Graph Transfer Learning

Andrey Gritsenko, Yuan Guo, Kimia Shayestehfard, Armin Moharrer, Jennifer Dy, Stratis loannidis

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
{agritsenko, yuanee20, kshayestehfard, amoharrer, jdy, ioannidis } @ece.neu.edu

Abstract—Graph embeddings have been tremendously
successful at producing node representations that are dis-
criminative for downstream tasks. In this paper, we study
the problem of graph transfer learning: given two graphs
and labels in the nodes of the first graph, we wish to predict
the labels on the second graph. We propose a tractable, non-
combinatorial method for solving the graph transfer learning
problem by combining classification and embedding losses
with a continuous, convex penalty motivated by tractable
graph distances. We demonstrate that our method successfully
predicts labels across graphs with almost perfect accuracy; in
the same scenarios, training embeddings through standard
methods leads to predictions that are no better than random.

1. Introduction

E consider a graph transfer learning problem, il-
lustrated by the following motivating example. An
epidemic spreading through a graph is observed by an
analyst. The statistics governing the epidemic propagation
are a priori unknown; nevertheless, the analyst wishes to use
this trace to predict how the epidemic would spread over
a new graph, potentially modeling a different population.
More broadly speaking, we wish to solve the following ab-
stract problem. A learner is presented with two structurally
similar (but distinct) graphs G4 and G . Node labels such
as, e.g., infection probabilities, community membership,
etc., are provided only for nodes on GG 4. A learner wishes
to use the labels on G 4 to predict the labels on Gp.
Intuitively, the success of such a transfer learning task
relies on the fact that many interesting labels depend on
structural or topological features of nodes. For example,
membership in a cluster, susceptibility to an infection
during a cascade, pagerank scores, etc., are all properties
that depend on the relative position (w.r.t. clusters, weakly
connected components, centrality, etc.) nodes have in a
graph. A classifier trained over such labels in G 4 should be
transferable to a new, structurally similar graph G . In the
extreme, when graphs G4 and G are isomorphic, Gg’s
labels should be fully recoverable; conversely, one expects
transferability to degrade over highly dissimilar graphs.
A natural challenge that arises in this setting is in how
to abstract (and transfer) topological information across the
two graphs. In this paper, we address this challenge by

leveraging graph embeddings [1]-[3]. Graph embeddings
have been tremendously successful at producing compact
representations of nodes in a graph, and have become a true
workhorse of graph mining. In short, graph embeddings
map nodes of a graph into a lower-dimensional space (e.g.,
R?, for some small d); this mapping concisely captures
node connectivity, recovered from embeddings through an
appropriate link function. Embeddings therefore naturally
abstract structural information through the node’s position
in this lower-dimensional space. In addition, embeddings
reduce graph transfer learning to classic transfer learn-
ing [4]: a classifier trained over labels and embeddings of
nodes in graph G4 can be transferred to a new feature
domain, namely, the embeddings of G5’s nodes.

Unfortunately, successfully transferring knowledge via
state-of-the-art embeddings poses significant challenges. A
classifier trained on embeddings of one graph is generally
no better than random guessing when applied to embed-
dings of another graph: we provide a theoretical justification
for this in Section IV-A, and demonstrate it also experimen-
tally in Section V. In short, classifiers catastrophically fail
to transfer across embeddings of different graphs because
of an embedding misalignment: as designed, none of the
popular graph embedding methods ensure that nodes of
two distinct graphs are embedded over the same lower-
dimensional subspace or manifold. In general, embeddings
capture only the relative, rather than the absolute, position
of nodes in R?. This is sufficient for inference tasks on
nodes of the same graph (like, e.g., link prediction) but
disastrous when transferring knowledge across graphs: the
same embedding algorithms applied to two isomorphic
graphs may generate vastly different embeddings, that are
distorted via arbitrary shifts, rotations, or other transforms.
This severely hampers the ability to transfer structural
classifiers across graphs.

We directly address this issue by producing a tractable,
non-combinatorial methodology for solving the graph trans-
fer learning problem. We do so by learning joint embed-
dings across the two graphs. This allows us to successfully
transfer a classifier trained on labels of one graph to another.
We make the following contributions:



« We introduce novel methodology for solving the graph
transfer learning problem in a non-combinatorial fash-
ion. Our method is general, and can be applied to a
broad array of graph embedding algorithms. Moreover,
it combines classification and embedding losses with
a continuous, convex coupling penalty motivated by
tractable graph distances [5].

¢ Our continuous and convex coupling penalty seamlessly
integrates with deep embedding methods. We propose
and implement an alternating minimization algorithm
that jointly embeds the two graphs. Our algorithm does
so without solving the combinatorial (and hard) problem
of aligning the two graphs: instead, it alternates between
using SGD and solving a convex optimization problem
constrained over the Birkhoff polytope [6].

« We extensively evaluate our proposed graph transfer
learning methodology over several synthetic and real-
life datasets. We demonstrate that it successfully pre-
dicts labels across graphs with almost perfect accuracy;
in the same scenarios, training embeddings separately
leads to predictions that are no better than random.

To the best of our knowledge, we are the first to study
the graph transfer learning problem, and to propose a non-
combinatorial method for its solution.

II. Related Work

Graph Embeddings and Graph Neural Networks. Graph
embedding research has flourished recently [1]-[3], [7].
We thoroughly review techniques as well as specific algo-
rithms in Section III, following the unifying framework of
Hamilton et al. [8]. Typically, embeddings preserve node
similarity in the embedding space, and thus require the
definition of similarity on both the embedding space as
well as on graph nodes [9], [10]. We list several examples
in Table II. Graph neural networks (GNNs) [8], [11]-[13]
produce graph embeddings by generalizing the notion of
a convolution, aggregating information from neighboring
nodes, in analogy to conventional convolutional neural
networks. Our transfer learning approach is generic, and
applies to the majority of the methods outlined above,
including GNNs. Moreover, the challenges posed by graph
transfer learning we outline in Section I'V-A are pertinent to
all these methods, and are exacerbated by deep models, as
non-convexity increases the multiplicity of local minima.

