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Figure 1: With BLUFF, users interactively visualize how adversarial attacks penetrate a deep neural network to induce incorrect
outcomes. Here, a user inspects why INCEPTIONV 1 misclassifies adversarial giant panda images, crafted by the Projected Gradient
Descent (PGD) attack, as armadillo. PGD successfully perturbed pixels to induce the “brown bird” feature, an appearance more
likely shared by an armadillo (small, roundish, brown body) than a panda, activating more features that contribute to the armadillo
(mis)classification (e.g., “scales,” “bumps,” “mesh”). The adversarial pathways, formed by these neurons and their connections,
overwhelm the benign panda pathways and lead to the ultimate misclassification. (A) Control Sidebar allows users to specify what
data is to be included and highlighted. (B) Graph Summary View visualizes pathways most activated or changed by an attack
as a network graph of neurons (each labeled by the channel ID in its layer) and their connections. When hovering over a neuron,
(C) Detail View displays its feature visualization, representative dataset examples, and activation patterns over attack strengths.

ABSTRACT

Deep neural networks (DNNs) are now commonly used in many
domains. However, they are vulnerable to adversarial attacks:
carefully-crafted perturbations on data inputs that can fool a model
into making incorrect predictions. Despite significant research on
developing DNN attack and defense techniques, people still lack an
understanding of how such attacks penetrate a model’s internals. We
present BLUFF, an interactive system for visualizing, characterizing,
and deciphering adversarial attacks on vision-based neural networks.
BLUFF allows people to flexibly visualize and compare the activation
pathways for benign and attacked images, revealing mechanisms
that adversarial attacks employ to inflict harm on a model. BLUFF is
open-sourced and runs in modern web browsers.

Index Terms: Human-centered computing—Visual Analytics—

1 INTRODUCTION

Deep neural networks (DNN5s) are a major driving force behind
many recent technological breakthroughs [11, 14-16, 28, 41], but
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they are highly vulnerable to adversarial attacks. Small, human-
imperceptible noise injected into inputs can easily fool DNNs into
making wrong predictions [7,13,22,34], raising alarms for safety-
critical applications, such as autonomous driving and data-driven
healthcare. Thus, it is essential to understand how attacks harm
DNN models [35,38]. But interpreting and ultimately defending
against adversarial attacks remain fundamental research challenges.
DNNss are often considered “unintelligible” due to their complex ar-
chitectures and huge number of parameters. It is difficult to pinpoint
the parts of the model exploited by an attack, let alone to understand
how such exploitation leads to incorrect outcomes [23]. Also, there
is a lack of research in understanding how an attack’s “strength” may
correlate with neurons’ activation patterns [24]. For example, it is
not yet known if a stronger attack exploits the same neurons as a
weaker attack does, or if these sets are completely different.

To address the above challenges, we develop BLUFF (Fig. 1), an
interactive visualization tool for discovering and interpreting how
adversarial attacks mislead DNNs into making incorrect decisions.
Our main idea is to visualize activation pathways within a DNN
traversed by the signals of benign and adversarial inputs. An activa-
tion pathway consists of neurons (also called channels or features)
that are highly activated or changed by the input, and the connections
among the neurons. BLUFF finds and visualizes where a model is
exploited by an attack, and what impact the exploitation has on the
final prediction, across multiple attack strengths. We contribute:

* BLUFF, an interactive system for summarizing and inter-
preting how adversarial perturbations penetrate DNNs to in-
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Figure 2: Adversarial attacks confuse DNNs to make incorrect pre-
dictions (e.g., misclassify benign panda as armadillo). BLUFF helps
discover where such attacks occur and what features are used.

duce incorrect outcomes in INCEPTIONV 1 [37], a large-scale
prevalent image-classification model, over images from Ima-
geNet ILSVRC 2012 [36]. To support reproducible research
and broaden its access, we have open-sourced BLUFF at
https://poloclub.github.io/bluff.

* Visual characterization of activation pathway dynamics. Ad-
versarial perturbations manipulate activation pathways typically
used for benign inputs to induce incorrect predictions. For exam-
ple, an attack can inhibit neurons detecting important features for
the benign class and excite those that exacerbate misclassification.
BLUFF visualizes and highlights activation pathways exploited
by an attack (Fig. 2) and shows how they mutate and propagate
through a network.

