

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114858, IEEE

Transactions on Visualization and Computer Graphics

approaches cannot pinpoint which neurons are responsible for detecting
specific features, which NEUROCARTOGRAPHY supports (Sect. 6.2).

2.2 Semantic Similarity of Neurons

Recent research [15, 21, 25, 40, 56] suggests that neurons tend to de-
tect similar features. Fig. 2 illustrates this claim by highlighting how
different neurons detect the same feature of a dog’s nose. Olah et
al. [40] highlights many examples of similar neurons in InceptionV1
and visualizes which concepts are detected by such neurons; however,
the examples are manually curated by the authors. Identifying neurons
that discover similar concepts also has practical benefits: in the neural
network compression community, several methods [14, 15, 21, 25, 56]
leverage potential neuron redundancies to generate compressed models
while maintaining prediction accuracy. Even though these methods can
measure neurons’ similarity, there is limited work in interpreting their
semantic similarity. CNNPruner [29], an interface for pruning neurons,
helps users understand the role of neurons through the filter visualiza-
tion technique [52]. However, it describes its pruning approach mainly
based on metrics that measure instability and sensitivity of neurons, ig-
noring groupings of semantically similar neurons. We draw inspiration
from the above important prior research to automatically find groups of
similar neurons and interpret semantic similarities among them.

2.3 Connection among Neurons

A key role in neural networks is played by neurons. Neurons are
responsible for receiving and transmitting activation signals. However,
they do not work in isolation. For a neuron to detect a feature, it requires
an orchestrated interaction among many neurons across different layers.
Recent research [10, 11, 23, 41] visually explains how higher level
concepts can be constructed by neural connections. In the context
of adversarial attack, some methods [10, 11, 31] identify where in a
network the activation pathways of a benign and attacked input instance
diverge, and how those diverging activations arrive at an incorrect
prediction through connections among neurons. Inspired by these
techniques, we summarize and visualize how neuron groups interact
through connections among them, providing a new way to interpret
concept cascading across layers.

3 DESIGN CHALLENGES

Our goal is to build an interactive visual summarization of concepts
learned by neural networks. Concretely, we aim to help users better
understand what concepts are represented internally by groups of neu-
rons, and how these concepts are transformed into the final prediction
through interactions among neuron groups. We identify the follow-
ing five design challenges (C1-C4) associated with developing our
summarization techniques and designing NEUROCARTOGRAPHY.

C1 Discovering neurons that detect similar concepts. Existing re-
search on DNN interpretability tends to focus on inspecting indi-
vidual neurons [23, 37, 42]. While helpful, neuron-level inspection
cannot easily reveal how clusters of neurons may detect the same
concept, even though it is common for multiple neurons to detect
similar features [15, 21, 25, 56]. As a result, users can easily miss
higher-order interactions that explain how DNNs operate.

C2 Understanding the associations between related concepts. In-
terpreting individual features represented by a neural network
can be useful to understand what the model sees from input
data [37, 42]. However, a model doesn’t base its prediction on
a single feature from the input. Instead, the final prediction is
often an amalgamation of multiple concepts detected by the model.
This raises fundamental questions about the associations between
related concepts. For example, when a concept is detected by a
neural network (e.g., “dog face”), what other concepts are likely to
be detected at the same time, and how are they related (e.g., would
“dog tail” and “dog leg” be strongly related to “dog face”)?

C3 Scaling up concept summarization to all classes, neurons, and
large datasets. Recent research in our visualization community
has started to prioritize scalability to support large datasets [5, 23].
However, understanding how those approaches may extend to

enable the discovery of groups of similar neurons—and encode se-
mantic relatedness of concepts detected by the neurons—remains
unclear. In the context of our work, computing neuron relation-
ships can be computationally expensive. A naive algorithm to
measure the neuron similarity would require comparing all neuron
pairs, which is computationally expensive (i.e., time complexity is
quadratic in the number of neurons). This naturally leads us to the
question: how can we more efficiently support grouping neurons
and encoding concept relatedness for complex DNNs?

C4 Understanding concept influence in a network. A promising
approach to interpret a model’s internal behaviour involves un-
derstanding how the model detects and combines features during
inference [31, 41]. Recent research has proposed approaches to
help users interpret how features may be connected [11, 23], but
these approaches are performed at the neuron level, and are limited
to only analyzing the relationships of neurons across two adjacent
layers, instead of across the whole network. To this end, our work
aims to answer a broader set of questions: How can a group of
neurons detecting a concept trigger other concepts across the con-
nections and layers of a DNN? Furthermore, how can we design
an interactive visualization to support flexible exploration of such
a “concept cascade”?

