
IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX 1

Cache Networks of Counting Queues
Yuanyuan Li, Member, IEEE, and Stratis Ioannidis, Member, IEEE

Abstract—We consider a cache network in which intermediate
nodes equipped with caches can serve content requests. We model
this network as a universally stable queuing system, in which
packets carrying identical responses are consolidated before being
forwarded downstream. We refer to resulting queues as M/M/1c
or counting queues, as consolidated packets carry a counter
indicating the packet’s multiplicity. Cache networks comprising
such queues are hard to analyze; we propose two approximations:
one via M/M/∞ queues, and one based on M/M/1c queues under
the assumption of Poisson arrivals. We show that, in both cases,
the problem of jointly determining (a) content placements and (b)
service rates admits a poly-time, 1−1/e approximation algorithm.
We also show that our analysis, with respect to both algorithms
and associated guarantees, extends to (a) counting queues over
items, rather than responses, as well as to (b) queuing at nodes
and edges, as opposed to just edges. Numerical evaluations
indicate that our proposed approximation algorithms yield good
solutions in practice, significantly outperforming competitors.

Index Terms—DR-submodularity, cache networks, Jackson
networks

I. INTRODUCTION

WE consider a network of caches, in which intermediate
nodes store requested contents and can serve content

requests. Cache networks are a natural abstraction for many
applications, including information-centric networks [2]–[5],
content delivery networks [6]–[8], and peer-to-peer networks
[9], [10]. A series of recent efforts focus on the problem
of cache network design, describing algorithms for placing
contents in caches in order to minimize routing costs [11]–
[15].

In most prior work, routing costs are modeled via a linear
function of traffic in each edge, which does not capture,
e.g., delays due to queuing. A recent paper by Mahdian et
al. [15] addresses this limitation by considering so-called
Kelly cache networks, i.e., cache networks whose links are
associated with M/M/1 queues. This formulation has several
advantages. First, it allows the authors to capture queuing costs
in their cache network design. Second, the system is a Kelly
network [16] and, hence, its steady-state distribution is easy to
characterize. Unfortunately, these modelling advantages come
at the expense of realism. In M/M/1 queues, packets carrying
the same content are queued and served separately. This would
not happen in a real network, in which packets carrying
identical content would be used to serve multiple requests. As
a side-effect of this modeling distortion, networks studied by
Mahdian et al. can become unstable: queue sizes can grow to
infinity, congested with packets containing identical content.

This is an extended version of a paper that appeared in the IEEE
International Conference on Computer Communications (INFOCOM 2020)
[1]. The authors are with the Electrical and Computer Engineering
Department, Northeastern University, Boston, MA 02115 USA (e-mail:
yuanyuanli@ece.neu.edu; ioannidis@ece.neu.edu).

In this work, we address this problem by considering a
different type of queue, originally introduced by Abolhassani
et al. [17], which we refer to as a counting queue. When
packets containing identical content arrive in such a queue,
they merge, resulting in a single packet carrying the same
content. The header of this packet contains a counter with the
“cardinality” of merged packets it represents. Merged packets
are forwarded towards the request source, serving multiple
requests via a single response. Counting queues, which we
denote by M/M/1c, capture real-life behavior more accurately
than M/M/1 queues. They also lead to networks that are
universally stable: the merging of packets prevents queues
(and counters) to grow to infinity, irrespective of demand [17].

Nevertheless, by considering networks of M/M/1c queues,
we suffer a reversal of fortune in comparison to Mahdian
et al. [15]: though we gain realism, we lose tractability, as
the resulting system is not a Kelly network; thus, steady-
state distributions do not have product form and are hard to
describe. As a result, steady-state behavior and the routing cost
optimization that it corresponds to are difficult to characterize
in a closed form. One of the main contributions of our work
is to address this challenge directly, providing both analytical
and experimental evidence that M/M/1c queues are well-
approximated by M/M/∞ queues; the latter are indeed easy
to analyze, enabling us to produce algorithms for the cache
design problem with approximation guarantees. In particular,
we make the following contributions:

• We introduce the M/M/1c queues by Abolhassani et
al. [17] into the cache network setting by Mahdian et
al. [15], aiming to capture network behavior with greater
realism. In contrast to M/M/1 queues, resulting networks
are not Kelly networks, and intermediate queue arrivals
are not Poisson.

• We show that M/M/∞ queues approximate M/M/1c
queues; we show this both experimentally and an-
alytically, through a mutual stochastic dominance
(c.f. Thm. 1).

• Motivated by the above observations, we study two cache
network design problems, each serving as an approxima-
tion of a cache network with counting queues. Both prob-
lems optimize content placement and service assignment
decisions jointly. In the first problem, MINCOSTM/M/∞,
we approximate counting queues with M/M/∞ queues; in
the second problem, MINCOSTM/M/1c, we use M/M/1c
steady-state distributions, assuming however Poisson ar-
rivals in intermediate queues.

• We show that both problems are NP-hard (c.f. Thm. 2),
and construct a 1−1/e poly-time approximation algorithm
for the joint optimization of item placements and service
assignments (c.f. Thm. 4).

2 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

• Finally, we conduct extensive experiments over multiple
topologies: our joint item placements and service rate
assignments significantly outperform competitors.

From a technical standpoint, our algorithm solves a mixed
integer problem with a non-convex objective; this requires
showing that both MINCOSTM/M/∞ and MINCOSTM/M/1c ex-
hibit an important underlying structural property (c.f. Theo-
rem 3): their objectives are continuous Diminishing Returns
(DR) submodular [18] w.r.t. both content placements and
service assignments jointly, a result that is non-obvious.

The remainder of this paper is structured as follows. We
review related work in Sec. II. We introduce M/M/1c and
M/M/∞ queues, and formulate our two approximate problems
in Sec. III. Sec. IV contains our approximation algorithms. We
extend our analysis, algorithms and guarantees in Sec. V. Our
experiments are in Sec. VI, and we conclude in Sec. VII.

II. RELATED WORK

Cache Network Topology. Cache networks have been in-
tensely studied both experimentally and theoretically. Several
works [19]–[28] model the network as a bipartite graph,
in which requests fetch contents in one hop, and proposed
algorithms do not readily generalize to arbitrary topologies.
Multi-hop networks are studied by a series of recent papers
[11]–[14], [29]–[31], which are generally harder to analyze.
We elaborate on these below.
Optimization Objectives. Several works assign a cost to each
edge in the network, and aim at making caching decisions
that minimize expected routing costs. This objective has been
studied in the context of femtocaching systems [11], arbitrary
cache networks [12], [14], small cell networks [13], parallel
computing frameworks [31] and in proactive (i.e. predictive)
cache networks [25], to name a few. By assuming a fixed cost
per edge, all above works assume costs are linear functions
of traffic. As such, they cannot be used to model costs in
queuing systems like the ones we study. Content placements
that maximize the number of requests served by caches are
studied in hierarchical caching networks [32], in cellular ne-
torks with moving users [26], in arbitrary congestible networks
[30], and in multi-cell mobile edge computing networks with
storage, computation, and communication constraints [28]. To
minimize the expected delay experienced by all the requester,
Domingues et al. [33] study the interplay between content
search and content placement and Poularakis et al. [27] study
the content placement of layered-video. Yeh et al. [5] focus on
maximizing throughput, i.e., user demand rate satisfied by the
network. Our model, objective, and constraints, significantly
depart from the ones considered in the above works.

Our work is closest to, and inspired by, recent work Mah-
dian et al. [15]. As discussed in the introduction, they consider
a cache network in which each edge is associated with an
M/M/1 queue. Resulting costs are not linear, capture queuing,
and the objective is submodular and therefore optimizable via
the continuous greedy algorithm of Calinescu et al. [34]. We
depart by considering M/M/1c (counting) queues and M/M/∞
approximations thereof, and optimizing item placement and
routing decisions jointly: as a result, our optimization requires
tools beyond classic submodularity.

M/M/1c Queues. Abolhassani et al. [17] introduce M/M/1c
queues and prove their universal stability, in a simpler setting
than the one we consider here. In particular, the authors
study a multicast single-cell wireless network in which users
issue requests for a finite set of items. These requests are
queued while waiting for an item, forming M/M/1c queues:
whenever the base station broadcasts a requested data item,
all requests in a queue are served simultaneously, just like
in our setting. The authors prove that this system is always
stable for all loading factors (given by the ratio of the request
rate to the service rate). They also study work-conserving
multicasting policies, particularly characterizing the scaling
delay gains of the First-Come-First-Serve policy. Though this
setting is similar to ours, we depart in several significant
aspects. We consider a network of queues, whereas they
model a single base station cell as a set of parallel M/M/1c
queues: this corresponds to just a single “edge” in our setting.
Linking queues/edges together to form a network gives rise
to significant challenges in our setting, that Abolhassani et
al. do not face. In particular, since the departure process is
not Poisson, our linked queue network is not a Kelly network.
It is therefore hard to formulate its steady state distribution
in a closed form, which is not the case for the single-edge
setting they consider. Second, we have a different objective:
they minimize the aggregate average number of requests in
the system; in contrast, we minimize not just the number of
responses, but more generally the total queuing cost, which
is a function of the number of responses. Finally, the NP-
hardness of our problem is due to the networked setting,
and the combinatorial challenge we need to address does not
appear in the single-edge setting by Abolhassani et al.
Joint Optimization. Dehgan et al. [24], Poularakis et al.
[28], Ioannidis and Yeh [14] and Liu et al. [30] consider the
joint optimization of caching and routing in networks; the
first two in particular study routing in the bipartite setting,
while the last two do so in arbitrary topologies. Caching and
routing decisions are formulated as binary variables in those
works. Our joint optimization of caching and service rates
is fundamentally different, not only because it contains both
continuous and integer variables; it is also not amenable to
standard submodularity approaches, as is [14], but requires the
use of continuous DR-submodular optimization [18] instead
to attain a 1 − 1/e approximation guarantee. Zafari et al. [35]
jointly optimize data compression rate and data placement in
a tree topology, posing this as a mixed integer problem; they
solve this by a spatial branch-and-bound search strategy, which
comes with no poly-time approximation guarantees.
TTL Caches. Time-to-Live (TTL) caches have drawn atten-
tion recently due to their connection to classic replacement
policies. TTL caches assign a timer to each content, and an
eviction occurs when a timer expires. Che et al. [36] show
that the hit probability of LRU caches can be approximated
through a TTL-based eviction scheme by introducing the
notion of characteristic time. This approach has been refined
and extended to other traditional replacement policies [37],
[38] as well as more general requests arrival processes [39],
thus providing a general framework for analyzing different
replacement policies. Several papers study the approximate

CACHE NETWORKS OF COUNTING QUEUES 3

and exact behavior of, e.g., hit probabilities and cache occu-
pancies, in both individual TTL-caches as well as networks
thereof [40], [41]. TTL-like mechanisms, referred to as rein-
forced counters, are used for content placement. Domingues
et al. [33], [42] propose analytical models to study how to
turn reinforced counters, while routing is based on random
walks. We depart in considering queuing-based, network-wide
metrics, rather than hit rates, but also by studying off-line,
centralized algorithms.
Approximation Networks. Jackson networks [43] are classic
queuing networks comprising reversible queues serving pack-
ets of a single type. Many classic queues, including M/M/1 and
M/M/∞, are reversible. Kelly networks [16] generalize Jackson
networks to queues serving packets of multiple types. Both
leverage reversibility to show that steady state distributions
have a product form. This property makes the characterization
of expected steady state rewards and costs tractable. Product-
form steady-state distributions arise also in settings where
service times are not exponentially distributed. For example,
symmetric queues (e.g., M/D/1 and M/Ek/1) exhibit his prop-
erty [16].