¢ Interactive comparison of attack escalation. BLUFF enables
interactive comparison of activation pathways under increasing at-
tack strengths, providing a new way for understanding the essence
of an attack (e.g., common trends of an attack across all strengths)
and its multi-faceted characteristics (e.g., various strategies that
different strengths may employ).

Discovery usage scenarios. We describe how BLUFF can help

discover surprising insights into the vulnerability of DNNs, such

as how unusual activation pathways may be exploited by attacks.

2 RELATED WORK

Adpversarial Attacks on DNNs. Adversarial attacks aim to confuse
a DNN model into making incorrect predictions by adding carefully
crafted perturbations to the input [5,13,25]. We focus on rargeted
adversarial attacks, where a model is misled to make a prediction of
the attacker’s choosing, which can pose severe threats to practical
deep learning applications [7]. Given a benign input instance x, a
targeted adversarial attack aims to find a small perfurbation & that
changes the prediction of model .Z to a target class ¢ different from
the true class y, i.e., # (x+8) =1, where r # y,||8|| < €. We call
the attack strength. Projected Gradient Descent (PGD) [24] is one of
the strongest first-order targeted attacks [40]. Hence, we examine
the I, norm of PGD with varying the strength € from 0.0 (no attack)
to 0.5 (strong attack).

Neural Network Interpretability. Deep neural networks have of-
ten been described as “black boxes” due to their complex internal
structures. An approach to understand how neural networks work
internally is to study neurons’ activation patterns. To interpret what
concept a neuron is detecting, feature visualization [6,10,27,31] cre-
ates visualization that maximizes such neuron. TCAV [21], Network
Dissection [2], and Net2Vec [12] propose to quantify interpretability
by measuring alignment between the neuron activations and concept
features. Circuits [30] and Summit [18] visually explain how higher-
level concepts can be constructed by neural connections. Activation
Atlas [6] visualizes neuron activations per layer and analyzes how
models can be exploited when predicting on manipulated inputs. On

top of using the neurons’ activations, we visualize important connec-
tions among the neurons contributing to such misclassifications, and
how these connections react to attacks.

Interpretability for Adversarial Attacks. While research on ma-
chine learning security has attracted great attention [7,9, 13,24,29,
39], research for interpreting adversarial attacks on DNNs is nascent.
AEVis [4,23] proposes to extract critical neurons and their connec-
tions for benign and adversarial inputs, and demonstrates the method
on small sets of images. However, it is unclear how it may scale
to larger datasets that BLUFF operates on (e.g., 900+ adversarial
images for a single ImageNet class [36]). BLUFF also provides new
techniques for comparing activation pathways, enabling novel analy-
sis (e.g., based on neuron inhibition and excitation) and discoveries
(e.g., how different attacks may have different strategies).

3 BLUFF: DECIPHERING ADVERSARIAL ATTACKS
3.1 Design Goals

Through a literature survey, we have identified the following four
design goals (G1-G4) that guide BLUFF’s development.

G1 Untangling activation pathways. Benign activation pathways
can significantly overlap with adversarial pathways, as some
neurons are “polysemantic,” detecting multiple concepts at the
same time [2,30]. We aim to identify neurons that respond
differently between benign and attacked inputs, to help discover
where and how a model is exploited by an attack to induce
incorrect predictions.

G2 Interpreting multiple activation pathways. Understanding
the effects of adversarial attacks is core to developing robust
defenses [13,24,39]. We aim to visualize high-level overviews
of benign and adversarial activation pathways, and support
drilling-down into subpaths, to help shed light on how specific
groups of neurons are exploited to inflict harm on a model.

G3 Comparing attack characteristics. Existing works to inter-
pret adversarial attacks on deep neural networks often focus
on visualizing the activation patterns for a single adversarial
input [6,29]. We aim to visualize how the activation pathway
changes as the attack strength varies, to help users gain deeper
insight into how the attack works generally. Understanding
model vulnerability under different attack strategies informs
more robust defenses [9, 25, 33].

G4 Lowering barrier of entry for interpreting and deciphering
adversarial attacks. The visualization community is contribut-
ing a variety of methods and tools to help people more easily
interpret different kinds of DNNs [2,6,17,18,20,23,31]. Efforts
that aim to support deciphering adversarial attacks, however,
are relatively nascent [2,23,29]. We aim to make interpreting
adversarial attacks more accessible to everyone, following the
footsteps of prior success from the community.

