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Abstract—Graph embeddings have been tremendously
successful at producing node representations that are dis-
criminative for downstream tasks. In this paper, we study
the problem of graph transfer learning: given two graphs
and labels in the nodes of the first graph, we wish to predict
the labels on the second graph. We propose a tractable, non-
combinatorial method for solving the graph transfer learning
problem by combining classification and embedding losses
with a continuous, convex penalty motivated by tractable
graph distances. We demonstrate that our method successfully
predicts labels across graphs with almost perfect accuracy; in
the same scenarios, training embeddings through standard
methods leads to predictions that are no better than random.

I. Introduction

WE consider a graph transfer learning problem, il-
lustrated by the following motivating example. An

epidemic spreading through a graph is observed by an
analyst. The statistics governing the epidemic propagation
are a priori unknown; nevertheless, the analyst wishes to use
this trace to predict how the epidemic would spread over
a new graph, potentially modeling a different population.
More broadly speaking, we wish to solve the following ab-
stract problem. A learner is presented with two structurally
similar (but distinct) graphs GA and GB . Node labels such
as, e.g., infection probabilities, community membership,
etc., are provided only for nodes on GA. A learner wishes
to use the labels on GA to predict the labels on GB .

Intuitively, the success of such a transfer learning task
relies on the fact that many interesting labels depend on
structural or topological features of nodes. For example,
membership in a cluster, susceptibility to an infection
during a cascade, pagerank scores, etc., are all properties
that depend on the relative position (w.r.t. clusters, weakly
connected components, centrality, etc.) nodes have in a
graph. A classifier trained over such labels in GA should be
transferable to a new, structurally similar graph GB . In the
extreme, when graphs GA and GB are isomorphic, GB’s
labels should be fully recoverable; conversely, one expects
transferability to degrade over highly dissimilar graphs.

A natural challenge that arises in this setting is in how
to abstract (and transfer) topological information across the
two graphs. In this paper, we address this challenge by

leveraging graph embeddings [1]–[3]. Graph embeddings
have been tremendously successful at producing compact
representations of nodes in a graph, and have become a true
workhorse of graph mining. In short, graph embeddings
map nodes of a graph into a lower-dimensional space (e.g.,
Rd, for some small d); this mapping concisely captures
node connectivity, recovered from embeddings through an
appropriate link function. Embeddings therefore naturally
abstract structural information through the node’s position
in this lower-dimensional space. In addition, embeddings
reduce graph transfer learning to classic transfer learn-
ing [4]: a classifier trained over labels and embeddings of
nodes in graph GA can be transferred to a new feature
domain, namely, the embeddings of GB’s nodes.

Unfortunately, successfully transferring knowledge via
state-of-the-art embeddings poses significant challenges. A
classifier trained on embeddings of one graph is generally
no better than random guessing when applied to embed-
dings of another graph: we provide a theoretical justification
for this in Section IV-A, and demonstrate it also experimen-
tally in Section V. In short, classifiers catastrophically fail
to transfer across embeddings of different graphs because
of an embedding misalignment: as designed, none of the
popular graph embedding methods ensure that nodes of
two distinct graphs are embedded over the same lower-
dimensional subspace or manifold. In general, embeddings
capture only the relative, rather than the absolute, position
of nodes in Rd. This is sufficient for inference tasks on
nodes of the same graph (like, e.g., link prediction) but
disastrous when transferring knowledge across graphs: the
same embedding algorithms applied to two isomorphic
graphs may generate vastly different embeddings, that are
distorted via arbitrary shifts, rotations, or other transforms.
This severely hampers the ability to transfer structural
classifiers across graphs.

We directly address this issue by producing a tractable,
non-combinatorial methodology for solving the graph trans-
fer learning problem. We do so by learning joint embed-
dings across the two graphs. This allows us to successfully
transfer a classifier trained on labels of one graph to another.
We make the following contributions:



• We introduce novel methodology for solving the graph
transfer learning problem in a non-combinatorial fash-
ion. Our method is general, and can be applied to a
broad array of graph embedding algorithms. Moreover,
it combines classification and embedding losses with
a continuous, convex coupling penalty motivated by
tractable graph distances [5].

• Our continuous and convex coupling penalty seamlessly
integrates with deep embedding methods. We propose
and implement an alternating minimization algorithm
that jointly embeds the two graphs. Our algorithm does
so without solving the combinatorial (and hard) problem
of aligning the two graphs: instead, it alternates between
using SGD and solving a convex optimization problem
constrained over the Birkhoff polytope [6].

• We extensively evaluate our proposed graph transfer
learning methodology over several synthetic and real-
life datasets. We demonstrate that it successfully pre-
dicts labels across graphs with almost perfect accuracy;
in the same scenarios, training embeddings separately
leads to predictions that are no better than random.

To the best of our knowledge, we are the first to study
the graph transfer learning problem, and to propose a non-
combinatorial method for its solution.

II. Related Work
Graph Embeddings and Graph Neural Networks. Graph
embedding research has flourished recently [1]–[3], [7].
We thoroughly review techniques as well as specific algo-
rithms in Section III, following the unifying framework of
Hamilton et al. [8]. Typically, embeddings preserve node
similarity in the embedding space, and thus require the
definition of similarity on both the embedding space as
well as on graph nodes [9], [10]. We list several examples
in Table II. Graph neural networks (GNNs) [8], [11]–[13]
produce graph embeddings by generalizing the notion of
a convolution, aggregating information from neighboring
nodes, in analogy to conventional convolutional neural
networks. Our transfer learning approach is generic, and
applies to the majority of the methods outlined above,
including GNNs. Moreover, the challenges posed by graph
transfer learning we outline in Section IV-A are pertinent to
all these methods, and are exacerbated by deep models, as
non-convexity increases the multiplicity of local minima.
Transfer Learning on Graphs. Transfer learning in the
general machine learning setting aims to apply knowledge
gained while solving one task to a different but related
task [4]. A quintessential example is transferring a text
classifier from language to another [14]. Transfer learning
has been applied to graphs only recently; all current work
however [15]–[17] considers classifying (and transferring
labels across) graphs, as opposed to nodes. To the best
of our knowledge, we are the first to tackle transferring

