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ABSTRACT: A new strategy is reported to tailor the electronic
properties of a superatomic metal chalcogenide cluster by redox
matching the cluster core with surface tin(IV) sites. Two ternary
clusters (SnR2)3Co6Se8L6 (R = Me, nBu) are synthesized by salt
metathesis from the hexalithiated salt [Li2(py)2]3Co6Se8L6 and
R2SnCl2. Cyclic and differential-pulse voltammetry studies reveal
that the tristannylated clusters feature two new, near-degenerate,
electronic states within the highest occupied molecular orbital−
lowest unoccupied molecular orbital gap of the Co6Se8 core, which
are attributed to the reduction of a surface tin site. Single-crystal X-ray diffraction analysis reveals that no Sn···Se coordination is
present in the solid state. The single-crystal X-ray structure of the hexalithiated salt starting material is reported for the
tetrahydrofuran (THF) adduct variant [Li2(THF)2]6Co6Se8L6.

Chevrel-type molecular clusters M6Ch8L6 (M = Cr, Co,
Re, Mo; Ch = S, Se, Te; L = organic ligand) have

resurfaced in recent years as potent building blocks for
hierarchical nanomaterials.1−4 Highly symmetrical and chemi-
cally robust with rich electronic and magnetic properties, these
clusters have attractive “superatomic” qualities, promising
access to atomically precise materials with programmable
functions. While their chemical stability enables these
superatomic clusters to retain structural identity with minimal
entropic changes upon assembly or redox manipulations, their
large highest occupied molecular orbital (HOMO)−lowest
unoccupied molecular orbital (LUMO) gaps limit pathways to
couple them and form electronic bands. Strategies to tune their
electronic properties have primarily focused on the nature of
the capping ligands, but these have had limited impact.5−7

Surface functionalization with energy-matched metals has been
a successful strategy to tune the electronic structure of wide-
band semiconductors.8 Inspired by this approach, our group
previously demonstrated that the coordination of metals (M =
Fe, Co, Zn) to the exposed chalcogens of Co6Se8 clusters is an
effective strategy to narrow their HOMO−LUMO gaps
(Figure 2b), while engendering catalytic activity9,10 or
directing their assembly into van der Waals 2D superatomic
crystals.4 Although the M−Se interaction is effective at
stabilizing the LUMO level, the surface metals explored thus
far did not introduce any new electronic states near the
Co6Se8-localized frontier orbitals. Upon evaluation of the
reduction potentials of possible surface site metal candidates,
tin stands out, with a 4+/2+ redox couple that is energetically
matched with the band gap of the Co6Se8 cluster, and the
attractive possibility of introducing two closely spaced low-
lying electronic states near the frontier orbitals.

The relative instability of the 3+ valence state, or “valence
skipping”, is a defining feature of tin chemistry that could also
serve the goal of introducing multielectron states near the
frontier orbitals of the Co6Se8 cluster. In inorganic materials
(e.g., InTe, SnAs, Ag1−xSn1+xSe2), this advantageous local
electron pairing has attracted a lot of attention because it might
be responsible for superconductivity, charge-density waves, and
other interesting solid-state physical phenomena.11−14 While
the redox properties, or valence skipping, in atomically precise
tin chalcogenide clusters has been largely unexplored,15

examples of mixed-valent and Sn3+-containing clusters have
been reported.16−18 Monometallic organotin complexes
(SnIVRyX4−y; R = alkyl or aryl, X = halide) are known to
undergo direduction to Sn2+ species via two closely spaced
single-electron-transfer events, generally observed between ca.
−1.1 and −1.6 V versus Fc0/+ (Fc = ferrocene),19−22 which lies
within the HOMO−LUMO gap of the Co6Se8 cluster.
Interestingly, dialkyltin fragments have been used extensively
in cluster chemistry as cationic linkers to polyoxometallate
anions; however, their Sn4+/Sn2+ reduction could not be
observed in these otherwise redox-active systems.23−26 Here
we report that surface functionalization with dialkyltin units
introduces two energy-accessible and closely spaced states
within the band gap of the Co6Se8 cluster, demonstrating a
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new strategy to tune the electronic properties of this
superatomic metal chalcogenide cluster.
Our group has introduced the Co6Se8LH

6 [1-H6; LH =
Ph2PN(H)Tol; Tol = 4-tolyl] cluster as an unusual metal-
loligand with three coordination sites on its surface. The
synthetic protocol to access trimetalated M3Co6Se8L6 (1-M3)
clusters relies on [Li2(py)2]3Co6Se8L6 (1-[Li2(py)2]3; py =
pyridine) as a starting material.9 Surprisingly stable to isolation
and with a seemingly indefinite shelf life, this formally
hexaanionic salt garnered special interest because its structure
would shine light on how a single Co6Se8 cluster might
accommodate six metals on its surface. Herein, we found that
simply exchanging the pyridine for tetrahydrofuran (THF)
enabled the isolation of 1-[Li2(THF)2]3, which could be
characterized by single-crystal X-ray diffraction (Scheme 1 and