Transfer Learning on Graphs. Transfer learning in the
general machine learning setting aims to apply knowledge
gained while solving one task to a different but related
task [4]. A quintessential example is transferring a text
classifier from language to another [14]. Transfer learning
has been applied to graphs only recently; all current work
however [15]-[17] considers classifying (and transferring
labels across) graphs, as opposed to nodes. To the best
of our knowledge, we are the first to tackle transferring

Notation Description
Ga,Gp Graphs
1% Node set of graphs G 4,Gpg
Ea,Ep Edge sets of graphs G 4,Gp
zZA, zf Embedding of nodes in G4 and G
sa(%,7) Topological similarity between nodes ¢,5 € V'
sg(zi, zj) Similarity between node embeddings z;, z;

y,LA Label of node vf €Vy

ACC Classification accuracy
RMSE Root mean squares error

R? Coefficient of determination
Lg Embedding loss — Eq. (3.2b)
Lo Classification loss — Eq. (3.6a)
Lp Penalty function (4.10)

L Aggregate loss — Eq. (4.8a)

W,Wa,Wg, W’ Neural network weights

P Doubly stochastic matrix

B Birkhoff polytope — Eq. (4.12)

P Set of permutation matrices

TABLE I: Summary of notation.

structural node labels between graphs.

Graph distances. There exist graph alignment heuristics
(see, e.g., [18], [19]) that are tractable, but do not satisfy
the metric property. Our tractable penalty is based on, and
inspired by, recent work by Bento and loannidis [5]. The
authors propose a family of graph distances that are (a)
computable in polynomial time and (b) satisfy the metric
property. We incorporate this formulation as a penalty into
our framework and use it to couple the embeddings of two
graphs in order to transfer the learned classifier.
Epidemic Learning. The seminal paper by Kempe et
al. [20], has motivated learning the parameters of an epi-
demic spread (e.g., [21]-[23]). Typically, this is done via
maximum likelihood estimation over a generative model,
e.g., the independent cascades (IC) or linear threshold (LT)
models [20]. We learn from cascades in one graph and
transfer knowledge to another graph. We thus avoid in-
termediate parameter inference and modeling assumptions
(such as the IC or LT model), that may not hold in practice.

III. Background

A. Node Embeddings. The goal of node embedding algo-
rithms is to learn parsimonious node representations that are
discriminative w.r.t. downstream tasks such as community
detection, link prediction, etc. We follow the framework
of Hamilton et al. [8] that unifies multiple different node
embedding methods.

A Unifying Framework. Given a graph G(V, E) with
n = |V nodes, let x; € {0,1}" be the 1-hot encoding of
anode ¢ € V in the graph. An embedding is a parametric
function f : R” x R™ — R, where d < n, mapping nodes
to d dimensional vectors; that is,

2 = f(z;, W) € RY 3.1



Method sp(zi,25) sa(i,7) Loss function £g

Laplacian Eigenmaps [2] —||z; — ;|2 n-neighborhood —sp(zi,25) - sa(i,7)

Graph Factorization [1] 2 z; Aij (8 (215 2j) — 56(6,5))?
GraRep [7] 2z 2 Az,],Afyj,u»,Af:j (sB(2i,25) — s (i,4))?
2 2
node2vec [3] L}Z p(il7) —s¢(i,7) log(s g (i, 25))
Speve’i Tk

TABLE II: Different embedding methods expressed in the unify-
ing framework of Hamilton at al. [8]. In node2vec, p(i|j) is the
probability of visiting node j on a fixed-lenght random walk from
node 3.

is the embedding z; of node ¢ € V, and W € R™, for
some m € N, are weights parametrizing the embedding
function. For example, f could be a neural network with
by weights W, an affine (shallow) function, etc. Note that
this representation can readily incorporate node attributes,
that can be represented via features in input vectors ;.

Keeping the exposition on one-hot encoding for con-
creteness, the parameters of the embedding can be trained
as follows. Given a ropological similarity function sg : V X
V' — R between nodes as well as an embedding similarity
function sp : RY x RY — R between embeddings, the
node embedding task can be formulated via the following
minimization problem:

min Lg(W;G), where (3.2a)
WeR™
ES(W;G):Zi,jeV KS(SG(Z.,j),SE(Zi,Zj)), (32b)
zi = f(xs, W), Vi€V, (3.2¢)

and /s : R x R — R an appropriately defined loss
function. Typically, Prob. (3.2) is solved via stochastic
gradient descent over the nodes, although techniques like
hierarchical softmax [24] and negative sampling [25] can
be incorporated to accelerate computations.

