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Generative deep learning algorithms have progressed to a point where it is difficult to tell the difference
between what is real and what is fake. In 2018, it was discovered how easy it is to use this technology for
unethical and malicious applications, such as the spread of misinformation, impersonation of political leaders,
and the defamation of innocent individuals. Since then, these “deepfakes” have advanced significantly.

In this article, we explore the creation and detection of deepfakes and provide an in-depth view as to how
these architectures work. The purpose of this survey is to provide the reader with a deeper understanding of
(1) how deepfakes are created and detected, (2) the current trends and advancements in this domain, (3) the
shortcomings of the current defense solutions, and (4) the areas that require further research and attention.
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1 INTRODUCTION

A deepfake is content, generated by an artificial intelligence, that is authentic in the eyes of a hu-
man being. The word deepfake is a combination of the words “deep learning” and “fake,” and pri-
marily relates to content generated by an artificial neural network, a branch of machine learning.

The most common form of deepfakes involve the generation and manipulation of human im-
agery. This technology has creative and productive applications. For example, realistic video dub-
bing of foreign films,! education though the reanimation of historical figures [90], and virtually
trying on clothes while shopping.” There are also numerous online communities devoted to
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Zhttps://www.forbes.com/sites/forbestechcouncil/2019/05/21/gans-and-deepfakes-could-revolutionize-the-fashion-
industry/.
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Fig. 1. A deepfake information trust chart. Fig. 2. The difference between adver-

sarial machine learning and deepfakes.

creating deepfake memes for entertainment,® such as music videos portraying the face of actor
Nicolas Cage.

However, despite the positive applications of deepfakes, the technology is infamous for its un-
ethical and malicious aspects. At the end of 2017, a Reddit user by the name of “deepfakes” was
using deep learning to swap faces of celebrities into pornographic videos and was posting them
online.* The discovery caused a media frenzy and a large number of new deepfake videos began to
emerge thereafter. In 2018, BuzzFeed released a deepfake video of former president Barak Obama
giving a talk on the subject. The video was made using the Reddit user’s software (FakeApp), and
raised concerns over identity theft, impersonation, and the spread of misinformation on social
media. Figure 1 presents an information trust chart for deepfakes, inspired by Ref. [49].

Following these events, the subject of deepfakes gained traction in the academic community,
and the technology has been rapidly advancing over the last few years. Since 2017, the number of
articles published on the subject rose from 3 to over 250 (2018-20).

To understand where the threats are moving and how to mitigate them, we need a clear view of
the technology, challenges, limitations, capabilities, and trajectory. Unfortunately, to the best of our
knowledge, there are no other works that present the techniques, advancements, and challenges in
a technical and encompassing way. Therefore, the goals of this article are (1) to provide the reader
with an understanding of how modern deepfakes are created and detected; (2) to inform the reader
of the recent advances, trends, and challenges in deepfake research; (3) to serve as a guide to the
design of deepfake architectures; and (4) to identify the current status of the attacker-defender
game, the attacker’s next move, and future work that may help give the defender a leading edge.

We achieve these goals through an overview of human visual deepfakes (Section 2), followed
by a technical background that identifies technology’s basic building blocks and challenges (Sec-
tion 3). We then provide a chronological and systematic review for each category of deepfake,

Shttps://www.reddit.com/r/SFWdeepfakes/.
4https://www.vice.com/en_us/article/gydydm/gal-gadot-fake-ai-porn.
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Fig. 3. Examples of reenactment, replacement, editing, and synthesis deepfakes of the human face.

and provide the networks’ schematics to give the reader a deeper understanding of the various
approaches (Sections 4 and 5). Finally, after reviewing the countermeasures (Section 6), we dis-
cuss their weaknesses, note the current limitations of deepfakes, suggest alternative research, con-
sider the adversary’s next steps, and raise awareness to the spread of deepfakes to other domains
(Section 7).