Notation Description

GA, GB Graphs
V Node set of graphs GA, GB

EA, EB Edge sets of graphs GA, GB

zAi , zBj Embedding of nodes in GA and GB

sG(i, j) Topological similarity between nodes i, j ∈ V

sE(zi, zj) Similarity between node embeddings zi, zj
yAi Label of node vAi ∈ VA

ACC Classification accuracy
RMSE Root mean squares error
R2 Coefficient of determination
LS Embedding loss – Eq. (3.2b)
LC Classification loss – Eq. (3.6a)
LP Penalty function (4.10)
L Aggregate loss – Eq. (4.8a)

W,WA,WB ,W ′ Neural network weights
P Doubly stochastic matrix
B Birkhoff polytope – Eq. (4.12)
P Set of permutation matrices

TABLE I: Summary of notation.

structural node labels between graphs.
Graph distances. There exist graph alignment heuristics
(see, e.g., [18], [19]) that are tractable, but do not satisfy
the metric property. Our tractable penalty is based on, and
inspired by, recent work by Bento and Ioannidis [5]. The
authors propose a family of graph distances that are (a)
computable in polynomial time and (b) satisfy the metric
property. We incorporate this formulation as a penalty into
our framework and use it to couple the embeddings of two
graphs in order to transfer the learned classifier.
Epidemic Learning. The seminal paper by Kempe et
al. [20], has motivated learning the parameters of an epi-
demic spread (e.g., [21]–[23]). Typically, this is done via
maximum likelihood estimation over a generative model,
e.g., the independent cascades (IC) or linear threshold (LT)
models [20]. We learn from cascades in one graph and
transfer knowledge to another graph. We thus avoid in-
termediate parameter inference and modeling assumptions
(such as the IC or LT model), that may not hold in practice.

III. Background
A. Node Embeddings. The goal of node embedding algo-
rithms is to learn parsimonious node representations that are
discriminative w.r.t. downstream tasks such as community
detection, link prediction, etc. We follow the framework
of Hamilton et al. [8] that unifies multiple different node
embedding methods.
A Unifying Framework. Given a graph G(V,E) with
n = |V | nodes, let xi ∈ {0, 1}n be the 1-hot encoding of
a node i ∈ V in the graph. An embedding is a parametric
function f : Rn×Rm → Rd, where d� n, mapping nodes
to d dimensional vectors; that is,

zi = f(xi,W ) ∈ Rd (3.1)



Method sE(zi, zj) sG(i, j) Loss function `S

Laplacian Eigenmaps [2] −‖zi − zj‖22 n-neighborhood −sE(zi, zj) · sG(i, j)

Graph Factorization [1] z>i zj Ai,j (sE(zi, zj)− sG(i, j))2

GraRep [7] z>i zj Ai,j , A
2
i,j , . . . , A

k
i,j (sE(zi, zj)− sG(i, j))2

node2vec [3] e
z>i zj

Σk∈V e
z>
i

zk
p(i|j) −sG(i, j) log(sE(zi, zj))

TABLE II: Different embedding methods expressed in the unify-
ing framework of Hamilton at al. [8]. In node2vec, p(i|j) is the
probability of visiting node j on a fixed-lenght random walk from
node i.

is the embedding zi of node i ∈ V , and W ∈ Rm, for
some m ∈ N, are weights parametrizing the embedding
function. For example, f could be a neural network with
by weights W , an affine (shallow) function, etc. Note that
this representation can readily incorporate node attributes,
that can be represented via features in input vectors xi.

Keeping the exposition on one-hot encoding for con-
creteness, the parameters of the embedding can be trained
as follows. Given a topological similarity function sG : V ×
V → R between nodes as well as an embedding similarity
function sE : Rd × Rd → R between embeddings, the
node embedding task can be formulated via the following
minimization problem:

min
W∈Rm

LS(W ;G), where (3.2a)

LS(W ;G)=
∑

i,j∈V `S(sG(i, j), sE(zi, zj)), (3.2b)

zi = f(xi,W ), ∀i ∈ V, (3.2c)

and `S : R × R → R an appropriately defined loss
function. Typically, Prob. (3.2) is solved via stochastic
gradient descent over the nodes, although techniques like
hierarchical softmax [24] and negative sampling [25] can
be incorporated to accelerate computations.
Examples. The topological similarity sG can be, e.g.,
node adjacency or proximity in path distance. That is,
if A is the adjacency matrix of G(V,E), and dij is the
shortest path distance between i, j ∈ V then two possible
similarities are sG(i, j) = Aij and sG(i, j) = 1/dij . Other
alternatives include, e.g., powers of the adjacency matrix,
the probability that a random walk starting at i terminates
at j after a small number of steps, etc. Several examples are
provided in Table II (see also [8]). For example, Laplacian
Eigenmaps [2] couple Euclidian distance with a product
loss, yielding:

LS(W ;G) =
∑

i,j∈V ‖zi − zj‖22 · sG(i, j), (3.3)

while Graph Factorization [1] couples an inner product with
a quadratic loss, yielding:

LS(W,G) =
∑

i,j∈V (z>i zj − sG(i, j))2. (3.4)