In general, if properties like reversibility or symmetry are
not satisfied, the steady state distribution of the network does
not have a closed form. Approximations similar to the ones we
employ are used often in this case; the most famous example
are so-called loss networks. Dating back to Erlang’s work
in 1925, loss networks model the probability of serving a
telephone call in a circuit-switched network. More broadly,
they are used to model stochastic resource allocation problems
[44], and were famously analysed by Frank Kelly in his sem-
inal 1991 paper [45]. The so-called fixed point approximation
(see p. 337 in [45]) is an approximation, operating under an
assumption that is very similar to the one we describe here.
Namely, the approximation assumes that losses/call blocks at
a link happen independently, effectively implying that traffic
exiting a loss link is Poisson, even though it is not, and call
blocks are not independent. This approximation serves as the
basis for a significant body of work on analyzing loss networks
for a variety of applications [46]–[49], despite the fact that it
is indeed an approximation.
Submodular Maximization. Maximizing a submodular func-
tion subject to a matroid constraint is classic. Krause and
Golovin [50] show that the greedy algorithm achieves a 1/2
approximation ratio. Calinescu et al. [34] propose a continuous
greedy algorithm improving the ratio to 1 − 1/e, that applies
a Frank-Wolfe [51] variant to the multilinear extension of
the submodular objective. With the help of auxiliary poten-
tial functions, Filmus and Ward [52] run a non-oblivious
local search after the greedy algorithm, and also produce
a 1 − 1/e approximation ratio. Further improvements are
made by Sviridenko et al. [53] for a more restricted class
of submodular functions with bounded curvature. Bian et al.
[54] [18] show that the same Frank-Wolfe variant can be used
to maximize continuous DR-submodular functions within a
1 − 1/e ratio. One of our technical contributions is to show
that the multilinear extension, in our case, which is a function
of both randomized item placements and continuous service
rates, is jointly DR-submodular in its input. We note that we

depart from multilinear extensions considered in prior work
[15], [34], [53], [55], that did not contain continuous variables
beyond the ones due to randomization.

III. PROBLEM FORMULATION

We consider a network of caches which store a finite number
of items. Requests for items are generated and are routed
through pre-determined paths. Upon hitting a cache which
stores the requested item, a response carrying the item is
back-propagated over the reverse path. This generates traffic
over queues on network edges. We aim to minimize queuing
costs by (a) placing items in caches and (b) assigning queue
service rates across responses appropriately. In what follows,
we describe this problem in detail.

A. System Model

Following Mahdian et al. [15], we consider a network
modeled as a directed graph G(V, E) with node set V . Each
edge e in the graph is represented by e = (u, v) ∈ E, where
u, v ∈ V . This directed graph is symmetric, i.e., if (u, v) ∈ E ,
then (v, u) ∈ E as well.

1) Caches: Items of equal size are permanently stored in
certain network nodes, called designated servers. Formally, for
every item i ∈ C, where set C is the item catalog, we denote by
Si ⊆ V the set of designated servers storing i. Every node in
V , including designated servers, has additional storage that is
used to store more items from the catalog. Formally, each node
v is associated with a cache of finite storage capacity cv ∈ N.
We use a binary variable xvi ∈ {0, 1} indicating whether node
v ∈ V is caching item i ∈ C. Let vector xxx = [xvi]v∈V,i∈C ∈
{0, 1} |V | |C | be the global item placement vector. We denote
the set of feasible placements by:

D = {xxx ∈ {0, 1} |V | |C | :
∑
i∈C

xvi ≤ cv, ∀v ∈ V}. (1)

2) Requests and Responses: A set of nodes Q ⊆ V , called
query nodes, generate requests to fetch items from C. Let R
be the set of response types. Each request has a unique type
r = (ir, pr) ∈ R, determined by (a) the item ir ∈ C being
requested , and (b) the path pr ⊆ V followed by the request.
We make the following assumptions on path pr, r ∈ R: (a)
pr is a sequence of adjacent nodes, e.g. pr1, pr2, ..., prK , where
(pri , pr

i+1) ∈ E , (b) pr1 ∈ Q, i.e., the first node of path is a query
node, (c) prK ∈ Sir , i.e., the last node of path is a designated
server, and (d) the path pr is simple, i.e., it does not contain
repeated nodes. For v ∈ pr , let kpr (v) ∈ {1, 2, ...,K} be the
position of node v in path pr , i.e., kpr (v) = k iff pr

k
= v.

Since assuming all items have the same size, we should
view an item as a piece/chunk of a file. Moreover, a more
realistic scenario would involve multiple items being requested
simultaneously: this would indicate that all pieces of file are
requested at once. Our model can extend to address this; we
discuss this further in Sec. V-A. However, for the sake of
notational simplicity, we first focus on single item requests,
as in, e.g., [12], [15].

Requests of type r are generated according to an exogenous
Poisson process with rate λr ≥ 0, r ∈ R. Then, they follow

4 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

?�

?�
?�

Fig. 1: An example of a network of counting queues. Three
request types r , each for an item ir ∈ {red,green,blue}
are generated with rates λr , following distinct paths pr to
designated servers Sir . Node v, with capacity cv = 1, is shown
in the center of the graph; all three paths pass through v, and
the green and red response flows both pass through edge
e = (v, u). Hence, the service rate µe is split across the green
and red response types.

path pr ; when the request reaches a node storing item ir , a
response is generated. This response carries item ir to query
node pr1 ∈ Q following the reverse path. Given all the paths
{pr, r ∈ R}, for every edge e ∈ E , we denote by Re the set
of response types passing through edge e, i.e., for e = (v, u),

R(v,u) = {r ∈ R : (u, v) ∈ pr }.

3) Queuing Costs: We assume requests are negligible, but
responses incur traffic in the network. We model this traffic
as follows. Every edge e ∈ E is associated with service rate
µe ∈ R+. The service rate in an edge is split across response
types. For every type r ∈ Re, there exists a queue with service
rate µre. Assume that the minimum service rate for all queues
is some small ε ∈ R+. Let vector µµµ = [µre]e∈E,r ∈Re ∈ R

∑
e |Re |
+

be the global service rate assignment vector. We denote the
set of feasible assignments by:

Dµ= {µµµ∈R
∑

e |Re |
+ : µre ≥ ε,

∑
r ∈Re

µre ≤ µe, ∀e ∈ E, r ∈Re}. (2)

Let nre ∈ N be the queue size. We assume that traffic cost is
a function of nre and denote by cre(n

r
e) : N → R+ the cost of

response type r on edge e.
Our overall model is illustrated in Fig. 1. The global service

rate assignment µµµ and the global item placement xxx are design
parameters: we wish to determine xxx and µµµ jointly, to minimize
expected traffic costs in steady state. The expected steady state
distribution of queue sizes depends on the type of queues we
use to model the network. In Section III-C, we describe the
queues we consider formally, and in Section III-D we give a
more precise definition of the optimization problem we solve.
Before we do so, however, we briefly discuss how our work
relates to Mahdian et al. [15] and the challenges we face in
solving the corresponding optimization problem.

B. Choice of Queues and Challenges

Mahdian et al. [15] consider a network very similar to
the one we have proposed here, assuming queuing at edges

happens via M/M/1 queues: all responses are served individ-
ually by the edge server. This is convenient from a modeling
perspective, because M/M/1 queues form a Kelly network
[16]. However, transmitting same-type responses individually
over the same queue is both inefficient and impractical. If
two responses of the same type are present in a queue, it
suffices to transmit only one of them: requests pending at the
same downstream source can be satisfied simultaneously by
the same response. Transmitting responses individually leads
to larger queue sizes, thereby incurring larger queuing costs,
but also larger delays (by Little’s Theorem [56]). In fact, the
system considered by Mahdian et al. becomes unstable when
the load of an M/M/1 queue is above one. This motivates us
to introduce a new type of queue we call a counting queue.
In such queues, responses of the same type merge: this is
more realistic, but also reduces overall traffic, leading to a
universally stable system.

Despite these advantages, introducing counting queues gives
rise to two significant challenges when attempting to minimize
the expected queuing costs. First, in contrast to Mahdian et
al. [15], counting queues are not reversible, do not form a
Kelly network, and are thus hard to analyze in steady state.
As a result, our objective (namely, the aggregate expected
steady-state queuing cost) is hard to compute efficiently and
in a closed form. The second challenge arises from the
combinatorial nature of the item placement space, combined
with the continuous nature of the service rate assignment
space. To summarize, the problem we are trying to solve is
a mixed integer problem, with a non-convex objective that
we cannot compute efficiently. This motivates us to introduce
approximations, which we discuss in more detail below.

C. Queue Types

We introduce counting (or M/M/1c) queues [17] in this
subsection, and describe how they relate to (and can be
approximated by) M/M/∞ queues.

1) M/M/1c Queue: To model realistic behavior, a counting
queue behaves as follows. When a response of type r arrives
at an empty queue on edge e, it experiences immediate service
with rate µre. A subsequent response of type r arriving before
the server is finished is not queued: instead, it merges with
the response in the server, and both are served simultaneously
with rate µre. In practice, this is implemented as follows: every
response is associated with a counter initialized to one by
the designated server generating it. Whenever two responses
of type r are collocated in an edge e, they merge into a
new response of type r , with a counter equal to the sum
of its constituent counters. Note that, as service times are
exponential, by the memoryless property [57], the residual
service time after a merge remains exponential with rate µre.
After being served, this merged response departs. This whole
process is depicted in Fig. 2. We formally refer to such a
queue as an M/M/1c queue (‘c’ is for ‘counter’). We consider
the size nre of an M/M/1c queue to be equal to the counter
value of the merged response in the queue’s server. Assuming
Poisson arrivals of responses with counters equal to one, the
queue size process {nre(t); t ≥ 0} is a Markov process whose

CACHE NETWORKS OF COUNTING QUEUES 5

counter

server

idle
1

Response Arrival

r

0

(a) a response arrives

counter

server

busy
1

Response Arrival

r

1

1 r

(b) server starts serving; another re-
sponse arrives

server

busy

2

2 r

(c) two responses merge as a new
response

Response
Departure

server

idle

0

2 r
counter

(d) service completes and new re-
sponse departs

Fig. 2: M/M/1c queue. When a response arrives in an idle
M/M/1c queue, it is served immediately. If two responses
meet in a queue before the end of service, they merge as
a new response with counter value equal to the sum of their
respective counters. The new response continues being served
as before. After the service, the merged response departs the
queue and queue is again idle. Queue size nre equals the
counter value of the response in this queue, and 0 if the queue
is empty.

