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ABSTRACT

We study age of information (AoI) minimization in a net-
work consisting of energy harvesting transmitters that are
scheduled to send status updates to their intended receivers.
We consider the user scheduling problem over a communi-
cation session. To solve online user scheduling with causal
knowledge of the system state, we formulate an infinite-state
Markov decision problem and adopt model-free on-policy
deep reinforcement learning (DRL), where the actor-critic
algorithm with deep neural network function approxima-
tion is implemented. Comparable AoI to the offline opti-
mal is demonstrated, verifying the efficacy of learning for
AoI-focused scheduling and resource allocation problems in
wireless networks.

Index Terms— Age of information, energy harvesting,
user scheduling, actor-critic deep reinforcement learning.

1. INTRODUCTION

Timely information exchange is crucial for many of forth-
coming wireless networking applications, including vehic-
ular networks, unmanned aerial vehicle networks, and IoT
networks [1]. Maintaining information freshness in such
networks brings about the need for a new network design
metric. Age of information (AoI) [2, 3] quantifies the time
elapsed since the generation of the latest successfully re-
ceived update. Distinct from metrics of delay or latency, AoI
captures the timeliness of information from a receiver’s per-
spective. Reference [3] has analyzed AoI from a queueing
theoretic perspective, and characterized AoI for single-source
M/M/1, M/D/1, and D/M/1 queues with first-come-first-
served (FCFS) service, revealing that AoI minimization offers
different insights than delay minimization.

User scheduling in wireless networks is a classical re-
source allocation problem whose history spans decades, of-
ten with throughput as the metric, see for example [4, 5]. Re-
cent references have considered user scheduling for minimum
AoI. In [6], the multi-source scheduling problem is identified
as NP-hard as an integer linear program, and a suboptimal al-
gorithm is proposed to reduce complexity. In energy harvest-
ing communication networks, where communication is pow-

ered by intermittently acquired energy, energy availability has
to be explicitly taken into account to ensure the information
freshness. Consequently, AoI-optimal update policies under
energy harvesting constraints have generated significant re-
cent interest. In the class of renewal policies, the optimal
policy is proved to have an energy-dependent multi-threshold
structure [7–10].

Most works on AoI-focused energy harvesting communi-
cations study optimal update policies and their properties for
simple network structures, e.g., point-to-point transmission,
which are amenable to model-based analytical approaches. In
this paper, we consider a more elaborate model consisting of
multiple users capable of energy harvesting to send status up-
dates, which is unlikely to admit a simple solution, but could
benefit from learning-based approaches. We develop the on-
line user scheduling policy based on the current and the past
observations, that is, only causal information of the system
state is available. For our model-free system with continuous-
valued states, we address the online user scheduling leverag-
ing DRL. An actor-critic algorithm is utilized, which is an
on-policy algorithm and does not require large memory for
experience replay in contrast to DQN adopted in our earlier
work [11]. We observe experimentally that DRL achieves
near-optimal AoI performance with a significant reduction in
runtime as compared to optimization solvers.

2. SYSTEM MODEL

We consider a system consisting ofK users and their intended
receivers. Each user wants to send status updates, e.g., of a
physical process, and would like to keep the information fresh
at its intended receiver, as shown in Fig. 1. The transmitter-
receiver pairs are fixed throughout the session. Multiple trans-
mitters may have the same intended receiver. The user in-
dex is denoted by k ∈ {1, 2, . . . ,K}. The users harvest en-
ergy from ambient energy sources and transmit update pack-
ets consuming the harvested energy. The battery capacity at
each user is assumed to be sufficiently large. Time is slot-
ted and the duration of each slot is normalized 1 second for
simplicity. The jth slot indicates the time interval [tj−1, tj),
where j = 1, 2, . . . and t0 = 0. The channel between each
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Fig. 1. System model. hkj denotes the channel gain of user k
in time slot j.

user and its receiver is assumed to be flat-fading. The path
loss and Rayleigh multipath fading are taken into account for
the channel gain, which is denoted by hkj for user k in slot j.
At most one user is scheduled to transmit in each slot. Each
user either transmits to its receiver or harvests energy in each
slot so that idle users harvest and accumulate energy. Let pkj
denote the transmission power and ekj denote the energy that
user k can harvest in slot j.

