theoretical guarantees for a vari-
ant of the continuous greedy algorithm that uses
our estimator. We show that the sub-optimality
due to our polynomial expansion is bounded by a
quantity that can be made arbitrarily small by in-
creasing the polynomial order.

o We show that multiple applications, e.g., data sum-
marization, influence maximization, facility loca-
tion, and cache networks can be cast as instances
of our framework.

e We conduct numerical experiments for multiple
problem instances on both synthetic and real
datasets. We observe that our estimator achieves
74% lower error, in 89% less time, in comparison
with the sampling estimator.

We review related work and technical background in
Sec. 2 and 3, respectively. We introduce multilinear
functions in Sec. 4. We present our estimator and main
results in Sec. 5, examples of cases that can be instances

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

of our problem in Sec. 6, and our numerical evaluation
in Sec. 7. We conclude in Sec. 8.

2 Related Work.

We refer the reader to Krause and Golovin [5] for a
thorough review of submodularity and its applications.
Accelerating Greedy. The seminal greedy algorithm
proposed by Nemhauser et al. [12] provides a 1 —1/e ap-
proximation ratio for submodular maximization prob-
lems subject to the uniform matroids. However, for
general matroids this ratio deteriorates to 1/2 [13]. Sev-
eral works have introduced variants to greedy algorithm
to accelerate it [19,20], particularly for influence max-
imization [21,22]. However, these accelerations do not
readily apply to the continuous greedy algorithm.
Multilinear Relaxation. The continuous greedy al-
gorithm was proposed by Vondrdk [14] and Calinescu
et al. [1]. Maximizing the multilinear relaxation of sub-
modular functions improves the 1/2 approximation ra-
tio of the greedy algorithm [13] to 1 — 1/e [1] over gen-
eral matroids. Beyond this, the multilinear relaxation
has been used to obtain guarantees for non-monotone
submodular maximization [23,24], and pipage round-
ing [15]. All of these approaches resort to sampling; as
we provide general approximation guarantees, our ap-
proach can be used to accelerate these algorithms as
well.

DR-Submodularity. Submodular functions have also
been studied in the continuous domain recently. Con-
tinuous functions that exhibit the diminishing returns
property are termed DR-submodular functions [25-30],
and arise in mean field inference [31], budget alloca-
tion [32], and non-negative quadratic programming [26].
DR-submodular functions are in general neither convex
nor concave; however, gradient-based methods [25-27,
33] provide constant approximation guarantees. The
multilinear relaxation is also a DR-submodular func-
tion; hence, obtaining fractional solutions to multilinear
relaxation maximization problems, without rounding, is
of independent interest. Our work can thus be used to
accelerate precisely this process.

Stochastic Submodular Maximization. Stochas-
tic submodular maximization, in which the objective
is itself random, has attracted great interest recently
[17,33-36], both in the discrete and continuous domains.
A quintessential example is influence maximization [7],
where the total number of influenced nodes is deter-
mined by random influence models. In short, when sub-
modular or DR-submodular objectives are expressed as
expectations, sampling in gradient-based methods has
two sources of randomness (one for sampling the ob-
jective, and one for estimating the multilinear relax-
ation/sampling inputs); continuous greedy still comes

with guarantees. Our work is orthogonal, in that it can
be used to eliminate the second source of randomness.
It can therefore be used in conjunction with stochastic
methods whenever our assumptions apply.
Connection to Other Works. Our work is closest
to, and inspired by, Mahdian et al. [37] and Karimi et
al. [17]. To the best of our knowledge, the only other
work that approximates the multilinear relaxation via
a power series is [37]. The authors apply this technique
to a submodular maximization problem motivated by
cache networks. We depart by (a) extending this ap-
proach to more general submodular functions, (b) estab-
lishing formal assumptions under which this generaliza-
tion yields approximation guarantees, and (c) improv-
ing upon earlier guarantees for cache networks by [37].
In particular, the authors assume that derivatives are
bounded; we relax this assumption, that does not hold
for any of the problems we study here.

Karimi et al. [17] maximize stochastic coverage
functions subject to matroid constraints, showing that
many different problems can be cast in this setting.
Some of the examples we consider (see Sec. 6) consist
of compositions of analytic, non-linear functions with
coverage functions; hence, our work can be seen as a
direct generalization of [17].

3 Technical Preliminaries.

3.1 Submodularity and Matroids. Given a
ground set V. = {1,...,N} of N elements, a set
function f : 2¥ — R, is submodular if and only
it f(BU{e}) — f(B) < f(AU {e}) — f(4), for all
A C B CV and e € V. Function f is monotone if
f(A) < f(B), for every A C B.
Matroids. Given a ground set V, a matroid is a pair
M = (V,I), where T C 2" is a collection of independent
sets, for which the following holds:
1. f BeZ and A C B, then A € T.
2. If A,B € 7 and |A| < |B|, there exists x € B\ A
st. Au{z} eT.
The rank of a matroid r (V) is the largest cardinality
of its elements, i.e.: rp(V) = max{|A| : A € T}. We
introduce two examples of matroids:
1. Uniform Matroids. The uniform matroid with
cardinality k is Z = {S C V, |S| < k}.
2. Partition Matroids. Let By,...,B,, C V be a
partitioning of V, i.e., (,~; Be = 0 and J,-, B, =
V. Let also ky € N,/ = 1,...,m, be a set of
cardinalities. A partition matroid is defined as
IT={SC2V | |SNBy| <k, forall £ =1,...,m}.
Change of Variables. A set function f : 2V — R,
can be interpreted as f : {0,1}¥ — R, via f(x) £
f(supp(x)) where supp(x) is the support of x € {0, 1}%.
We adopt this convention for the remainder of the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

paper. We also treat matroids as subsets of {0,1}",
defined consistently with this change of variables via