Examples. The topological similarity sg can be, e.g.,
node adjacency or proximity in path distance. That is,
if A is the adjacency matrix of G(V,E), and d;; is the
shortest path distance between ¢, € V' then two possible
similarities are s (i, j) = A;; and sg(¢,j) = 1/d;;. Other
alternatives include, e.g., powers of the adjacency matrix,
the probability that a random walk starting at ¢ terminates
at j after a small number of steps, etc. Several examples are
provided in Table II (see also [8]). For example, Laplacian
Eigenmaps [2] couple Euclidian distance with a product
loss, yielding:

Ls(W:G) =3, sev 1z = 2113 - sa(i,5),

while Graph Factorization [1] couples an inner product with
a quadratic loss, yielding:

Ls(W,G) =3, jev (2 2 = sa(i 1))

(3.3)

(3.4)

B. Node Label Prediction. Node embeddings often serve
as an intermediate step for downstream supervised learning
tasks on graphs, such as community detection, link pre-
diction, etc. For example, given binary labels y; € {0,1}

for nodes i € S C V, learning embeddings that are
discriminative w.r.t. these labels can be accomplished by
extending Eq. (3.2) as follows:

£S(Wa G) + ‘CC(Wa W/7 Ys, G)7

min
WeR™ W'eR™’

where Lg(W;G) is the similarity loss (3.2b), while

EC(VVa WI7 Ys, G) = Z'LES ZC (ng(z’m W,))7 and (363)
zi = f(z;, W), VieV. (3.6b)

(3.5)

Here, /c : R x R — R is a loss function (such as, e.g.,
square error, logistic, or cross-entropy), ys € {0,1}|S|
is the vector of labels, and g : R? x R™ — R is a
function (i.e., a prediction model) parametrized by W’/ €
R™, mapping node embeddings to labels. This can again
be a deep or shallow model (e.g., logistic regression).
Problem (3.5) can again be solved via stochastic gradient
descent, where an epoch iterates over batches node pairs
i,j € V and labeled nodes i € S.

IV. Graph Transfer Learning

A. Problem Formulation. In this paper, we wish to solve
the graph transfer learning problem. Given two graphs
and labels in the nodes of the first graph, we wish to
predict the labels on the second graph. As discussed in
the introduction, labels such as community membership,
susceptibility to an infection, centrality, etc., may be func-
tions of structural properties of a node and, as a result, may
be transferable across graphs. Formally, we are given two
unweighted graphs G 4(Va, Ep) and Gg(Vp, Ep) of the
same size (i.e., |Va| = |Vp| = n), as well as a set of labels
y; for i € S C V4. For example, y; € {0,1} fori € S'in a
binary classification task, y; € R in the case of a regression
task, etc. We wish to train a neural network over labels in
G 4, and use it to subsequently predict labels in Gp. We
focus first on unweighted graphs of equal size for the sake
of simplicity; we extend out method to weighted graphs
and graphs of unequal size in Section IV-D.
A Naive Solution. The node embedding and node label
prediction algorithms we reviewed in Section III give a
possible simple solution to the graph transfer learning
problem. First, a discriminative embedding is trained on
graph G 4, by solving Prob. (3.5): this gives both an
embedding f(-,W,4) and a predictive model g(-,W').
Second, an embedding f(-,Wg) is trained on graph Gp,
by solving Prob. (3.2) on Gz alone. Finally, the predictive
model g(-,W') is applied on the embeddings of nodes in
graph Gp to predict their labels. Altogether, this naive
algorithm solves the following problem, which is separable
over (W4, W') and Wp:
min  Lg(Wa;Ga)+Lo(Wa,W'ys,Ga)

Wa,Wa,W’ (4.7)

+Ls(Wg;Gg),



a Class1
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(a) Graph G 4 (b) Graph G
Fig. 1: Example of two isomorphic embeddings and the failure
to transfer a learned classifier across them. In (a) embeddings of
a G4 are used to train an almost perfect classifier between two
classes. Embeddings of G in (b) are identical to G 4 but subject
to a rotation; as a result, the classifier trained in G4 does not
readily generalize to Gp.

where Lg, Lo are given by Egs. (3.2b) and (3.6a), respec-
tively. Unfortunately, this approach is bound to fail; we
extensively demonstrate this experimentally in Section V,
and give some intuition as to why this is the case below.
Non-Uniqueness. It is easy to see that Eq. (4.7) fails
to transfer the learned classifier by considering the case
when the two graphs G 4 and G are isomorphic. In this
case, nodes that map to each other should have the same
embeddings and, thereby, the same labels. Unfortunately,
none of the methods outlined in Table II are guaranteed
to produce the same embeddings for nodes in V4 and Vp.
This is because of non-uniqueness: the non-convexity of
the loss Lg for all of these methods implies that optimal
embeddings (i.e., solutions to Prob. (3.2)) are non-unique.
In turn, this non-uniqueness implies that the embeddings of
the same graph, or two isomorphic graphs, can be vastly
different at two different executions of the algorithm.

For several objectives, non-uniqueness manifests
through arbitrary transformations of the latent space, via
rotations, shifts, or other transforms. In turn, this “breaks”
transferring a node classifier learned on one graph to
another via the above naive method. This is illustrated
in Fig. 1: clearly, a classifier trained on a set of samples
fails to correctly classify exactly the same samples when
the latter are rotated. Simply put, the separating surface
(e.g., hyperplane for a shallow linear classifier like logistic
regression) is not invariant to the aforementioned trans-
forms that relate embeddings between different graphs; as
a result, embeddings trained across the two graphs can be
misaligned. This suggests that embeddings across graphs
need to be trained jointly, maintaining an appropriate
alignment. We accomplish this, via a non-combinatorial
method, in the next section.

The use of different random seeds or starting points,
the use of deep neural networks, that may introduce ad-
ditional local minima, and departures from perfect iso-
morphism (i.e., different edges in the two graphs), all

further exacerbate the problem of non-uniqueness. Most
importantly, as non-uniqueness is a consequence of the non-
convexity of the objective, it arises irrespective of whether
embedding functions are shallow or deep, whether inputs
x; are features or one-hot encodings, or whether, e.g.,
graph neural networks are used. In the latter case, it is
tempting to think that embeddings are, by design, linked
to topological properties of the position of a node in the
graph, and thereby are invariant (at least if graphs are
isomorphic). However, this is not true: the non-convexity
of the objective makes such methods also susceptible to
variations due to randomness, initialization conditions, and
departures from perfect isomorphism. We also demonstrate
this experimentally in Section V, exploring three direct
encoding methods, viz. Laplacian Eigenmaps [2], Graph
Factorization [1], and node2vec [3], as well as graph
neural network GraphSAGE [13]: all four algorithms fail
to transfer across graphs for the aforementioned reasons
(see Table IV).