0 1 2 3 ……

𝜆"# 𝜆"# 𝜆"# 𝜆"#

𝜇"# 𝜇"#
𝜇"#

𝜇"#

(a) M/M/1c queue

0 1 2 3

𝜇"# 2𝜇"# 3𝜇"# 4𝜇"#

……
𝜆"# 𝜆"# 𝜆"# 𝜆"#

(b) M/M/∞ queue

Fig. 3: M/M/1c and M/M/∞ transitions, assuming Poisson
arrivals. M/M/1c is not reversible, while M/M/∞ is.

transition diagram is described in Fig. 3(a), and its steady state
distribution is given by the following lemma. The proof is in
Appendix A.

Lemma 1. Assume that response arrivals follow a Poisson
process with rate λre , and each response’s counter is 1. Then,
the steady state distribution of the M/M/1c queue is

PM/M/1c(nre = n) =
(

ρre
ρre + 1

)n 1
ρre + 1

, for all n ∈ N, (3)

where ρre =
λre
µre

is load of response type r on edge e.

Note that this queue is universally stable, i.e., positive
recurrent for all ρre > 0. However, Lemma 1 only holds for
edges directly adjacent to a designated server. This is because
intermediate queues, further from a designated server, satisfy
neither of the two assumptions of Lemma 1: (a) arrivals are
not Poisson, and (b) counters of responses may be larger than
1. Overall, the entire system is not a Kelly network, and its
steady state distribution is difficult to describe in a closed form.

2) M/M/∞ Queue: The above state of affairs motivates us
to approximate counting queues with M/M/∞ queues [58].
Recall that an M/M/∞ queue has infinite servers. Just as in
an M/M/1c queue, incoming responses are not queued but
are immediately served with service rate µre. However, the
service times of responses collocated in an M/M/∞ queue are
independent, while in M/M/1c they are tightly coupled: in fact,

all responses are served simultaneously. Again, {nre(t); t ≥ 0}
is a Markov process whose transition diagram is described
in Fig. 3(b), and its steady state distribution is given by the
following classic lemma (see, e.g., [59]):

Lemma 2. Assume that response arrivals follow a Poisson
process with rate λre . Then, the steady state distribution of
M/M/∞ queue is

PM/M/∞(nre = n) =
(ρre)

n

n!
e−ρ

r
e, for all n ∈ N, (4)

where ρre =
λre
µre

is load of response type r on edge e.

Note that responses here do not merge and, hence, implicitly
all have counter value one. A significant advantage of M/M/∞
queues is that they are reversible [57]. Hence, networks of such
queues form a Jackson network [16], [43], [57]. In steady state,
departures from these queues are Poisson by Burke’s theorem
[60]; as a result, in contrast to M/M/1c queues, the steady state
distribution in Eq. (4) applies to every edge in the network,
for an appropriately defined arrival rate λre (see Eq. (8) in
Sec. III-D below).

3) Approximating M/M/1c Queues with M/M/∞ Queues:
There are several reasons why M/M/∞ queues are good
approximations of M/M/1c queues. First, observe that both
queues are universally stable. Second, they exhibit the same
aggregate service rate: when nre customers are in the queue,
the aggregate service rate in both is nreµ

r
e; put differently, in

both queues the aggregate service rate grows linearly with the
queue size. Finally, queue sizes of M/M/1c and M/M/∞ queues
are related through a notion of mutual stochastic dominance.
In particular, it is easy to confirm from Lemmas 1 and 2 that
the two queues have the same expectation, i.e.,

EM/M/1c[nre] = EM/M/∞[n
r
e] = ρ

r
e . (5)

More generally, all moments of the two queues are coupled
through the following relationship:

Theorem 1. Let mk
M/M/1c

(ρre) = EM/M/1c[(nre)
k] and

mk
M/M/∞

(ρre) = EM/M/∞[(n
r
e)

k] be the k-th moment of nre in
M/M/1c and M/M/∞ queues, respectively. Then, for all ρre ≥ 0,

mk
M/M/∞(ρ

r
e) ≤ mk

M/M/1c(ρ
r
e) ≤ k! · mk

M/M/∞(ρ
r
e). (6)

The proof can be found in Appendix B .This theorem
immediately implies that, for any polynomial cost function
cre(n

r
e), the expected costs under the two queues are within a

multiplicative constant (not depending on ρre) of each other.1

This, along with the ability to describe the joint steady state
distribution across edges, motivates our approximation of
M/M/1c queues by M/M/∞ queues.

D. Cache Cost Minimization

As discussed above, given item placements xxx ∈ D and
service rate assignments µµµ ∈ Dµ, the network of M/M/∞
queues is a Jackson network. Formally, in steady state, arrivals

1This result can be extended to continuous functions using, e.g., the Stone-
Weierstrass Theorem [61].

6 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

TABLE I: Notation Summary

Response type based counting queues
R, N Sets of real and natural numbers
R+, N+ Sets of non-negative reals and positive naturals
G(V, E) Network graph, with nodes V and edges E

kpr (v) Position of node v in path pr

cv Cache capacity at node c ∈ V

xvi Integer variable indicating v ∈ V stores i ∈ C

xxx Global item placement vector of xvi s in {0, 1} |V | |C|
R Set of types of requests
Re Set of types of responses passing through e

λr Request arrival rate for type r ∈ R

µe Service rate of edge e ∈ E

µre Service rate of type r ∈ Re over edge e

ε The minimum service rate of all µre
µµµ Global service rates vector of µre s in R

∑
e |Re |
+

ρre Load of type r over edge e

D Set of feasible item placements xxx

Dµ Set of feasible service rates µµµ
CM/M/∞ Cost function for M/M/∞ queues
CM/M/1c Cost function for M/M/1c queues
C Generalized non-decreasing and convex cost function
F Caching gain of decision {xxx, µµµ} over {000, εεε }
D̃ Convex hull of D
yvi Probability that v stores i

yyy Vector of marginal probabilities yv is in [0, 1]|V | |C|
G Multilinear extension with marginals yyy

[xxx]+(v, i) Vector xxx with the (v, i)-th coordinate set to 1
[xxx]−(v, i) Vector xxx with the (v, i)-th coordinate set to 0

Item based counting queues
Ie Set of items passing through e

Dµ′ Set of feasible service rates µµµ

of responses of type r on edge e = (v, u) where (u, v) ∈ pr are
Poisson with rate:

λre = λ
r
e(xxx) = λ

r

kpr (u)∏
k′=1
(1 − xpr

k′
ir). (7)

Intuitively, this states that responses of type r pass through
edge (v, u) ∈ E iff all path predecessors of node v do not
store item ir , i.e., xv′ir = 0 for all v′ : kpr (v′) < kpr (v).

Let the state of a network of M/M/∞ queues be n =
[nre]e∈E,r ∈Re, where nre is the number of responses of type
r on edge e. Then, for each r ∈ R, the corresponding network
is a Jackson network and, in particular, the steady state joint
distribution has following product form:

π(n) =
∏
e∈E

∏
r ∈R

πre(n
r
e), (8)

where πre(n
r
e) =

(ρre)
nre

(nre)!
e−ρ

r
e , nre ∈ N, and the load of response

type r ∈ Re on e = (v, u) ∈E is:

ρre = ρ
r
e(xxx, µ

r
e) =

λr

µre

kpr (u)∏
k′=1
(1 − xpr

k′
ir). (9)

Hence, in steady state, the expected cost of response type
r ∈ Re on edge e ∈ E , according to Lemma 2, is:

EM/M/∞[cre(n
r
e)] =

∞∑
n=0

cre(n) · e
−ρre
(ρre)

n

n!
, (10)

Given a cache network represented by graph G(V, E), ser-
vice rate capacities µe, e ∈ E , storage capacities cv , v ∈ V ,
a requests set R and arrival rates λr , r ∈ R, we formulate
the cache cost minimization problem under M/M/∞ queues as
follows:

MINCOSTM/M/∞

min
xxx,µµµ

: CM/M/∞(xxx, µµµ) =
∑
e∈E

∑
r ∈Re

EM/M/∞[cre(n
r
e)], (11a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (11b)

where D is defined by Eq. (1) and Dµ is defined by Eq. (2).
We can similarly define an optimization problem under

M/M/1c queues. Supposing that the assumptions of Lemma 1
hold, the expected cost of an M/M/1c queue is:

EM/M/1c[cre(n
r
e)] =

∞∑
n=0

cre(n) ·
(

ρre
ρre + 1

)n 1
ρre + 1

. (12)

where ρre are given by Eq. (9). We thus can again consider
a cache cost minimization problem under M/M/1c queues,
defined as:

MINCOSTM/M/1c

min
xxx,µµµ

: CM/M/1c(xxx, µµµ) =
∑
e∈E

∑
r ∈Re

EM/M/1c[cre(n
r
e)], (13a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (13b)

We stress that both problems (11) and (13) are approximations
of networks of counting queues. MINCOSTM/M/∞ is clearly an
approximation, as M/M/∞ queues are used instead of M/M/1c
queues. The objective (11a) captures steady state costs in
such a system accurately, as arrivals in intermediate queues
are indeed Poisson. MINCOSTM/M/1c is an approximation as
the objective assumes Poisson arrivals and counters of size 1
at intermediate queues, neither of which are true for a real
network of M/M/1c queues.

As we will see in Sec. VI, these approximations appear to
perform well experimentally. Nevertheless, both problems are
hard to solve; we prove the following in Appendix C:

Theorem 2. Problems (11) and (13) are NP-hard.

IV. MAIN RESULTS

In this section, we show how to solve Problems (11) and
(13) within a constant approximation, poly-time algorithm.
Mahdian et al. [15] approach caching problems via submodular
maximization. However, (11) and (13) can not be cast in this
setting, as they have mixed constraints: we would like to
determine not only item placements (integer variables) but also
service rates (continuous variables). Nevertheless, we construct
a 1 − 1/e-approximation poly-time algorithm. A crucial step
is that the so-called multilinear extensions of (11a) and (13a)
are jointly DR-submodular [54] w.r.t. xxx and µµµ.

A. Cache Gain Maximization

We introduce the following assumption on cost functions:

Assumption 1. For all r ∈ R, e ∈ E, and n ∈ N+,

cre(n + 1) − cre(n) ≥ cre(n) − cre(n − 1) ≥ 0.

CACHE NETWORKS OF COUNTING QUEUES 7

Using this assumption, we establish the following property:

Lemma 3. Under Assumption 1, the expected cost functions
EM/M/∞[cre(n

r
e)] and EM/M/1c[cre(n

r
e)], given by (10) and (12),

are non-decreasing and convex w.r.t. load ρre, given by (9).

The proof is in Appendix D. Motivated by Lemma 3, we
consider a more general class of problems of the form:

MINCOST

min
xxx,µµµ

: C(xxx, µµµ) =
∑
e∈E

∑
r ∈Re

Cr
e (ρ

r
e(xxx, µ

r
e)), (14a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (14b)

where expected cost functions Cr
e : D × Dµ → R+ are

non-decreasing and convex. Clearly, by Lem. 3, an algorithm
solving (14) can also solve both (11) and (13). Following [12],
[14], we consider an equivalent maximization problem instead:

MAXGAIN

max
xxx,µµµ

: F(xxx, µµµ) = C(000, εεε) − C(xxx, µµµ), (15a)

s.t. : xxx ∈ D, µµµ ∈ Dµ, (15b)

where 000 ∈ D is the empty cache placement, εεε = ε · 111 ∈ Dµ is
the vector of minimum service rates, and C(000, εεε) is an upper
bound on C(xxx, µµµ). MINCOST and MAXGAIN are equivalent,
because (14a) and (15a) only differ by a constant C(000, εεε).