(3.1) M = {x € {0,1}" : supp(x) € T}.
For example, a partition matroid is:

M={xe{0,1}" |1 (Ciep, @i <he)}-

The matroid polytope P(M) C [0,1]" is the convex hull
of matroid M, i.e., P(M) = conv(M).

(3.2)

3.2 Submodular Maximization Subject to Ma-
troid Constraints. We consider the problem of maxi-
mizing a submodular function f : {0, 1} — R, subject
to matroid constraints M:

(3.3) maxyepm f(X).

As mentioned in the introduction, the classic greedy al-
gorithm achieves a 1/2 approximation ratio over gen-
eral matroids, while the continuous greedy algorithm [1]
achieves a 1 — 1/e approximation ratio. We review the
continuous greedy algorithm below.

3.3 Continuous Greedy Algorithm. The multi-
linear relaxation of a submodular function f is the
expectation of f, assuming inputs z; are independent
Bernoulli random variables, i.e., G : [0,1]Y — R, , and

(3.4) G(y) =Ex~y[f(x)]= Z f(x) H Yi H (1 —y),

x€{0,1}N @z;=1 @:x;=0

where y = [y;]¥., € [0,1]" is the vector of probabilities
y; = Plx; = 1]. The continuous greedy algorithm first
maximizes G in the continuous domain, producing an
approximate solution to:

(3.5) maxyep(m) G(¥).

The algorithm initially starts with yg = 0. Then, it
proceeds in iterations, where in the k-th iteration, it
finds a feasible point my € P(M) which is a solution
for the following linear program:

(36) maXmep(M) <m7 VG(Yk)>a

After finding my, the algorithm updates the current
solution y as follows:

(3.7) Yi+1 = Yk + Ypmg,

where v, € [0,1] is a step size. We summarize the
continuous greedy algorithm in Alg. 1.

The output of Alg. 1 is within a 1 —1/e factor from
the optimal solution y* € P(M) to (3.5) (see Thm. 3.1

Algorithm 1 the Continuous Greedy algorithm

L: Input: G: PIM) - Ry, 0<y <1
2:yp0,t0,k+0
3: while t <1 do
4: my, <= arg maXy,e p(a) (v, VG(yi))
5: Vi < min(vy,1 —t)
6: Yitl < Ye +yemy, t—t+ v, k< k+1
7: end while
8: return yy
below). This fractional solution can be rounded to

produce a solution to (3.3) with the same approximation
guarantee using, e.g., either the pipage rounding [15] or
the swap rounding [1,16] methods. Both are reviewed
in detail in [38].

Sample Estimator. The gradient VG is needed to
perform step (3.6); computing it directly via (3.4),
involves a summation over 2"V terms. Instead, Calinescu
et al. [1] estimate it via sampling. First, observe that
function G is affine w.r.t a coordinate y;. As a result,

(3.8) (0G(y)/0yi) = Exny[f (K] 41)] = Exny[f ([X]-2)],

where [x];; and [x]_; are equal to the vector x with the
i-th coordinate set to 1 and 0, respectively. The gradient
of G can thus be estimated by (a) producing T random
samples x(), for I € {1,...,T} of the random vector
X, consisting of independent Bernoulli coordinates with
P(z; =1) = y;, and (b) computing the empirical mean
of the r.h.s. of (3.8), yielding:

G/ = Y (F(xO)s) — F(xD]_))/T.

=1

(3.9)

This estimator yields the following guarantee:

THEOREM 3.1. [Calinescu et al. [1]] Consider Algo-
rithm 1, with VG(yy) replaced by ﬁ?(yk) given by
(3.9). Set T = (1 +In|V|), where § = WIVI and
d = rpm(V) is the rank of the matroid. The algorithm
terminates after K = % steps and, w.h.p.,

(3.10) Glyx) 2 (1= (1-8)"G(y") = (1~)G(y")

where y* is an optimal solution to (3.5).