B. Node Label Prediction. Node embeddings often serve
as an intermediate step for downstream supervised learning
tasks on graphs, such as community detection, link pre-
diction, etc. For example, given binary labels yi ∈ {0, 1}

for nodes i ∈ S ⊆ V , learning embeddings that are
discriminative w.r.t. these labels can be accomplished by
extending Eq. (3.2) as follows:

min
W∈Rm,W ′∈Rm′

LS(W ;G) + LC(W,W ′; yS , G), (3.5)

where LS(W ;G) is the similarity loss (3.2b), while

LC(W,W ′; yS , G) =
∑

i∈S `C
(
yi, g(zi,W

′)
)
, and (3.6a)

zi = f(xi,W ), ∀i ∈ V. (3.6b)

Here, `C : R × R → R is a loss function (such as, e.g.,
square error, logistic, or cross-entropy), yS ∈ {0, 1}|S|
is the vector of labels, and g : Rd × Rm′ → R is a
function (i.e., a prediction model) parametrized by W ′ ∈
Rm′

, mapping node embeddings to labels. This can again
be a deep or shallow model (e.g., logistic regression).
Problem (3.5) can again be solved via stochastic gradient
descent, where an epoch iterates over batches node pairs
i, j ∈ V and labeled nodes i ∈ S.

IV. Graph Transfer Learning
A. Problem Formulation. In this paper, we wish to solve
the graph transfer learning problem. Given two graphs
and labels in the nodes of the first graph, we wish to
predict the labels on the second graph. As discussed in
the introduction, labels such as community membership,
susceptibility to an infection, centrality, etc., may be func-
tions of structural properties of a node and, as a result, may
be transferable across graphs. Formally, we are given two
unweighted graphs GA(VA, EB) and GB(VB , EB) of the
same size (i.e., |VA| = |VB | = n), as well as a set of labels
yi for i ∈ S ⊆ VA. For example, yi ∈ {0, 1} for i ∈ S in a
binary classification task, yi ∈ R in the case of a regression
task, etc. We wish to train a neural network over labels in
GA, and use it to subsequently predict labels in GB . We
focus first on unweighted graphs of equal size for the sake
of simplicity; we extend out method to weighted graphs
and graphs of unequal size in Section IV-D.
A Naïve Solution. The node embedding and node label
prediction algorithms we reviewed in Section III give a
possible simple solution to the graph transfer learning
problem. First, a discriminative embedding is trained on
graph GA, by solving Prob. (3.5): this gives both an
embedding f(·,WA) and a predictive model g(·,W ′).
Second, an embedding f(·,WB) is trained on graph GB ,
by solving Prob. (3.2) on GB alone. Finally, the predictive
model g(·,W ′) is applied on the embeddings of nodes in
graph GB to predict their labels. Altogether, this naïve
algorithm solves the following problem, which is separable
over (WA,W

′) and WB :

min
WA,WB ,W ′

LS(WA;GA)+LC(WA,W
′;yS ,GA)

+LS(WB ;GB),
(4.7)
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Fig. 1: Example of two isomorphic embeddings and the failure
to transfer a learned classifier across them. In (a) embeddings of
a GA are used to train an almost perfect classifier between two
classes. Embeddings of GB in (b) are identical to GA but subject
to a rotation; as a result, the classifier trained in GA does not
readily generalize to GB .

where LS ,LC are given by Eqs. (3.2b) and (3.6a), respec-
tively. Unfortunately, this approach is bound to fail; we
extensively demonstrate this experimentally in Section V,
and give some intuition as to why this is the case below.
Non-Uniqueness. It is easy to see that Eq. (4.7) fails
to transfer the learned classifier by considering the case
when the two graphs GA and GB are isomorphic. In this
case, nodes that map to each other should have the same
embeddings and, thereby, the same labels. Unfortunately,
none of the methods outlined in Table II are guaranteed
to produce the same embeddings for nodes in VA and VB .
This is because of non-uniqueness: the non-convexity of
the loss LS for all of these methods implies that optimal
embeddings (i.e., solutions to Prob. (3.2)) are non-unique.
In turn, this non-uniqueness implies that the embeddings of
the same graph, or two isomorphic graphs, can be vastly
different at two different executions of the algorithm.

For several objectives, non-uniqueness manifests
through arbitrary transformations of the latent space, via
rotations, shifts, or other transforms. In turn, this “breaks”
transferring a node classifier learned on one graph to
another via the above naïve method. This is illustrated
in Fig. 1: clearly, a classifier trained on a set of samples
fails to correctly classify exactly the same samples when
the latter are rotated. Simply put, the separating surface
(e.g., hyperplane for a shallow linear classifier like logistic
regression) is not invariant to the aforementioned trans-
forms that relate embeddings between different graphs; as
a result, embeddings trained across the two graphs can be
misaligned. This suggests that embeddings across graphs
need to be trained jointly, maintaining an appropriate
alignment. We accomplish this, via a non-combinatorial
method, in the next section.

The use of different random seeds or starting points,
the use of deep neural networks, that may introduce ad-
ditional local minima, and departures from perfect iso-
morphism (i.e., different edges in the two graphs), all

further exacerbate the problem of non-uniqueness. Most
importantly, as non-uniqueness is a consequence of the non-
convexity of the objective, it arises irrespective of whether
embedding functions are shallow or deep, whether inputs
xi are features or one-hot encodings, or whether, e.g.,
graph neural networks are used. In the latter case, it is
tempting to think that embeddings are, by design, linked
to topological properties of the position of a node in the
graph, and thereby are invariant (at least if graphs are
isomorphic). However, this is not true: the non-convexity
of the objective makes such methods also susceptible to
variations due to randomness, initialization conditions, and
departures from perfect isomorphism. We also demonstrate
this experimentally in Section V, exploring three direct
encoding methods, viz. Laplacian Eigenmaps [2], Graph
Factorization [1], and node2vec [3], as well as graph
neural network GraphSAGE [13]: all four algorithms fail
to transfer across graphs for the aforementioned reasons
(see Table IV).