3.2 Background: Neuron Importance and Influence

To discover activation pathways triggered by benign and adversarial
inputs, BLUFF finds important neurons and influential connections
among such neurons. Inspired by [18], BLUFF computes a neuron’s
importance based on how strongly it is activated by all inputs, and
the influence between neurons based on the amount of activation
signals transmitted through the connection to the next layer. While
summarizing interpretable pathways within a DNN remains an open
problem [3,19,26], recent works [18,30,31] have shown that domi-
nant neuron activations at each layer form the basis vectors for the
entire activation space of the DNN. Thus, characterizing important
neurons at each layer based on neuron activation provides a surro-
gate sampling of important neurons across the whole network, for a
given set of images. BLUFF extends this notion to scalably aggre-
gate the activation pathways across multiple contexts with the most



important neurons for: (1) benign images belonging to the original
class, on which the targeted attacks are performed; (2) benign im-
ages belonging to the target class, which the attacks try to flip the
label to; and (3) successfully attacked images for a particular attack
strength (we support exploration with multiple strengths).

To begin, we consider the DNN model .# (INCEPTIONV 1),
where 74 € R#+Wa-Dy is the output tensor of the ¢’th layer of ..
Here, H,;, W, and D, are the height, width and depth dimensions
respectively. This implies that the layer has D, neurons. We
denote the d’th output channel (for d’th neuron) in the layer as
(fqd € RH:Wa We index the values in the channel as ‘fg [, w]. Given
an input image x;, we find the maximum activation of each neu-
ron induced by the image using the global max-pooling operation:
ag [i] = maxp,, ‘Kg [h,w]. This represents the magnitude by which the
d’th neuron in the ¢’th layer maximally detects the corresponding se-
mantic feature from image x;. This technique of extracting maximal
activation as a proxy for semantic features has also demonstrated
tremendous predictive power in the data programming domain [8].
Finally, we pass all images from each of original, target and at-
tacked datasets. For each set, we aggregate ag [i] values for all
images and quantify the importance of each neuron by the median
value of such maximal activations. We use medians for summarizing
the neuron importance, because they are less sensitive to extreme
values. Consistent with the findings of [18], we observe that the
maximal activation values are power law distributed, implying that
only a small minority of neurons have highest importance scores.
Hence to denoise inconsequential visual elements, for each layer, we
empirically filter the 10 most important neurons for benign images
of original and target classes, and 5 most important ones for attacked
images of each attack strength (i.e., at most 50 important neurons
across all 10 attack strengths).

To compute influence of a connection between two neurons, we
measure the signal transmitted through the connection, computed by
the convolution of the slice of the kernel tensor between the two neu-
rons over the source neuron’s channel activation. Since output from
the ReLU activation function is used as the neuron activation in an
INCEPTIONV 1 model, it implies that the neuron importance scores
that are propagated are non-negative. Consequently, the model acts
on these non-negative activation values. Hence, these activation
values accumulate only for positively weighted convolution opera-
tions through consecutive layers, which has the effect of filtering out
non-influential connections that may even originate from important
neurons. Inspired by [18], we take the maximum value in the convo-
lution for the influence of the connection. BLUFF deviates from [18]
when aggregating influence values across several images. We char-
acterize the connection by taking the median influence across all
images from a given set. We take this approach since we want
to summarize the influence characteristics across multiple datasets
(original, target and attacked for different attack strengths), and
each dataset is of a different size. Simple counting may skew the
results towards a particular dataset while the median value provides
a characteristic aggregation of the influence scores.

3.3 Realizing Design Goals in BLUFF’s Interface

BLUFF’s interface (Fig. 1) consists of: A. Control Sidebar for se-
lecting which data are included, filtered, highlighted, and compared;
B. Graph Summary View that summarizes and visualizes activa-
tion pathways as a graph; C. Detail View for interpreting the concept
that a neuron has detected, via feature visualization, representative
dataset examples, and activation patterns over attack strengths. In
the header (Fig. 1, top), users can select a pair of original and target
class. BLUFF then generates the main visualization in the Graph
Summary View for how neural networks misclassify original im-
ages as target images when attacked, by displaying the activation
pathways of adversarial inputs.