B. DR-Submodularity

Let D̃ = conv({xxx : xxx ∈ D}) ⊆ [0, 1] |V | |C | be the convex
hull of the constraint set D. That is:

D̃ = {yyy ∈ [0, 1] |V | |C | :
∑
i∈C

yvi ≤ cv, ∀v ∈ V}. (16)

Given a yyy ∈ D̃, consider a random vector xxx generated as
follows: every xvi ∈ {0, 1} is an independent Bernoulli variable
such that P(xvi = 1) = yvi . The multilinear extension [34]
G(yyy, µµµ) : D̃ × Dµ → R+ of F is Ey[F(xxx, µµµ)], i.e.:

G(yyy, µµµ) =
∑

xxx∈{0,1} |V | |C|
F(xxx, µµµ) ×

∏
(v,i)∈V×C

yxvivi (1 − yvi)
1−xvi . (17)

Given an X ⊆ Rd , we say that a function f : X → R is DR-
submodular [18], if for all aaa ≤ bbb ∈ X, and all i ∈ N, k ∈ R+,
s.t. (keeei+aaa) and (keeei+bbb) are in X, we have f (keeei+aaa)− f (aaa) ≥
f (keeei + bbb) − f (bbb). The following lemma establishes that G is
DR-submodular over the extended domain D̃ × Dµ:

Theorem 3. If the expected cost functions Cr
e are non-

decreasing and convex, the multilinear extension G is non-
decreasing DR-submodular jointly on both µµµ and yyy.

Proof. Let function F(S, µµµ) , F(xxxS, µµµ), S = {supp(xxx)}. We
first introduce an auxiliary lemma and its proof is in App. E:

Lemma 4. If the expected cost functions Cr
e are non-

decreasing and convex, the set function F(S, µµµ) is: (a) non-
decreasing concave on µµµ and (b) non-decreasing submodular
on set S.

For convenience, we replace subscripts e and superscripts r
by subscript i ∈ E ×

∑
e Re. By Lemma 4:

∂G(yyy, µµµ)
∂µi

=
∑

xxx∈{0,1} |V | |C|

∂F(xxx, µµµ)
∂µi

×
∏

(v,i)∈V×C

yxvivi (1 − yvi)
1−xvi ≥ 0,

and
∂G(yyy, µµµ)
∂yi

= Ey[F(xxx, µµµ)|xi = 1] − Ey[F(xxx, µµµ)|xi = 0] ≥ 0.

Thus G is non-decreasing in both µµµ and yyy. By Lemma 4, we
get:

∂2G(xxx, µµµ)
∂µi∂µj

=
∑

xxx∈{0,1} |V | |C|

∂2F(xxx, µµµ)
∂µi∂µj

×
∏

(v,i)∈V×C

yxvivi (1 − yvi)
1−xvi ≤ 0,

while, as shown in [34],

∂2G(yyy, µµµ)
∂yi∂yj

=Ey[F(xxx, µµµ)|xi=1, xj =1]−Ey[F(xxx, µµµ)|xi=1, xj =0]

−Ey[F(xxx, µµµ)|xi=0, xj =1]+Ey[F(xxx, µµµ)|xi=0, xj =0]
≤ 0. (18)

We have, ∂F(xxx,µµµ)
∂µi

= −
∂Ci (ρi)
∂ρi

∂ρi
∂µi

=
∂Ci (ρi)
∂ρi

ρi
µi
≥ 0, and

∂
∂ρi

∂F(xxx,µµµ)
∂µi

=
∂2Ci (ρi)

∂ρ2
i

ρi
µi
+

∂Ci (ρi)
∂ρi

1
µi
≥ 0. So, ∂F(xxx,µµµ)

∂µi
is non-

decreasing w.r.t. ρi . Since ρi is non-increasing w.r.t. xxx, ∂F(xxx,µµµ)∂µi
is non-increasing w.r.t. xxx. Then,

∂2G(yyy, µµµ)
∂µi∂yj

=Ey[
∂F(xxx, µµµ)
∂µi

|xj =1]−Ey[
∂F(xxx, µµµ)
∂µi

|xj =0] ≤ 0.

Hence, all of the entries of G(xxx, µµµ)’s Hessian w.r.t. both µµµ and
xxx are non-positive, and G is DR-submodular [18].

This property is key; despite the fact that G is not concave,
DR-submodularity implies we can maximize it within a con-
stant factor. We stress here that the property holds jointly for
yyy and µµµ, which is non-obvious.

C. Algorithm Overview

Leveraging Thm. 3, our algorithm consists of two steps:
Step 1: DR-submodular maximization. We first apply a
variant of the Frank-Wolfe algorithm [54], summarized in
Alg. 1, on the multilinear extension G. For brevity, we join yyy

and µµµ as one variable zzz = {yyy, µµµ} ∈ Dz ≡ {zzz ∈ D̃ × Dµ}. The
algorithm first initializes the solution as zzz = {000, εεε}. Then, it
iterates over the following steps:

mmmk ← arg max
mmm∈Dz

〈mmm, ∇̂G(zzzk)〉, (19a)

zzzk+1 = zzzk + γkmmmk, (19b)

where ∇̂G(zzzk) is an estimate of the gradient of G, and γk
is an appropriately chosen step size. An estimator of ∇G is
needed because both ∇G and G, given by (17), contain an
exponential (in |V | |C|) number of terms. We describe this
estimator in detail in Section IV-D. Given ∇̂G(zzzk), (19) is a
linear program, which can be solved in polynomial time [54].
After K iterations, we get a fractional solution zzzK = {yyyK, µµµK },
i.e., the output of Alg. 1.
Step 2: Rounding. Finally, the fractional solution yyyK is

8 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

Algorithm 1: Frank-Wolfe variant for G(zzz)
Input: G(zzz), Dz , step size γ ∈ (0, 1], initial point {000, εεε}.

1 t ← 0, k ← 0, zzz0 ← {000, εεε}
2 while t < 1 do
3 mmmk ← arg maxmmm∈Dz

〈
mmm, ∇̂G(zzzk)

〉
4 γk ← min{γ, 1 − t}
5 zzzk+1 = zzzk + γkmmmk , t ← t + γk , k ← k + 1
6 end
7 return zzzk

rounded into an integer solution xxxK . We describe how to do
this in Sec. IV-E. This produces an approximate solution xxxK
and µµµK to MAXGAIN.

Intuitively, DR-sumbodular maximization step (19) solves:

max
yyy,µµµ

: G(yyy, µµµ), (20a)

s.t . : yyy ∈ D̃, µµµ ∈ Dµ, (20b)

where D̃ is defined by (16). Alg. 1/Eq. (19) only solves
(20) approximately because objective (20a) is not concave.
Nevertheless, because (20a) is DR-submodular by Lemma 3,
Alg. 1 produces a 1−1/e approximation to (20); see Lemma 8
for details.

Combined with the rounding step, the following theorem
characterizes the approximation guarantee of the overall algo-
rithm:

Theorem 4. Let xxx∗, µµµ∗ be an optimal solution to (15), µµµK be
the output of Frank-Wolfe variant, and xxxK the integer solution
after rounding. Then, with high probability,

E[F(xxxK, µµµK)] ≥ (1 −
1
e
)F(xxx∗, µµµ∗). (21)

The “with high probability” is w.r.t. the randomness of the
estimator, while the expectation in (21) is w.r.t. the randomness
in the rounding step. The proof is in Appendix F.

D. Estimator of Gradient

Eq. (19a) presumes access to the gradient ∇G. Nonetheless,
both G and ∇G involve a summation over 2 |V | |C | terms. To
create a poly-time algorithm, the usual approach is to use a
sampling-based estimator [34]. In short, the partial derivatives
of G w.r.t. yvi and µre are (see [34] for (22)):

∂G(yyy, µµµ)
∂yvi

= Ey[C(xxx, µµµ)|xvi=0]−Ey[C(xxx, µµµ)|xvi=1], (22)

∂G(yyy, µµµ)
∂µre

=
1
µre
Ey[

∂Cr
e (ρ

r
e)

∂ρre
· ρre]. (23)

One can thus estimate the gradient by (a) producing T random
samples xxx(l), l = 1, ...,T of the random vector xxx, consisting of
independent Bernoulli coordinates with P(xvi = 1) = yvi , and
(b) computing the empirical mean w.r.t. yvi:

̂∂G(yyy, µµµ)
∂yvi

=
1
T

T∑
l=1
(C([xxxl]−(v,i), µµµ) − C([xxxl]+(v,i), µµµ)), (24)

where [xxxl]−(v,i), [xxxl]+(v,i) are equal to vector xxx with the (v, i)-th
coordinate set to 0 and 1, respectively, and w.r.t µre:

̂∂G(yyy, µµµ)
∂µre

=
1

T µre

T∑
l=1

∂Cr
e (ρ

r
e([xxx

l], µre))

∂ρre([xxxl], µre)
· ρre([xxx

l], µre). (25)

According to Calinescu et al. [34], for the (with high prob-
ability) 1 − 1/e approximation ratio, O((|V | |C|)2 ln(|V | |C|))
samples suffice. There are other ways to estimate the gradient,
e.g., via a Taylor expansion [15]. This is more efficient, so we
also use it in Sec. VI. We refer readers to [15] for more details.

E. Swap Rounding

We review swap rounding [62], which is a probabilistic
rounding step. Given a fractional yyyK , it can be written as a
convex combination of some integer vectors BBBl , i.e., yyyK =∑L

l=1 βlBBBl , where
∑L

l=1 βl = 1, βl ≥ 0, and BBBl ∈ D. By
construction, each BBBl is maximal. This algorithm iteratively
merges these BBBl , each iteration one BBBl , to produce a new
integer solution xxxl , until xxxl equal to BBBl+1. If xxxl′ differs BBBl′+1
by an item i in v, the item i replaces another different item
j in BBBl′+1 with probability proportional to

∑l′

l=1 βl , or another
different item j in BBBl′+1 replaces item i in xxxl′ with probability
proportional to βl′+1. Swap rounding ensures that the objective
does not decrease in expectation during rounding, i.e.,

E[G(xxxK, µµµK)] ≥ G(yyyK, µµµK). (26)

The algorithm terminates in at most O(|V | |C|) steps.

F. Time Complexity

To ensure Thm. 4 holds, the number of samples T used for
sample-based estimator of gradient is O((|V | |C|)2 ln(|V | |C|))
[15]. Each sample requires at most O(|E | |R |) operations.
Given a gradient, (19) requires polynomial time in the number
of constraints and variables, which are O(|V | |C| + |E | |R |).
We iterate (19) at most O(|V | |C|) times [15]. The rounding
schemes presented in Sec. IV-E are also poly-time, i.e., at most
O(|V | |C|) steps. In summary, the overall time complexity of
our algorithm is O(|E | |R |(|V | |C|)3 ln(|V | |C|)).