To make two of these examples concrete, non-
uniqueness is quite easy to see for both Laplacian Eigen-
maps and Graph Factorization (with objectives (3.3) and
(3.4), respectively). Indeed, in Laplacian Eigenmaps, it is
easy to see that if {z∗i }i∈V is an optimal embedding, then so
will be {R · z∗i }i∈V , where R ∈ Rd×d is a rotation matrix.
Similarly, in the case of Graph Factorization, if {z∗i }i∈V
is an optimal embedding, then so is {Q · z∗i }i∈V , where
Q ∈ Rd×d is an arbitrary orthogonal matrix. For exactly the
same reason, other embeddings in Table II that use inner
products (e.g., node2vec) are non-unique. Finally, we note
that the above problem arises in the context of structural
node label prediction, but not for link prediction and,
possibly, other pairwise classification tasks that depend
only on the distance or angle between node embeddings.
This because the latter are not affected by rotation and the
other transforms listed above. Indeed, embeddings learned
via Prob. (4.7) may work well at predicting edges between
two nodes in GB , even though classifier g(·,W ′) fails.

B. Graph Transfer Learning via Coupling Penalty. We
address the above challenges by training the embeddings
of GA and GB jointly. We accomplish this by modifying
Prob. (4.7) to incorporate a coupling penalty: this coupling
penalty enforces that nodes that are structurally similar
across graphs receive proximal embeddings. Our method is
generic and applies to all embeddings outlined in Table II,
irrespective of whether shallow or deep functions f are
used, or whether inputs xi represent features or one-hot
encodings. Most importantly, our algorithm produces a
“soft”, non-combinatorial assignment between nodes of
the two graphs, which can be computed with convex
optimization methods; we neither assume nor compute a
bijection between nodes in the two graphs.



Formally, we extend Prob. (4.7) to the following con-
strained optimization problem:

min
WA,WB

W ′,P

LS(WA;GA)+LC(WA,W
′;yS ,GA)+LS(WB ;GB)

+α‖AP−PB‖22+β tr
(
P>D(WA,WB)

)
, (4.8a)

s.t. P ∈ Rn×n, P1 = 1, P>1 = 1, P ≥ 0, (4.8b)

where α, β > 0 are positive regularization parameters,
tr(P>D)=

∑
i∈VA,j∈VB

PijDij is the element-wise product
between matrices P,D ∈ Rn×n, and D = D(WA,WB) is
a matrix comprising all the pairwise distances between the
embeddings of nodes across the two graphs; that is:

D(WA,WB) = [Dij ]i∈VA,j∈VB
∈ Rn×n, where (4.9a)

Dij = ‖zAi − zBj ‖2, ∀i ∈ VA, j ∈ VB , (4.9b)

zAi = f(xi,WA), ∀i ∈ VA, and (4.9c)

zBj = f(xj ,WB), ∀j ∈ VB . (4.9d)

Intuitively, Prob. (4.8) jointly determines (a) the em-
beddings of nodes in the two graphs, via parameters
WA,WB ∈ Rm, (b) the label classifier g, via parameters
W ′ ∈ Rm′

, and (c) a doubly stochastic matrix P ∈
[0, 1]n×n that couples the nodes of the two graphs and their
embeddings together through the penalty:

LP (P,WA,WB) ≡ α‖AP −PB‖22 +β tr(P>D). (4.10)

The first term of this penalty learns a probabilistic mapping
between nodes in the two graphs, via the doubly stochastic
matrix P . Intuitively, if GA, GB are isomorphic, ‖AP −
PB‖ is zero under a mapping P that sends every node in
GA to its image in GB with probability 1; the double-
stochasticity of P , enforced via the constraints (4.8b),
relaxes this to probabilistic mappings. The second term
enforces that nodes that map to each other have similar
embeddings. To see this, note that if Pij ∈ [0, 1] is high for
some i ∈ VA, j ∈ VB , minimizing the penalty in Eq. (4.10)
forces Dij = ‖zAi − zBj ‖2 to be low.

Our approach has several advantages. It avoids finding
a discrete, exact solution to the graph isomorphism/graph
matching problem, which is notoriously hard [26]. The
coupling penalty (Eq. (4.10)) is convex, making the opti-
mization w.r.t. P tractable given the node embeddings. The
coupling via continuous, smoothly evolving variables P
translates to a smooth evolution of neural network weights,
which is beneficial in practice during SGD. Finally, as
embeddings are fine-tuned, the trace penalty helps discover
better stochastic mappings P , as nodes with similar embed-
dings are mapped to each other. Our solution to Prob. (4.8),
discussed next, exploits these properties.

C. Alternating Minimization. We solve Prob. (4.8) via
alternating minimization. Denote the combined weights of

node i

node j

Embedding A

sE

Prediction

Graph B

node j'

Embedding B

embedding zj'

sE

D(WA,WB)

node i'

Correspondence 
matrix P

f

f

gGraph A

LP=ǁAP-PBǁ2+ tr(PTD)2

embedding zi

embedding zj

embedding zi'
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B=∑i', j' ∈ BlS(sG(i', j'), sE(zi', zj'))

LS
A=∑i, j ∈ AlS(sG(i, j), sE(zi, zj))

LC=∑i ∈ trainlC(yi, g(zi, W'))node 
label

Fig. 2: Schematic portrayal of the proposed framework. Here,
LA

S and LB
S are node embedding penalties (Eq. (3.2)) for graphs

GA, GB , respectively, LC is the prediction model loss (Eq. (3.6)),
and LP is the matching penalty (Eq. (4.10)).

the network embeddings f for each graph and the predictor
g by W = (WA,WB ,W

′) ∈ R2m+m′
. We rewrite (4.8) as

minW∈R2m+m′ ,P∈B L(W,P ), (4.11)

where L : R2m+m′ × Rn×n → R is the aggregate
loss (4.8a), and B ⊆ Rn×n is the set of doubly stochastic
matrices (a.k.a. the Birkhoff polytope):