Scope. In this survey, we will focus on deepfakes pertaining to the human face and body. We
will not be discussing the synthesis of new faces or the editing of facial features because they do
not have a clear attack goal associated with them. In Section 7.3, we will discuss deepfakes with
a much broader scope, note the future trends, and exemplify how deepfakes have spread to other
domains and media such as forensics, finance, and healthcare.

We note to the reader that deepfakes should not be confused with adversarial machine learn-
ing, which is the subject of fooling machine learning algorithms with maliciously crafted inputs
(Figure 2). The difference being that for deepfakes, the objective of the generated content is to fool
a human and not a machine.

2 OVERVIEW AND ATTACK MODELS
We define a deepfake as

“Believable media generated by a deep neural network.”

In the context of human visuals, we identify four categories: reenactment, replacement, editing,
and synthesis. Figure 3 illustrates some examples facial deepfakes in each of these categories and
their sub-types. Throughout this article, we denote s and ¢ as the source and the target identities.
We also denote x; and x; as images of these identities and x, as the deepfake generated from s
and t.

2.1 Reenactment

A reenactment deepfake is where x; is used to drive the expression, mouth, gaze, pose, or body
of x;:

Expression reenactment is where x; drives the expression of x;. It is the most common form
of reenactment since these technologies often drive target’s mouth and pose as well, pro-
viding a wide range of flexibility. Benign uses are found in the movie and video game
industry where the performances of actors are tweaked in post, and in educational media
where historical figures are reenacted.
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Mouth reenactment, also known as “dubbing,” is where the mouth of x; is driven by that of
X5, or an audio input a5 containing speech. Benign uses of the technology include realistic
voice dubbing into another language and editing.

Gaze reenactment is where direction of x;’s eyes, and the position of the eyelids, are driven by
those of x;. This is used to improve photographs or to automatically maintain eye contact
during video interviews [45].

Pose reenactment is where the head position of x; is driven by x;. This technology has pri-
marily been used for face frontalization of individuals in security footage and as a means
for improving facial recognition software [158].

Body reenactment, a.k.a. pose transfer and human pose synthesis, is similar to the facial reen-
actments listed above except that it’s the pose of x;’s body being driven.

The Attack Model. Reenactment deep fakes give attackers the ability to impersonate an iden-
tity, controlling what he or she says or does. This enables an attacker to perform acts of defamation,
cause discredability, spread misinformation, and tamper with evidence. For example, an attacker
can impersonate t to gain the trust of a colleague, friend, or family member as a means to gain
access to money, network infrastructure, or some other asset. An attacker can also generate em-
barrassing content of ¢ for blackmailing purposes or generate content to affect the public’s opinion
of an individual or political leader. The technology can also be used to tamper surveillance footage
or some other archival imagery in an attempt to plant false evidence in a trial. Finally, the attack
can either take place online (e.g., impersonating someone in a real-time conversation) or offline
(e.g., fake media spread on the Internet).

2.2 Replacement

A replacement deepfake is where the content of x; is replaced with that of x;, preserving the
identity of s.

Transfer is where the content of x; is replaced with that of x;. A common type of transfer is
facial transfer, used in the fashion industry to visualize an individual in different outfits.

Swap is where the content transferred to x; from x is driven by x;. The most popular type
of swap replacement is “face swap,” often used to generate memes or satirical content by
swapping the identity of an actor with that of a famous individual. Another benign use
for face swapping includes the anonymization of one’s identity in public content in-place
of blurring or pixelation.

The Attack Model. Replacement deepfakes are well-known for their harmful applications. For
example, revenge porn is where an attacker swaps a victim’s face onto the body of a porn actress
to humiliate, defame, and blackmail the victim. Face replacement can also be used as a short-cut
to fully reenacting t by transferring t’s face onto the body of a look-alike. This approach has been
used as a tool for disseminating political opinions in the past [136].