Unifying Multiple Graph Summaries. BLUFF summarizes Incep-

tionV1’s responses to inputs under multiple contexts in a unified
view. Specifically, the Graph Summary View (Fig. 1B) visualizes
the top neurons important only for the original class as green nodes,
those important only for the farget class as blue nodes, those im-
portant to both classes as nodes, and those important only
for successfully-attacked images as red nodes. Furthermore, those
neurons are spatially grouped based on the four roles. This generic
design, that can be extended to any DNN model with intermediate
convolutional blocks, helps users more easily pinpoint and tease out
the subtle ways that neurons participate in an attack (G1, G2), e.g.,
red neurons, by the very definition, are exploited only by the attack
but are neither activated by the original or target images. Our key de-
sign decision here is to unambiguously differentiate the four neuron
contexts using spatial positioning; we supplement this differentiation
by further encoding the four contexts with distinct colors.

The Graph Summary View (Fig. 1B) focuses on visualizing the
model’s 9 mixed layers (mixed3a, mixed3b ... mixed5b), follow-
ing existing interpretability literature [18, 31, 32]. The topmost
row corresponds to the last mixed network layer (i.e., mixedSb).
Each connection between two neurons is visualized as a curved line,
whose width scales linearly with the influence values computed as
in Sect. 3.2.

Visualizing exploited activation pathways. An adversarial input
is often a slightly perturbed version of a benign input, which means
the activation pathways of an benign image and those of its ad-
versarial counterpart would be similar at the input layer [23], yet
decidedly different at the output layer — the benign pathways lead
to the original prediction, while the adversarial pathways lead to
the target prediction. Given the similar starting points but different
outcomes, the adversarial activation pathways must have deviated
from the benign pathways. BLUFF helps discover vulnerable neu-
rons and connections that contribute to such deviations and the
resulting misclassification, by highlighting the neurons and con-
nections that are excited (or inhibited, oppositely) the most by an
attack (Fig. 1A) (G1). A pathway excited by an attack means its
constituent neurons are activated more than expected (i.e., pathway
contains more target features). Fig. 1 shows an example of where
the attack excites multiple features and connections to induce the
target prediction of armadillo (e.g., “scales,” “bumps,” “mesh,” and
“brown bird” thanks to its similarity to armadillos’ roundish, brown
body). Computationally, in layer ¢, a neuron d’s excitation amount
is @l [attacked) — @’ [benign), where @} [benign] and & [artacked) are
the neuron’s importance for some benign and attacked images re-
spectively (as described in Sect. 3.2).

Interpreting Activation Pathways. To help users more easily in-
terpret the concepts that a neuron is detecting, alongside each neu-
ron, BLUFF shows (1) a feature visualization, an algorithmically
generated image that maximizes the neuron’s activation, and (2)
dataset examples, cropped from real images in the dataset, that
also highly activate the neuron [31]. Hovering on a neuron shows
the corresponding feature visualization and dataset examples as
seen in Fig. 1C, where adversarial images successfully induce the
“brown bird” feature, an appearance more likely shared by an ar-
madillo (small, roundish, brown body) than a panda, which in turn
activates more features in subsequent layers that contribute to the
(mis)classification of armadillo. These visual explanations help
translate abstract activation pathways into the composition and flow
of learned concepts (G2).

Comparing attacks with varying strengths. Neurons most activated ...
BLUFF offers the Compare Attacks mode that @ Weaker attack
visualizes and compares the pathway differ- O stronger attack
ences between a weaker attack and a stronger ® 5o

attack (G3). BLUFF visually encodes the neu-
rons based on which attack strengths they re- Neither
sponded to, drawing inspiration from Alper et al [1]. Each neuron
consists of an inner and an outer rectangle: the inner rectangle is
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Figure 3: BLUFF helps users understand how an attack penetrates
a model, by visualizing activation pathways that are additionally ex-
ploited by the attack. In this example, BLUFF highlights the neurons
and connections that PGD attack exploits (red) to make the model
confuse adversarial diamondback snake images as vine snake.

colored when the neuron is in the activation pathways of the weaker
attack; whereas the outer rectangle is colored when the neuron is
in the activation pathways of stronger attack. Thus, our design can
visually encode all four possible comparison results in relative terms,
enabling us to use hue to encode the four neuron contexts. In other
words, the comparison modes visual encoding gracefully builds on
and preserves Bluffs overall visual design. Our terminology for
weaker and stronger attacks are relative, as we do not assert any
explicit threshold for weak or strong attack strengths.

Cross-platform deployment with standard web technologies. To
support reproducible research and broaden its access, BLUFF uses
standard web technologies (HTML/CSS/JavsScript stacks, and
D3.js) and can be accessed from any modern web browser (G4) at
https://poloclub.github.io/bluff. We ran all the backend
code that computes neurons’ importance and connections’ influence
on a NVIDIA DGX-1 workstation equipped with 8 GPUs (each with
32GB memory), 80 CPU cores, and 504GB RAM.