B , {P ∈ [0, 1]n×n : P1 = 1, P>1 = 1}. (4.12)

We solve Prob. (4.8) via alternating minimization as fol-
lows: at each iteration k ∈ N we update weights W and
matrix P via

W (k+1) = arg minW∈R2m+m′ L(W,P (k)), (4.13a)

P (k+1) = arg minP∈B L(W (k+1), P ). (4.13b)

We give a detailed description of these steps in Appendix A.
In short, Eq. (4.13a) can be solved via standard SGD.
Eq. (4.13b) is a convex optimization problem, and admits
fast implementations via the Frank-Wolfe (FW) algorithm
[27] and the Alternating Directions Method of Multipliers
(ADMM) [28].
Overall Algorithm and Initialization. A summary of
our overall framework for solving Prob. (4.8) is shown
in Fig. 2. The embeddings f for both graphs and the
predictor network g are neural networks. As the objective is
not convex, it is important to start from a good initialization
point. To do so, we first compute a matrix P ignoring
embeddings (i.e., assuming that D = 0). Then, we train
the embedding and classifier for graph GA ignoring P
(i.e., solving Eq. (3.5) w.r.t WA) for one epoch; then,
using the existing embedding of GA, and P we train
the embedding of GB (i.e., solving Eq. (4.13a) w.r.t. WB

alone). The remaining alternating minimization proceeds as
in Eq. (4.13), with each step as described in Appendix A.



D. Extensions Our approach naturally extends to weighted
graphs and graphs of different size.
Graphs of Different Size. Given two graphs GA, GB of
different size, there are several ways of expanding them
with “dummy” nodes such that the new graphs, G′A and
G′B , have the same number of nodes (see, e.g., [5], [29]).
A simple one is to expand graph GA with |VGB

| dummy
nodes and graph GB with |VGA

| dummy nodes, resulting in
two graphs of size |VA|+ |VB |. Dummy nodes are handled
in the coupling penalty (4.10) as follows. First, A,B are
extended by adding edges of weight 1/2 between dummy
and normal nodes, as well as between dummy nodes: using
1/2 differentiates such edges from edges in the original
graph (that have weight 1), which in turn penalizes maps
between dummy and normal nodes. Such maps can be
further discouraged via D, by setting the distance between
dummy nodes in GA and non-dummy nodes GB to a large
value (e.g., 100× the largest distance between normal node
embeddings), and vice versa, while the distance between
dummy nodes is set to 0. Note that dummy nodes have no
embeddings, so W updates (Eq. (A.1)) remain unaltered.
Weighted Graphs. The coupling penalty (Eq. (4.10)) re-
mains the same under weighted graphs, with A,B be-
ing now weighted adjacency matrices in Rn×n. Handling
weighted graphs thus only requires modifying the embed-
ding functions, taking weights into account when comput-
ing graph similarities sG; all methods outlined in Table II
can be appropriately adjusted to do so.

V. Experiments
A. Experimental Setup We use 3 synthetic and 3 real-
world datasets, summarized in Table III.
Synthetic datasets. We generate synthetic graphs with
C = 2, 4 and 6 equal-sized clusters. The graph with 2
clusters, BP-2, contains one cluster generated via Erdős-
Rényi model [30] G(25, 0.5), while the second cluster is
a complete bipartite graph K12,13; these two clusters are
connected via a bipartite graph with a one-to-one correspon-
dence between nodes from the two clusters (see Fig. 3a). In
the 4-cluster and 6-cluster datasets, SB-4 and SB-6, graphs
are generated via the stochastic block model. Each cluster is
an Erdős-Rényi graph G(n, pini ) (n = 25 for the graph with
4 clusters and n = 20 for the graph with 6 clusters), and
pini varies for different clusters i. Clusters are connected as
shown in Figs. 3b and 3c, which also provides the inter-
and intra- connection probabilities for both SB models.
Real-world datasets. We use 3 real-world graphs: Zachary
Karate Club (ZKC) [31], Email [32], and the Infectious
Disease Transmission Dataset (IDTD) [33]. We use ground
truth cluster labels for ZKC as provided. For Email, we
reorganize ground truth labels provided with the dataset as
follows: clusters with fewer than 10 nodes are dissolved,
and their nodes are assigned to a cluster with more than

(a) BP-2: Graph with 2 communities

(b) SB-4: Graph with 4 communities

(c) SB-6: Graph with 6 communities

Fig. 3: Synthetic graphs with (a) 2, (b) 4 and (c) 6 communi-
ties. Each community is represented as a highly interconnected
cluster of nodes. For SB-4, SB-6 graphs, corresponding block
adjacency matrices depict probabilities of intra- and inter-cluster
connections; shallow inter-clusters connections produce asymmet-
ric structure of a graph.

10 nodes by a majority vote across their neighbors. We use
the IDTD dataset solely for epidemic experiments.
Labels. We predict two types of labels in our experiments:
clustering labels and epidemic spread/influence labels. Both
are structural (i.e., depend on the position of a node in the
graph), can be inferred from latent embeddings, and, as
we show below, are transferable across graphs. Clustering
labels are standard: each node is assigned with a single
integer-valued label to one of the clusters it belongs to, and
influence labels are generated with NDlib’s Independent
Cascade model [34]. We generate ground truth influence
labels as follows for both synthetic and real-world graphs.
We always select a center node, i.e. a node with eccentricity
equal to the radius of a graph, to be the infection seed.
We set the transition probability, i.e. the probability that a
node will get infected by a neighbor, to pinfected = 0.5. We
then run the independent cascade model [20] 1000 times
using Network Diffusion Library [34]. For each
run, the infection propagation process unfolds from active
nodes in discrete steps according to the following rule:

a) When node v becomes active in step t, it is given



BP-2 SB-4 SB-6 ZKC Email IDTD

|V | 50 100 120 34 986 788
|E| ∼331 ∼985 ∼1028 78 16064 118291

# of clusters 2 4 6 2 28 N/A

TABLE III: Dataset summary.

a single chance to activate each currently inactive,
susceptible, neighbor w; it succeeds with a transition
probability pinfected. At step t = 0, only the infection
seed is active.

b) If w has multiple newly activated neighbors, their
attempts are sequenced in an arbitrary order.

c) If v succeeds, then w will become active in step t+1,
and v itself changes its status to removed. Whether or
not v succeeds, it cannot make any further attempts to
activate w in subsequent rounds.