4 DESIGN GOALS

We distill the design challenges identified in Sect. 3 to the following de-
sign goals (G1-G4) that guide NEUROCARTOGRAPHY’s development.

G1 Clustering similar neurons based on activation overlap.

We aim to address a major research gap in existing work by devel-
oping techniques to discover neurons that detect the same features
(C1). Specifically, we build on prior research findings that neu-
rons tend to selectively respond to certain input features; in the
context of DNNs, this means such neurons’ activation maps have
larger values at locations where the feature is present in the input
image [32, 59]. Our idea is to group neurons based on how similar
their activation maps are by (1) comparing the locations of the
highly-activated values in the maps (Sect. 6.1) and (2) visualizing
the concepts that are detected by such neuron groups (Sect. 7.2).

G2 Encoding concept associations between related concepts. We
aim to analyze and visualize how concepts are related based on how
often they co-occur (C2). Our intuition is that neurons detecting
highly related concepts (e.g., “dog face”, “dog tail”) are frequently
co-activated. We aim to preserve these concept associations by
learning vector representations for neurons that detect concepts
associations on large image datasets (Sect. 6.2). Furthermore, we
visualize the concept embedding to enable users to interactively
explore and understand related concepts across different level of
abstraction such as “dog face” (higher level) and “dog eyes” (lower
level) (Sect. 7.1).

G3 Scalable summarization of concepts learned by a neural net-
work. We aim to scale up neuron clustering (G1) and neuron em-
bedding (G2) techniques to all neurons and all images by avoiding
an explicit comparison of all neuron pairs (Sect. 6). For scalable
neuron clustering, we aim to project neurons’ activation patterns
into a reduced dimension and hash neurons into buckets by using
these reduced projections as the key. Using this technique, we
can hash similar neurons in the same bucket with high probability;
more importantly, we can do this in time linear to the number
of neurons instead of quadratic (Sect. 6.1). For scalable neuron
embeddings, we aim to subsample neuron pairs and use the sam-
pled pairs to learn neuron vectors that will preserve the general
properties of concept relatedness. From these vectors, we can infer
concept relatedness of any neuron pair without comparing them
directly (Sect. 6.2).

G4 Interactive interface to explore Concept Cascade We aim to
design and develop an interactive interface that enables users to
selectively initialize and examine how a concept detected by a neu-
ron group would trigger higher-level concepts across subsequent

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 05:20:23 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114858, IEEE

Transactions on Visualization and Computer Graphics

layers in a neural network C2. NEUROCARTOGRAPHY visualizes
the user-selected concept’s cascade effect, helping users interpret
the successive concept initiations and relationships (Sect. 7.2.2).

5 MODEL CHOICE AND BACKGROUND

In this work, we demonstrate our approach using InceptionV1 [35],
a prevalent, large-scale image classifier that achieves top-5 accuracy
of 89.5% on the ImageNet dataset that contains over 1.2 millions
images across 1000 classes. InceptionV1 consists of multiple inception
modules of parallel convolutional layers. In each module, there are
four layers: an input layer, an intermediate layer where kernels’ size
are 3x3, another intermediate layer where kernels’ size are 5x5, and
an output layer. Each inception module is given a name of the form
“mixed{number}{letter},” where the {number} and {letter} denote
the location of a layer in the network. In InceptionV1, there are 9
such modules: mixed3{a,b}, mixed4{a,b,c,d,e}, and mixed5{a,b}.
The input and output layer are given by the module name. For the
intermediate layers, an suffix of either 3x3 or 5x5 is appended. For
example, mixed3b is an earlier input layer and mixed3b 3x3 is an
intermediate layer. While there are more technical complexities in
each inception module, we follow existing interpretability literature and
consider the 9 mixed layers as the primary layers of the network [42,43].
Although this work uses specific architectural choice, the proposed
summarization and visualization techniques are general and can be
applied to other neural network architectures in other domains.

6 SCALABLE NEURAL NETWORK SUMMARIZATION

NEUROCARTOGRAPHY introduces two new scalable summarization
techniques: (1) neuron clustering groups neurons based on the semantic
similarity of the concepts detected by those neurons, and (2) neuron
embedding encodes the associations between related concepts based
on how often they co-occur. NEUROCARTOGRAPHY leverages these
techniques to summarize concepts learned by neural networks. We
formulate neuron clusterings in Sect. 6.1, describe neuron embeddings
in Sect. 6.2, and detail how we filter concepts that are important for the
prediction of each class in Sect. 6.3.