2.3 Editing and Synthesis

An enchantment deepfake is where the attributes of x; are added, altered, or removed. Some exam-
ples include changing a target’s clothes, facial hair, age, weight, beauty, and ethnicity. Apps such
as FaceApp enable users to alter their appearance for entertainment and easy editing of multime-
dia. The same process can be used by an attacker to build a false persona for misleading others.
For example, a sick leader can be made to look healthy [67], and child or sex predators can change
their age and gender to build dynamic profiles online. A known unethical use of editing deepfakes
is the removal of a victim’s clothes for humiliation or entertainment [133].
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Synthesis is where the deepfake x, is created with no target as a basis. Human face and body
synthesis techniques such as those in Ref. [78] (used in Figure 3) can create royalty-free stock
footage or generate characters for movies and games. However, similar to editing deepfakes, it
can also be used to create fake personas online.

Although human image editing and synthesis are active research topics, reenactment and
replacement deepfakes are the greatest concern because they give an attacker control over one’s
identity[12, 28, 66]. Therefore, in this survey, we will be focusing on reenactment and replacement
deepfakes.

3 TECHNICAL BACKGROUND

Although there are a wide variety of neural networks, most deepfakes are created using variations
or combinations of generative networks and encoder decoder networks. In this section, we provide
a brief introduction to these networks, how they are trained, and the notations that we will be using
throughout the article.

3.1 Neural Networks

Neural networks are non-linear models for predicting or generating content based on an input.
They are made up of layers of neurons, where each layer is connected sequentially via synapses.
The synapses have associated weights that collectively define the concepts learned by the model.
To execute a network on an n-dimensional input x, a process known as forward-propagation is
performed where x propagated through each layer and an activation function is used to summarize
a neuron’s output (e.g., the Sigmoid or Rectified Linear Unit (ReLU) function).

Concretely, let I denote the i-th layer in the network M, and let 1@ denote the number
of neurons in /(). Finally, let the total number of layers in M be denoted as L. The weights that
connect [) to [U*V) are denoted as the [|I)||-by-||I#*V|| matrix W and ||I#*)|| dimensional bias
vector b(®. Finally, we denote the collection of all parameters 6 as the tuple 6 = (W, b), where W
and b are the weights of each layer, respectively. Let a*!) denote the output (activation) of layer

14) obtained by computing f(W® - @ + b(®), where f is often the Sigmoid or ReLU function.
To execute a network on an n-dimensional input x, a process known as forward-propagation is
performed where x is used to activate [ M which activates [ and so on until the activation of ()
produces the m-dimensional output y.

To summarize this process, we consider M a black box and denote its execution as M(x) = y. To
train M in a supervised setting, a dataset of paired samples with the form (x;, y;) is obtained and
an objective loss function £ is defined. The loss function is used to generate a signal at the output
of M, which is back-propagated through M to find the errors of each weight. An optimization algo-
rithm, such as gradient descent (GD), is then used to update the weights for a number of epochs.
The function L is often a measure of error between the input x and predicted output y’. As a result,
the network learns the function M(x;) = y; and can be used to make predictions on unseen data.

Some deepfake networks use a technique called one-shot or few-shot learning, which enables
a pre-trained network to adapt to a new dataset X’ similar to X on which it was trained. Two
common approaches for this are (1) to pass information on x” € X’ to the inner layers of M during
the feed-forward process, and (2) to perform a few additional training iterations on a few samples
from X".

3.2 Loss Functions

In order to update the weights with an optimization algorithm, such as GD, the loss function must
be differentiable. There are various types of loss functions that can be applied in different ways
depending on the learning objective. For example, when training an M as an n-class classifier, the
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Fig. 4. Five basic neural network architectures used to create deepfakes. The lines indicate dataflows used
during deployment (black) and training (gray).

output of M would be the probability vector y € R”. To train M, we perform forward-propagation
to obtain y’ = M(x), compute the cross-entropy loss (Lcg) by comparing y’ to the ground truth
label y, and then perform back-propagation and to update the weights with the training signal. The
loss Lcg over the entire training set X is calculated as

IX| n

Lep ==, Y yilellog(y/le), (1)

i=1 c=1

where y’[c] is the predicted probability of x; belonging to the c-th class.