The process runs until no more activations are possible.
All nodes that remain susceptible after the process halts are
declared as healthy, and the rest of the nodes are considered
as infected. We use the fraction of times a node was infected
as ground truth.
Label Transfer Experiments. All of the datasets, both
synthetic and real, contain only one graph GA. We generate
a second graph GB by randomly permuting GA via B =
P>AP , where A,B are adjacency matrices of graphs
GA, GB , respectively, and P is a permutation matrix,
i.e., P ∈ P = B ∩ {0, 1}n×n. In the BP-2 dataset, we
additionally remove b |V |2 c+ 1 edges from both graphs. For
SB-4 and SB-6 datasets, we randomly remove p · |V | edges
subsequently adding the same amount of new connections
to a given graph GB . Here, parameter p identifies the
percentage of existing edges to be removed and new edges
to be added, thus referred to as perturbation factor. The
effect of this perturbation is studied in Section “Graph
Perturbation”, with the remaining results on SB-4 and SB-
6 reported for p = 0. Though we train embeddings over
the entire graphs GA, GB , we train predictor g (Eq. (3.6))
using a subset S ⊂ VA containing only 80% of the nodes
GA, selected so that cluster class ratios are preserved. The
rest 20% of GA’s nodes are used as a test set (Test A).
All of GB nodes are used as a separate test set (Test B),
to validate the success of our transfer learning algorithms.
To ensure statistical significance, we repeat all experiments
100 times with random initializations and splits, and report
averages and standard deviations of the metrics described
below, except for large graphs Email and IDTD, where we
only conduct one experiment.
Metrics. We use accuracy, i.e., the fraction of correct
predictions ŷi in the test set, given by ACC =

∑
i∈test 1yi=ŷi

|test|
to assess performance in experiments on clustering labels.
For influence labels, we use the root mean squared error
RMSE =

√∑
i∈test(yi−ŷi)2

|test| and coefficient of determina-

tion [35] given by R2 = 1 −
∑

i∈test(yi−ŷi)
2∑

i∈test(y−yi)2
∈ (−∞, 1],

where y = 1
|train|

∑
i∈train yi is the mean label in a training

set train.
Architectures and Solvers. We implement Laplacian
Eigenmaps [2], Graph Factorization [1], and node2vec [3],
whose loss and similarity functions are given in Table II
and briefly discussed in Section III-A. We additionally
employ GraphSAGE [13], a graph neural network node-
classification framework, using an open-source implemen-
tation distributed by algorithm’s authors. For reproducibility
purposes, we provide all hyperparameter settings in Ap-
pendix B. We perform update Eq. (4.13b) via both exact
solution (optP) as well as via one iteration of projected
gradient descent (iterP). We implemented both via the
CVX OPT solver, ADMM, and FW. We compared these in
efficiency and use the best solver (FW for optP and ADMM
for iterP, respectively) for the rest of our experiments.
Graph Transfer Algorithms. We compare the two ver-
sions of our graph transfer learning algorithm (optP, using
a full constrained optimization solver, and iterP, using one
iteration of projected gradient descent for Eq. (4.13b), re-
spectively) to the following baselines. First, we implement
the naïve algorithm (4.7) that ignores the coupling penalty;
we refer to this algorithm as noP. We also solve Prob. (4.8)
w.r.t W , assuming the true permutation matrix P ∈ P
mapping GA to GB is fixed and entered in the objective
of (4.8); we call this algorithm trueP. We also construct
a doubly stochastic P ∈ B that maps every node in one
cluster in GA uniformly to every node in the corresponding
cluster in GB ; with this P fixed, we solve again Prob. (4.8)
w.r.t. W ; we call this algorithm dsP. Note that both trueP
and dsP are powerful benchmarks, as they exploit a priori
knowledge of the ground truth cluster maps across GA and
GB . Our code is publicly available.1

B. Results
Evaluating Architectures. We first evaluate four embed-
ding algorithms (Laplacian Eigenmaps [2], Graph Factor-
ization [1], node2vec [3], and GraphSAGE [13]) to solve
the node label prediction Prob. (3.5) on the SB-4 and
SB-6 datasets. Table IV reports performance on train (tr)
and test (tA) subsets of graph GA, as well test graph
GB (tB), w.r.t. ACC and RMSE metrics for clustering and
influence labels, respectively, as described in Section V-A.
As expected, all examined embedding methods, including
the GNN GraphSAGE, fail to transfer across graphs. This is
evident by the close to random guess accuracy for the clas-
sification task and high RMSE for the regression task over
graph GB (tB) on both datasets. However, for graph GA, we
clearly see that node2vec algorithm has superior prediction
performance, for both train (tr) and test (tA) subsets. Thus,

1https://github.com/neu-spiral/GraphTransferLearning-NEU

https://github.com/neu-spiral/GraphTransferLearning-NEU


Dataset
Label/ LE [2] GF [1] N2V [3] GS [13]
Metric tr tA tB tr tA tB tr tA tB tr tA tB

SB-4
cl./ACC 0.62 0.53 0.31 0.79 0.69 0.33 0.99 0.95 0.32 0.96 0.85 0.27

inf./RMSE 0.13 0.13 0.16 0.10 0.11 0.15 0.09 0.09 0.15 0.09 0.12 0.15

SB-6
cl./ACC 0.59 0.48 0.23 0.54 0.42 0.24 0.97 0.93 0.21 0.98 0.63 0.17

inf./RMSE 0.15 0.16 0.16 0.09 0.13 0.19 0.07 0.12 0.23 0.08 0.13 0.22

TABLE IV: Performance of embedding algorithms w.r.t. solving
node label prediction optimization problem (3.5). We evaluate
Laplacian Eigenmaps (LE), Graph Factorization (GF), node2vec
(N2V) and GraphSAGE (GS) methods w.r.t. ACC and RMSE
metrics predicting clustering and influence/epidemic spread labels,
respectively. We report both training and test accuracy on graph
GA (tr and tA, respectively), and test accuracy on graph GB (tB),
to demonstrate that none of the examined embedding methods
succeeds to accurately transfer a learned predictor across two
graphs, even when GA and GB are isomorphic.