4 Multilinear Functions.

In practice, estimating G (and, through (3.8), its gra-
dient) via sampling poses a considerable computational
burden. Attaining the guarantees of Thm. 3.1 requires
the number of samples per estimate to grow as N2d*,
that can quickly become prohibitive.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

In some cases, however, the multilinear relax-
ation G(y) has a polynomially-computable closed form.
A prominent example is the coverage function, that
arises in several different contexts [15,17]. Let U =
{1, .-, Tn} be a collection of subsets of some ground
set V ={1,...,N}. The coverage f:{0,1} — R, is:

(4.11) F) =30 (1= Tleg, (1 —22)) -

It is easy to confirm that:

G(y) = Exylf(x)] = EXNy[Z?ﬂ (1 —Ilies, (1 - xl))}
(4.12)
= 22;1 (1 - Hiejz(l - Exwy[zz‘])) = f()’)

In other words, the multilinear relaxation evaluated over
y € [0,1]" is actually equal to f(y), when the latter has
form (4.11). Therefore, computing it does not require
sampling; crucially, (4.11) is O(nN), i.e., polynomial in
the input size.

This clearly has a computational advantage when
executing the continuous greedy algorithm. In fact,
(4.12) generalizes to a broader class of functions: it
holds as long as the objective f is, itself, multilinear.
Formally, a function, f : RY — R is multilinear if it
is affine w.r.t. each of its coordinates. Multilinear
functions can be written as:

(413) g(X) = ZEEZ Cp Hiejz T,

where ¢, € R for £ in some index set Z, and subsets
Ji € V.! Clearly, both the coverage function (4.11)
and the multilinear relaxation (3.4) are multilinear in
their respective arguments.

Eq. (4.12) generalizes to any multilinear function:

LEMMA 4.1. Let f RY — R, be a multilinear
function and let x € {0,1}" be a random vector
of independent Bernoulli coordinates parameterized by

y € [0,1]V. Then, G(y) = Ex~y[f(x)] = f(¥)-

The proof can be found in [38]. Lem. 4.1 immedi-
ately implies that all polytime-computable, submodular
multilinear functions behave like the coverage function:
computing their multilinear relaxation does not require
sampling. Hence, continuous greedy admits highly effi-
cient implementations in this setting. Our main contri-
bution is to extend this to a broader class of functions,
by leveraging Taylor series approximations. We discuss
this in detail in the next section.

5 Main Results.

In this section, we show that Eq. (4.12) can be extended
to submodular objectives that can be expressed via com-
positions of analytic functions and multilinear functions.

TBy convention, if Jp, = 0, we set HiEJ@ z; = 1.

Table 1: Notation Summary

R Set of real numbers
Ry Set of non-negative real numbers
G(V,E) Graph G with nodes V and edges E

v Ground set of N elements

f A monotone, submodular set function

T Collection of independent sets in 2"

M Matroid denoting the (V,Z) pair

Convex hull of a set

k Cardinality constraint of a uniform matroid

X Global item placement vector of x;’s in {0, 1}V

(%] 44 Vector x with the ith coordinate set to 1
[x]—; Vector x with the ith coordinate set to 0
Yi Probability of i € S
y Vector of marginal probabilities y;’s in [0, 1]V
G(y) Multilinear extension with marginals y
hi An analytic function
gi A multilinear function
w; Weights in R
h I Polynomial estimator of h; of degree L
R Residual error of the estimator /i,
fr(x) Polynomial estimator of f(x) of degree L
R (x) Residual error vector of the polynomial estimator f (x)
€, .(y) Residual error of the estimator 66/'(3/\) /0y;
e(L) Bias of the estimator V/GE)

Influence Maximization
M Number of cascades

Facility Location
%4 Number of facilities
M Number of customers

Summarization
M Number of partitions

In a nutshell, our approach is based on two observa-
tions: (a) when restricted to binary values, polynomi-
als of multilinear functions are themselves multilinear
functions, and (b) analytic functions are approximated
at arbitrary accuracy via polynomials. Exploiting these
two facts, we approximate the multilinear relaxation of
an arbitrary analytic function via an appropriate Taylor
series; the resulting approximation is multilinear and,
hence, directly computable without sampling.

5.1 Motivation and Intuition. We first establish
that polynomials of multilinear functions are themselves
multilinear, when restricted to binary values:

LEMMA 5.1. The set of multilinear functions restricted
over the domain {0,1}" is closed under addition, mul-
tiplication, and multiplication with a scalar.

The proof can be found in [38]. It is important
to note that multilinear functions are closed under
multiplication only when restricted to domain {0, 1} .
The general set of multilinear functions f : [0,1]Y — R
is mot closed under multiplication.

Lem. 5.1 has the following implication. Consider
a submodular function f : {0,1} — Ry of the form
f(x) = h(g(x)) where g : RNV — R is a multilinear func-

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

tion, and h : R — R, is an analytic function (e.g., log,
exp, sin, etc.). As h is analytic, it can be approximated
by a polynomial h around a certain value in its domain.
This gives us a way to estimate the multilinear relax-
ation of f without sampling. First, we approximate f by
replacing h with h, getting f = h(). As f is the poly-
nomial of a multilinear function restricted to {0, 1}V,
by Lem. 5.1, f can also be expressed as a multilinear
function. Thus, G can be estimated without sampling
via the estimator G(y) £ f(y).

In the remainder of this section, we elaborate
further on construction, slightly generalizing the setup,
and providing formal approximation guarantees.