To make two of these examples concrete, non-
uniqueness is quite easy to see for both Laplacian Eigen-
maps and Graph Factorization (with objectives (3.3) and
(3.4), respectively). Indeed, in Laplacian Eigenmaps, it is
easy to see that if {2 },cy is an optimal embedding, then so
will be {R- 2} };cv, where R € R%*4 s a rotation matrix.
Similarly, in the case of Graph Factorization, if {z}};cv
is an optimal embedding, then so is {Q - z}};cv, where
Q € R¥4 is an arbitrary orthogonal matrix. For exactly the
same reason, other embeddings in Table II that use inner
products (e.g., node2vec) are non-unique. Finally, we note
that the above problem arises in the context of structural
node label prediction, but not for link prediction and,
possibly, other pairwise classification tasks that depend
only on the distance or angle between node embeddings.
This because the latter are not affected by rotation and the
other transforms listed above. Indeed, embeddings learned
via Prob. (4.7) may work well at predicting edges between
two nodes in G g, even though classifier g(-, W) fails.

B. Graph Transfer Learning via Coupling Penalty. We
address the above challenges by training the embeddings
of G4 and G jointly. We accomplish this by modifying
Prob. (4.7) to incorporate a coupling penalty: this coupling
penalty enforces that nodes that are structurally similar
across graphs receive proximal embeddings. Our method is
generic and applies to all embeddings outlined in Table II,
irrespective of whether shallow or deep functions f are
used, or whether inputs x; represent features or one-hot
encodings. Most importantly, our algorithm produces a
“soft”, non-combinatorial assignment between nodes of
the two graphs, which can be computed with convex
optimization methods; we neither assume nor compute a
bijection between nodes in the two graphs.



Formally, we extend Prob. (4.7) to the following con-
strained optimization problem:

Wlfivfg, Ls(Wa;Ga)+Le(Wa,Whys,Ga)+Ls(Wp;Gp)
W;,P
+a||[AP-PB|3+8tr (P'D(Wa,Wg)), (4.8a)

st. PeR™" P1=1,P'1=1,P>0, (4.8b)

where o, > 0 are positive regularization parameters,
tr(P'D) =2 ieva.jevy PijDij is the element-wise product
between matrices P, D € R**", and D = D(W4,Wp) is
a matrix comprising all the pairwise distances between the
embeddings of nodes across the two graphs; that is:

D(Wa,Wg) = [Dijlicva.jevy € R™*", where  (4.9a)
Dij = ||z{* — 2P|, VieVa,je Vg, (49b)
2 = f(x5,Wa), Vi€ Vy, and (4.9¢)
2P = f(z;,Wg), Vjé€ Vs (4.9d)

Intuitively, Prob. (4.8) jointly determines (a) the em-
beddings of nodes in the two graphs, via parameters
Wa,Wp € R™, (b) the label classifier g, via parameters
W' € R™, and (¢) a doubly stochastic matrix P €
[0, 1]™*™ that couples the nodes of the two graphs and their
embeddings together through the penalty:

Lp(P,Wa,Wg) = al|| AP — PB||2+ tr(P' D). (4.10)

The first term of this penalty learns a probabilistic mapping
between nodes in the two graphs, via the doubly stochastic
matrix P. Intuitively, if G4, Gp are isomorphic, ||[AP —
PB|| is zero under a mapping P that sends every node in
G 4 to its image in Gp with probability 1; the double-
stochasticity of P, enforced via the constraints (4.8b),
relaxes this to probabilistic mappings. The second term
enforces that nodes that map to each other have similar
embeddings. To see this, note that if P;; € [0, 1] is high for
some ¢ € V4, j € Vp, minimizing the penalty in Eq. (4.10)
forces Dyj = ||z — 2P||2 to be low.

Our approach has several advantages. It avoids finding
a discrete, exact solution to the graph isomorphism/graph
matching problem, which is notoriously hard [26]. The
coupling penalty (Eq. (4.10)) is convex, making the opti-
mization w.r.t. P tractable given the node embeddings. The
coupling via continuous, smoothly evolving variables P
translates to a smooth evolution of neural network weights,
which is beneficial in practice during SGD. Finally, as
embeddings are fine-tuned, the trace penalty helps discover
better stochastic mappings P, as nodes with similar embed-
dings are mapped to each other. Our solution to Prob. (4.8),
discussed next, exploits these properties.

C. Alternating Minimization. We solve Prob. (4.8) via
alternating minimization. Denote the combined weights of

L=

18 oo 5,02,2))

Embedding A Prediction
Graph A

node i
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T
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Embedding B
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embedding z,
node i’ T

% embedding z; .E
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Fig. 2: Schematic portrayal of the proposed framework. Here,
L% and L£E are node embedding penalties (Eq. (3.2)) for graphs
G 4, G B, respectively, L is the prediction model loss (Eq. (3.6)),
and Lp is the matching penalty (Eq. (4.10)).

the network embeddings f for each graph and the predictor
gby W = (Wy, Wg, W') € R2™*T™  We rewrite (4.8) as

mingy cpomsm’ pep LW, P), (4.11)

where £ : R2m+m’ » R"Xn 5 R is the aggregate
loss (4.8a), and B C R™*™ is the set of doubly stochastic
matrices (a.k.a. the Birkhoff polytope):

B2{Pc[0,1]":P1=1,P'1=1}. (412)

We solve Prob. (4.8) via alternating minimization as fol-
lows: at each iteration k¥ € N we update weights W and
matrix P via

(4.132)
(4.13b)

wk+1) — arg minyy, cpam4m L(W, P(k)),
PR — argminpp LW+ py,

We give a detailed description of these steps in Appendix A.
In short, Eq. (4.13a) can be solved via standard SGD.
Eq. (4.13b) is a convex optimization problem, and admits
fast implementations via the Frank-Wolfe (FW) algorithm
[27] and the Alternating Directions Method of Multipliers
(ADMM) [28].