6.1 Neuron Clustering

We aim to discover groups of neurons within the same layer that detect
the same concepts. Our main idea is to group neurons that have similar
activation maps. A neuron’s activation map is a 2D image representing
the neuron’s response to an input instance, computed by the convolution
of a trained kernel applied to the previous layer. A neuron’s activation
map reflects features detected by a neuron, showing increased values in
regions of the map where detected features exist. Thus, if two neurons
have similar activation maps, where highly activated areas of two
activation maps largely overlap, we group the neurons. For example, in
Fig. 2, two neurons 460 and 483 in layer mixed4c of InceptionV1 are
grouped by our approach, since their activation maps have high values
on similar areas. Our neuron clustering approach has two phases. First,
in the preprocessing stage, we cluster neurons quickly and efficiently
without looking at neurons’ activation maps in detail. Next, in the main
clustering stage, we further divide the preprocessed neuron groups
based on the degree of overlap in the neurons’ activation maps.

6.1.1 Preprocessing: Group Neurons Based on Common Pre-
ferred Images

The preprocessing stage aims to efficiently and quickly cluster neurons
before comparing neurons’ activation maps in detail. Our main idea is
to group neurons if they are highly activated by many common images.
For each neuron i, we first find a set of k images that maximally activate
i. We sort the images by the maximum value of activation maps of i
for given those images, and take the first k images. We denote the set
of top k images for i as Xi. For two neurons i and j, we define their
similarity as the Jaccard similarity of Xi and X j as follows.

Definition 1 Concept Similarity Based on Top Images. Given two
neurons i and j, and the neurons’ top image sets Xi and X j, we define
the similarity of i and j as the Jaccard similarity between Xi and X j.

This value is 0 when the two image sets are disjoint, and 1 when they
are equal. Neurons i and j are more similar when the Jaccard similarity
is closer to 1. We formally define the similarity of i and j in Eq. (1)

SimTopImgs(i, j) =
|Xi∩X j|

|Xi∪X j|
(1)

To scalably group neurons based on the common image sets, NEU-
ROCARTOGRAPHY uses two techniques: (1) Min-Hashing efficiently
approximates the Jaccard similarity between two neurons’ top image
sets; (2) Locality-Sensitive Hashing (LSH) efficiently hashes similar
neurons in terms of the Jaccard similarity into the same buckets with
high probability. It is a popular technique to use Min-Hashing and LSH
to efficiently estimate Jaccard similarity between two sets and find sets
of similar items, due to their scalability and theoretical guarantees on
the accuracy of finding nearest neighbors [3, 8, 9, 18, 55].

Min-Hashing. It is computationally costly to measure the Jaccard
similarity between large sets due to the expensive set intersection and
union operations that Eq. (1) involves. Min-Hashing [3] efficiently
estimates the Jaccard similarity. Let h be a hash function that randomly
maps the entire items {1, ...,N} to {1, ...,N} in one-to-one correspon-
dence. Let hmin be a min-hash function that outputs the minimum value
retrieved from the function h: for a set S, hmin(S) = mins∈S(h(s)). The
key property of Min-Hashing is that the probability of the hmin values
of two sets being equal is equal to the Jaccard similarity between the
sets. Formally, for two sets S1 and S2, Pr[hmin(S1) = hmin(S2)] =
Jaccard Similarity between S1 and S2. For each neuron i, we define
Ii as the index of images in Xi. By using the theoretical property of
Min-Hashing, Pr[hmin(Ii) = hmin(I j)] = SimTopImgs(i, j).

Locality-Sensitive Hashing (LSH). Min-Hashing efficiently estimates
the similarity of two neurons’ top common images. However, it is still
computationally expensive to measure the similarity of all neuron pairs.
LSH is a scalable technique that finds reasonable approximations for
grouping similar items without comparing all item pairs [18, 24, 44].
For each neuron i and its top images’ index set Ii, we produce n Min-
hash values h1(Ii), ...,hn(Ii) with n hash functions h1, ...,hn. Then we
partition the n values into b bands, each consisting of r values, such
that n = b× r. For each band, we hash neurons into the same buckets
where r hash values of such neurons are identical. Then we finally
cluster i and j in the same group, if they appear in the same bucket in
at least one band. Theoretically, the probability that neuron i and j will

hash to the same bucket in at least one of the b bands is 1− (1− sr)b,
where s is the true Jaccard Similarity between Ii and I j [44].