5.2 Assumptions. Formally, we consider set func-
tions f :{0,1}V — R, that satisfy two assumptions:

AssuMPTION 1. Function f : {0,1}Y — R, is mono-
tone and submodular.

ASSUMPTION 2. Function f:{0,1}" — R, has form

Fx) =320 wihy(g;(x)),

for some M € N, and w; € R, h; : [0,1] = Ry, and
g; + [0,1]N = [0,1], for j € {1,...,M}. Moreover, for
every j € {1,..., M}, the following holds:
1. Function g; : [0,1]Y — [0, 1] is multilinear.
2. There exists a polynomial hy, : [0, 1] — R of degree
L for L € N, such that |h;(s) — hr(s)| < R;r(s),
where limy,_, o R; 1(s) = 0, for all s € [0, 1].

(5.14)

Asm. 2 implies that f can be written as a linear
combination of compositions of analytic functions h;
with multilinear functions g;. The former can be
arbitrarily well approximated by polynomials of degree
L; any residual error from this approximation converges
to zero as the degree of the polynomial increases.

Tab. 2 summarizes several problems that satisfy
Asm. 1 and 2. We review each of these problems in
more detail in Sec. 6; in the remainder of this section,
we provide approximation guarantees for objectives that
satisfy these two assumptions.

5.3 A Polynomial Estimator. Given a function
f that satisfies Asm. 2, we construct the polynomial
estimator of f(x) of degree L via

(5.15) fr(x) 2 0 wihi(g;(x)).

By Lem. 5.1, function fr : {0,1}" — R can be ex-
pressed as a multilinear function. We define an estima-
tor VG, of the gradient of the multilinear relaxation G

as follows: for all i € V,

(0GL/0y:)|, = By [fr((x)4:)] — By[fr((x]-5)]
(5.16) Pt F (y)) — fo(ly)—)-

We characterize the quality of this estimator via the
following theorem, whose proof is in [38]:

THEOREM 5.1. Assume
Asm. 2.

tilinear

that function f satisfies

Let V/-G\L be the estimator of the mul-
relaxation given by (5.16), and define

Rp(x) £ 3, lwillRjp(gi(x)| for x € {0,1}".
Then,

(5.17) IVG(y) = VG, < e)2

where en(y) = lei (¥, € RY and
e,.(y) 2 Ey[Rr([x]+:)] + Ey[Rr([x]-;)]. Moreover,

7
limy oo |len(y)||2 =0, umformly on [0,1]V.
The theorem implies that, under Asm. 2, we can
approximate VG arbitrarily well, uniformly over all y €
[0,1]". This approximation can be used in continuous
greedy, achieving the following guarantee:

THEOREM 5.2. Assume a function f: {0,1}V — R,
satisfies Assumptions 1 and 2. Then, consider Alg. 1,
in which VG(y) is estimated via the polynomial esti-
mator given in (5.16). Then,

Glyr) 2 (1-1/e)G(y") -

where K = (1/7) is the number of iterations, y* is an
optimal solution to (3.5), D = maxyecpm) ||yll2 is the
diameter of the polymatroid, €(L) = maxy, ||er(yx)||2 s
the bias of the estimator, and P = 2 maxxem f(X).

De(L) — P)2K,

The proof can be found in [38]. Uniform convergence in
Thm. 5.1 implies that the estimator bias (L) converges
to zero. Hence, Thm. 5.2 implies that we can obtain an
approximation arbitrarily close to 1 — 1/e, by setting L
and K appropriately.

We note that Thm. 5.2 provides a tighter guarantee
than the one achieved by Mahdian et al. [37] (see [38]
for a detailed comparison).

5.4 Time Complexity. For all examples in Tab. 2,
the error e(L) decays exponentially with L. Hence, to
achieve an approximation 1 — 1/e + ¢, we must have
L = @(log (é)) Hence, if multilinear functions gj,
j € {1,..., M} are polynomially computable w.r.t N
(as is the case for our examples), the total number of
terms in]?L will be polynomial in both N and é We

further elaborate on complexity issues in [38].

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: Summary of problems satisfying Assumptions 1 & 2.

Input g5 : {0, 1}V = [0,1] hj:[0,1] — Ry f{o, 1MVl s Ry Bias
x = g;(x) s — hj(s) x = f(x) e(L)
Partitions |J; ,1{P } = M MYN
SM TiT; log(1+s h(s; e ety
weights r €]R , and Zl ri=1 jgzpl 8l) ; (s5) (Z+1)2F
Instanceb G (V,E) M
M of a directed graph, > + <1 - I - xu)> log(1 + s) & Z h(s;) %
partitions {P/}., c V Eev uep] J=1
Complete weighted bipartite N ¢ M
FL graph G = (VUV’) > (Wigj — Wiges) (H (11—,)) log(1 + s) + > h(s;) %
weights w;, ; € [0, 1]V*M =1 k=1 j=1
Graph G = (V, E),
service rates pu € RY, 1 k - (v) M M SLt1
CN requests 7 € R, P; path of r, r 2rer: JEPT AT (1= xpil) = jZ:: h(so) —]; h(s;) | 2M/IVI|C| %
arrival rates A € RT‘

6 Examples.

In this section, we list three problems that can be tack-
led through our approach, also summarized in Tab. 2;
we also review cache networks (CN) in [38].

