
Evaluating Graph Vulnerability and Robustness using TIGER

Scott Freitas
safreita@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Diyi Yang
dyang888@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Srijan Kumar
srijan@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Hanghang Tong
htong@illinois.edu

University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA

Duen Horng Chau
polo@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT

Network robustness plays a crucial role in our understanding of

complex interconnected systems such as transportation, communi-

cation, and computer networks. While significant research has been

conducted in the area of network robustness, no comprehensive

open-source toolbox currently exists to assist researchers and prac-

titioners in this important topic. This lack of available tools hinders

reproducibility and examination of existing work, development of

new research, and dissemination of new ideas. We contribute Tiger,

an open-sourced Python toolbox to address these challenges. Tiger

contains 22 graph robustness measures with both original and fast

approximate versions; 17 failure and attack strategies; 15 heuristic

and optimization-based defense techniques; and 4 simulation tools.

By democratizing the tools required to study network robustness,

our goal is to assist researchers and practitioners in analyzing their

own networks; and facilitate the development of new research in

the field. Tiger has been integrated into the Nvidia Data Science

Teaching Kit available to educators across the world. Tiger is open

sourced at: https://github.com/safreita1/TIGER.

CCS CONCEPTS

· Information systems → Social networks; Computing plat-

forms.

KEYWORDS

Graphs, robustness, vulnerability, networks, attacks, defense

ACM Reference Format:

Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng

Chau. 2021. Evaluating Graph Vulnerability and Robustness using TIGER.

In Proceedings of the 30th ACM International Conference on Information

and Knowledge Management (CIKM ’21), November 1ś5, 2021, Virtual Event,

QLD, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3459637.3482002

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1ś5, 2021, Virtual Event, QLD, Australia

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482002

1 INTRODUCTION

Through analyzing and understanding the robustness of networks

we can: (1) quantify network vulnerability and robustness, (2) aug-

ment a network’s structure to resist attacks and recover from failure,

and (3) control the dissemination of entities on the network (e.g.,

viruses, propaganda). Consider the impactful scenario where a virus

penetrates one or more machines in an enterprise network. Once

infected, the virus laterally spreads to susceptible machines in the

network, resulting in system-wide failures, data corruption and

exfiltration of trade secrets and intellectual property. This scenario

is commonly modeled as a dissemination of entities problem us-

ing an epidemiological susceptible-infected-susceptible (SIS) model,

where each machine is in either one of two statesÐinfected or

susceptible (see Figure 1). How quickly a virus spreads across a

network is known as the network’s vulnerability, and is defined

as a measure of susceptibility to the dissemination of entities across

the network [29]. A natural counterpart to network vulnerability

is robustness, defined as a measure of a network’s ability to con-

tinue functioning when part of the network is naturally damaged or

targeted for attack [3, 5, 8]

Challenges for robustness and vulnerability research. Net-

work robustness has a rich and diverse background spanning nu-

merous fields of engineering and science [3, 13, 22, 25, 29]. Un-

fortunately, this cross-disciplinary nature comes with significant

challengesÐresulting in slow dissemination of ideas, leading to

missed innovation opportunities. We believe a unified and easy-

to-use software framework is key to standardizing the study of

network robustness, helping accelerate reproducible research and

dissemination of ideas.

Tiger design and implementation.We present Tiger, an open-

sourced Python Toolbox for evaluatIng Graph vulnErability and

Robustness. Through Tiger, our goal is to catalyze network ro-

bustness research, promote reproducibility and amplify the reach

of novel ideas. In designing Tiger, we consider multiple complex

implementation decisions, including: (1) the criterion for inclusion

in the toolbox; (2) identifying and synthesizing a set of core robus-

tivity features needed by the community; and (3) the design and

implementation of the framework itself. We address the inclusion

criterion by conducting a careful analysis of influential and rep-

resentative papers (e.g., [3, 5, 18, 27, 29]) across top journals and

conferences from the relevant domains (e.g., ICDM, SDM, Physica

A, DMKD, Physical Review E), many of which we will discuss in

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4495

robustness measures, attacks, defenses, and simulation frameworks.

In addition, we provide 5 detailed tutorialsÐone for every major

component of Tiger’s functionalityÐon multiple large-scale, real-

world networks, including every figure and plot shown in this paper.