V. EXTENSIONS

A. Multi-Item Requests

We can easily extend our model to requests with multiple
items (see also [63]). Such multi-item requests, where several
items are requested simultaneously, can be used to model
requests for files of different size that are partitioned to
equally-sized chunks. In this case, an item can be thought of
as modeling a chunk, a file is a set of chunks, and the catalog
comprises the union of all chunks across all files.

Formally, a multi-item request r = (Ir, pr) ∈ R is deter-
mined by (a) a set of requested items Ir = {ir

l
}L
l=1 ⊆ C

(the file), and (b) the followed path pr . Again, we assume
that requests of type r are generated according to a Poisson
process with rate λr . This can be directly analyzed using
our model by observing that a single multi-item request
is equivalent to multiple simultaneous single-item requests,
namely, (ir1, pr), (ir2, pr), ..., (irL, pr), where ir

l
∈ Ir ; the latter

CACHE NETWORKS OF COUNTING QUEUES 9

are generated (simultaneously) at Poisson epochs with rate λr .
Although these request arrival processes are not independent,
the expected cost C under M/M/∞ and M/M/1c queues still
have the form as objectives (11a) and (13a), where:

EM/M/∞[cre(n
r
e)] =

∑
r′=(i,pr),i∈Ir

EM/M/∞[cr
′

e (n
r′

e)],

EM/M/1c[cre(n
r
e)] =

∑
r′=(i,pr),i∈Ir

EM/M/1c[cr
′

e (n
r′

e)].

This is because, (a) the dependence between requests does
affect their steady state marginal distributions, and (b) our
objective is the sum of expectations, which is the same
irrespective of whether the constituent r.v.s are dependent or
not. Hence, we can analyze multi-item requests via indepen-
dent single-item arrivals, and our analysis, algorithms, and
guarantees directly extend to the multi-item requests setting.

B. Queuing on Nodes

Our model also readily extends to introducing queuing on
nodes. Given all the paths {pr, r ∈ R}, for every node v ∈ V ,
we denote by Rv the set of response types passing through
node v, i.e.,

Rv = {r ∈ R : v ∈ pr }.

In this extension, each node v ∈ V is be associated with a
service rate µv ∈ R+. The service rate in a node is again split
across response types, items, etc. For example, in the case
of response-based merging, arrivals of responses of type r on
node v are Poisson with rate:

λrv = λ
r
v(xxx) = λ

r

kpr (v)−1∏
k′=1

(1 − xpr
k′
ir).

Intuitively, this states that responses of type r pass through
node v ∈ V iff all path predecessors of node v do not store item
ir , i.e., xv′ir = 0 for all v′ : kpr (v′) < kpr (v). The remaining
model can be changed correspondingly, mutatis mutandis. The
same approximation guarantee (1−1/e) can be obtained in this
setting, again exploiting DR-submodularity.

C. Item-based Counting Queues

So far, we have considered merging responses of the same
type. Our model and analysis can however be extended to
counting queues merging responses based on the item they
carry. In particular, if a response of type r = (i, p) arrives in a
queue serving a response of type r ′ = (i, p′), they both carry
the same item and, therefore, can be simultaneously served.
This creates additional opportunities for preserving bandwidth;
however, it comes at the expense of additional complexity to
keep track of how items associate to responses.

In more detail, instead of having counting queues associated
with every response r ∈ R traversing an edge, each edge e
is associated with counting queues per item i ∈ C, each with
service rate µie. Again, these can be restricted to items i whose
responses traverse e. When a response of type r carrying item
i arrives at an empty queue on edge e, it receives service with
rate µie immediately. If before the service terminates, another

u

3

3
v

5

5

m

n
5

3

(a) response-based merge

u v8
m

n 5

3

5 3

(b) item-based merge

Fig. 4: An example illustrating differences between response-
based counting queues and item-based counting queues. In
both queues, 3 responses of type r = (i, p) and 5 responses of
type r ′ = (i, p′) arrive at edge (v, u) simultaneously. (a) In a
response-based merge, response r and response r ′ are served
in separate queues. (b) In item-based merge, response r and
r ′ merge together as a new response, in a common queue over
edge (v, u), while keeping track of provenance at the packet
header. After the end of service, the merged response is split
by node u and routed to the appropriate paths for each type,
as paths for type r and r ′ diverge.

response carrying item i arrives, even if of a different type r ′,
the two are merged. Instead of queuing up, the new response
merges with the response already in the server and they are
served simultaneously with rate µie.

This item-based merge behavior further decreases traffic
in the network, as more responses merge compared to the
response-based counting queues. Nevertheless, merged re-
sponses need to keep track of provenance; the merged response
needs to keep track not only of the count of responses
containing i, but also how many are associated with each
type r ∈ R. The paths associated with each type r ∈ R
are also documented. This information is stored in the header
of responses. In particular, the merged response stores sub-
counters for every type of response, along with the corre-
sponding paths in its header. The merged response is served
together in downstream edges as long as paths are common.
In addition, when the two paths diverge, nodes need to split
merged responses, and route them accordingly; this is a
more complex operation than the simple routing performed
in per-request merging. This is illustrated in Fig. 4(b). In this
example, 3 responses of type r = (i, p) and 5 responses of type
r ′ = (i, p′) have accumulated at e = (v, u); the response header
keeps track of this break down. As paths p, p′ diverge at u,
when the service completes, the receiving node u splits the
merged response into two responses: one w.r.t r , with counter
3, and one w.r.t r ′, with counter 5, and routes them to edge
(u,m) and (u, n), respectively, according to the information
stored in the response header.

Our model and analysis can be extended to incorporate this
behavior as follows. Given the requests r = (ir, pr) ∈ R, for
every edge e ∈ E , we denote by Ie the set of items that may
potentially pass through edge e, i.e., for e = (v, u),

I(v,u) = {ir ∈ C : (u, v) ∈ pr, (ir, pr) ∈ R}.

The service rate in an edge is split across items, rather than
response types. For every item i ∈ Ie, there exists a queue

10 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

with service rate µie ∈ R+. Assume that the minimum service
rate for all queues is some small ε ∈ R+. Let vector µµµ =
[µie]e∈E,i∈Ie ∈ R

∑
e |Ie |
+ be the global service rate assignment

vector. We denote the set of feasible assignments by:

Dµ′ = {µµµ∈R
∑

e |Ie |
+ : µie ≥ ε,

∑
i∈Ie

µie ≤ µe, ∀e ∈ E, i ∈Ie}. (27)

Let nie ∈ N be the queue size. We assume that queuing cost is
a function of nie and denote by cie(n

i
e) : N → R+ the cost of

responses carrying item i on edge e.
Just as in the response-based counting queues network, our

item-based counting queues network does not have a product
form steady state distribution; we cannot characterize the
latter easily in a closed form. However, when approximated
through M/M/∞ queues, the network becomes again amenable
to analysis. In contrast to response-based routing, where the
approximation resulted in multiple separate Jackson networks
(one per type r ∈ R), the resulting network under M/M/∞ is
now a Kelly network [16], i.e., a multi-class Jackson network,
where classes are determined by types r ∈ R. Again, in steady
state, the joint distribution has a product form and departures
are Poisson [57]: as a result, arrivals of responses carrying
item i on edge e = (v, u) where (u, v) ∈ pr are Poisson with
rate:

λie =
∑

r=(i,p)∈Re

λre(xxx) =
∑

r=(i,p)∈Re

λr
kp (u)∏
k′=1
(1 − xpk′ i).

The load of responses carrying item i ∈ Ie on e = (v, u) ∈ E
is:

ρie = ρ
i
e(xxx, µ

i
e) =

1
µie

∑
r=(i,p)∈Re

λr
kp (u)∏
k′=1
(1 − xpk′ i).

Given a cache network by graph G(V, E), service rate
capacities µe, e ∈ E , storage capacities cv , v ∈ V , a requests
set R and arrival rates λr , r ∈ R, we formulate the cache
cost minimization problem under item-based M/M/∞ queues
as follows:

ITEMBASEDMINCOSTM/M/∞

min
xxx,µµµ

: CM/M/∞(xxx, µµµ) =
∑
e∈E

∑
i∈Ie

EM/M/∞[cie(n
i
e)], (28a)

s.t. : xxx ∈ D, µµµ ∈ Dµ′, (28b)

where D is defined by Eq. (1) and Dµ′ is defined by Eq. (27).
Similarly, if M/M/1c queues with Poisson arrivals and

counters being 1, we also consider a cache cost minimization
problem under item-based M/M/1c queues, defined as:

ITEMBASEDMINCOSTM/M/1c

min
xxx,µµµ

: CM/M/1c(xxx, µµµ) =
∑
e∈E

∑
i∈Ie

EM/M/1c[cie(n
i
e)], (29a)

s.t. : xxx ∈ D, µµµ ∈ Dµ′ . (29b)

Both problems (28) and (29) can be solved by techniques
we proposed before, since all of statements in Sec. IV hold
by just replacing superscript r with i. This is because we
have simply changed how arrival rates are aggregated (on

topologies |V | |E | |C | |R | |Q | cv
ER 100 1042 1000 5000 4 50

ER-20Q 100 1042 100 1000 20 2
star 100 198 1000 5000 4 50
HC 128 896 100 1000 4 2

HC-20Q 128 896 100 1000 20 2
dtelekom 68 546 1000 5000 4 50
abilene 9 26 1000 5000 4 50
geant 22 66 1000 5000 4 50

TABLE II: Graph Topologies and Experiment Parameters.

a per item rather than per request basis). In particular, con-
straints on the loads per edge remain affine in these arrival
rates. Under Assumption 1, the expected cost function are
non-decreasing and convex w.r.t. load ρie. Similarly, we can
reformulate those two problems in a more general class of
involving a non-decreasing, convex function of the load. The
multilinear extension of this objective is again non-decreasing
DR-submodluar jointly on both service assignment and item
placement, and our Frank-Wolfe variant algorithm (Alg. 1),
and rounding algorithm yield the same approximation and
complexity guarantees.

VI. EXPERIMENTS

A. Experiment Setting

We execute our algorithms on Erdős-Rényi (ER), star,
hypercube (HC), Deutsche Telekom (dtelekom), GEANT,
and Abilene backbone networks [64]. The graph parameters
of different topologies are shown in Tab. II. Each node v ∈ V
has cv storage to cache item from a catalog of size |C|. Each
item i ∈ C is stored permanently in one designated server Si
which is picked uniformly at random (u.a.r.) from V . Also, we
u.a.r. select |Q| nodes from V as query nodes. Each of them
generates around b|R|/|Q|c requests. For each response type
r ∈ R, rate λr is uniformly distributed over [1.0, 2.0]. The
item ir requested by r is chosen from catalog C via a power
law distribution with exponent 1.2. The path pr is the shortest
path between the query node pr1 ∈ Q and designated server
prK ∈ Sir . We set µe = 200.0 at each edge e, and ε = 0.1.
Cost functions ce(nre) are moments of the queue size E[(nre)

k],
where k = 1, 2, 3, 4.