6.1 Data Summarization (SM) [2, 6]. In data
summarization, ground set V is a set of tokens, rep-
resenting, e.g., sentences in a document or documents
in a corpus. The goal is to select a “summary” S CV
that is representative of V. We present here the diver-
sity reward function proposed by Lin and Bilmes [2].
Assume that each token 4 has a value r; € [0, 1], where
>; 7 = 1. The summary S should contain tokens of
high value, but should simultaneously be diverse. The
authors achieve this by partitioning V' to sets {P; }j 15
where each set P; C V' contains tokens that are similar.
They then seek a summary that maximizes

f(S) = Ziji1 h (Ziepjms Ti))

Ry — R, is a non-decreasing concave
function (e.g., h(s) = log(1+s), h(s) = s*, where a < 1,
etc.). Intuitively, the use of h suppresses the selection
of similar items (in the same P;), even if they have high
values, thereby promoting diversity.

Objective (6.18) is clearly of form (5.14). For
example, for h log(1 + s), f is monotone and
submodular [2], and is the sum of compositions of
h with multilinear functions g;(x) = >, p, TiTi, as
illustrated in Tab. 2. Moreover, h is analytic and can
be approximated within arbitrary accuracy by its Lt-
order Taylor approximation around 1/2, given by:

hi(s) = g 002 (5 12,

We show in [38] that this estimator ensures that f
indeed satisfies Asm. 2. Moreover, the estimator bias
appearing in Thm. 5.2 is also bounded:

(6.18)

where h

(6.19)

THEOREM 6.1. Assume a diversity reward function
f: {0,13¥ — R, that is given by (6.18), with
h(s) =log(1+s). Then, consider the estimator @(yK)
given in (5.16) using hr(x), the L Taylor polynomial
of f(x) around 1/2, given by (6.19). Then, the bias of

< _MVN_

the estimator satisfies (L) < SR

The proof can be found in [38]. Our work directly allows
for the optimization of such objectives over matroid
constraints. For example, a partition matroid (distinct
from {P;}}Z,) could be used to enforce that no more
than k, sentences come from ¢-th paragraph, etc.

6.2 Influence Maximization (IM) [7, 39]. In-
fluence maximization problems can be expressed as
weighted coverage functions (see, e.g., [17]). In short,
given a directed graph G = (V, E), we wish to maximize
the expected fraction of nodes reached if we infect a set
of nodes S C V and the infection spreads via the Inde-
pendent Cascade (IC) model [7]. In our notation this
objective can be written as

(6:20) f00) = &30+ ey (1

where P/ C V is the set of nodes reachable from v
in a random simulation of the IC model. This is a
multilinear function. Our approach allows us to extend
this to maximizing the expectation of analytic functions
h of the fraction of infected nodes. For example, for

- Hiepg(l - xz)))

h(s) =log(1 + s), we get:

(6.21) 9i(x) =Y ev v (1= [Licps (1 — 1)),

for j=1,...,M, and

(6.22) F(x) = 3 S50 b (95(x)

Functions g; : [0, 1] — [0, 1] are multilinear, monotone

submodular, and O(N?) computable, while h : [0,1] —

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

R is non-decreasing and concave. As a result, (6.22)
satisfies Asm. 1. Again, h can be approximated within
arbitrary accuracy by its L*-order Taylor approxima-
tion around 1/2; given by (6.19). This again ensures
that f indeed satisfies Asm. 2. Moreover, we bound the
estimator bias appearing in Thm. 5.2 as follows:

{0,1}Y — Ry that

consider the estimator VG given in

THEOREM 6.2. For function f :
given by (6.22),
(5.16) using hr, the L™-order Taylor approzimation
of h around 1/2 given by (6.19). Then, the bias of

estimator VG satisfies (L) < ﬁ

The proof can be found in [38]. Partition matroid
constraints could be used in this setting to bound the
number of seeds from some group (e.g., males/females,
people in a zip code, etc.).

6.3 Facility Location (FL) [5, 34, 40]. Given a
weighted bipartite graph G = (V U V') and weights
Wy € [0,1], v e V, v € V'] we wish to maximize:

f(5) =

Intuitively, V' and V' represent facilities and customers
respectively and w, s is the utility of facility v for
customer v’. The goal is to select a subset of facility
locations S C V to maximize the total utility, assuming
every customer chooses the facility with the highest
utility in the selection S. This too becomes a coverage
problem by observing that max;cgs w; ; equals [17]:

¢
- 10 =)

weights have been pre-
= Wi,

(6.23) ﬁ Z;Vil max;eg Wi,j -

N

E (wiyj — wi€+17.7

=1

(6.24) g;(x) =

where, for a given j € V',
sorted in a descending order as w;,; > ...
and w;,,, ; = 0. We can again extend this problem to
maximizing analytic functions h of the utility of a user.
For example, for h(s) = log(1l + s), we can maximize