4 DISCOVERY USAGE SCENARIOS

We now demonstrate how BLUFF enhance the understanding of
adversarial attacks and reveal attack strategies that confuse a DNN.
For our scenarios, we pick from the 1000 classes of the ImageNet
dataset [36], which consists of ~1.2 million images.

4.1 Understanding How Attacks Penetrate DNNs

Consider a DNN classifier that labels snakes, such as the deadly
venomous diamondback snake, and the green vine snake whose
venom causes only mild swelling. In Fig. 3, BLUFF’s Graph Sum-
mary View reveals how adversarial diamondback images exploit
(highly activate) unexpected pathways to induce the incorrect vine
snakes prediction, leveraging multiple exploited neurons that look
for “blue color” (e.g., “blue birds” in Fig. 3, right column). This
is surprising because vine snakes (the attack’s target class) have a
green body, not blue. This finding suggests that PGD exploits the
pathway for “blue color” as a bypassing alternative route to reach
the pathways for vine snake, which look for “green leaves” and
“green bumps” (Fig. 3, middle column). We also noticed that PGD
leverages “snake-like” pathways that are important for classes
(Fig. 3, left column), which is reasonable given that both the original
and target classes are snakes. Finding the pathways exploited by an
attack provides fundamental insights that could inform future de-
fenses, such as blocking the alternative routes. Fig. 1 shows another
example, where the adversarial armadillo pathways overwhelm the
benign panda pathways and ultimately lead to the misclassification.
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Figure 4: Using BLUFF’'s Compare Attacks mode, we examine PGD’s
different strategies for misclassifying diamondback images into vine
snake class for two attack strengths (0.1 vs 0.5). The weaker attack
exploits more alternative neurons (i.e., features that are not typically
activated by benign inputs) than the stronger attack does.

4.2 Startling Tactic: Death by a Thousand Cuts

An adversary can perform an attack on
the model at various levels of attack
strengths — starting from imperceptible
noise, all the way up to high intensity per- —:—I;I
turbation (see example perturbations in ;. Qi

Fig. 4). Does an attack’s strategy evolves

as the attack strength escalates, or remains the same? BLUFF enables
such a comparative analysis through its Compare Attacks mode. Con-
sider the example of attacking the diamondback images to induce
the misclassification of vine snake. Setting the weaker and stronger
attack strength to 0.1 and 0.5 respectively and looking at 30% of
most activated neurons in each layer, Fig. 4 reveals the surprising
finding that the weaker attack exploits a large number of red neu-
rons (28 in total) — neurons that are not important to either snake
class, but are highly activated by the attack — many more than the
stronger attack (only 9 in total). On further examining the example
image patches for these neurons, we noticed the images consist an
assortment of semantic features such as spider legs, blue bird and
car hood, seemingly unrelated to snakes. We observed similar attack
tactics in other class pairs. For ambulance images misclassified as
street sign, 42 red neurons are exploited by the weaker attack, and
only 16 by the stronger attack. For panda images misclassified as
armadillo, 29 exploited by the weaker attack, only 8 by the stronger
attack. These observations lead us to conclude that weaker attacks
rely on leveraging a large number of disassociated semantic features
to induce misclassification, i.e., “death by a thousand cuts”.

COMPARE ATTACKS@©

Stronger 0.5

5 DiscussiON AND FUTURE WORK

We present BLUFF, an interactive system for visualizing, character-
izing, and deciphering adversarial attacks on DNNs. We believe
our visualization, summarization, and comparison approaches will
help promote user understanding of adversarial attacks, and sup-
port discoveries to design a proper defense. Our next step is to use
BLUFF to help construct robust defenses against attacks. We plan to
extend BLUFF to support inferactive neuron editing (e.g., “deleting”
a neuron from model), so that the user may empirically identify and
act on vulnerable neurons and observe the effects on the resulting
pathway and prediction in real-time. We also plan to extend BLUFF
to work for adversarially-trained models [13,24,39], to help people
gain deeper insights that explain their robustness. Additionally, after
receiving positive preliminary feedback from researchers, students
and collaborators who were given the opportunity to try out BLUFF,
we plan to conduct user studies to evaluate our tool’s usability and
functionality.
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