6.1.2 Main Clustering: Group Neurons Based on Overlap of
Activation Maps

While the preprocessing stage offers an efficient approach for pre-
liminary neuron grouping, the main clustering stage performs finer
clustering based on overlap of activation maps. In the preprocessing
stage, for example, neurons for “cars” and neurons for “roads” might
be grouped together, as those concepts may frequently co-occur in the
same images. The main clustering stage further divides these neurons
into different groups based on the concepts encoded in the activation
map of the neurons. Within a preprocessed group, we finally cluster
neurons in the same group, if highly activated part of the neurons’
activation maps overlap significantly. We formally define the similarity
of neurons i and j used in the main clustering stage as follows.

Definition 2 Concept Similarity Based on Activation Map. Given an
input image x and two neurons i, j in the same layer, we denote their
activation map as Zi(x) and Z j(x). To take only highly activated parts
in each activation map, we quantize the activation maps as Qi(x) =
Zi(x)> 0 and Q j(x) = Z j(x)> 0, where the quantized activation maps
are a boolean matrix (i.e., true means high activation). We define the
concept similarity of i and j in Eq. (2), where ∧ and ∨ are element-wise
and and or operation respectively, and numTrue(·) returns the number
of true values in the input matrix. If numTrue(Qi(x)∨Q j(x)) = 0, the
similarity between i and j is defined as 0.

SimActMap(i, j) =
numTrue(Qi(x)∧Q j(x))

numTrue(Qi(x)∨Q j(x))
(2)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 05:20:23 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114858, IEEE

Transactions on Visualization and Computer Graphics

The similarity SimActMap(i, j) in Eq. (2) can be interpreted as the
Jaccard similarity of highly activated parts in activation maps of i and
j. We leverage Min-Hashing and LSH in the main clustering phase
again for improved scalability. For each neuron group G created in
the preprocessing stage, we sample t images from the union of every
belonging neuron’s top k images. We denote the set of such sampled
images as XG. Formally, XG = sample(∪i∈GXi, t), where sample(S, t)
randomly samples t items in set S. The main reason we use the sampled
images (instead of all images) is that using all images is not very useful;
because neurons selectively respond to only some images, the neurons
are not activated at all by many images. To compare the similarity of
two neurons, we only consider cases where both neurons are highly
activated. Thus, we sample images from the union of top k images
produced in the preprocessing stage, which includes many images that
are likely to activate many neurons in the group G. For each group G
produced in the preprocessing phase and for each image x ∈ IG, we run
LSH to further group neurons based on the activation map. Then we
finally group two neurons in the same bucket if the two neurons are
hashed in the same bucket for least one image in IG.

6.1.3 Hyperparameter Selections for Neuron Clustering

Our neuron clustering approach uses a few hyperparameters: t is the
maximum number of sampled images for each preprocessed neuron
group, k is the number of top images (among 1.2M images) for each
neuron, b is the number of bands in LSH, and r is the size of the bands.
t helps reduce runtime through sampling; a larger value means using
more samples (thus longer runtime). We experimented with values in
[50,200] and observed little change in the results, thus we decided on
t = 100. A larger k increases the chances of discovering more neuron
pairs that are similarly activated. However, a value that is too large
(e.g., 1M) means most neurons would have highly similar or identical
sets of top images. We decided on k = 200, the highest value that
provided good clustering while keeping total runtime reasonable. A
larger b provides more opportunities to group neurons that have high
Jaccard similarities. For preprocessing, we experimented with values
in [5,2500] and the clustering results stabilized after b reached 1500,
thus we used b = 2000. For main clustering, we experimented with
values in [5,32], and used b = 20 as clustering results did not change
beyond that. A larger r allows us to prune neuron pairs with low Jaccard
similarities. However, a value that is too large could prune neuron pairs
even if they have high Jaccard similarities. Thus, we aimed to pick a
value that is not too large, or too small. We experimented with values
in [2,5] for preprocessing, and [2,30] for main clustering, and found
the “middle” values of 3 and 15, respectively, provided good coherence
among examples image patches in the cluster results.

6.2 Neuron Embedding

To encode associations between concepts detected by neurons, we learn
neuron embeddings that preserve the relatedness of such concepts,
where neurons that detect more related concepts are located closer in
the embedding space. Our embedding approach consists of two steps.

• Step 1. Learn vector representations of all neurons to encode relat-
edness among neurons’ concepts. (Sect. 6.2.1)

• Step 2. Reduce the dimensions of the learned vector representation to
2D for visualization (Sect. 6.2.2), which we will describe in Sect. 7.1.

The decision to adopt a two-step approach to first generate higher-
dimensional vector representations for neurons (Step 1) was motivated
by prior work [19, 34, 58], where abstract concepts are better captured
by higher-dimensional representations, which opens up the possibilities
for supporting interpretation tasks at higher fidelity.