Fx) = 5 M log (14 g5(x)) .-

In a manner similar to Sec 6.2, we can show that
this function again satisfies Asm. 1 and 2, using the
L'M-order Taylor approximation of g, given by (6.19).
Moreover, as in Thm. 6.2, the corresponding estimator

(6.25)

< % We can again optimize
such an objective over arbitrary matroids, which can
enforce, e.g., that no more than k facilities are selected

from a geographic area or some other partition of V.

bias is again (L) < c

7 Experimental Study.

7.1 Experiment Setup. We execute Alg. 1 with
sampling and polynomial estimators over 6 different

instance dataset M N ZM T J m k f*
M IMsynthl 1 200 200 52|10 3 | 0.3722
M IMsynth2 1 200 200 51|10 3 | 0.6031
FL FLsynthl | 200 200 40000 4.3 | 10 5 | 0.5197
FL MovieLens | 100 100 10000 4.6 | 10 4 | 0.5430
™M Epinions | 10 100 1000 3.2 | 2 2 | 0.5492
SM SMsynth1 5 200 200 74| 2 10 | 0.7669

Table 3: Datasets and Experiment Parameters.

#- POLYL A~ SAMPL SAMP100
8- POVl -A- SAMPL SAMP100 4- POLY2 -4~ SAMPI0 -p-- SAMP1000
4 POLY2 -4~ SAMP10 - PoLY3
_p-a
]' ' v
-2 Py I i
[’ »
t i H
G -272 b < »
¥
 d »
-2 £ »
»
~ >
To? 10° 10* T S : S
time (seconds) 10 10° 10 10 10
time (seconds)
a) IMsynthl
(a) ¥y (b) IMsynth2
-%- POLY1 A~ SAMP1 SAMP100
< . % POLYL A~ SAMP1 SAMP100
; :gtg D 4 POLY2 -4~ SAMPI0 -D-- SAMP1000
P ¥ S T T ¥ »
_p-4 | !
« ¥ [b ¥ »
o -2 4t ¥ 4 ¥ »
s L 4 ¥ » « ¥ »
-2 L A ¥ » A ¥ »
9 A » » A ¥* »
_o-1 ¢ Pl [] ¥ A ¥,~l- »
K 4 & ¥ -
. « ¥ »

102 103 104 10° 10°
time (seconds)

(d) MovieLens

10! 102 10° 104 10°
time (seconds)

(¢) FLsynthl
Figure 1: Trajectory of the FW algorithm. Utility of the
function at the current y as a function of time is marked for
every 10th iteration.

graph settings and 3 different problem instances, sum-
marized in Tab. 3. Our code is publicly available.?

Influence Maximization. We experiment on two
synthetic datasets and one real dataset. For synthetic
data, we generate two bipartite graphs with |Vi| =
[V2| = 100, |E| = 400 and M = 1. Seeds are always
selected from V;. We select the edges across Vi and
Vo uw.a.r. (IMsynthl) or by a power law distribution
(IMsynth2). We construct a partition matroid of m =
10 equal-size partitions of Vi and set & = 3. The real
dataset is the Epinions dataset [41] on SNAP [42]. We
use the subgraph induced by the top N = 100 nodes
with the largest out-degree and use the IC model [7]
with M = 10 cascades. The probability for each node to
influence its neighbors is set to p = 0.02. We construct
a matroid of m = 2 equal-size partitions and set k = 5.
Facility Location. @ We experiment on one syn-
thetic and one real dataset. We generate a bipar-
tite graph with N = M = 200, |E| = 800 and

2 https://github.com/neu-spiral/WDNFFunctions

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/neu-spiral/WDNFFunctions

0.000 = 0.00

~0.005 A A -0

-0.02
.

"

£ -0.010 \ g
@ ¢ ~0.03
-0.015
- POLY -0.04
A SAMP

L -0.05

102 10 10° 107 107 10°

time (seconds) time (seconds)

(a) IMsynthl (b) IMsynth2

#- POLY

~0.020 SAMP

0.000|#————gt—A—% 0.00000{ %—

0.002 ~0.00025

~0.00050
c n

£ -0.004 c
o © —0.00075

—0.006 —0.00100
—%- POLY

A~ SAMP

—%- POLY
SAMP

—0.00125
—0.008

107 10° 10¢ 10° 10° 10° 10° 10°
time (seconds) time (seconds)

(c) FLsynthl (d) MovieLens

0.0000 | #%——— 0.000| %— ¢

—0.0005
—0.001

+« —0.0010
c

rr

o
—0.002
-0.0015

—#— POLY
SAMP

—#- POLY
A~ SAMP

—-0.0020 —0.003

10° 10° 10% 10° 104
time (seconds) time (seconds)
(e) Epinions (f) SMsynthi

Figure 2: Comparison of different estimators on different
problems. Blue lines represent the POLY estimators and
the marked points correspond to POLY1, POLY2, POLY3
respectively. Orange lines represent the SAMP estimators
and the marked points correspond to SAMP1, SAMP10,
SAMP100, SAMP1000 respectively.