Figure 1a). Each pair of lithium ions, locked in a Li2N2
diamond core and anchored to the cluster via the two amides,
is positioned directly above the two exposed selenium atoms,
delineating a total of three [LiNPSeCo]2 cages that extend the
inorganic Co6Se8 core (Figure 1a). The multicage structure of
this salt demonstrates the remarkable versatility of the
Co6Se8L6 metalloligand and raises interesting possibilities for

how it might accommodate in this fashion other, more
chemically versatile, metals.
To synthesize the tritin derivatives (SnR2)3Co6Se8L6 (1-

(SnR2)3; R = Me or nBu), 1-[Li2(py)2]3 was treated with the
respective R2SnCl2 (Scheme 1). Following a solvent workup to
remove LiCl, 1-(SnR2)3 was isolated pure as a dark-red solid
(Me, 33%; nBu, 56%). Multinuclear NMR analysis indicates
that in solution 1-(SnR2)3 is highly symmetrical, displaying
single environments for the amidophosphines and SnR2. Single
broad peaks are observed by 31P NMR spectroscopy at +114.0
ppm (ν1/2 = 303 Hz) and +115.3 ppm (ν1/2 = 281 Hz) for 1-
(SnMe2)3 and 1-(SnnBu2)3, respectively, shifted downfield
from +80.7 ppm for 1-[Li2(py)2]3. While not discernible in 1-
(SnnBu2)3, 117/119Sn satellites flank the 1H NMR methyl
resonance of 1-(SnMe2)3, with a coupling constant of 55 Hz.
With a wide NMR spectral window spanning from ca. +4000

to −2500 ppm, the chemical shift of the 119Sn nucleus is a
potent reporter on the chemical environment of the tin
center.28 For example, tetracoordinate tin(IV) bisamide
bisalkyl complexes display 119Sn chemical shifts between −10
and +60 ppm,29−31 while pentacoordinate tin(IV) complexes
feature signals at increasingly upfield values that empirically
correlate with the strength of the interaction between the tin
and the fifth ligand.32−36 In solution, the three equivalent tin
centers of 1-(SnR2)3 each display a single resonance, at −70.2
ppm (ν1/2 = 191 Hz) for the methyl derivative and at −91.5
ppm (ν1/2 = 210 Hz) for the n-butyl derivative. While these
upfield 119Sn NMR chemical shifts suggest that a weak Se···Sn
donor−acceptor interaction might transiently occur in
solution, the solid-state structural data show no formal
coordination of a fifth selenium ligand, as discussed below.
Of all of the surface-functionalized Co6Se8 clusters reported
thus far, including those with iron,9,10 cobalt,4 zinc,10 or
lithium, 1-(SnMe2)3 is the only one in which the surface metal
does not coordinate to the exposed selenium, even as five- and
six-coordinate organometallic tin(IV) is ubiquitous.27

In contrast to the rigid and highly chelated structure of 1-
[Li2(THF)2]3, metalation with tin forms three flexible Sn/N/
P/Co/Se macrocycles with the cluster surface (Figure 1b). In
the solid state, the Me2Sn units of 1-(SnMe2)3 are no longer
equivalent as they appear in solution by NMR but instead are
locked in asymmetric orientations. Each tin site leans toward
one of the exposed selenium atoms, giving rise to one short
and one long Sn···Se interatomic distance. The shortest Sn···Se
contact (avg. 3.20 Å), however, remains significantly longer
than 2.62 Å, the average value for a Sn−Se bond in five-
coordinate tin(IV) complexes.27,37

Compared to iron, cobalt, or zinc, the SnMe2 unit is bulkier,
causing a notable opening of the Co−P−N angles from 110.6
± 0.8° in the triiron derivative to 119 ± 2°. This distortion is
accompanied by a contraction in the average P−N bond
distances from 1.69 to 1.55 Å. While the SnMe2 units put
strain on the organic ligands [i.e., Ph2P−N(Tol)], the
inorganic Co6Se8 core remains virtually unchanged compared
to 1-H6, forgoing the distortions previously observed upon
surface metal (i.e., iron, cobalt, and zinc) coordination.4,9,10

Indeed, the extent of the distortions in the Co6Se8 cluster core
is proportional to the strength of the interaction between the
surface metal M and the exposed selenium. For example, zinc
forms weaker bonds with selenium compared to iron, causing
less distortion in the cobalt core.4

The stannylation is associated with a red shift in the
electronic absorption spectrum of 1-(SnR2)3 compared to 1-H6