Users with Python familiarity will be able to readily pick up Tiger

for analysis with their own data.

4. Community Impact. Tiger helps enable reproducible research

and the timely dissemination of new and current ideas in the area

of network robustness and vulnerability analysis. As part of the

newly released Nvidia Data Science Teaching Kit, Tiger will be

used by educators and researchers across the world. Tiger has been

integrated into the Nvidia Data Science Teaching Kit available to

educators across the world; and Georgia Tech’s Data and Visual

Analytics with over 1,000 students. Since this is a large and highly

active field across many disciplines of science and engineering,

we anticipate that Tiger will have significant impact. As the field

grows, we will continue to update Tiger with new techniques and

features.

2 TIGER ROBUSTNESS MEASURES

Tiger contains 22 robustness measures, grouped into one of three

categories depending on whether the measure utilizes the graph,

adjacency, or Laplacian matrix. We present 3 representative robust-

ness measures, one from each of the three categories, to extensively

discuss. For detailed description and discussion of all 22 measures,

we refer the reader to the online documentation.

Terminology and Notation. As the study of graphs has been car-

ried out in a variety of fields (e.g., mathematics, physics, computer

science), the terminology often varies from field to field. As such,

we refer to the following word pairs interchangeably: (network,

graph), (vertex, node), (edge, link). Throughout the paper, we fol-

low standard practice and use capital bold letters for matrices (e.g.,

𝑨), lower-case bold letters for vectors (e.g., 𝒂). Also, we focus on

undirected and unweighted graphs.

2.1 Example Measures

Average vertex betweenness (𝑏𝑣) of a graph 𝐺 = (𝒱, ℰ) is the

summation of vertex betweenness 𝑏𝑢 for every node 𝑢 ∈ 𝑉 , where

vertex betweenness for node 𝑢 is defined as the number of shortest

paths that pass through 𝑢 out of the total possible shortest paths

𝑏𝑣 =
∑

𝑢∈𝑉

∑

𝑠∈𝑉

∑

𝑡 ∈𝑉
𝑠≠𝑡≠𝑢

𝑛𝑠,𝑡 (𝑢)

𝑛𝑠,𝑡
(1)

where 𝑛𝑠,𝑡 (𝑢) is the number of shortest paths between 𝑠 and 𝑡

that pass through 𝑢 and 𝑛𝑠,𝑡 is the total number of shortest paths

between 𝑠 and 𝑡 [11]. Average vertex betweenness has a natural

connection to graph robustness since it measures the average load

on vertices in the network. The smaller the average the more robust

the network, since load is more evenly distributed across nodes.

Spectral scaling (𝜉) indicates if a network is simultaneously sparse

and highly connected, known as łgood expansionž (GE) [10, 19].

Intuitively, we can think of a network with GE as a network lacking

bridges or bottlenecks. In order to determine if a network has

GE, [10] proposes to combine the spectral gap measure with odd

subgraph centrality 𝑆𝐶𝑜𝑑𝑑 , which measures the number of odd

length closed walks a node participates in. Formally, spectral scaling

is described in Equation 2,

𝜉 (𝐺) =

√

√

1

𝑛

𝑛
∑

𝑖=1

{𝑙𝑜𝑔[𝒖1 (𝑖)] − [𝑙𝑜𝑔𝑨 +
1

2
𝑙𝑜𝑔[𝑆𝐶𝑜𝑑𝑑 (𝑖)]]}

2 (2)

where𝑨 = [𝑠𝑖𝑛ℎ(𝜆1)]
−0.5, 𝑛 is the number of nodes, and 𝒖1 is the

first eigenvector of adjacency matrix 𝑨. The closer 𝜉 is to zero, the

better the expansion properties and the more robust the network.

Formally, a network is considered to have GE if 𝜉 < 10
−2, the

correlation coefficient 𝑟 < 0.999 and the slope is 0.5.