Other popular loss functions used in deepfake networks include the L1 and L2 norms £; =
Ix — x4|" and L, = |x — x4|*. However, L1 and L2 require paired images (e.g., of s and ¢ with same
expression) and perform poorly when there are large offsets between the images such as different
poses or facial features. This often occurs in reenactment when x; has a different pose than x,
which is reflected in x4, and ultimately we’d like x, to match the appearance of x;.

One approach to compare two unaligned images is to pass them through another network (a
perceptual model) and measure the difference between the layer’s activations (feature maps). This
loss is called the perceptual loss (Lerc) and is described in Ref. [76] for image generation tasks.
In the creation of deepfakes, L. is often computed using a face recognition network such as
VGGFace. The intuition behind L., is that the feature maps (inner layer activations) of the
perceptual model act as a normalized representation of x in the context of how the model was
trained. Therefore, by measuring the distance between the feature maps of two different images,
we are essentially measuring their semantic difference (e.g., how similar the noses are to each
other and other finer details.) Similar to L., there is a feature matching loss (L) [132], which
uses the last output of a network. The idea behind L), is to consider the high-level semantics
captured by the last layer of the perceptual model (e.g., the general shape and textures of the
head).

Another common loss is a type of content loss (L¢) [59], which is used to help the genera-
tor create realistic features, based on the perspective of a perceptual model. In L¢, only x, is
passed through the perceptual model and the difference between the network’s feature maps are
measured.

3.3 Generative Neural Networks (for Deepfakes)
Deep fakes are often created using combinations or variations of six different networks, five of
which are illustrated in Figure 4.

Encoder-Decoder Networks (ED). An Encoder-Decoder (ED) consists of at least two net-
works, an encoder En and decoder De. The ED has narrower layers toward its center
so that when it’s trained as De(En(x)) = x4, the network is forced to summarize the
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observed concepts. The summary of x, given its distribution X, is En(x) = e, often re-
ferred to as an encoding or embedding and E = En(X) is referred to as the “latent space.”
Deepfake technologies often use multiple encoders or decoders and manipulate the en-
codings to influence the output x,. If an encoder and decoder are symmetrical, and the
network is trained with the objective De(En(x)) = x, then the network is called an au-
toencoder, and the output is the reconstruction of x denoted x. Another special kind of
ED is the variational autorencoder (VAE), where the encoder learns the posterior distri-
bution of the decoder given X. VAEs are better at generating content than autoencoders
because the concepts in the latent space are disentangled, and, thus, encodings respond
better to interpolation and modification.

Convolutional Neural Network (CNN). In contrast to a fully connected (dense) network, a
convolutional neural network (CNN) learns pattern hierarchies in the data and is there-
fore much more efficient at handling imagery. A convolutional layer in a CNN learns fil-
ters that are shifted over the input forming an abstract feature map as the output. Pooling
layers are used to reduce the dimensionality as the network gets deeper and up-sampling
layers are used to increase it. With convolutional, pooling, and upsampling layers, it is
possible to build ED CNNs for imagery.

Generative Adversarial Networks (GAN). The generative adversarial network (GAN) was
first proposed in 2014 by Goodfellow et al. in Ref. [61]. A GAN consists of two neural
networks that work against each other: the generator G and the discriminator D. G cre-
ates fake samples x, with the aim of fooling D, and D learns to differentiate between
real samples (x € X) and fake samples (x; = G(z) where z ~ N). Concretely, there is an
adversarial loss used to train D and G, respectively:

Laav(D) = maxlog D(x) +log(1 — D(G(2))) ()

Laav(G) = minlog(1 - D(G(2))) 3)

This zero-sum game leads to G learning how to generate samples that are indistinguish-
able from the original distribution. After training, D is discarded and G is used to generate
content. When applied to imagery, this approach produces photo realistic images.

Numerous variations and improvements of GANs have been proposed over the years.
In the creation of deepfakes, there are two popular image translation frameworks that
use the fundamental principles of GANs:

Image-to-Image Translation (pix2pix). The pix2pix framework enables paired
translations from one image domain to another [72]. In pix2pix, G tries to gen-
erate the image x, given a visual context x. as an input, and D discriminates
between (x, x.) and (x4, x.). Moreover, G is an ED CNN with skip connections
from En to De (called a U-Net), which enables G to produce high-fidelity im-
agery by bypassing the compression layers when needed. Later, pix2pixHD was
proposed [169] for generating high-resolution imagery with better fidelity.