Fig. 4: Classification accuracy, ACC, w.r.t. clustering labels of
different transfer learning algorithms (noP, trueP, dsP, iterP,
optP) on two synthetic datasets (SB-4 and SB-6). Each group of 3
ACC values is for training (tr) and testing (tA) subsets of graph GA,
and testing subset of graph GB (tB). We observe that (a) ACC under
naïve scenario (noP) is no better than random on tB, while (b) ACC
when P is learned (both using projected gradient descent (iterP)
and constrained optimization (optP) methods) on tB is almost 1,
which is on par with tB accuracy when true permutation (trueP)
and doubly stochastic (dsP) matrices are used, and on par with
train/test accuracies (tr, tA) on GA.

in all further experiments, we focus on transfer learning
using this embedding method. More implementation details
and model hyperparameters are presented in Appendix B.
Clustering Results. Fig. 4 shows the performance of the
five graph transfer algorithms, noP, trueP, dsP, iterP, optP,
described in Section V-A on two synthetic datasets, SB-
4 and SB-6. Algorithms are compared w.r.t. transfer test
accuracy on GB (tB); for reference purposes, we also show
the training and testing accuracy on GA as well (tr and
tA, respectively). We make three important observations.
First, the naïve algorithm (noP, Eq. (4.7)) fails to accurately
predict node labels for graph GB for both topologies, doing
almost no better than a random guess. This is anticipated,
for the reasons illustrated in Fig. 1. Second, our two
transfer algorithms (iterP, optP) attain almost the same test
accuracy on GB (tB) as in GA (tA): this indicates that the
classifier trained on GA is successfully transferred to GB .
Finally, our two transfer methods perform equally well as
the powerful benchmarks (trueP, dsP), that have full access

Dataset
noP iterP

tr tA tB tr tA tB

BP-2 0.99 0.99 0.53 0.99 0.99 0.97

SB-4 0.99 0.95 0.32 0.98 0.95 0.97
SB-6 0.97 0.93 0.21 0.96 0.94 0.95

ZKC 1.0 0.85 0.5 0.98 0.88 0.96
Email 0.52 0.44 0.02 0.55 0.48 0.49

TABLE V: Classification label accuracy, ACC, on BP-2, SB-4,
SB-6, ZKC, and Email datasets for the noP and iterP transfer
algorithms. We report ACC on training (tr) and testing (tA) sets of
GA, as well as on the test set of graph GB (tB); iterP significantly
outperforms noP on tB.

to the ground truth mappings, yielding accuracies that are
comparable to both training (tr) and test (tA) accuracies
observed on GA.

Table V presents the accuracy for naïve (noP) and
projected gradient descent (iterP) graph transfer algorithms
on the BP-2, SB-4, SB-6, ZKC, Email datasets. Our earlier
observations carry over to these graphs as well: noP fails
to transfer across graphs, yielding low ACC on tB, no better
than a random guess. On the other hand iterP universally
performs as well on GB (tB) as on GA (tA). We note
that these observations persist on BP-2, where graphs GA

and GB are not isomorphic. We observe also that clusters
are harder to learn on Email (on both GA and GB), but
the accuracy is considerably better than random guess
(1/28 ≈ 0.04, for 28 clusters); moreover, transfer accuracy
(0.49 on tB) is comparable to both train and test accuracy
on GA (0.55 and 0.48, respectively), indicating that the
poorer performance is inherent to the embedding method
and the trained classifier, as opposed to the transfer method.
Epidemic Spread Results. Table VI shows the prediction
RMSE and R2 under noP and iterP transfer algorithms on
SB-4, SB-6, ZCK, Email, IDTD datasets. We also show the
training RMSE (tr) as a baseline for comparison purposes.
Our observations align perfectly with our earlier clustering
results; test RMSE and R2 on GB (tB) indicate that noP fails
to transfer, being sometimes worse than predicting based on
the training mean (R2 < 0), while prediction on GB under
iterP is almost as good as prediction on GA, sometimes
even better (e.g., for SB-6 and Email).
Graph Perturbation. Fig. 5 illustrates results on the SB-
4 and SB-6 datasets obtained for different percentage of
perturbed edges. Here, we use results on graph GA, tA,
which does not have any edges removed or added, and
results on graph GB obtained with naïve method, noP, as
upper and lower bounds when assessing the influence of the
amount of perturbed edges on tB prediction performance.
From all four plots, we can observe a consistent behavior:
performance on both clustering and regression tasks remain
largely unaffected when the perturbation factor does not
exceed 10% (recall that this corresponds to 10% of edges
removed and the same amount of new edges added): up
until this level, performance is close to tA and trueP



Dataset
noP iterP

tr tA tB tr tA tB
RMSE RMSE/R2 RMSE/R2 RMSE RMSE/R2 RMSE/R2

SB-4 0.09 0.09/0.29 0.15/ –1.49 0.10 0.10/0.38 0.11/0.14

SB-6 0.07 0.12/0.42 0.23/ –1.91 0.07 0.11/0.37 0.08/0.65

ZKC 0.09 0.09/0.49 0.26/ –2.17 0.10 0.11/0.48 0.11/0.45
Email 0.08 0.10/0.22 0.20/ –1.66 0.07 0.08/0.23 0.08/0.32