select the edges across V and V'’ u.a.r (FLsynthl).
Weights of the edges (w;, ;) are selected randomly from
{0.0,0.2,0.4,0.6,0.8,1.0}. We construct a matroid of
m = 10 equal-size partitions and set to k = 4. The real
one is a subgraph of the MovieLens 1M dataset with
the top N = 100 users who rated the most movies and
the M = 100 movies chosen u.a.r. among the movies
rated by the user who rated the most movies [43]. In
this problem, we treat movies as facilities, users as cus-
tomers, and ratings as w; ;. We construct a matroid
of m = 10 partitions by dividing movies according to
their genres. We consider the first genre name listed if
a movie belongs to multiple genres and we set k = 2.
Summarization. We generate a synthetic dataset with
N = 200 nodes (SMsynthl). We assign a reward r; to
each node i u.a.r between [0,1] and divide each r; with
>, 7i- We divide the nodes into M = 5 equal-size P;.
We construct a matroid of m = 2 equal-size partitions
and set k£ = 10.

Algorithms. We compare the performance of different
estimators. These estimators are: (a) sampling estima-
tor (SAMP) with T' = 1,10, 100, 1000 and (b) polyno-
mial estimator (POLY) with L = 1,2,3.

Metrics. We measure the performance of the estima-
tors via err = (f(y) — f*)/f*, where f* = max f(y) is
the maximum utility achieved using the best estimator
for a given setting, and execution time. f* values are
reported on Tab. 3.

7.2 Results. The trajectory of the normalized dif-
ference between the utility obtained at each iteration
of the continuous greedy algorithm (err) is shown as
a function of time in Fig. 1. In Fig. 1(a), we see that
both POLY1 and POLY2 outperforms sampling esti-
mators. Moreover, POLY1 is almost 60 times faster
than SAMP100. In Fig. 1(b), POLY1 runs as fast as
SAMP1 and outperforms all estimators. It is impor-
tant to note that POLY3 runs 2.5 times faster than
SAMP1000. In Fig. 1(c), POLY1 visibly outperforms
SAMP1 and in Fig. 1(d) polynomial estimators give
comparable results to sampler estimators. Note that,
even though small number of samples give comparable
results, setting T' < 100, is below the value needed to at-
tain the theoretical guarantees of the continuous-greedy
algorithm. This can be explained by the 1/2 approxi-
mation guarantee of the greedy algorithm.

The err of the final results of the estimators are
reported as a function of time in Figure 2. In all fig-
ures except Fig. 2(a), POLY1 outperforms other estima-
tors in terms of time and/or utility whereas in Fig. 2(a)
POLY?2 is the best performer. As the number of sam-
ples increases, the quality of the sampling estimators
increases and they catch up with the polynomial esti-
mators. However, considering the running time, POLY1
still remains the better choice.

8 Conclusion.

We have shown that polynomial estimators can replace
sampling of the multilinear relaxation. Our approach
applies to other tasks, including rounding (see [38])
and stochastic optimization methods [17]. For example,
sampling terms of the polynomial approximation can
extend our method to even larger problems.

References

[1] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrik,
“Maximizing a monotone submodular function subject
to a matroid constraint,” SICOMP, 2011.

[2] H. Lin and J. Bilmes, “A class of submodular functions
for document summarization,” in ACL, 2011.

[3] H. Lin and J. Bilmes, “Multi-document summarization
via budgeted maximization of submodular functions,”
in NAACL, 2010.

[4] M. Gygli, H. Grabner, and L. Van Gool, “Video
summarization by learning submodular mixtures of
objectives,” in CVPR, 2015.

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

5]

(6]

(7l

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

20]

(21]

22]

23]

24]

A. Krause and D. Golovin, “Submodular function
maximization,” in Tractability: Practical Approaches
to Hard Problems, Cambridge University Press, 2014.
B. Mirzasoleiman, A. Badanidiyuru, and A. Karbasi,
“Fast constrained submodular maximization: Person-
alized data summarization.,” in ICML, 2016.

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing
the spread of influence through a social network,” in
KDD, 2003.

A. Krause, A. Singh, and C. Guestrin, “Near-optimal
sensor placements in gaussian processes: Theory, effi-
cient algorithms and empirical studies,” JMLR, 2008.
Z. Jiang, G. Zhang, and L. S. Davis, “Submodular
dictionary learning for sparse coding,” in CVPR, 2012.
F. Zhu, L. Shao, and M. Yu, “Cross-modality submod-
ular dictionary learning for information retrieval,” in
CIKM, 2014.

A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and
A. Krause, “Streaming submodular maximization:
Massive data summarization on the fly,” in KDD, 2014.
G. L. Nemhauser and L. A. Wolsey, “Best algorithms
for approximating the maximum of a submodular set
function,” Mathematics of operations research, 1978.
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An
analysis of approximations for maximizing submodular
set functionsi,” Mathematical programming, 1978.

J. Vondrik, “Optimal approximation for the submod-
ular welfare problem in the value oracle model,” in
STOC, 2008.

A. A. Ageev and M. 1. Sviridenko, “Pipage rounding:
A new method of constructing algorithms with proven
performance guarantee,” Journal of Combinatorial Op-
timization, 2004.