Each user sends update packets that are generated by it-
self or received from an external source. Either scenario is
referred to as packet arrivals in the paper. The timestamp for
the arrival of the uth update at user k is denoted by τku, for
u = 1, 2, . . . , Uk, where Uk is the total number of updates in
T slots. The new update packet replaces the old one that has
not been sent out. Thus, only the newest packet is buffered
at each user for the sake of information freshness. We as-
sume that the size of the update packet is uniform and small,
for which the transmission takes one slot. An update is de-
livered successfully by user k if the received signal-to-noise
ratio (SNR) is larger than a target SNR γ∗k , that is,

pkjhkj
σ2

≥ γ∗k , (1)

where σ2 is the noise power.
We adopt a linear AoI model [2, 3]. AoI is defined as the

time elapsed since the most recently received update is gen-
erated. Let akj denote the AoI for the user k at tj , which in-
dicates the age of the received packets at the end of slot j. At
each slot, the scheduled user is enabled to transmit an update
packet. If the delivery is successful, i.e., the received SNR is
above the target, the age drops to tj − τkuj

for the delivery
of packet uj , where uj is the newest packet by tj−1. Other-
wise, the age grows by 1, as shown in Fig. 2. AoI evolves as
follows for all k, j.

akj =

{
tj − τkuj

, if user k delivers uj at tj successfully,
ak,j−1 + 1, otherwise,

(2)

3

2

1

AoI

t0 t1 tT
𝜏𝑘1

45°

𝜏𝑘2 𝜏𝑘3

Fig. 2. A sample path of AoI. Dashed lines indicate the packet
waiting time at the user and the solid stair-shaped lines indi-
cate the AoI counted discretely at the end of each slot by the
receiver. The first and the third packet are delivered. The
second update is replaced by the third one.

where ak0 is the AoI at t0 for user k. Let ykj ∈ {0, 1} de-
note the update scheduling variable, where ykj = 1 indicates
user k is scheduled to send an update in slot j and ykj = 0
indicates it is idle and harvesting energy.

3. ONLINE AOI MINIMIZATION FORMULATION

In the online setting, we consider user scheduling for AoI
minimization based on the causal knowledge of the system
state information in a centralized manner. The user schedul-
ing decision is made at each slot with the past and the current
states available. We aim to derive an online policy that se-
quentially schedules status updates over time to minimize the
long-term average AoI of the system. The Markov decision
process (MDP) is defined by the following components.

State: The system state at the beginning of each time
slot, denoted by Sj ∈ S , consists of the AoI, the packet
waiting time, the required energy, and the available energy
for all users, i.e., Sj = (aj−1,wj ,qj ,Ej−1), where aj−1
and Ej−1 are the vectors with entries ak,j−1 and Ek,j−1 for
k = 1, 2, . . . ,K given in (2) and (3), respectively.

Ekj = Ek,j−1 + ekj(1− ykj)− pkj . (3)

where Ek,0 is the initial energy of user k. wj defines the vec-
tor of packet waiting times at the beginning of slot j, whose
entries are

wkj =

{
tj−1 − τkuj

, if a packet is at user k at tj−1,
−1, if no packet is at user k at tj−1,

(4)

for k = 1, 2, . . . ,K. Vector qj denotes the required en-
ergy by all users for successful updates at slot j, i.e., qkj =
γ∗
kσ

2

hkj
. Note that the state space S is infinite (the states are

continuous-valued).
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Action: Aj in each slot is the index of the scheduled user,
i.e., Aj ∈ A = {0, 1, 2, . . . ,K}; Aj = 0 implies no one is
scheduled as we consider at most one user is scheduled per
slot.