Overall Algorithm and Initialization. A summary of
our overall framework for solving Prob. (4.8) is shown
in Fig. 2. The embeddings f for both graphs and the
predictor network g are neural networks. As the objective is
not convex, it is important to start from a good initialization
point. To do so, we first compute a matrix P ignoring
embeddings (i.e., assuming that D = 0). Then, we train
the embedding and classifier for graph G4 ignoring P
(i.e., solving Eq. (3.5) w.r.t W4) for one epoch; then,
using the existing embedding of G4, and P we train
the embedding of Gp (i.e., solving Eq. (4.13a) w.r.t. Wg
alone). The remaining alternating minimization proceeds as
in Eq. (4.13), with each step as described in Appendix A.



D. Extensions Our approach naturally extends to weighted
graphs and graphs of different size.

Graphs of Different Size. Given two graphs G 4, Gp of
different size, there are several ways of expanding them
with “dummy” nodes such that the new graphs, G’, and
ng, have the same number of nodes (see, e.g., [5], [29]).
A simple one is to expand graph G4 with |V, | dummy
nodes and graph G5 with |V, | dummy nodes, resulting in
two graphs of size |V4|+ |Vp|. Dummy nodes are handled
in the coupling penalty (4.10) as follows. First, A, B are
extended by adding edges of weight 1/2 between dummy
and normal nodes, as well as between dummy nodes: using
1/2 differentiates such edges from edges in the original
graph (that have weight 1), which in turn penalizes maps
between dummy and normal nodes. Such maps can be
further discouraged via D, by setting the distance between
dummy nodes in G 4 and non-dummy nodes Gz to a large
value (e.g., 100x the largest distance between normal node
embeddings), and vice versa, while the distance between
dummy nodes is set to 0. Note that dummy nodes have no
embeddings, so W updates (Eq. (A.1)) remain unaltered.
Weighted Graphs. The coupling penalty (Eq. (4.10)) re-
mains the same under weighted graphs, with A, B be-
ing now weighted adjacency matrices in R™*". Handling
weighted graphs thus only requires modifying the embed-
ding functions, taking weights into account when comput-
ing graph similarities s¢; all methods outlined in Table II
can be appropriately adjusted to do so.

V. Experiments

A. Experimental Setup We use 3 synthetic and 3 real-
world datasets, summarized in Table III.

Synthetic datasets. We generate synthetic graphs with
C = 2,4 and 6 equal-sized clusters. The graph with 2
clusters, BP-2, contains one cluster generated via Erdds-
Rényi model [30] G(25,0.5), while the second cluster is
a complete bipartite graph K5 13; these two clusters are
connected via a bipartite graph with a one-to-one correspon-
dence between nodes from the two clusters (see Fig. 3a). In
the 4-cluster and 6-cluster datasets, SB-4 and SB-6, graphs
are generated via the stochastic block model. Each cluster is
an Erd6s-Rényi graph G(n, pi™) (n = 25 for the graph with
4 clusters and n = 20 for the graph with 6 clusters), and
pi™ varies for different clusters 4. Clusters are connected as
shown in Figs. 3b and 3c, which also provides the inter-
and intra- connection probabilities for both SB models.
Real-world datasets. We use 3 real-world graphs: Zachary
Karate Club (ZKC) [31], Email [32], and the Infectious
Disease Transmission Dataset (IDTD) [33]. We use ground
truth cluster labels for ZKC as provided. For Email, we
reorganize ground truth labels provided with the dataset as
follows: clusters with fewer than 10 nodes are dissolved,
and their nodes are assigned to a cluster with more than

0.1 0.1 0.1
0.1

0.1 @885 0.1 0.1

0.1 0155 0.1

0.1 0.1 0.1
0.1 0.6

(c) SB-6: Graph with 6 communities

Fig. 3: Synthetic graphs with (a) 2, (b) 4 and (c) 6 communi-
ties. Each community is represented as a highly interconnected
cluster of nodes. For SB-4, SB-6 graphs, corresponding block
adjacency matrices depict probabilities of intra- and inter-cluster
connections; shallow inter-clusters connections produce asymmet-
ric structure of a graph.

10 nodes by a majority vote across their neighbors. We use
the IDTD dataset solely for epidemic experiments.
Labels. We predict two types of labels in our experiments:
clustering labels and epidemic spread/influence labels. Both
are structural (i.e., depend on the position of a node in the
graph), can be inferred from latent embeddings, and, as
we show below, are transferable across graphs. Clustering
labels are standard: each node is assigned with a single
integer-valued label to one of the clusters it belongs to, and
influence labels are generated with ND1ib’s Independent
Cascade model [34]. We generate ground truth influence
labels as follows for both synthetic and real-world graphs.
We always select a center node, i.e. a node with eccentricity
equal to the radius of a graph, to be the infection seed.
We set the transition probability, i.e. the probability that a
node will get infected by a neighbor, to piprectea = 0.5. We
then run the independent cascade model [20] 1000 times
using Network Diffusion Library [34]. For each
run, the infection propagation process unfolds from active
nodes in discrete steps according to the following rule:

a) When node v becomes active in step t, it is given



BP-2 SB-4 SB-6 ZKC Email IDTD

V] 50 100 120 34 986 788
|E| ~331 ~985 ~1028 78 16064 118291

# of clusters 2 4 6 2 28 N/A

TABLE III: Dataset summary.

a single chance to activate each currently inactive,
susceptible, neighbor w; it succeeds with a transition
probability p;, rected- At step t = 0, only the infection
seed is active.

b) If w has multiple newly activated neighbors, their
attempts are sequenced in an arbitrary order.

c) If v succeeds, then w will become active in step t+1,
and v itself changes its status to removed. Whether or
not v succeeds, it cannot make any further attempts to
activate w in subsequent rounds.