6.2.1 Step 1: Encode Relatedness of Neurons’ Concepts via
Vector Representations

The objective function J to minimize of our embedding approach is
defined in Eq. (3), where D is a set of sampled neuron pairs detecting
highly related concepts, Vi is the embedding vector of neuron i to learn,
and σ(x) is the sigmoid function (i.e., σ(x) = 1/(1+ e−x)) .

J = ∑
(i, j)∈D

− log(σ(Vi ·V j)) (3)

The objective function induces the embedding vectors Vi and V j of
neurons i and j detecting highly related concepts to yield high σ(Vi ·V j).
A large value of the dot product of two vectors indicates that the vectors
are far from the origin in the same direction. The sigmoid function
controls the magnitude of dot product, so that those vectors do not
move too far away from the origin. Thus, the objective function induces
vectors of highly related neurons to be located closely and moderately
far away from the origin. Our use of cross-entropy loss was motivated
by prior work [34] where no predefined classes or labels are available,
which is the case here (i.e., no concept labels for each neuron).

To sample neurons of highly related concepts, we find neurons that
are frequently co-activated. We reuse the top k images for each neuron
which are obtained at the preprocessing stage of neuron clustering
(Sect. 6.1.1). For each image, we first generate a list of neurons that
have such image in the neuron’s top k images. Then, we sample neuron
pairs from the top neuron list. We first randomly shuffle the neuron list,
apply a sliding window of size 2 on the shuffled list, and sample pairs
of neurons that are co-occurred in the sliding window. A good property
of using sampled neuron pairs instead of all pairs is that sampled pairs
indirectly can imply the relation of all neuron pairs. If two pairs (a,b)
and (b,c) of highly related items are sampled, we can infer that (a,c)
is also highly related. Our embedding approach efficiently learns and
preserves such indirect concept relatedness, as well as direct relatedness
straightly from the sampled pairs. Note that the number of sampled
pairs is linear to the number of neurons, not quadratic. This sampling
approach results in the training data of size linear to the number of
neurons, and the time complexity of our neuron embedding method is
linear to the number of neurons.

To further speed up the optimization process, we use negative sam-
pling approach: concretely, we find pairs of non-related neurons and
induce their embedding vectors far apart. For a given neuron, we find
another non-related neuron by randomly sampling one among all neu-
rons in the same layer. The new objective is defined in Eq. (4), where
M is the size of negative sampling for a pair of related neurons (i, j).

J = ∑
(i, j)∈D

(

− log(σ(Vi ·V j))

+
M

∑
m=1

(

− log(1−σ(Vi ·Vm))− log(1−σ(V j ·Vm))
)

)

(4)

We use gradient descent to learn neuron vector representations that
optimize J. The derivatives of objective function J with respect to the
neuron vector Vi and V j are as in Eq. (5) and (6).

∂J

∂Vi
=−

(

1−σ(Vi ·V j)
)

V j +
M

∑
m=1

σ(Vi ·Vm)Vm (5)

∂J

∂V j
=−

(

1−σ(Vi ·V j)
)

Vi +
M

∑
m=1

σ(V j ·Vm)Vm (6)

We update the embedding by gradient descent as in Eq. (7), where γ is
the learning rate.

Vi←Vi− γ
∂J

∂Vi
, V j←V j− γ

∂J

∂V j
(7)

6.2.2 Step 2: Dimensionality Reduction

To project neurons’ vector representations learned in the previous step
onto a 2D space, we use UMAP, a non-linear dimensionality reduc-
tion technique that preserves global data structures and local neighbor
relations [33].

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 05:20:23 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114858, IEEE

Transactions on Visualization and Computer Graphics

18460

4c

4d

mixed4d_3x3

4e

501

dog face

dog face

Maltese dog
Toy poodle

792

734

furry dog face

517

black / brown dog
with white nose

83

45

Other animals

Beagle
Appenzeller

43

733

338

black / brown dog
with white fur

Concept Cascade discovers dogs'
Backbone concept pathways

Fig. 7. Through Concept Cascade, users manually activate the “dog
face” concept to discover its related concepts in subsequent layers, not
only for the current “Maltese dog” class but also for other breeds of dogs.
Concept Cascade helps users visualize how concepts may evolve over
the network, such as from the more generic “dog face” concept to the
more specific “furry dog face” concept in later layers. Concepts are
manually labeled.

3b_5x5

4a

6
4a
3x3

54
4a
3x3

7
4a
5x5

343 388 359

6

Concept Cascade automatically discovers
"curve detectors" in a neural network.