CycleGAN. A CycleGAN is an improvement of pix2pix that enables image transla-
tion through unpaired training [191]. The network forms a cycle consisting of
two GANSs used to convert images from one domain to another, and then back
again to ensure consistency with a cycle consistency loss (L¢yc).

Recurrent Neural Networks (RNN). A recurrent neural network (RNN) is type of neural
network that can handle sequential and variable length data. The network remembers
its internal state after processing x*~) and can use it to process x(!) and so on. In deep-
fake creation, RNNs are often used to handle audio and sometimes video. More advanced
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Fig. 5. The processing pipeline for making reenactment and face swap deepfakes. Usually only a subset of
these steps are performed.

versions of RNNs include long short-term memory (LSTM) and gate reccurent units
(GRU).

3.4 Feature Representations

Most deep fake architectures use some form of intermediate representation to capture and some-
times manipulate s and ¢’s facial structure, pose, and expression. One way is to use the facial action
coding system (FACS) and measure each of the face’s taxonomized action units (AU) [43]. Another
way is to use monocular reconstruction to obtain a 3D morphable model (3DMM) of the head
from a 2D image, where the pose and expression are parameterized by a set of vectors and matri-
ces. Then use the parameters or a 3D rendering of the head itself. Some use a UV map of the head
or body to give the network a better understanding of the shape’s orientation.

Another approach is to use image segmentation to help the network separate the different con-
cepts (face, hair, etc.). The most common representation is landmarks (a.k.a. key-points), which are
a set of defined positions on the face or body that can be efficiently tracked using open source com-
puter vision (CV) libraries. The landmarks are often presented to the networks as a 2D image with
Gaussian points at each landmark. Some works separate the landmarks by channel to make it eas-
ier for the network to identity and associate them. Similarly, facial boundaries and body skeletons
can also be used.

For audio (speech), the most common approach is to split the audio into segments, and for
each segment, measure the Mel-Cepstral Coefficients (MCC), which captures the dominant voice
frequencies.

3.5 Deepfake Creation Basics

To generate x4, reenactment and face swap networks follow some variation of this process (il-
lustrated in Figure 5): Pass x through a pipeline that (1) detects and crops the face, (2) extracts
intermediate representations, (3) generates a new face based on some driving signal (e.g., another
face), and then (4) blends the generated face back into the target frame.

In general, there are six approaches to driving an image:

(1) Let a network work directly on the image and perform the mapping itself.

(2) Train an ED network to disentangle the identity from the expression, and then mod-
ify/swap the encodings of the target before passing it through the decoder.

(3) Add an additional encoding (e.g., AU or embedding) before passing it to the decoder.

(4) Convert the intermediate face/body representation to the desired identity/expression be-
fore generation (e.g., transform the boundaries with a secondary network or render a 3D
model of the target with the desired expression).
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(5) Use the optical flow field from subsequent frames in a source video to drive the generator.

(6) Create a composite of the original content (hair, scene, etc) with a combination of the 3D
rendering, warped image, or generated content, and pass the composite through another
network (such as pix2pix) to refine the realism.

3.6 Generalization

A deepfake network may be trained or designed to work with only a specific set of target and
source identities. An identity agnostic model is sometimes hard to achieve due to correlations
learned by the model between s and ¢ during training.

Let E be some model or process for representing or extracting features from x, and let M be a
trained model for performing replacement or reenactment. We identify three primary categories
in regard to generalization:

one-to-one: A model that uses a specific identity to drive a specific identity: x, = M (E;(xs))

many-to-one: A model that uses any identity to drive a specific identity: x, = M;(E(xs))

many-to-many: A model that uses any identity to drive any identity: x; = M(E;(xs),
Ex(x:))

3.7 Challenges

The following are some challenges in creating realistic deepfakes:

Generalization. Generative networks are data driven and, therefore, reflect the training data
in their outputs. This means that high-quality images of a specific identity requires a
large number of samples of that identity. Moreover, access to a large dataset of the driver
is typically much easier to obtain than the victim. As a result, over the last few years,
researchers have worked hard to minimize the amount of training data required, and
to enable the execution of a trained model on new target and source identities (unseen
during training).