The process runs until no more activations are possible.
All nodes that remain susceptible after the process halts are
declared as healthy, and the rest of the nodes are considered
as infected. We use the fraction of times a node was infected
as ground truth.

Label Transfer Experiments. All of the datasets, both
synthetic and real, contain only one graph G 4. We generate
a second graph Gp by randomly permuting G4 via B =
PTAP, where A,B are adjacency matrices of graphs
G4,Gp, respectively, and P is a permutation matrix,
ie, P € P = BnN{0,1}"*". In the BP-2 dataset, we
additionally remove LI—‘Q/‘J + 1 edges from both graphs. For
SB-4 and SB-6 datasets, we randomly remove p - |V| edges
subsequently adding the same amount of new connections
to a given graph Gp. Here, parameter p identifies the
percentage of existing edges to be removed and new edges
to be added, thus referred to as perturbation factor. The
effect of this perturbation is studied in Section “Graph
Perturbation”, with the remaining results on SB-4 and SB-
6 reported for p = 0. Though we train embeddings over
the entire graphs G4, G, we train predictor g (Eq. (3.6))
using a subset S C V4 containing only 80% of the nodes
G 4, selected so that cluster class ratios are preserved. The
rest 20% of G 4’s nodes are used as a test set (Test A).
All of G nodes are used as a separate test set (7est B),
to validate the success of our transfer learning algorithms.
To ensure statistical significance, we repeat all experiments
100 times with random initializations and splits, and report
averages and standard deviations of the metrics described
below, except for large graphs Email and IDTD, where we
only conduct one experiment.

Metrics. We use accuracy, i.e., the fraction of correct
predictions ¢; in the test set, given by ACC = E'ieﬁjslil‘”=@"’
to assess performance in experiments on clustering labels.
For influence labels, we use the root mean squared error
RMSE = Ez‘etest(yi—ﬂi)Q

tost] and coefficient of determina-

> icvess (Wi —0i)?
S € (Food],

where 7 = m > ictrain Vi 18 the mean label in a training
set train.

Architectures and Solvers. We implement Laplacian
Eigenmaps [2], Graph Factorization [1], and node2vec [3],
whose loss and similarity functions are given in Table II
and briefly discussed in Section III-A. We additionally
employ GraphSAGE [13], a graph neural network node-
classification framework, using an open-source implemen-
tation distributed by algorithm’s authors. For reproducibility
purposes, we provide all hyperparameter settings in Ap-
pendix B. We perform update Eq. (4.13b) via both exact
solution (optP) as well as via one iteration of projected
gradient descent (iterP). We implemented both via the
CVX OPT solver, ADMM, and FW. We compared these in
efficiency and use the best solver (FW for optP and ADMM
for iterP, respectively) for the rest of our experiments.
Graph Transfer Algorithms. We compare the two ver-
sions of our graph transfer learning algorithm (optP, using
a full constrained optimization solver, and iterP, using one
iteration of projected gradient descent for Eq. (4.13b), re-
spectively) to the following baselines. First, we implement
the naive algorithm (4.7) that ignores the coupling penalty;
we refer to this algorithm as noP. We also solve Prob. (4.8)
w.rt W, assuming the true permutation matrix P € P
mapping G4 to Gp is fixed and entered in the objective
of (4.8); we call this algorithm frueP. We also construct
a doubly stochastic P € B that maps every node in one
cluster in G 4 uniformly to every node in the corresponding
cluster in G g; with this P fixed, we solve again Prob. (4.8)
w.r.t. W; we call this algorithm dsP. Note that both trueP
and dsP are powerful benchmarks, as they exploit a priori
knowledge of the ground truth cluster maps across G 4 and
G . Our code is publicly available.!

tion [35] given by R? = 1 —

B. Results

Evaluating Architectures. We first evaluate four embed-
ding algorithms (Laplacian Eigenmaps [2], Graph Factor-
ization [1], node2vec [3], and GraphSAGE [13]) to solve
the node label prediction Prob. (3.5) on the SB-4 and
SB-6 datasets. Table IV reports performance on train (¢r)
and test (tA) subsets of graph G4, as well test graph
Gp (tB), w.r.t. ACC and RMSE metrics for clustering and
influence labels, respectively, as described in Section V-A.
As expected, all examined embedding methods, including
the GNN GraphSAGE, fail to transfer across graphs. This is
evident by the close to random guess accuracy for the clas-
sification task and high RMSE for the regression task over
graph G g (tB) on both datasets. However, for graph G 4, we
clearly see that node2vec algorithm has superior prediction
performance, for both train (tr) and test (A) subsets. Thus,

Thttps://github.com/neu-spiral/GraphTransferLearning-NEU
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Label/ LE [2] GF [1] N2V [3] GS [13]
Metric tr tA tB tr tA tB wr 1A tB tr tA B

cl/ACC 0.620.53 0.31 0.790.69 0.33 0.99 0.950.32 0.96 0.85 0.27
inf/RMSE 0.13 0.13 0.16 0.100.11 0.15 0.09 0.09 0.15 0.09 0.120.15
cl/ACC 0.59 0.48 0.23 0.54 0.420.24 0.970.930.21 0.98 0.63 0.17
inf./RMSE 0.150.16 0.16 0.09 0.13 0.19 0.07 0.12 0.23 0.08 0.13 0.22