Effective resistance (𝑅) views a graph as an electrical circuit

where an edge (𝑖, 𝑗) corresponds to a resister of 𝑟𝑖 𝑗 = 1 Ohm and a

node 𝑖 corresponds to a junction. As such, the effective resistance

between two vertices 𝑖 and 𝑗 , denoted 𝑅𝑖 𝑗 , is the electrical resis-

tance measured across 𝑖 and 𝑗 when calculated using Kirchoff’s

circuit laws. Extending this to the whole graph, we say the effective

graph resistance 𝑅 is the sum of resistances for all distinct pairs of

vertices [8, 14]. Klein and Randic [22] proved this can be calculated

based on the sum of the inverse non-zero Laplacian eigenvalues:

𝑅 =
1

2

𝑛
∑

𝑖, 𝑗

𝑅𝑖 𝑗 = 𝑛

𝑛
∑

𝑖=2

1

𝜇𝑖
(3)

As a robustness measure, effective resistance measures how well

connected a network is, where a smaller value indicates a more

robust network [8, 14]. In addition, the effective resistance has many

desirable properties, including the fact that it strictly decreases

when adding edges, and takes into account both the number of

paths between node pairs and their length [9].

2.2 Measure Implementation & Evaluation

Our goal for Tiger is to implement each robustness measure in

a clear and concise manner to facilitate code readability, while

simultaneously optimizing for execution speed. Each robustness

measure is wrapped in a function that abstractsmathematical details

away from the user; and any default parameters are set for a balance

of speed and precision. Below we compare the efficacy of 5 fast,

approximate robustness measures, followed by an analysis of the

scalability of all 22 measures.

Approximate Measures. It turns out that a large number of ro-

bustness measures have difficulty scaling to large graphs. To help

address this, we implement and compare 5 fast approximate mea-

sure, three spectral based (natural connectivity, number of spanning

trees, effective resistance), and two graph based (average vertex

betweenness, average edge betweenness) [4, 5]. To approximate

natural connectivity we use the top-𝑘 eigenvalues of the adjacency

matrix as a low rank approximation [5, 27]. For the number of span-

ning trees and effective resistance we take the bottom-𝑘 eigenvalues

of the Laplacian matrix [5]. For graph measures, average vertex

betweenness and average edge betweenness, we randomly sample 𝑘

nodes to calculate centrality. In both cases, the parameter 𝑘 rep-

resents the trade-off between speed (low 𝑘) and precision (high

𝑘). When 𝑘 is equal to the number of nodes 𝑛 in the graph, the

approximate measure is equivalent to the original.

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4497

Number of sampled pairs

Average Vertex Betweenness

0
0

2

4

100 200 300

6

8

0

Number of sampled pairs

Average Edge Betweenness

0

40

80

120

100 200 3000
0

100 200 300

5k

15k

25k

Bottom k-eigenvalues

Effective Resistance

Top k-eigenvalues

Natural Connectivity

0 100 200 3000

1

2

3

4
Number of Spanning Trees

0
10

100 200 300

173

10
177

10
181

10
185

Bottom k-eigenvalues

Ap
pr
ox
im
at
io
n
er
ro
r

Comparing Approximation Error

Figure 2: Error of 5 fast, approximate robustness measures supported by Tiger. Parameter 𝑘 represents the trade-off

between speed (low 𝑘) and precision (high 𝑘). To measure approximation efficacy, we vary 𝑘 ∈ [5, 300] in increments of 10 and

measure the error between the approximate and original measure averaged over 30 runs on a clustered scale-free graph with

300 nodes.

To determine the efficacy of each approximation measure we

vary 𝑘 ∈ [5, 300] in increments of 10, and measure the absolute

error between the approximate and original measure, averaged over

30 runs on a clustered scale free graph containing 300 nodes. In

Figure 2, we observe that average vertex betweenness accurately

approximates the original measure using ∼10% of the nodes in the

graph. This results in a significant speed-up, and is in line with prior

research [4]. While the absolute error for each spectral approxi-

mation is large, these approximations find utility in measuring the

relative change in graph robustness after a series of perturbations

(i.e., addition or removal of nodes/edges). While not immediately ob-

vious, this can enable the development a wide range of optimization

based defense techniques [5, 6].

2.3 Running Robustness Measures in TIGER

The code block in Listing 1 illustrates how Tiger abstracts the code

complexity away from the user, enabling them to quickly evaluate

the robustness of their own network data in a simple manner. In

line 1, we import a helper function to generate various NetworkX

graphs; line 2 imports a utility function to run the specified robust-

ness measure; line 5 creates a Barabasi-Albert (BA) graph with 1000

nodes; and in lines 8 and 12 we calculate the graph’s spectral radius

and effective resistance, respectively.