Scheme 1. Synthesis of 1-(SnR2)3 Clusters

Figure 1. Solid-state structure of (a) 1-[Li2(THF)2]3 and (b) 1-
(SnMe2)3. Hydrogen atoms, cocrystallized solvent molecules, and
disorder are omitted for clarity. Thermal ellipsoids are plotted at 50%.
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and a new shoulder feature at ∼680 nm (ε = 6415−6645 M−1

cm−1), possibly related to the 503 nm absorption feature in 1-
H6 (ε = 29883 M−1 cm−1; Figures S10 and S11). These data
provide a first indication that tin impacts the frontier orbital
transitions, narrowing the HOMO−LUMO gap.
To further investigate how the three redox-active Sn4+ sites

affect the electronic structure of the ternary 1-(SnMe2)3
cluster, cyclic and differential-pulse voltammetry experiments
were performed. Like all Co6Se8-based clusters, the tritin
clusters 1-(SnR2)3 reveal rich redox profiles, with six single-
electron redox events (Figures 2a and S12). The more
electron-rich dialkyltin units shift the three cluster core-based
oxidation events to more cathodic potentials by ca. 200−300
mV compared to the parent ligand (Table S1); however, they
still closely resemble the electrochemical behavior of 1-H6 at
anodic potentials.
More interestingly, the electrochemical reduction of 1-

(SnR2)3 proceeds markedly differently from that of the parent
metalloligand 1-H6. The HOMO−LUMO gap, approximated
electrochemically as the energy difference between the first
oxidation and first reduction, contracts significantly from 1.44
eV in 1-H6 to 0.77 eV in 1-(SnMe2)3 and 0.83 eV in 1-
(SnnBu2)3. Compared to the other one-electron redox events,
the first reduction of 1-(SnR2)3 features a notably larger area
size suggestive of a multielectron event. Differential-pulse
voltammetry was employed to better resolve this feature and
revealed two closely spaced single-electron reductions (Figures
2a and S12). Considering the data and the literature on Sn4+

reduction,19−22 we attribute the first two reductions of the 1-
(SnR2)3 clusters to the Sn4+/3+ and Sn3+/2+ couples,
respectively, and only the third reduction (−3/−2) to
[Co6Se8]1−/0.
While tin introduces two new states to the ternary cluster,

the lack of significant Sn···Se interactions is expected to result
in no stabilization of the LUMO level of the Co6Se8 core.
Indeed, although all redox events are shifted cathodically
compared to those of 1-H6, the HOMO−LUMO gap of the
Co/Se core (approximated by the energy difference between
[Co6Se8]1−/0 and [Co6Se8]0/1+) remains almost constant upon
stannylation, with values of 1.44, 1.47, and 1.51 eV for 1-H6, 1-
(SnMe2)3, and 1-(SnnBu2)3, respectively (Figure 2b). In
contrast, the HOMO−LUMO gap in the 1-M3 derivatives
becomes more narrow as the strength of the M···Se interaction
increases. Notably, switching the methyl groups in 1-(SnMe2)3
with the more electron-rich n-butyl groups has the most

pronounced effect on the first two reduction events, which shift
to more reducing potentials by 60 and 110 mV, respectively,
whereas the third reduction attributed to the cobalt core shifts
by only 30 mV.
The metalloligand 1-H6 enforces a cis orientation of the

alkyl groups in the R2Sn unit, while also providing sufficient
flexibility to accommodate the seesaw geometry of a putative
tin(II) center formed upon reduction.39,40 In contrast to the
ubiquitous instances where the alkyl groups are positioned
trans to each other, these features of the metalloligand
minimize the entropic changes expected to occur upon the
reduction of tin(IV) to tin(II), positively impacting the
reversibility of the process in 1-(SnMe2)3.

21,22 However,
although the electrochemical direduction attributed to one of
the SnMe2 sites is surprisingly well-behaved and quasireversible
(section S4.1),38 the chemical reduction of 1-(SnMe2)3 using
decamethylcobaltocene or sodium naphthalenide has thus far
been unproductive toward conclusive observation or isolation
of the reduced cluster.
In conclusion, we introduced a new strategy to tune the

electronic properties of a synthetically addressable cobalt
chalcogenide cluster by matching the energies of surface-
tethered redox-active sites. By judiciously choosing tin, a metal
with an intrinsic preference for valence skipping that is redox-
matched to the HOMO−LUMO gap of the cobalt cluster core,
we deterministically introduce two new energetically accessible
electronic states in the ternary cluster 1-(SnMe2)3. The
sequential direduction of 1-(SnMe2)3 poses intriguing
questions about the formation and electronic structure of the
proposed mixed-valent SnIISnIVSnIV site−differentiated cluster,
the further investigation of which could shine light on complex
physical phenomena such as valence skipping and two-electron
defects in metal chalcogenide materials.
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