Dataset

SB-4

TABLE IV: Performance of embedding algorithms w.r.t. solving
node label prediction optimization problem (3.5). We evaluate
Laplacian Eigenmaps (LE), Graph Factorization (GF), node2vec
(N2V) and GraphSAGE (GS) methods w.r.t. ACC and RMSE
metrics predicting clustering and influence/epidemic spread labels,
respectively. We report both training and test accuracy on graph
G 4 (tr and 1A, respectively), and test accuracy on graph G g (¢B),
to demonstrate that none of the examined embedding methods
succeeds to accurately transfer a learned predictor across two
graphs, even when G 4 and G g are isomorphic.
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Fig. 4: Classification accuracy, ACC, w.r.t. clustering labels of
different transfer learning algorithms (noP, trueP, dsP, iterP,
optP) on two synthetic datasets (SB-4 and SB-6). Each group of 3
ACC values is for training (#r) and testing (¢A) subsets of graph G 4,
and testing subset of graph G g (tB). We observe that (a) ACC under
naive scenario (noP) is no better than random on ¢B, while (b) ACC
when P is learned (both using projected gradient descent (iterP)
and constrained optimization (optP) methods) on B is almost 1,
which is on par with B accuracy when true permutation (trueP)
and doubly stochastic (dsP) matrices are used, and on par with
train/test accuracies (tr; tA) on G 4.

in all further experiments, we focus on transfer learning
using this embedding method. More implementation details
and model hyperparameters are presented in Appendix B.
Clustering Results. Fig. 4 shows the performance of the
five graph transfer algorithms, noP, trueP, dsP, iterP, optP,
described in Section V-A on two synthetic datasets, SB-
4 and SB-6. Algorithms are compared w.r.t. transfer test
accuracy on G g (tB); for reference purposes, we also show
the training and testing accuracy on G4 as well (fr and
tA, respectively). We make three important observations.
First, the naive algorithm (noP, Eq. (4.7)) fails to accurately
predict node labels for graph G g for both topologies, doing
almost no better than a random guess. This is anticipated,
for the reasons illustrated in Fig. 1. Second, our two
transfer algorithms (iterP, optP) attain almost the same test
accuracy on G (tB) as in G4 (tA): this indicates that the
classifier trained on G4 is successfully transferred to Gg.
Finally, our two transfer methods perform equally well as
the powerful benchmarks (trueP, dsP), that have full access

Dataset noP iterP
tA tB tr tA tB
BP-2 099 099 053 099 099 0.97
SB-4 099 095 032 098 095 0.97
SB-6 097 093 021 096 094 0.95
ZKC 1.0 0.85 0.5 0.98 0.88 0.96
Email 0.52 044 0.02 0.55 048 0.49

TABLE V: Classification label accuracy, ACC, on BP-2, SB-4,
SB-6, ZKC, and Email datasets for the noP and iterP transfer
algorithms. We report ACC on training (¢r) and testing (fA) sets of
G 4, as well as on the test set of graph G g (tB); iterP significantly
outperforms noP on tB.

to the ground truth mappings, yielding accuracies that are
comparable to both training () and test (tA) accuracies
observed on G 4.

Table V presents the accuracy for naive (noP) and
projected gradient descent (iterP) graph transfer algorithms
on the BP-2, SB-4, SB-6, ZKC, Email datasets. Our earlier
observations carry over to these graphs as well: noP fails
to transfer across graphs, yielding low ACC on tB, no better
than a random guess. On the other hand iferP universally
performs as well on G (tB) as on G4 (tA). We note
that these observations persist on BP-2, where graphs G 4
and G are not isomorphic. We observe also that clusters
are harder to learn on Email (on both G4 and Gpg), but
the accuracy is considerably better than random guess
(1/28 = 0.04, for 28 clusters); moreover, transfer accuracy
(0.49 on tB) is comparable to both train and test accuracy
on G4 (0.55 and 0.48, respectively), indicating that the
poorer performance is inherent to the embedding method
and the trained classifier, as opposed to the transfer method.
Epidemic Spread Results. Table VI shows the prediction
RMSE and R? under noP and iterP transfer algorithms on
SB-4, SB-6, ZCK, Email, IDTD datasets. We also show the
training RMSE (7r) as a baseline for comparison purposes.
Our observations align perfectly with our earlier clustering
results; test RMSE and R? on G'p (tB) indicate that noP fails
to transfer, being sometimes worse than predicting based on
the training mean (R? < 0), while prediction on G’z under
iterP is almost as good as prediction on G 4, sometimes
even better (e.g., for SB-6 and Email).

Graph Perturbation. Fig. 5 illustrates results on the SB-
4 and SB-6 datasets obtained for different percentage of
perturbed edges. Here, we use results on graph G4, tA,
which does not have any edges removed or added, and
results on graph G p obtained with naive method, noP, as
upper and lower bounds when assessing the influence of the
amount of perturbed edges on tB prediction performance.
From all four plots, we can observe a consistent behavior:
performance on both clustering and regression tasks remain
largely unaffected when the perturbation factor does not
exceed 10% (recall that this corresponds to 10% of edges
removed and the same amount of new edges added): up
until this level, performance is close to rA and trueP



noP iterP
Dataset tr tA tB tr tA tB
RMSE RMSE/R? RMSE/R? RMSE RMSE/R® RMSE/R?