1 from graph_tiger.graphs import graph_loader

2 from graph_tiger.measures import run_measure

3

4 # Load a Barabasi -Albert graph with 1000 nodes

5 graph = graph_loader(graph_type='BA', n=1000 , seed =1)

6

7 # Calculate graph's spectral radius

8 sr = run_measure(graph , measure='spectral_radius ')

9 print("Spectral radius:", sr)

10

11 # Calculate graph's effective resistance

12 er = run_measure(graph , measure='effective_resistance ')

13 print("Effective resistance:", er)

Listing 1: Measuring the spectral radius and effective

resistance of a Barabasi-Albert (BA) graph using TIGER

3 TIGER ATTACKS

There are two primary ways a network can become damagedÐ(1)

natural failure and (2) targeted attack. Natural failures typically

occur when a piece of equipment breaks down from natural causes.

In the study of graphs, this would correspond to the removal of a

node or edge in the graph. While random network failures regularly

occur, they are typically less severe than targeted attacks. This has

been shown to be true across a range of graph structures [3, 32].

In contrast, targeted attacks carefully select nodes and edges in

the network for removal in order to maximally disrupt network

functionality. As such, we focus the majority of our attention to

targeted attacks. In Section 3.1, we provide a high-level overview of

several network failure and attack strategies. Then, in Section 3.2

we highlight 10 attack strategies implemented in Tiger.

3.1 Attack Strategies

We showcase an example attack in Figure 3 on the Kentucky KY-2

water distribution network [16]. The network starts under normal

conditions (far left), and at each step an additional node is removed

by the attacker (red nodes). After removing only 13 of the 814

nodes, the network is split into two separate regions. By step 27,

the network splits into four disconnected regions. In this simulation,

and in general, attack strategies rely on node and edge centrality

measures to identify candidates. Below, we highlight several attack

strategies [18] contained in Tiger.

Initial degree removal (ID) targets nodes with the highest degree

𝛿𝑣 . This has the effect of reducing the total number of edges in the

network as fast as possible [18]. Since this attack only considers its

neighbors when making a decision, it is considered a local attack.

The benefit of this locality is low computational overhead.

Initial betweenness removal (IB) targets nodes with high be-

tweenness centrality 𝑏𝑣 . This has the effect of destroying as many

paths as possible [18]. Since path information is aggregated from

across the network, this is considered a global attack strategy. Unfor-

tunately, global information comes with significant computational

overhead compared to a local attacks.

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4498

5 TIGER SIMULATION TOOLS

We implement 4 broad and important types of robustness simula-

tion tools [3, 18, 21, 29, 31]Ð(1) dissemination of network entities,

(2) cascading failures (3) network attacks, see Section 3, and (4)

network defense, see Section 4. In Section 5.3, we discuss the im-

plementation of an infectious disease models and how defense

techniques implemented in Tiger can be used to eitherminimize or

maximize the network diffusion. Then, in Section 3, we discuss the

implementation of the cascading failure model and its interactions

with Tiger defense and attack strategies.

5.1 Cascading Failures

Cascading failures often arise as a result of natural failures or tar-

geted attacks in a network. Consider an electrical grid where a

central substation goes offline. In order to maintain the distribution

of power, neighboring substations have to increase production in

order to meet demand. However, if this is not possible, the neigh-

boring substation fails, which in turn causes additional neighboring

substations to fail. The end result is a series of cascading failures

i.e., a blackout [7]. While cascading failures can occur in a variety

of network types e.g., water, electrical, communication, we focus

on the electrical grid. Below, we discuss the design and implemen-

tation of the cascading failure model and how Tiger can be used

to both induce and prevent cascading failures using the attack and

defense mechanisms discussed in Sections 3 and 4, respectively.