C. Chekuri, J. Vondrak, and R. Zenklusen, “Depen-
dent randomized rounding via exchange properties of
combinatorial structures,” in FOCS, 2010.

M. Karimi, M. Lucic, H. Hassani, and A. Krause,
“Stochastic submodular maximization: The case of
coverage functions,” in NeurIPS, 2017.

Y. Singer, “How to win friends and influence people,
truthfully: influence maximization mechanisms for
social networks,” in WSDM, 2012.

M. Minoux, “Accelerated greedy algorithms for max-
imizing submodular set functions,” in Optimization
techniques, Springer, 1978.

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi,
J. Vondrédk, and A. Krause, “Lazier than lazy greedy,”
in AAAI 2015.

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier,
“Maximizing social influence in nearly optimal time,”
in SODA, 2014.

Y. Tang, Y. Shi, and X. Xiao, “Influence maximiza-
tion in near-linear time: A martingale approach,” in
SIGMOD, 2015.

M. Feldman, J. Naor, and R. Schwartz, “A unified con-
tinuous greedy algorithm for submodular maximiza-
tion,” in FOCS, 2011.

C. Chekuri, J. Vondrak, and R. Zenklusen, “Submod-

[25]

[26]

27]

28]

29]

(30]

(31]

32]

33]

34]

(35]

(36]

37]

(38]

(39]

[40]

(41]
42]

(43]

ular function maximization via the multilinear relax-
ation and contention resolution schemes,” SICOMP,
2014.

A. Bian, K. Levy, A. Krause, and J. M. Buhmann,
“Continuous dr-submodular maximization: Structure
and algorithms,” in NeurIPS, 2017.

A. A. Bian, B. Mirzasoleiman, J. Buhmann, and
A. Krause, “Guaranteed non-convex optimization:
Submodular maximization over continuous domains,”
in AISTATS, 2017.

C. Chekuri, T. Jayram, and J. Vondrak, “On multi-
plicative weight updates for concave and submodular
function maximization,” in ITCS, 2015.

F. Bach, “Submodular functions: from discrete to con-
tinuous domains,” Mathematical Programming, 2019.
R. Niazadeh, T. Roughgarden, and J. Wang, “Optimal
algorithms for continuous non-monotone submodular
and dr-submodular maximization,” in NeurIPS, 2018.
T. Soma and Y. Yoshida, “Non-monotone dr-
submodular function maximization,” in AAAI 2017.
Y. Bian, J. Buhmann, and A. Krause, “Optimal con-
tinuous dr-submodular maximization and applications
to provable mean field inference,” in ICML, 2019.

M. Staib and S. Jegelka, “Robust budget allocation via
continuous submodular functions,” in ICML, 2017.

H. Hassani, M. Soltanolkotabi, and A. Karbasi, “Gra-
dient methods for submodular maximization,” in
NeurIPS, 2017.

A. Mokhtari, H. Hassani, and A. Karbasi, “Conditional
gradient method for stochastic submodular maximiza-
tion: Closing the gap,” in AISTATS, 2018.

A. Mokhtari, H. Hassani, and A. Karbasi, “Stochastic
conditional gradient methods: From convex minimiza-
tion to submodular maximization,” JMLR, 2020.

A. Asadpour, H. Nazerzadeh, and A. Saberi, “Stochas-
tic submodular maximization,” in WINE, 2008.

M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh,
“Kelly cache networks,” IEEE/ACM Transactions on
Networking, 2020.

G. Ozcan, A. Moharrer, and S. Ioannidis, “Submodular
maximization via Taylor series approximation,” 2021.
https://arxiv.org/abs/2101.07423.

W. Chen, Y. Wang, and S. Yang, “Efficient influence
maximization in social networks,” in KDD, 2009.

G. Cornuejols, M. Fisher, and G. Nemhauser, “Loca-
tion of bank accounts of optimize float: An analytic
study of exact and approximate algorithm,” Manage-
ment Science, 1977.

M. Richardson, R. Agrawal, and P. Domingos, “Trust
management for the semantic web,” in ISWC, 2003.
J. Leskovec and A. Krevl, “SNAP Datasets: Stanford
large network dataset collection,” June 2014.

F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” T4iS, 2015.

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2101.07423

	Introduction.
	Related Work.
	Technical Preliminaries.
	Submodularity and Matroids.
	Submodular Maximization Subject to Matroid Constraints.
	Continuous Greedy Algorithm.

	Multilinear Functions.
	Main Results.
	Motivation and Intuition.
	Assumptions.
	A Polynomial Estimator.
	Time Complexity.

	Examples.
	Data Summarization (SM)lin2011class, mirzasoleiman2016fast.
	Influence Maximization (IM) kempe2003maximizing, chen2009efficient.
	Facility Location (FL)mokhtari2018conditional, cornuejols1977location,krause2014submodular.

	Experimental Study.
	Experiment Setup.
	Results.

	Conclusion.