0.09 0.09/0.29 0.15/-1.49 0.10 0.10/0.38 0.11/0.14
0.07 0.12/0.42 0.23/-1.91 0.07 0.11/0.37 0.08/0.65
0.09 0.09/0.49 0.26/-2.17 0.10 0.11/0.48 0.11/0.45
0.08 0.10/0.22 0.20/-1.66 0.07 0.08/0.23 0.08/0.32
0.10 0.10/0.41 0.17/-3.44 0.10 0.10/0.25 0.10/0.16

SB-4
SB-6
ZKC
Email
IDTD

TABLE VI: Influence/epidemic spread label prediction perfor-
mance of noP and iterP transfer learning algorithms on SB-4,
SB-6, ZKC, Email and IDTD datasets. We compare prediction
performance on training (#r) and testing (fA) sets on G 4, and the
test set graph G (tB), w.r.t RMSE (the lower the better) and R?
(the higher the better); note that the latter only applies to test
sets (tA, tB). We observe that prediction accuracy fails to transfer
to G under noP, even attaining negative R* values. In contrast,
iterP successfully transfers labels, with a predictive power that is
comparable to the one over G 4 (tA).

o SB-4 SB-6
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= tA noP: tB -+ trueP: tB -+ dsP: tB +iterP: tB * optP: tB

Fig. 5: Effects of edge perturbations between G 4 and G on the
label prediction performance (in ACC and RMSE for clustering and
influence labels, respectively) studied on synthetic datasets, SB-4
and SB-6. Transferability is possible even with a 25% perturbation
factor, with almost no impact in the < 10% range.

performance. A degradation happens beyond this point;
however, some level of transferability is possible even with
a 25% perturbation factor (prediction ¢B for both iter P and
opt P scenarios is still better than for noP scenario).

VI. Conclusion

Our work offers strong evidence that structural labels can
be successfully transferred across graphs using embeddings.
This can have important implications, such as learning
epidemics on one graph and transferring this knowledge
on another. Exploring this on real epidemics is an exciting
direction. Accelerating our methods, and scaling them to
larger graphs, is an important open problem. The invari-
ance of embeddings to rotations and orthogonal matrices
suggests optimizations in which matrix P is orthogonal,

rather than doubly stochastic; exploring efficient algorithms
for such constraints is also an interesting future direction.
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A. Alternating Minimization

Updating W. Given P, minimizing £ w.r.t. W becomes:

min = Ls(Wa;GA) + Lc(Wa, Wiys,Ga)
Wa,Wg, W’

(A1)
+ Ls(Wg;Gp) + Btr(PTD(Wa, Wg)).

This is almost the naive problem formulation in Eq. (4.7)
save for the linear trace term tr(P " D), that indeed depends
on the embeddings via Eq. (4.9b). We minimize this
objective via stochastic gradient descent (SGD) w.r.t. the
weights W = (W4, Wg, W’). In practice, we only run
a single epoch of SGD per iteration before switching to
optimizing P, rather than executing SGD until convergence.
Updating P. Given W and, thereby, embeddings z#,
1€ V4, and ZJB, 7 € Vg, Eq. (4.13b) amounts to:

(A.2a)
(A.2b)

min - Lp(P) = [[AP - PB|» + Btr(P' D),
st. PeB,

where D = D(W4,Wg) is fully determined by the
(fixed) embeddings. This is a convex optimization prob-
lem and can thus be solved via standard optimization
toolboxes, such as, e.g., CVX OPT [36]. Nevertheless,
because Prob. (A.2) is constrained over the Birkoff poly-
tope, it can be solved efficiently via, e.g., the Frank-
Wolfe (FW) algorithm [27] and the Alternating Directions
Method of Multipliers (ADMM) [28]. We note that FW

and ADMM are generally faster than generic solvers in our
setting (see also Section V). Though an optimal P can be
obtained efficiently through the algorithms discussed above,
combining it with stochastic gradient descent steps used to
update ¥ has some drawbacks. In particular, different steps
may oscillate across different values of P; this, combined
with the non-convexity of the objective (A.1) may hinder
the convergence of alternating minimization (4.13). For
this reason, we also consider the following alternative for
updating P in (4.13b). Rather than solving Prob. (A.2), we
execute one step of projected gradient descent, instead:

PR = TIg(PF = AVpLp(PW)),  (A3)

where Ilg is the orthogonal projection to the Birkhoff
polytope B. This projection involves a quadratic objective
subject to Birkhoff constraints; it can again be solved via
FW, ADMM, or a standard solver such as CVX OPT.

B. Implementation Details

We implement our framework on Python 3.6, using the
Keras 2.2 neural network interface with TensorFlow
1.10 backend.

Node embedding. The node2vec embedding algorithm is
deployed with the following parameters: 20 random walks
of length 10 are generated for each explored node with
the window size equal to 4, return parameter p = 0.25
and in-out parameter ¢ = 4, and negative sampling with
n = 5. For Laplacian Eigenmaps and Graph Factorization
algorithms, we use default parameters proposed by authors.
For GraphSAGE method, we use the official implementa-
tion by algorithm’s authors with default parameters, except
for batch size: it is set to 4 in all of our experiments, due
to small size of tested graphs.

Label prediction. In order to ensure the adequate mini-
mization of the label prediction loss (Eq. (3.6)), we design
the prediction branch of the framework to consist of 7
fully-connected hidden layers when learning node labels of
the ZKC, Email and IDTD datasets. A sole fully-connected
hidden layer was exploited in the branch’s design when we
trained a framework on synthetic datasets BP-2, SB-4 and
SB-6. Each hidden fully-connected layer contains 10 neu-
rons with a hyperbolic tangent activation function. For each
dataset, we solve the graph transfer learning optimization
problem (4.8) with a stochastic gradient descent optimizer
with Nesterov momentum and learning rate n = 0.025.
Regularization parameters «, 3, employed in the coupling
penalty (Eq. (4.10)), are both set to & = g = 1. The
proposed framework is trained till convergence on the
training subset. The convergence is declared when the early
stopping criterion with the patience equal to 5 epochs is
met. All stated parameter values were selected through the
exploration of the corresponding parameter spaces.
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