Design and Implementation. There are 3 main processes govern-

ing the network simulationÐ(1) capacity of each node 𝑐𝑣 ∈ [0, 1];

(2) load of each node 𝑙𝑣 ∈ 𝑈 (0, 𝑙𝑚𝑎𝑥); and (3) network redundancy

𝑟 ∈ [0, 1]. The capacity of each node 𝑐𝑣 is the the maximum load

a node can handle, which is set based on the node’s normalized

betweenness centrality [17]. The load of each node 𝑙𝑣 represents the

fraction of maximum capacity 𝑐𝑣 that the node operates at. Load for

each node 𝑐𝑣 is set by uniformly drawing from 𝑈 (0, 𝑙𝑚𝑎𝑥), where

𝑙𝑚𝑎𝑥 is the maximum initial load. Network redundancy 𝑟 represents

the amount of reserve capacity present in the network i.e., auxiliary

support systems. At the beginning of the simulation, we allow the

user to attack and defend the network according to the node attack

and defense strategies in Sections 3 and 4, respectively. When a

0 40 80

0.2

0

0.4

0.6

0.8

1

redundancy ≥ 50%

40%40%

20%20%

0%0%

120
Time step

Redundancy vs node attack on electrical grid

La
rg

es
tc

on
ne

ct
ed

co
m

po
ne

nt
(n

or
m

.)

Figure 6: Effect of network redundancy 𝑟 on the US power

grid where 4 nodes are overloaded using ID. When 𝑟 ≥ 50%

the network is able to redistribute the increased load.

node is attacked it becomes łoverloadedž, causing it to fail and

requiring the load be distributed to the neighbors. When defending

a node we increase it’s capacity to protect against attacks.

1 from graph_tiger.cascading import Cascading

2 from graph_tiger.graphs import graph_loader

3

4 params = {

5 'runs': 1, # number of simulations

6 'steps ': 100, # simulation time steps

7 'l': 0.8, # max node load

8 'r': 0.2, # node redundancy

9 'c': int (0.1 * len(graph)), # node capacity approx.

10

11 'robust_measure ': 'largest_connected_component ',

12 'k_a': 30, # attack strength

13 'attack ': 'rd_node ', # attack strategy

14 'k_d': 0, # defense strength

15 'defense ': None , # defense strategy

16 }

17

18 # Load U.S. electrical grid graph

19 graph = graph_loader('electrical ')

20

21 # Run and plot cascading failure simulation

22 cascading = Cascading(graph , ** params)

23 results = cascading.run_simulation ()

24 cascading.plot_results(results)

Listing 4: Cascading failure simulation on U.S. electrical

grid using TIGER

Simulating cascading failures. To help users visualize cascading

failures induced by targeted attacks, we enable them to create vi-

suals like Figure 7, where we overload 4 nodes selected by the ID

attack strategy on the US power grid dataset [31] (𝑙𝑚𝑎𝑥 = 0.8). Node

size represents capacity i.e., larger size→ higher capacity, and color

indicates the load of each node on a gradient scale from blue (low

load) to red (high load); dark red indicates node failure (overloaded).

Time step 1 shows the network under normal conditions; at step 50

we observe a series of failures originating from the bottom of the

network; by step 70 most of the network has collapsed. To assist

users in summarizing simulation results over many configurations,

we enable them to create plots like Figure 6, which shows the effect

of network redundancy 𝑟 when 4 nodes are overloaded by the ID

attack strategy. At 50% redundancy, we observe a critical threshold

where the network is able to redistribute the increased load. For

𝑟 < 50%, the cascading failure can be delayed but not prevented.

5.2 Running Cascading Failures in TIGER

The code block in Listing 4 shows how Tiger users can quickly

setup a cascading failure simulation. There are 3 simulation spe-

cific parametersÐthe max node lode ‘l’, node redundancy ‘r’, and

maximum node capacity ’c’ (based on betweenness centrality). We

set the attack and defense parameters, similar to Listings 2 and 3,

respectively. The simulation output is a plot measuring the ‘health’

or robustness of the network over time. Users can optionally gener-

ate image snapshots and a video simulation of the cascading failure

on the network data.