We conduct two types of experiments. (i) In the offline
setting, we compute the expected costs CM/M/∞ and CM/M/1c

according to (11a) and (13a), respectively. (ii) In the online
setting: we simulate packets in M/M/1c and M/M/∞ queues
network, and compute the time-average cost. More specifically,
we monitor queues status at epochs ts of a Poisson process
with rate 1.0, leveraging PASTA [65], for 5000 time slots. For
N measurements, the time average cost is:

C̄· =
1
N

N∑
s=0

∑
e∈E

∑
r ∈Re

cre(n
r
e(ts)),

where · ∈ {M/M/∞,M/M/1c} indicates on the type of queues
simulated, and nre(ts) is queue size at epoch ts .

CACHE NETWORKS OF COUNTING QUEUES 11

ER ER-20Q star HC HC-20Q dtelekom abilene geant
102

103

104

105

106

C M
/M
/

SE-CU CU-SE SE-Greedy FWRS500 FWT1 FWT2

(a) Cost

ER ER-20Q star HC HC-20Q dtelekom abilene geant10 2

10 1

100

101

102

103

104

105

106

Ti
m

e

SE-CU CU-SE SE-Greedy FWRS500 FWT1 FWT2

(b) Execution Time

Fig. 5: Cost and execution time for different topologies and
algorithms for quadratic costs.

B. Cache and Service Rate Algorithms

We compare to both online and offline algorithms. Offline
algorithms are: (a) Service Equally-Cache Uniformly (SE-CU):
first equally assign service rates for Re over all e ∈ E and then
uniformly place items in each node. (b) Cache Uniformly-
Service Equally (CU-SE): first uniformly place items in each
node and then equally assign service rates for responses
passing through edge e for all e ∈ E . Note that service rates
depend on item placements in CU-SE. (c) Service Equally-
Greedy (SE-Greedy): first equally assign service rates for Re

over all e ∈ E and then use the classic greedy algorithm
[50] for item placements. (d) Frank-Wolfe with 500 Random
Samples (FWRS500): Alg. 1 with gradient estimated by 500
random samples. (e) Frank-Wolfe with 1st/2nd order Taylor
expansion (FWT1/FWT2): Alg. 1 with gradient estimated by
the first and the second order Taylor expansion respectively
(c.f. [15]).

We also consider online algorithms, in which service rates
are determined in advance and item placements change dynam-
ically. As in the offline algorithms, we consider two service
strategies: (a) Service Equally (SE): equally assign service
rates for Re over all e ∈ E , (b) µFW : service rates µµµ calculated
by Alg. 1. We combine these with item placements based
on path replication [10]: when responses are back-propagated
over the reverse path, nodes they encounter store requested
items, evicting items via LRU, LFU, or FIFO eviction policies.

C. Results

Different Topologies. The cache cost CM/M/∞ and the run-
ning time generated by different algorithms for quadratic costs
is shown in Fig. 5(a) and 5(b). SE-Greedy improves over SE-
CU and CU-SE, nevertheless, FW algorithms yield further

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Order of moment k

102

103

104

105

C M
/M
/

SE-CU
CU-SE
SE-Greedy
FWRS500
FWT1
FWT2

(a) dtelekom

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Order of moment k

102

103

C M
/M
/

SE-CU
CU-SE
SE-Greedy
FWRS500
FWT1
FWT2

(b) ER20Q

Fig. 6: Cost at different order of moments. Our algorithms
achieve the lowest cost in different cost functions.

27 28 29 210

| |

103

104

105

C M
/M
/

27 28 29 210

| |
100

101

102

103

104

105

Ti
m

e
(S

ec
on

d)

SE-CU CU-SE SE-Greedy FWRS500 FWT1 FWT2

Fig. 7: Cost and execution time at different catalog sizes
|C| for quadratic costs over the star topology. Our algo-
rithms achieve the lowest cost across different catalog sizes.
Execution time of FW is higher than other (sub-optimal)
algorithms, with random sampling being more cost-intensive
than Taylor approximations. Nevertheless, the execution time
scales polynomially with |C|.

improvements. As in [15], Taylor approximations are faster
than sampling, without a loss in performance.
Different Cost Functions. The impact of the cost function on
different algorithms is shown over dtelekom and ER-20Q
in Fig. 6(a) and 6(b). Consistently with Fig. 5, FW outperforms
competitors, with SE-Greedy being a close second. FWT1
performance degrades at the 4th moment in Fig. 6(a) due to
the poor quality of the 1st order Taylor expansion.
Different Catalog Sizes. The impact of the catalog size
on different algorithms for quadratic costs over the star
topology is shown in Fig. 7. Consistently with Fig. 5, FW
outperforms competitors in terms of expected cost, with SE-
Greedy being a close second. Recall that catalog sizes do not
affect the performance guarantee, as stated by Thm. 4. The
execution time of FW increases polynomially with the growth
of catalog sizes |C|, with an estimated exponent close to 2
(see the right figure in Fig. 7. This is under the worst-case
time complexity of O(|C|3 log |C|) anticipated by the analysis
in Sec. IV-F.
Different Query Node Set Sizes. The impact of the query
node size on different algorithms for quadratic costs over the
ER topology is shown in Fig. 8. We scale |Q| while keeping the
number of requests per querying node fixed (to 400 requests

12 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

TABLE III: Expected costs and time-average costs under different topologies for quadratic cost functions.

ER ER-20Q star HC HC-20Q dtelekom abilene geant
CM/M/1/C(zzzM/M/∞) 331.56 79.92 3827.04 1111.59 226.51 615.56 1540.13 1696.72
C̄M/M/1/C(zzzM/M/∞) 339.57 81.23 3879.81 1202.26 244.71 622.34 1713.98 1859.67
CM/M/1/C(zzzM/M/1/C) 331.77 79.77 3842.19 1115.24 212.26 619.85 1569.91 1707.47
C̄M/M/1/C(zzzM/M/1/C) 341.22 80.88 3871.82 1198.67 228.25 623.15 1758.96 1884.49

23 24

| |

103

104

C M
/M
/

23 24

| |
100

101

102

103

104

105

106
Ti

m
e

(S
ec

on
d)

SE-CU CU-SE SE-Greedy FWRS500 FWT1 FWT2

Fig. 8: Cost and execution time at different query node
set sizes |Q| for quadratic costs over the ER topology. Our
algorithms achieve the lowest cost across different query node
set sizes. We again observe that execution time is higher than
suboptimal algorithms, but scales polynomially with |Q|.

ER ER-20Q star HC HC-20Q dtelekom abilene geant
102

103

104

105

106

107

108

C M
/M
/

SE-FIFO SE-LRU SE-LFU FW-FIFO FW-LRU FW-LFU FWT2

Fig. 9: Time average cost for different typologies and algo-
rithms under quadratic costs.

per node). As a result, when growing the number of sources
we also grow the demand proportionally (i.e., |R | = 400|Q|).
Again, FW variants outperform all competitors w.r.t. expected
cost, with SE-Greedy being a close second. We also observe
that execution time increases polynomially w.r.t. the number
of query nodes |Q|, because we increase |R | at the same
time. This is slightly below the worst-case time complexity
of O(|R|) anticipated by the analysis in Sec. IV-F.
Online Algorithms. Fig. 9 compares FWT2 to online al-
gorithms under quadratic costs over M/M/∞ queues. FWT2
achieves the lowest time average costs C̄M/M/∞. Eviction algo-
rithms with µFW are worse than SE most of the time. This
means good performance of FWT2 comes from joint opti-
mization. Note that time average costs of FWT2 in Fig. 9 and
expected costs in Fig. 5(a) are almost identical, which verifies
the reliability of our experiments from another perspective.
Comparing M/M/1c and M/M/∞ Queues. Finally, we confirm
the quality of our two approximations of M/M/1c queues ex-
perimentally. Our goal is to (i) understand how well expected

1 2 3 4
Order of moment k

103

104

Ex
pe

ct
ed

 C
os

t C

CM/M/ (zM/M/)
CM/M/ (zM/M/1/C)
CM/M/1/C(zM/M/)
CM/M/1/C(zM/M/1/C)

(a) Cost for dtelekom

1 2 3 4
Order of moment k

103

104

Ti
m

e
Av

er
ag

e
Co

st
 C

CM/M/ (zM/M/)
CM/M/ (zM/M/1/C)
CM/M/1/C(zM/M/)
CM/M/1/C(zM/M/1/C)

(b) Average cost for dtelekom

1 2 3 4
Order of moment k

102

6 × 101

2 × 102

3 × 102

Ex
pe

ct
ed

 C
os

t C

CM/M/ (zM/M/)
CM/M/ (zM/M/1/C)
CM/M/1/C(zM/M/)
CM/M/1/C(zM/M/1/C)

(c) Cost for ER-20Q

1 2 3 4
Order of moment k

102

6 × 101

2 × 102

3 × 102

Ti
m

e
Av

er
ag

e
Co

st
 C

CM/M/ (zM/M/)
CM/M/ (zM/M/1/C)
CM/M/1/C(zM/M/)
CM/M/1/C(zM/M/1/C)

(d) Average cost for ER-20Q

Fig. 10: Expected costs and time-average costs in M/M/∞ v.s.
M/M/1c queue networks. The two approximate models obtain
similar, and good, solutions.

cost objectives (11a) and (13a) capture the time average costs
C̄M/M/1c, and (ii) assess the quality of solutions zzzM/M/1c and
zzzM/M/∞ to Problems (13) and (11), respectively.

To that end, we plot both the expected cost objectives
CM/M/1c, CM/M/∞, as well as the time averages C̄M/M/1c, C̄M/M/∞

for the two inputs zzzM/M/1c and zzzM/M/∞ in Fig. 10. We
make the following broad observations. First, expected costs
(Fig. 10(a) and 10(c)) are almost identical to time average
costs (Fig. 10(b) and 10(d)). This is anticipated for M/M/∞
queues, that form a Jackson network, but is not obvious for
M/M/1c queues: we assume Poisson arrivals with counters
equal to 1 to formulate our approximate problems. To be more
specific, in Fig. 10(b) and Fig. 10(d), the time average cost
C̄M/M/1c resulting from simulation of (original) M/M/1c queue
networks is almost identical to the expected cost CM/M/1c, com-
puted via the objective for Problem (14), shown in Fig. 10(a)
and Fig. 10(c). This indicates that, in practice, they are good
approximations of the time-average cost of the original system.
Second, cost functions CM/M/∞ and CM/M/1c differ, and this
difference becomes more pronounced as k increases; this is
again anticipated by Thm. 1, as the stochastic domination be-
comes looser for larger k. Nevertheless, the solutions zzzM/M/1c
and zzzM/M/∞ exhibit almost identical behavior w.r.t all four
objectives. For example, CM/M/1c(zzzM/M/∞) ≈ CM/M/1c(zzzM/M/1c) ≈

CACHE NETWORKS OF COUNTING QUEUES 13

C̄M/M/1c(zzzM/M/1c) ≈ C̄M/M/1c(zzzM/M/∞). This means that, even
though the two objectives are not the same, the quality of
the solutions that they produce is quite similar, indicating
a “robustness” in the choice of approximation (via Problem
(11) or (13)). We also observe this in Table III, where these
numbers are shown for quadratic objectives across topologies.