Fig. 8. Concept Cascade automatically discovers neurons that detects
curve of specific orientations, which have been manually found in [4].

example from mixed5b-337 layer at Fig. 9, top-left). Interestingly, as
watermarks can appear on almost any kinds of images independent of
the image content that the watermarks are placed above (e.g., copyright
watermark can appear on an image of a car, a dog, or a pineapple),
this means the neurons responsible for detecting watermarks would
frequently co-activate with each other, but such “watermark neurons”
co-activate relatively less so with the neurons detecting the concepts
that describe the image content since watermarks are not associated
with only some specific features. NEUROCARTOGRAPHY’s neuron
embedding algorithm is able to discover this interesting phenomenon
about the watermark neurons, placing them close together to reflect
the concept coherence for watermark, and away from other neurons to
reflect the watermark’s non-specificity for image content. NEUROCAR-
TOGRAPHY allows us to easily verify our observations and conclusions.
For example, selecting mixed5b-337, a watermark neuron (Fig. 9, top-
left), in the Neuron Projection View brings in its most related neurons in
the Neuron Neighbor View (e.g.,mixed5b-86, mixed4c-342, mixed4e-
296), which are all watermark neurons as well. These neurons are
also clustered in the Graph View (e.g., in mixed5b layer, neurons #337,
#113, #289, and #86 appear in the same neuron cluster).

10 CONCLUSION, LIMITATIONS AND FUTURE WORK

We have presented NEUROCARTOGRAPHY, an interactive system that
scalably summarizes and visualizes concepts learned by DNNs via
scalable concept summarization techniques for neuron clustering and
neuron embedding. Through a large-scale human evaluation, we have
demonstrated that our techniques discover neuron groups that represent
coherent, human-meaningful concepts. Our system runs in modern
browsers and is open-sourced. Below, we discuss limitations of our

mixed5b-337

mixed5a-787

mixed4c-342 mixed4e-480

...

Isolated "watermark" concept
discovered by Neuron Projection View

Fig. 9. NEUROCARTOGRAPHY reveals the interesting phenomenon about
the isolated “watermark” concept (example image at top-left), that wa-
termarks are not specific to any image features (i.e., can appear on
almost any kinds of images), thus watermark neurons are placed far
away from all other neurons due to relatively low co-activations (see
Neuron Projection View on the right).

approach and future research directions for extending this investigation.

Further dissecting poly-semantic neurons. We believe our work has
taken a major step in addressing the research challenging of automati-
cally and scalably grouping neurons that detect the same concept, going
beyond manual, neuron-level inspection (e.g., [1, 16, 23, 38]) to provide
a higher-level perspective for the knowledge learned by a network.
Our work, however, is not designed for “dissecting” neurons that may
become activated for multiple seemingly unrelated concepts, which has
been observed in recent work, e.g, [41]. For example, in InceptionV1,
at least poly-semantic neuron that responds to cat faces, fronts of cars,
and cat legs [41]. NEUROCARTOGRAPHY cannot “split” this neuron
into multiple neuron, each detecting one concept and put that newly
created neuron into its logical neuron cluster with other similar neurons
in the network. Tackling poly-semantic neurons is an exciting and
challenging direction for future work.

Integrating NEUROCARTOGRAPHY into more applications. Cur-
rently, our work focuses on using NEUROCARTOGRAPHY to enhance
interpretability of DNNs. As DNNs are increasingly used in an ever-
increasing variety of applications, our approaches can help practition-
ers and researchers assess the effectiveness of their ideas. For ex-
ample, in the neural network compression community, several meth-
ods [15, 21, 25, 56] leverage potential neuron redundancies to generate
compressed models while maintaining prediction accuracy. NEURO-
CARTOGRAPHY can help researchers interpret the semantic similarity
between the compressed model and the original, uncompressed models,
which helps them assess if their techniques are indeed preserving the
“gist” of the knowledge important for prediction, or if they are leverag-
ing some other features of the data of the model. Currently, concepts
need to be manually labeled; automatic labeling will increase the tool’s
usability. Also, current Neuron Projection View presents all neurons in
the same plot even though some concepts’ abstraction levels could be
very different; our future work includes providing users with the ability
to select layers that they want to investigate. We look forward to seeing
the impact that NEUROCARTOGRAPHY may contribute, from assisting
evaluation of existing techniques (e.g., model compression, adversarial
attacks and defenses), to developing new ones.

Visualizing other neural network models. We have justified our
model choice in Sect. 5; we are working to extend support to other
CNN models. Our approach can easily be adapted to simpler models
(e.g., VGG [51]). For more complex networks (e.g., ResNets [20],
small extensions would be needed to handle more types of connections
present in the network (e.g., skip connections could be represented as
skip-layer edges in the graph view).