Reward: The immediate reward is the negative of the user-
averaged AoI of the system, since we aim to minimize AoI.
More specifically, given state S = (a,w,q,E) ∈ S, if action
A ∈ A is taken and the next state is S′ = (a′,w′,q′,E′) ∈ S,
the immediate reward is defined as

r(S,A) = − 1

K

K∑
k=1

a′k. (5)

Transition Probability: The transition probability of
reaching state S′ from state S by taking action A, denoted
by P(S′|S,A), defines the dynamics of the system, where the
transition depends only on S but not the history of the earlier
states. Note that when Aj = k, user k checks if an update
packet is available at tj−1 and determines a packet availability
variable vkj ∈ {0, 1}, based on the constraints that the packet
arrival timestamp needs to be smaller than tj−1 and each
packet can be either sent for only once or dropped. vkj = 1
indicates there is an update to send at slot j and vkj = 0 oth-
erwise. Then, the actual scheduling variable ykj ∈ {0, 1} is
obtained by further checking the energy causality constraint
and the required energy constraint. Therefore, we have

ykj =

{
vkj1Êkj≥0, if Aj = k and qkj ≤ pmax,

0, otherwise,
(6)

pkj = ykjqkj , (7)

where pmax is the maximum transmit power, Êkj = Ek,j−1−
qkj and 1α denotes the indicator function of α, that 1α = 1
if α is true and 1α = 0 otherwise. Hence, the AoI can be
obtained by

akj = ykj(tj − τkuj
) + (1− ykj)(ak,j−1 + 1). (8)

Taking action Aj on the system results in going through the
above steps so that the next state is determined.

The goal is to maximize the cumulative reward in the long
run. Here, we consider the sum of the discounted rewards
from a starting slot onward, i.e.,Gj =

∑∞
k=j β

k−jr(Sk, Ak),
where β ∈ (0, 1) is the discount rate. For any given state, the
policy specifies the action, i.e., the mapping from the state
space to the action space, denoted by π : S → A. The value
function is the measure of “how good” to be in a state or to
perform an action in a state under a given policy. Mathemat-
ically, the state-value function is the expected return given an
initial state, which is defined as Vπ(S) = Eπ[Gj |Sj = S].
The objective is to find the optimal policy π∗ that enables
the system to act in the way that maximizes the expected dis-
counted return, i.e.,

π∗ = argmax
π

Vπ(S), ∀S ∈ S. (9)

4. ACTOR-CRITIC DEEP REINFORCEMENT
LEARNING ALGORITHM

We consider the general case that does not assume any statis-
tics of the random processes of the energy harvesting nor the
packet arrivals. Without an explicit model of the system dy-
namics, a reinforcement learning problem with the need for
model-free methods naturally arises.

Environment
State

Action

Reward

Value

Critic

Actor

TD error

Fig. 3. The schematics of the actor-critic deep reinforcement
learning algorithm. The dashed lines indicate the parameter
update of the actor and the critic network.

Here, we focus on the advantage actor-critic (A2C) al-
gorithm [12, 13]. As shown in Fig. 3, the actor is a net-
work parameterized by θa, which consists of an input layer
of 4K neurons and a softmax output layer with hidden layers
in between. The actor network maps the system state obser-
vation Sj to the action probability distribution π(Aj |Sj ;θa),
and schedules an user based on the estimated probabilities at
each slot. The critic is a second network that approximates
the state-value function with parameter θc. Its input layer has
the same number of neurons for the 4K-dimensional state
input, and the estimated state value is given by the output
layer with one neuron. In the training stage, at each step, the
agent first interacts with the environment for jmax slots fol-
lowing the current policy given by the actor, which generates
jmax states, actions, and rewards from the current slot looking
ahead. Then, the critic evaluates the policy by the jmax-step
TD error of the value function:

δj = Gj:j+jmax
− V (Sj ;θc). (10)

Specifically, Gj:j+jmax
is the sum of the discounted rewards

for jmax steps and the estimated value for the future steps,
which is given by

Gj:j+jmax
=

j+jmax−1∑
k=j

βk−jr(Sk,Ak)+β
jmax V (Sj+jmax

;θc).