VII. CONCLUSION

We model a cache network as a system of counting queues
in which identical packets merge when collocated. We propose
an offline algorithm; even though item placements and service
rate assignments should not be presumed as static, as they
depend on the demand as solutions to Problem (14), fully
adaptive algorithms would be interesting to study. Though
such a setting harder to analyze, intuition gained in our
setting may be applicable in this contexts too, via, e.g., the
distributed, adaptive algorithm employed by Ioannidis and
Yeh [12]. Exploring this is an interesting future direction.

In our system, responses merge; a more natural approach
would be to merge requests. This occurs in several real-life
networks, such as ICN/CCN [2]–[5]. When requests merge,
they form M/G/1c queues: service time in such queues is
not Markovian, and depends on caching and service rate
assignments. Though related to the system we consider here,
such a network is harder to model and analyze, and its study
is still an open problem.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from National
Science Foundation grants NeTS-1718355 and CCF-1750539.

REFERENCES

[1] Y. Li and S. Ioannidis, “Universally stable cache networks,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network archi-
tecture,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 4, pp. 181–192, 2007.

[4] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (netinf)–an information-centric net-
working architecture,” Computer Communications, vol. 36, no. 7, pp.
721–735, 2013.

[5] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “Vip: A
framework for joint dynamic forwarding and caching in named data
networks,” in Proceedings of the 1st ACM Conference on Information-
Centric Networking, 2014, pp. 117–126.

[6] D. A. Farber, R. E. Greer, A. D. Swart, and J. A. Balter, “Internet content
delivery network,” Nov. 25 2003, uS Patent 6,654,807.

[7] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story
of middleboxes in cellular networks,” in ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4. ACM, 2011, pp. 374–385.

[8] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for
coordinated network-wide redundancy elimination,” in ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4. ACM, 2009, pp. 87–
98.

[9] X. Zhang, J. Liu, B. Li, and Y.-S. Yum, “Coolstreaming/donet: A
data-driven overlay network for peer-to-peer live media streaming,” in
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., vol. 3. IEEE, 2005, pp. 2102–2111.

[10] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-
peer networks,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 177–190.

[11] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[12] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 44, no. 1. ACM, 2016, pp. 113–124.

[13] S. E. Hajri and M. Assaad, “Energy efficiency in cache-enabled small
cell networks with adaptive user clustering,” IEEE Transactions on
Wireless Communications, vol. 17, no. 2, pp. 955–968, 2017.

[14] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 6, pp. 1258–1275, 2018.

[15] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache
networks,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 217–225.

[16] F. P. Kelly, Reversibility and stochastic networks. Cambridge University
Press, 2011.

[17] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Wireless multicasting for
content distribution: Stability and delay gain analysis,” in IEEE INFO-
COM 2019-IEEE Conference on Computer Communications. IEEE,
2019, pp. 1–9.

[18] A. Bian, K. Levy, A. Krause, and J. M. Buhmann, “Continuous DR-
submodular maximization: Structure and algorithms,” in Advances in
Neural Information Processing Systems, 2017, pp. 486–496.

[19] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakr-
ishnan, “Optimal content placement for a large-scale VoD system,” in
Proceedings of the 6th International Conference. ACM, 2010, p. 4.

[20] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for
data placement problems,” SIAM Journal on Computing, vol. 38, no. 4,
pp. 1411–1429, 2008.

[21] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algorithms for distributed
data management,” Journal of Computer and System Sciences, vol. 51,
no. 3, pp. 341–358, 1995.

[22] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm. Society for Industrial and Applied Mathematics,
2006, pp. 611–620.

[23] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms
for content distribution networks,” in IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. Citeseer, 2010, pp. 1–9.

[24] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in IEEE INFOCOM
2015-IEEE Conference on Computer Communications. IEEE, 2015,
pp. 936–944.

[25] S. Shukla and A. A. Abouzeid, “Proactive retention aware caching,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[26] K. Poularakis and L. Tassiulas, “Code, cache and deliver on the move:
A novel caching paradigm in hyper-dense small-cell networks,” IEEE
Transactions on Mobile Computing, vol. 16, no. 3, pp. 675–687, 2016.

[27] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Distributed caching algorithms in the realm of layered video
streaming,” IEEE Transactions on Mobile Computing, vol. 18, no. 4,
pp. 757–770, 2018.

[28] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in mec networks with storage,
computation, and communication constraints,” IEEE/ACM Transactions
on Networking, 2020.

[29] J. Li, T. K. Phan, W. K. Chai, D. Tuncer, G. Pavlou, D. Griffin,
and M. Rio, “DR-cache: Distributed resilient caching with latency
guarantees,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 441–449.

[30] B. Liu, K. Poularakis, L. Tassiulas, and T. Jiang, “Joint caching and
routing in congestible networks of arbitrary topology,” IEEE Internet of
Things Journal, vol. 6, no. 6, pp. 10 105–10 118, 2019.

[31] Z. Yang, D. Jia, S. Ioannidis, N. Mi, and B. Sheng, “Intermediate data
caching optimization for multi-stage and parallel big data frameworks,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 277–284.

14 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

[32] K. Poularakis and L. Tassiulas, “On the complexity of optimal content
placement in hierarchical caching networks,” IEEE Transactions on
Communications, vol. 64, no. 5, pp. 2092–2103, 2016.

[33] G. Domingues, E. d. S. e Silva, R. M. Leao, D. S. Menasche, and
D. Towsley, “Enabling opportunistic search and placement in cache
networks,” Computer Networks, vol. 119, pp. 17–34, 2017.

[34] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[35] F. Zafari, J. Li, K. K. Leung, D. Towsley, and A. Swami, “Opti-
mal energy tradeoff among communication, computation and caching
with qoi-guarantee,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–7.

[36] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[37] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in 2012 24th International
Teletraffic Congress (ITC 24). IEEE, 2012, pp. 1–8.

[38] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in IEEE INFOCOM 2014-
IEEE Conference on Computer Communications. IEEE, 2014, pp.
2040–2048.

[39] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 3, pp. 59–67, 2013.

[40] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of
TTL-based cache networks,” in 6th International ICST Conference on
Performance Evaluation Methodologies and Tools. IEEE, 2012, pp.
1–10.

[41] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[42] G. Domingues, R. M. Leao, D. S. Menasche et al., “Flexible content
placement in cache networks using reinforced counters,” arXiv preprint
arXiv:1501.03446, 2015.

[43] J. R. Jackson, “Networks of waiting lines,” Operations research, vol. 5,
no. 4, pp. 518–521, 1957.

[44] C.-S. Chang, Performance guarantees in communication networks.
Springer Science & Business Media, 2012.

[45] F. P. Kelly, “Loss networks,” The annals of applied probability, pp. 319–
378, 1991.

[46] Z. Zhang and A. S. Acampora, “A heuristic wavelength assignment
algorithm for multihop wdm networks with wavelength routing and
wavelength re-use,” IEEE/ACM Transactions on networking, vol. 3,
no. 3, pp. 281–288, 1995.

[47] S. Keshav, An engineering approach to computer networking: ATM
networks, the Internet, and the telephone network. Addison-Wesley
Reading, 1997, vol. 116.

[48] Y. Fang and I. Chlamtac, “Teletraffic analysis and mobility modeling of
pcs networks,” IEEE Transactions on Communications, vol. 47, no. 7,
pp. 1062–1072, 1999.

[49] C. Courcoubetis, Pricing Communication Networks Economics, Tech-
nology and Modelling. Wiley Online Library, 2003.

[50] A. Krause and D. Golovin, “Submodular function maximization.” 2014.
[51] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,

1999.
[52] Y. Filmus and J. Ward, “Monotone submodular maximization over a

matroid via non-oblivious local search,” SIAM Journal on Computing,
vol. 43, no. 2, pp. 514–542, 2014.

[53] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation for
submodular and supermodular optimization with bounded curvature,”
Mathematics of Operations Research, vol. 42, no. 4, pp. 1197–1218,
2017.

[54] A. Bian, B. Mirzasoleiman, J. M. Buhmann, and A. Krause, “Guaranteed
non-convex optimization: Submodular maximization over continuous
domains,” Proceedings of Machine Learning Research, vol. 54, pp. 111–
120, 2017.

[55] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal of
Combinatorial Optimization, vol. 8, no. 3, pp. 307–328, 2004.

[56] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[57] R. G. Gallager, Stochastic processes: theory for applications. Cam-
bridge University Press, 2013.

[58] P. G. Harrison and N. M. Patel, Performance modelling of communi-
cation networks and computer architectures (International Computer S.
Addison-Wesley Longman Publishing Co., Inc., 1992.

[59] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
networks and Markov chains: modeling and performance evaluation
with computer science applications. John Wiley & Sons, 2006.

[60] M. R. Hestenes, “Optimization theory: the finite dimensional case,” New
York, 1975.

[61] M. H. Stone, “Applications of the theory of boolean rings to general
topology,” Transactions of the American Mathematical Society, vol. 41,
no. 3, pp. 375–481, 1937.

[62] C. Chekuri, J. Vondrak, and R. Zenklusen, “Dependent randomized
rounding via exchange properties of combinatorial structures,” in 2010
IEEE 51st Annual Symposium on Foundations of Computer Science.
IEEE, 2010, pp. 575–584.

[63] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp.
737–750, 2018.

[64] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom
ParisTech, pp. 1–6, 2011.

[65] R. W. Wolff, “Poisson arrivals see time averages,” Operations Research,
vol. 30, no. 2, pp. 223–231, 1982.

[66] J. Riordan, “Moment recurrence relations for binomial, poisson and
hypergeometric frequency distributions,” The Annals of Mathematical
Statistics, vol. 8, no. 2, pp. 103–111, 1937.

[67] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

Yuanyuan Li received the B.E. degree from School
of Electronic and Information Engineering, South
China University of Technology, China and M.S.
degree from Department of Computer Science and
Engineering, Shanghai Jiao Tong University. She
is now a Ph.D. student in Computer Engineering,
Northeastern University, Boston, USA., under the
supervision of Prof. Stratis Ioannidis. Her research
interests include networking, optimization and ma-
chine learning.

Stratis Ioannidis is an Associate Professor in the
Electrical and Computer Engineering department at
Northeastern University, in Boston, MA, where he
also holds a courtesy appointment with the Khoury
College of Computer Sciences. He received his B.Sc.
(2002) in Electrical and Computer Engineering from
the National Technical University of Athens, Greece,
and his M.Sc. (2004) and Ph.D. (2009) in Computer
Science from the University of Toronto, Canada.
Prior to joining Northeastern, he was a research
scientist at the Technicolor research centers in Paris,

France, and Palo Alto, CA, as well as at Yahoo Labs in Sunnyvale, CA.
He is the recipient of an NSF CAREER award, a Google Faculty Research
Award, a Facebook Research Award, and Best Paper Awards at the 2017 ACM
Conference on Information-centric Networking (ICN) and the 2019 IEEE
International Symposium on Dynamic Spectrum Access Networks (DySPAN).

CACHE NETWORKS OF COUNTING QUEUES 15

APPENDIX

A. Proof of Lemma 1
By the balance/equilibrium equations of this Markov pro-

cess (see Eq. (1.3), p. 3 in [16]), the steady state distribution
πππ = [πn]

∞
n=0 satisfies:

π0λ
r
e =

∑
n>0 πnµ

r
e,

πn−1λ
r
e = πn(λ

r
e + µ

r
e), n ≥ 2,∑

n πn = 1.
We can show Eq. (3) is the solution by induction on n.