5.3 Dissemination of Network Entities

A critical concept in entity dissemination is network diffusion, which

attempts to capture the underlying mechanism enabling network

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4501

1 from graph_tiger.diffusion import Diffusion

2 from graph_tiger.graphs import graph_loader

3

4 sis_params = {

5 'runs': 1, # number of simulations

6 'steps ': 5000, # simulation time steps

7

8 'model ': 'SIS',

9 'b': 0.00208 , # virus birth rate

10 'd': 0.01, # virus death rate

11 'c': 0.3, # network % starting infected

12 }

13

14 # Load Oregon -1 Autonomous System graph

15 graph = graph_loader('as_733 ')

16

17 # Run and plot entity dissemination simulation

18 diffusion = Diffusion(graph , ** sis_params)

19 results = diffusion.run_simulation ()

20

21 diffusion.plot_results(results)

Listing 5: Entity dissemination simulation on Oregon-1

Autonomous System network using TIGER

6 CONCLUSION

The study of network robustness is a critical tool in the charac-

terization and understanding of complex interconnected systems.

Through analyzing and understanding the robustness of these net-

works we can: (1) quantify network vulnerability and robustness,

(2) augment a network’s structure to resist attacks and recover from

failure, and (3) control the dissemination of entities on the network

(e.g., viruses, propaganda). While significant research has been con-

ducted on all of these tasks, no comprehensive open-source toolbox

currently exists to assist researchers and practitioners in this im-

portant topic. This lack of available tools hinders reproducibility

and examination of existing work, development of new research,

and dissemination of new ideas. To address these challenges, we

contribute Tiger, an open-sourced Python toolbox containing 22

graph robustness measures with both original and fast approximate

versions; 17 failure and attack strategies; 15 heuristic and optimiza-

tion based defense techniques; and 4 simulation tools. Tiger is

open-sourced at: https://github.com/safreita1/TIGER.

7 ACKNOWLEDGEMENTS

This workwas in part supported by theNSF grant IIS-1563816, GRFP

(DGE-1650044), an IBM fellowship, and a Raytheon fellowship.

REFERENCES
[1] Asma Azizi, Cesar Montalvo, Baltazar Espinoza, Yun Kang, and Carlos Castillo-

Chavez. 2020. Epidemics on networks: Reducing disease transmission using
health emergency declarations and peer communication. Infectious Disease
Modelling 5 (2020), 12ś22.

[2] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an open
source software for exploring and manipulating networks. In Third international
AAAI conference on weblogs and social media.

[3] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. 2005. Im-
proving network robustness by edgemodification. Physica A: Statistical Mechanics
and its Applications 357, 3-4 (2005), 593ś612.

[4] Ulrik Brandes and Christian Pich. 2007. Centrality estimation in large networks.
International Journal of Bifurcation and Chaos 17, 07 (2007), 2303ś2318.

[5] Hau Chan and Leman Akoglu. 2016. Optimizing network robustness by edge
rewiring: a general framework. Data Mining and Knowledge Discovery 30, 5
(2016), 1395ś1425.

[6] Hau Chan, Leman Akoglu, and Hanghang Tong. 2014. Make it or break it:
Manipulating robustness in large networks. In Proceedings of the 2014 SIAM
International Conference on Data Mining. SIAM, 325ś333.

[7] Paolo Crucitti, Vito Latora, and Massimo Marchiori. 2004. Model for cascading
failures in complex networks. Physical Review E 69, 4 (2004), 045104.

[8] Wendy Ellens and Robert E Kooij. 2013. Graph measures and network robustness.
arXiv preprint arXiv:1311.5064 (2013).

[9] Wendy Ellens, FM Spieksma, P Van Mieghem, A Jamakovic, and RE Kooij. 2011.
Effective graph resistance. Linear algebra and its applications 435, 10 (2011),
2491ś2506.

[10] Ernesto Estrada. 2006. Network robustness to targeted attacks. The interplay of
expansibility and degree distribution. The European Physical Journal B-Condensed
Matter and Complex Systems 52, 4 (2006), 563ś574.

[11] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry (1977), 35ś41.

[12] Scott Freitas, Hanghang Tong, Nan Cao, and Yinglong Xia. 2017. Rapid analysis of
network connectivity. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. 2463ś2466.

[13] Scott Freitas, Andrew Wicker, Duen Horng Chau, and Joshua Neil. 2020. D2M:
Dynamic Defense and Modeling of Adversarial Movement in Networks. SDM
(2020).