(11)
The parameters of the actor and the critic networks are up-
dated in the direction of maximizing the expected return and
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Algorithm 1 The Training Procedure of the Actor-Critic
Deep Reinforcement Learning Agent for User scheduling

1: Set episode number N , episode length T , jmax, and
learning rate ηa, ηc. Initialize θa and θc.

2: for episode n = 1, . . . , N do
3: Reset the environment and initialize state S1

4: for step j = 1, . . . , T do
5: for step i = j, . . . , j + jmax − 1 do
6: Generate action Ai by policy π(·|Si;θa);
7: Take actionAi, observe next state Si+1 according

to (6)-(8), and obtain reward r(Ai, Si) by (5);
8: Compute value V (Si;θc) of the critic network.
9: end for

10: Calculate return Gj:jmax
in (11) based on the expe-

rience: {Si, Ai, r(Ai, Si), Si+1}j+jmax−1
i=j .

11: Compute TD error: δj = Gj:jmax
− V (Sj ;θc).

12: Calculate dθa and dθc by (12) and (13).
13: θa ← θa + ηa dθa.
14: θc ← θc + ηc dθc.
15: end for
16: end for

minimizing the TD error, respectively, where the gradients are
given by

dθa =

jmax∑
j=1

δj∇θa
lnπ(Aj |Sj ;θa), (12)

dθc =

jmax∑
j=1

δj∇θc
V (Sj ;θc), (13)

The pseudocode for the training procedure is summarized in
Algorithm 1. With a well-trained actor-critic agent, the user
scheduling action Aj is determined by the actor alone based
on the input state Sj , and performing the action on the system
gives the next state.

5. RESULTS

In the simulations, each user and its associated receiver are lo-
cated randomly and separated by a uniformly distributed dis-
tance in [10, 200] meters. The channel gain takes into account
the path loss and the Rayleigh fading. We set σ2 = −71 dBm,
pmax = 0.1 watt, ak0 = 1, and ek0 = 0.01 joule for all k. ekj
is an exponential random variable with mean 1 mJ and is i.i.d.
for all users and slots. Each user switches between exponen-
tial energy-harvesting period and non-energy-harvesting pe-
riod, with mean 5 and 2 slots, respectively. The inter-arrival
time between successive packets is exponential with mean µ.
The actor-critic network is trained by the simulated data. We
set T = 50, jmax = 50, ηa = 0.001, ηc = 0.005 and
β = 0.99. The second layer of the actor/critic network con-
sists of 64 neurons and the ReLU activation function is used.
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Fig. 4. (a) AoI vs. γ∗ for K = 3 and µ = 2 slots. (b) AoI vs.
K for µ = 4 slots and γ∗ = 3 dB

In Fig. 4 (a), varying the update SNR threshold, we
show the average AoI obtained by DRL actor-critic algo-
rithm, which is comparable to the results of the offline mixed
integer linear optimization problem that is solved by CPLEX
solver. Fig. 4 (b) illustrates the AoI for different number
of users, K. As expected, the learning algorithm is more
likely to achieve the near-optimal performance for the system
with a small number of users, due to the system state space
is larger as the number of users grows, which challenges
learning approaches. In particular, for K = 1 and K = 3,
we omit the hidden layer of the actor network to simplify
the structure of the network and shorten the training process.
However, we also note that for larger networks, the learning-
based approaches offer feasibility of near-optimal policies.
As evidence, we list the average runtime (seconds) for an
episode of 50 slots in Fig. 4 (b). The average computation
time for the CPLEX solver increases significantly with K
since the complexity increases exponentially with the size
of the optimization problem. On the other hand, the average
testing time by the actor-critic DRL agent does not vary much
as the computation task is dominated by the training process,
which takes time of the order of 10000 seconds.

6. CONCLUSION

In this paper, we have considered user scheduling, i.e., trans-
mission times and powers, for AoI minimization in energy
harvesting networks. For the online setting, we have proposed
an actor-critic DRL algorithm for sequential user scheduling
based on the MDP formulation. We have shown that the learn-
ing algorithms can be a viable alternative to optimization re-
laxation or approximation methods to find near-optimal solu-
tions to computationally hard problems.
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