B. Proof of Theorem 1
We first state two auxiliary lemmas. For convenience, we

use ρ representing ρre in this proof.

Lemma 5. The k-th moment mk
M/M/1c

(ρ) and mk
M/M/∞

(ρ) can
be obtained from recurrence relations:

mk+1
M/M/1c(ρ) = ρmk

M/M/1c(ρ) + ρ(ρ + 1)
dmk

M/M/1c
(ρ)

dρ
,

mk+1
M/M/∞(ρ) = ρmk

M/M/∞(ρ) + ρ
dmk

M/M/∞
(ρ)

dρ
.

Proof. The steady state distribution of M/M/∞ queue is a
Poisson distribution with parameter ρ, and by eq. (3.8), pp. 106
in [66], we get the recurrence relation for mk

M/M/∞
. Similarly,

the steady state distribution of M/M/1c queue is a geometric
distribution with parameter p = ρ

ρ+1 . Taking the derivative of

mk
M/M/1c

w.r.t. p,
dmk

M/M/1c

dp = − 1
1−pmk+1

M/M/1c
+ 1

pmk
M/M/1c

. Using
the chain rule (see Eq. (A.6), p. 642 in [67]) and rearranging
the terms, we get the recurrence relations for mk

M/M/1c
w.r.t.

ρ.

Lemma 6. Both mk
M/M/1c

(ρ) and mk
M/M/∞

(ρ) are polynomials,
i.e., mk

M/M/1c
(ρ) =

∑k
i=1 β

k
i ρ

i, mk
M/M/∞

(ρ) =
∑k

i=1 α
k
i ρ

i, where

βki , α
k
i > 0, and

βk
i

αk
i

= i!.

Proof. We prove this by induction. For k = 1, this follows
from (5) (also Lem. 5 for k = 0). Suppose it holds for k = `,
i.e., m`

M/M/1c
(ρ) =

∑`
i=1 i!α`i ρ

i, and m`
M/M/∞

(ρ) =
∑`

i=1 α
`
i ρ

i .
Then, when k = ` + 1, by Lemma 5:

m`+1
M/M/1c(ρ) = α

`
1 ρ+

∑̀
i=2

i!(α`i−1+iα`i)ρ
i+(`+1)!α`` ρ

+̀1

m`+1
M/M/∞(ρ) = α

`
1 ρ +

∑̀
i=2
(α`i−1 + iα`i)ρ

i + α`` ρ
`+1

Comparing terms, we have
β`+1
i

α`+1
i

= i!.

To prove Thm. 1, observe that by Lemma 6,
mk
M/M/∞

(ρ)

mk
M/M/1c

(ρ)
=∑k

i=1 α
k
i ρ

i∑k
i=1 i!α

k
i ρ

i
. Hence,∑k

i=1 α
k
i ρ

i∑k
i=1 k!αk

i ρ
i
≤

mk
M/M/∞

(ρ)

mk
M/M/1c

(ρ)
≤

∑k
i=1 α

k
i ρ

i∑k
i=1 α

k
i ρ

i
,

which implies 1
k! ≤

mk
M/M/∞

(ρ)

mk
M/M/1c

(ρ)
≤ 1.

C. Proof of Theorem 2

(Sketch) Observe that MINCOSTM/M/∞ and MINCOSTM/M/1c
are identical when cre(n

r
e) = nre, i.e., when the cost is the queue

size: by (5), both expected costs are equal to ρre. We reduce
the (NP-hard) fixed routing cost problem by Ioannidis and Yeh
[12] to this problem. To do so, if an edge has cost wuv , we
set µuv = |Ruv |/wuv and ε = 1/wuv . Then the service rate
µruv at each queue on edge (u, v) is exactly 1/wuv (i.e., Dµ is
a singleton), and both MINCOSTM/M/∞ and MINCOSTM/M/1c
coincide with the fixed cost routing problem.

D. Proof of Lemma 3

By Eq. (12), the expected costs of M/M/1c queues are:

EM/M/1c[cre(n
r
e)]=cre(0) +

∞∑
n=0
(cre(n + 1) − cre(n))(

ρre
ρre + 1

)n+1.

The corresponding first derivative w.r.t. ρre is,

dEM/M/1c[cre(nre)]
dρre

=

∞∑
n=0
(cre(n + 1) − cre(n)) ·

(n + 1)(ρre)n

(ρre + 1)n+2 ≥ 0.

Moreover, d2EM/M/1c[c
r
e (n

r
e)]

d(ρre)2
=

∑∞
n=0 ∆n, where ∆n = (cre(n+1) −

cre(n))(n + 1) n(ρ
r
e)

n−1−2(ρre)n
(ρre+1)n+3 . By Assumption 1, let n0 ≡ b2ρrec

we have that ∆n ≥ (cre(n0 + 1) − cre(n0))(n + 1) n(ρ
r
e)

n−1−2(ρre)n
(ρre+1)n+3 ,

for all n ∈ N. Hence,

d2EM/M/1c[cre(n
r
e)]

d(ρre)2
≥ (cre(n0 + 1) − cre(n0))·

∞∑
n=0

[
(n + 1)n

(ρre)
n−1

(ρre + 1)n+3 − 2(n + 1)
(ρre)

n

(ρre + 1)n+3

]
= 0.

Thus, EM/M/1c[cre(n
r
e)] is non-decreasing and convex w.r.t. ρre.

Similarly, by Eq. (10):

EM/M/∞[cre(n
r
e)]=cre(0) +

∞∑
n=0
(cre(n + 1) − cre(n))e

−ρre

∞∑
l=n+1

(ρre)
l

l!
.

The corresponding first derivative w.r.t. ρre is,

dEM/M/∞[cre(nre)]
dρre

=

∞∑
n=0
(cre(n + 1) − cre(n)) · e

−ρre
(ρre)

n

n!
≥ 0.

Moreover, d2EM/M/∞[c
r
e (n

r
e)]

d(ρre)2
=

∑∞
n=0 ∆n, where ∆n = (cre(n + 1) −

cre(n))(−e−ρ
r
e
(ρre)

n

n! + e−ρ
r
e
n(ρre)

n−1

n!). By Assumption 1, let n0 ≡

bρrec we have that ∆n ≥ (cre(n0 + 1) − cre(n0))(−e−ρ
r
e
(ρre)

n

n! +

e−ρ
r
e
n(ρre)

n−1

n!), for all n ∈ N. Hence,

d2EM/M/∞[cre(n
r
e)]

d(ρre)2
≥ (cre(n0 + 1) − cre(n0))·

(

∞∑
n=0
−e−ρ

r
e
(ρre)

n

n!
+

∞∑
n=1

e−ρ
r
e
(ρre)

n−1

(n − 1)!
) = 0.

Thus, EM/M/∞[cre(n
r
e)] is non-decreasing and convex w.r.t. ρre.

16 IEEE/ACM TRANSACTIONS OF NETWORKING, VOL. XX, NO. YY, AUGUST XXX

E. Proof of Lemma 4

For convenience, we replace subscripts e and superscripts
r by subscript i ∈ E ×

∑
e Re. (a) By Lemma 3, Ci(ρi) is

non-decreasing convex w.r.t. ρi . Also, ρi =
λi
µi

is decreasing
convex w.r.t. µi . Hence, by Eq. (3.10), p.84 in [67], we have
that ∂Ci (xxx,µi)

∂µi
≤ 0, ∂2Ci (xxx,µi)

∂µ2
i

≥ 0. Hence, the first derivative of
F(S, µµµ) w.r.t. µi is:

∂F(S, µµµ)
∂µi

= −
∂C(xxx, µµµ)
∂µi

≥ 0,

and the second derivative w.r.t. µi , µj is:

∂2F(S, µµµ)
∂µi∂µj

= −
∂2C(xxx, µµµ)
∂µi∂µj

=

{
0 i , j

−
∂2Ci (xxx,µi)

∂µ2
i

i = j
≤ 0,

so ∇µµµF(S, µµµ) ≥ 000 and ∇2
µµµF(S, µµµ) � 0. Thus, F(S, µµµ) is non-

decreasing and concave on µµµ. (b) We know that Ci is non-
decreasing and convex w.r.t. ρi . By Theorem 1 and Corollary
1 in [15], F(S, µµµ) is non-decreasing and submodular on set
S.

F. Proof of Theorem 4

Proof. We begin by stating a lemma on the feasibility of the
the output of Alg. 1.

Lemma 7. The output of Alg. 1, zzzK , and the intermediate
result zzzk always belong to feasible region Dz , i.e., zzzk ∈ Dz ,
for all k ∈ {1, . . . ,K}.

Proof. By construction (see Alg. 1), we have that zzzK =∑K
k=1 γkmmmk , where γk > 0 and

∑K
k=1 γk = 1. Moreover, by

Eq. (19a), mmmk ∈ Dz for all k ∈ {1, . . . ,K}. Hence, zzzK is a
convex combination of points in Dz ; since Dz is a convex
set; zK ∈ Dz . By Eq. (19), 000 ≤ zzzk ≤ zzzK , and Dz is a
down-closed convex set, thus zk always belongs to Dz for
all k ∈ {1, . . . ,K}.

Then, we state a lemma on the quality of the output of Alg.
1, assuming that the estimate ∇̂G is produced via the sampling
method outlined in Sec. IV-D.

Lemma 8. For a fixed number of iterations K which is large
enough, and constant stepsize γk = γ = K−1, Alg. 1 provides
the following approximation guarantee with high probability:

G(zzzK) ≥ (1 −
1
e
)G(zzz∗), (30)

where zzzK is output of Alg. 1, zzz∗ is an optimal solution to
Problem (20).

Proof. Function G is DR-submodular, as shown in Lemma 3,
domain D̃ × Dµ is a down-closed convex set, and Lipschitz
parameter of ∇G is 2C(000, εεε) because | |∇2G(zzz)| | is bounded by
2C(000, εεε) according to (18). With above conditions, Corollary
1 by Bian et al. [54] states: G(zzzK) ≥ (1− 1

e)G(zzz
∗)− L

2K , where
L = 2C(000, εεε) is a finite constant. Calinescu et al. [34] show that
for large enough K , the offset L

2K can be omitted and (30) still
holds with high probability. The term “with high probability”,
due to sample-based estimation of ∇G, and means probability
at least 1 − 1/|V | |C |.

To conclude the proof of Theorem 4, we have:

E[F(xxxK, µµµK)]
Eq. (17)
= E[G(xxxK, µµµK)]

Eq. (26)
≥ G(yyyK, µµµK)

Lem. 8
≥ (1 −

1
e
)G(yyy∗, µµµ∗) ≥ (1 −

1
e
)F(xxx∗, µµµ∗),

where xxx∗ and µµµ∗ is an optimal solution to (15), yyy∗ is an
optimal solution to (20), yyyK and µµµK is the output of Frank-
Wolfe variant algorithm, and xxxK is the integer solution after
rounding. The first equation holds because F and G are equal
under integer arguments xxxK . The last inequality holds because
(20) has a larger feasible region.