ACKNOWLEDGMENTS

We thank Hannah Kim, the Georgia Tech Visualization Lab, and the
anonymous reviewers for their support and constructive feedback. This
work was supported in part by DARPA (HR00112030001), NSF grants
IIS-1563816, CNS-1704701, and gifts from Intel, NVIDIA, Google.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 05:20:23 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114858, IEEE

Transactions on Visualization and Computer Graphics

REFERENCES

[1] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba.

Understanding the role of individual units in a deep neural network. Pro-

ceedings of the National Academy of Sciences, 117(48):30071–30078,

2020.

[2] A. P. Bradley. The use of the area under the roc curve in the evaluation

of machine learning algorithms. Pattern Recogn., 30(7):1145–1159, July

1997. doi: 10.1016/S0031-3203(96)00142-2

[3] A. Z. Broder. On the resemblance and containment of documents. In

Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No. 97TB100171), pp. 21–29. IEEE, 1997.

[4] N. Cammarata, G. Goh, S. Carter, C. Voss, L. Schubert, and C. Olah.

Curve circuits. Distill, 6(1):e00024–006, 2021.

[5] S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activation

atlas. Distill, 4(3):e15, 2019.

[6] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,

M. Guajardo-Céspedes, S. Yuan, C. Tar, et al. Universal sentence encoder.

arXiv preprint arXiv:1803.11175, 2018.

[7] J. Chang, S. Gerrish, C. Wang, J. Boyd-graber, and D. Blei. Reading tea

leaves: How humans interpret topic models. In Y. Bengio, D. Schuur-

mans, J. Lafferty, C. Williams, and A. Culotta, eds., Advances in Neural

Information Processing Systems, vol. 22. Curran Associates, Inc., 2009.

[8] O. Chum, J. Philbin, A. Zisserman, et al. Near duplicate image detection:

Min-hash and tf-idf weighting. In Bmvc, vol. 810, pp. 812–815, 2008.

[9] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personaliza-

tion: scalable online collaborative filtering. In Proceedings of the 16th

international conference on World Wide Web, pp. 271–280, 2007.

[10] N. Das, H. Park, Z. J. Wang, F. Hohman, R. Firstman, E. Rogers, and D. H.

Chau. Massif: Interactive interpretation of adversarial attacks on deep

learning. In Extended Abstracts of the 2020 CHI Conference on Human

Factors in Computing Systems, pp. 1–7, 2020.

[11] N. Das, H. Park, Z. J. Wang, F. Hohman, R. Firstman, E. Rogers, D. Horng,

et al. Bluff: Interactively deciphering adversarial attacks on deep neural

networks. arXiv preprint arXiv:2009.02608, 2020.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pp. 248–255. Ieee, 2009.

[13] L. Deng, G. Hinton, and B. Kingsbury. New types of deep neural network

learning for speech recognition and related applications: An overview.

In 2013 IEEE international conference on acoustics, speech and signal

processing, pp. 8599–8603. IEEE, 2013.

[14] R. Duggal, S. Freitas, C. Xiao, D. H. Chau, and J. Sun. Rest: Robust and

efficient neural networks for sleep monitoring in the wild. In Proceedings

of The Web Conference 2020, pp. 1704–1714, 2020.

[15] R. Duggal, C. Xiao, R. Vuduc, and J. Sun. Cup: Cluster pruning for

compressing deep neural networks. arXiv preprint arXiv:1911.08630,

2019.

[16] R. Fong and A. Vedaldi. Net2vec: Quantifying and explaining how

concepts are encoded by filters in deep neural networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pp.

8730–8738, 2018.

[17] A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim. Towards automatic

concept-based explanations. In Advances in Neural Information Process-

ing Systems, pp. 9277–9286, 2019.

[18] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions

via hashing. In Vldb, vol. 99, pp. 518–529, 1999.

[19] A. Grover and J. Leskovec. node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 855–864, 2016.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 770–778, 2016.

[21] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep

neural networks. In Proceedings of the IEEE International Conference on

Computer Vision, pp. 1389–1397, 2017.

[22] F. Hohman, H. Park, C. Robinson, and D. H. Chau. Summit: Scaling deep

learning interpretability by visualizing activation and attribution summa-

rizations. IEEE Transactions on Visualization and Computer Graphics

(TVCG), 2020.

[23] F. Hohman, H. Park, C. Robinson, and D. H. P. Chau. S ummit: Scaling

deep learning interpretability by visualizing activation and attribution sum-

marizations. IEEE transactions on visualization and computer graphics,

26(1):1096–1106, 2019.