IDTD 0.10 0.10/0.41 0.17/ –3.44 0.10 0.10/0.25 0.10/0.16

TABLE VI: Influence/epidemic spread label prediction perfor-
mance of noP and iterP transfer learning algorithms on SB-4,
SB-6, ZKC, Email and IDTD datasets. We compare prediction
performance on training (tr) and testing (tA) sets on GA, and the
test set graph GB (tB), w.r.t RMSE (the lower the better) and R2

(the higher the better); note that the latter only applies to test
sets (tA, tB). We observe that prediction accuracy fails to transfer
to GB under noP, even attaining negative R2 values. In contrast,
iterP successfully transfers labels, with a predictive power that is
comparable to the one over GA (tA).

Fig. 5: Effects of edge perturbations between GA and GB on the
label prediction performance (in ACC and RMSE for clustering and
influence labels, respectively) studied on synthetic datasets, SB-4
and SB-6. Transferability is possible even with a 25% perturbation
factor, with almost no impact in the < 10% range.

performance. A degradation happens beyond this point;
however, some level of transferability is possible even with
a 25% perturbation factor (prediction tB for both iterP and
optP scenarios is still better than for noP scenario).

VI. Conclusion
Our work offers strong evidence that structural labels can
be successfully transferred across graphs using embeddings.
This can have important implications, such as learning
epidemics on one graph and transferring this knowledge
on another. Exploring this on real epidemics is an exciting
direction. Accelerating our methods, and scaling them to
larger graphs, is an important open problem. The invari-
ance of embeddings to rotations and orthogonal matrices
suggests optimizations in which matrix P is orthogonal,

rather than doubly stochastic; exploring efficient algorithms
for such constraints is also an interesting future direction.
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A. Alternating Minimization
Updating W . Given P , minimizing L w.r.t. W becomes:

min
WA,WB ,W ′

LS(WA;GA) + LC(WA,W
′; yS , GA)

+ LS(WB ;GB) + β tr(P>D(WA,WB)).
(A.1)

This is almost the naïve problem formulation in Eq. (4.7)
save for the linear trace term tr(P>D), that indeed depends
on the embeddings via Eq. (4.9b). We minimize this
objective via stochastic gradient descent (SGD) w.r.t. the
weights W = (WA,WB ,W

′). In practice, we only run
a single epoch of SGD per iteration before switching to
optimizing P , rather than executing SGD until convergence.
Updating P . Given W and, thereby, embeddings zAi ,
i ∈ VA, and zBj , j ∈ VB , Eq. (4.13b) amounts to:

min
P

LP (P ) = ‖AP − PB‖2 + β tr(P>D), (A.2a)

s.t. P ∈ B, (A.2b)

where D = D(WA,WB) is fully determined by the
(fixed) embeddings. This is a convex optimization prob-
lem and can thus be solved via standard optimization
toolboxes, such as, e.g., CVX OPT [36]. Nevertheless,
because Prob. (A.2) is constrained over the Birkoff poly-
tope, it can be solved efficiently via, e.g., the Frank-
Wolfe (FW) algorithm [27] and the Alternating Directions
Method of Multipliers (ADMM) [28]. We note that FW

and ADMM are generally faster than generic solvers in our
setting (see also Section V). Though an optimal P can be
obtained efficiently through the algorithms discussed above,
combining it with stochastic gradient descent steps used to
update W has some drawbacks. In particular, different steps
may oscillate across different values of P ; this, combined
with the non-convexity of the objective (A.1) may hinder
the convergence of alternating minimization (4.13). For
this reason, we also consider the following alternative for
updating P in (4.13b). Rather than solving Prob. (A.2), we
execute one step of projected gradient descent, instead:

P (k+1) = ΠB(P k − γ∇PLP (P (k))), (A.3)

where ΠB is the orthogonal projection to the Birkhoff
polytope B. This projection involves a quadratic objective
subject to Birkhoff constraints; it can again be solved via
FW, ADMM, or a standard solver such as CVX OPT.

B. Implementation Details
We implement our framework on Python 3.6, using the
Keras 2.2 neural network interface with TensorFlow
1.10 backend.
Node embedding. The node2vec embedding algorithm is
deployed with the following parameters: 20 random walks
of length 10 are generated for each explored node with
the window size equal to 4, return parameter p = 0.25
and in-out parameter q = 4, and negative sampling with
n = 5. For Laplacian Eigenmaps and Graph Factorization
algorithms, we use default parameters proposed by authors.
For GraphSAGE method, we use the official implementa-
tion by algorithm’s authors with default parameters, except
for batch size: it is set to 4 in all of our experiments, due
to small size of tested graphs.
Label prediction. In order to ensure the adequate mini-
mization of the label prediction loss (Eq. (3.6)), we design
the prediction branch of the framework to consist of 7
fully-connected hidden layers when learning node labels of
the ZKC, Email and IDTD datasets. A sole fully-connected
hidden layer was exploited in the branch’s design when we
trained a framework on synthetic datasets BP-2, SB-4 and
SB-6. Each hidden fully-connected layer contains 10 neu-
rons with a hyperbolic tangent activation function. For each
dataset, we solve the graph transfer learning optimization
problem (4.8) with a stochastic gradient descent optimizer
with Nesterov momentum and learning rate η = 0.025.
Regularization parameters α, β, employed in the coupling
penalty (Eq. (4.10)), are both set to α = β = 1. The
proposed framework is trained till convergence on the
training subset. The convergence is declared when the early
stopping criterion with the patience equal to 5 epochs is
met. All stated parameter values were selected through the
exploration of the corresponding parameter spaces.
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