[14] Arpita Ghosh, Stephen Boyd, and Amin Saberi. 2008. Minimizing effective
resistance of a graph. SIAM review 50, 1 (2008), 37ś66.

[15] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[16] Erika Hernadez, Steven Hoagland, and Lindell Ormsbee. 2016. Water distribution
database for research applications. In World Environmental and Water Resources
Congress 2016. 465ś474.

[17] Isaac Hernandez-Fajardo and Leonardo Dueñas-Osorio. 2013. Probabilistic study
of cascading failures in complex interdependent lifeline systems. Reliability
Engineering & System Safety 111 (2013), 260ś272.

[18] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. 2002. Attack
vulnerability of complex networks. Physical review E 65, 5 (2002), 056109.

[19] Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006. Expander graphs and
their applications. Bull. Amer. Math. Soc. 43, 4 (2006), 439ś561.

[20] Jian Kang, Scott Freitas, Haichao Yu, Yinglong Xia, Nan Cao, and Hanghang
Tong. 2018. X-rank: Explainable ranking in complex multi-layered networks.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 1959ś1962.

[21] William Ogilvy Kermack and Anderson G McKendrick. 1927. A contribution to
the mathematical theory of epidemics. Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character 115, 772
(1927), 700ś721.

[22] Douglas J Klein and Milan Randić. 1993. Resistance distance. Journal of mathe-
matical chemistry 12, 1 (1993), 81ś95.

[23] Katherine A Klise, Regan Murray, and Terra Haxton. 2018. An Overview of the
Water Network Tool for Resilience (WNTR). Technical Report. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

[24] Mert Korkali, Jason G Veneman, Brian F Tivnan, James P Bagrow, and Paul DH
Hines. 2017. Reducing cascading failure risk by increasing infrastructure network
interdependence. Scientific reports 7 (2017), 44499.

[25] Mukkai S Krishnamoorthy and Balaji Krishnamurthy. 1987. Fault diameter of
interconnection networks. Computers & Mathematics with Applications 13, 5-6
(1987), 577ś582.

[26] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. 177ś187.

[27] Fragkiskos DMalliaros, VasileiosMegalooikonomou, and Christos Faloutsos. 2012.
Fast robustness estimation in large social graphs: Communities and anomaly
detection. In Proceedings of the 2012 SIAM International Conference on Data Mining.
SIAM, 942ś953.

[28] Giulio Rossetti, Letizia Milli, Salvatore Rinzivillo, Alina Sîrbu, Dino Pedreschi, and
Fosca Giannotti. 2018. NDlib: a python library to model and analyze diffusion
processes over complex networks. International Journal of Data Science and
Analytics 5, 1 (2018), 61ś79.

[29] Hanghang Tong, B Aditya Prakash, Charalampos Tsourakakis, Tina Eliassi-Rad,
Christos Faloutsos, and Duen Horng Chau. 2010. On the vulnerability of large
graphs. In 2010 IEEE International Conference on Data Mining. IEEE, 1091ś1096.

[30] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. 2003.
Epidemic spreading in real networks: An eigenvalue viewpoint. In 22nd Interna-
tional Symposium on Reliable Distributed Systems, 2003. Proceedings. IEEE, 25ś34.

[31] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440.

[32] Yongxiang Xia, Jin Fan, and David Hill. 2010. Cascading failure in WattsśStrogatz
small-world networks. Physica A: Statistical Mechanics and its Applications 389, 6
(2010), 1281ś1285.

Resource Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4503

	Abstract
	1 Introduction
	1.1 Contributions

	2 TIGER Robustness Measures
	2.1 Example Measures
	2.2 Measure Implementation & Evaluation
	2.3 Running Robustness Measures in TIGER

	3 TIGER Attacks
	3.1 Attack Strategies
	3.2 Comparing Strategies
	3.3 Running Network Attacks in TIGER

	4 TIGER Defenses
	4.1 Defense Strategies
	4.2 Comparing Strategies
	4.3 Running Network Defenses in TIGER

	5 TIGER Simulation Tools
	5.1 Cascading Failures
	5.2 Running Cascading Failures in TIGER
	5.3 Dissemination of Network Entities
	5.4 Running Entity Dissemination in TIGER

	6 Conclusion
	7 Acknowledgements
	References