[24] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin. Mutantx-s: Scalable

malware clustering based on static features. In 2013 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 13), pp. 187–198, 2013.

[25] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convo-

lutional neural networks with low rank expansions. arXiv preprint

arXiv:1405.3866, 2014.

[26] A. Karpathy. t-sne visualization of cnn codes.

https://cs.stanford.edu/people/karpathy/cnnembed/.

[27] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio. Generalization in deep

learning. arXiv preprint arXiv:1710.05468, 2017.

[28] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. In-

terpretability beyond feature attribution: Quantitative testing with concept

activation vectors (tcav). In International conference on machine learning,

pp. 2668–2677. PMLR, 2018.

[29] G. Li, J. Wang, H.-W. Shen, K. Chen, G. Shan, and Z. Lu. Cnnpruner:

Pruning convolutional neural networks with visual analytics. IEEE Trans-

actions on Visualization and Computer Graphics, 2020.

[30] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and

M. Pietikäinen. Deep learning for generic object detection: A survey.

International journal of computer vision, 128(2):261–318, 2020.

[31] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness

of deep neural networks. In 2018 IEEE Conference on Visual Analytics

Science and Technology (VAST), pp. 60–71. IEEE, 2018.

[32] J. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence?

arXiv preprint arXiv:1411.1091, 2014.

[33] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold ap-

proximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781,

2013.

[35] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into

neural networks. Google Research Blog, 2015.

[36] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Explor-

ing generalization in deep learning. Advances in Neural Information

Processing Systems (NeurIPS), 2017.

[37] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesiz-

ing the preferred inputs for neurons in neural networks via deep generator

networks. Advances in Neural Information Processing Systems (NeurIPS),

2016.

[38] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization:

Uncovering the different types of features learned by each neuron in

deep neural networks. Workshop on Visualization for Deep Learning,

International Conference on Machine Learning (ICML), 2016.

[39] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and T. Ogata. Audio-

visual speech recognition using deep learning. Applied Intelligence,

42(4):722–737, 2015.

[40] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. An

overview of early vision in inceptionv1. Distill, 5(4):e00024–002, 2020.

[41] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter.

Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

[42] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill,

2(11):e7, 2017.

[43] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and

A. Mordvintsev. The building blocks of interpretability. Distill, 3(3):e10,

2018.

[44] A. Rajaraman and J. D. Ullman. Mining of massive datasets. Cambridge

University Press, 2011.

[45] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu,

X. Liu, J. Marcus, M. Sun, et al. Scalable and accurate deep learning with

electronic health records. NPJ Digital Medicine, 1(1):1–10, 2018.

[46] D. Ravı̀, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo,

and G.-Z. Yang. Deep learning for health informatics. IEEE journal of

biomedical and health informatics, 21(1):4–21, 2016.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale vi-

sual recognition challenge. International journal of computer vision,

115(3):211–252, 2015.

[48] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra. Grad-cam: Visual explanations from deep networks via gradient-

based localization. In Proceedings of the IEEE international conference

on computer vision, pp. 618–626, 2017.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 05:20:23 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114858, IEEE

Transactions on Visualization and Computer Graphics

[49] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps.

arXiv preprint arXiv:1312.6034, 2013.

[50] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. In

Workshop at International Conference on Learning Representations, 2014.

[51] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[52] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving

for simplicity: The all convolutional net. ICLR Workshop, 2014.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1–9, 2015.

[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking

the inception architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2818–2826,

2016.

[55] A. Tamersoy, K. Roundy, and D. H. Chau. Guilt by association: large

scale malware detection by mining file-relation graphs. In Proceedings of

the 20th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 1524–1533, 2014.

[56] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity

in deep neural networks. arXiv preprint arXiv:1608.03665, 2016.

[57] A. P. Wright, Z. J. Wang, H. Park, G. Guo, F. Sperrle, M. El-Assady,

A. Endert, D. Keim, and D. H. Chau. A comparative analysis of industry

human-ai interaction guidelines. 2020.

[58] Z. Yin and Y. Shen. On the dimensionality of word embedding. arXiv

preprint arXiv:1812.04224, 2018.

[59] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Under-

standing neural networks through deep visualization. arXiv preprint

arXiv:1506.06579, 2015.

[60] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu. Object detection with deep

learning: A review. IEEE transactions on neural networks and learning

systems, 30(11):3212–3232, 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 05:20:23 UTC from IEEE Xplore. Restrictions apply.