Paired Training. One way to train a neural network is to present the desired output to the
model for each given input. This process of data pairing is laborious and sometimes im-
practical when training on multiple identities and actions. To avoid this issue, many deep-
fake networks either (1) train in a self-supervised manner by using frames selected from
the same video of ¢, (2) use unpaired networks such as Cycle-GAN, or (3) utilize the en-
codings of an ED network.

Identity Leakage. Sometimes the identity of the driver (e.g., s in reenactment) is partially
transferred to x,. This occurs when training on a single input identity, or when the net-
work is trained on many identities, but data pairing is done with the same identity. Some
solutions proposed by researchers include attention mechanisms, few-shot learning, dis-
entanglement, boundary conversions, and AdalN or skip connections to carry the relevant
information to the generator.

Occlusions. Occlusions are where part of x; or x; is obstructed with a hand, hair, glasses, or
any other item. Another type of obstruction is the eyes and mouth region that may be
hidden or dynamically changing. As a result, artifacts appear such as cropped imagery or
inconsistent facial features. To mitigate this, works such as Refs [120], [127], and [144]
perform segmentation and in-painting on the obstructed areas.

Temporal Coherence. Deepfake videos often produce more obvious artifacts such as flick-
ering and jitter [163]. This is because most deepfake networks process each frame in-
dividually with no context of the preceding frames. To mitigate this, some researchers
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Z[104] 2019 Liuetal. 2019 e e o e 13hrvideo 1-3hr video 44216 .o o o upperbody video - o >256x256
[151] 2017  Syth.Obama e None 17 hr. video 0001 . . . audio portiat video ® 2048x1024
[89] 2017  ObamaNet e None 17 hr. video 1111 .o . . text - o 256x256
[83] 2018 Deep Video Portr. ® e e e None 1-3 min. video 1110 o o . . . portrait video neural texture e 1024x1024
[173] 2018  ReenactGAN o o o None 30 min. video NNN 1 o 0 . portrait portriat . 256x256
[168] 2018 Vid2vid e e eoore None 3-8 min. video 3321 ° o . . portrait video - o 2048x1024
o (1612018  MocoGAN e e  ore  None Iminvideo = 2 1 2N e oo o expressionlabel  identity label o 6ax64
& [73] 2018 SD-CGAN e o o None 2 hr. video 0111 o« o . . audio - o 128x128
S [180] 2019 GRN . None 3-10images o 3 10 2 . . gaze 3-10eyeimages o  64x128
L. [55] 2019 TETH . None 1 hr. video 1120 e . . text portiat video o 512x512
5 [153] 2019 NV.Puppetry o None 23min.video 3 224 e . . audio portiat video o 512x512
< [102] 2019  NRR-HAV o e None 8 min. video 1110 e e e o body image background e 512x512
[2] 2019 Deep Video P.C. . . None 2min. video 0122 . . . . body image - . 256x256
[25] 2019 EverybodyD.N. e e o None 20min.video 0 2 4 2 .. o e bodyimage - . 256x256
[190] 2019 D.D. Generation « o None 3 min. video 2222 oo o . . body video - o e 512x512
[182] 2019 N.TalkingHeads o o o None 1-3portraits o 1 2 11 . o . e portrait/landmarks 1-3 portraits . 256x256
[167] 2019 Few-shot Vid2Vid e e e o ore  None 1-10 portraits 0 3 3 2 4 . . o portrait/body video 1-10 portr./bodies e  2048x1024
[142] 2015  Shimbaetal. e o None None e 0001e . . . audio face database . *
[57] 2016  DeepWarp . None None © 0002 o« . . gaze eye image o >40x50
[16] 2017 CVAE-GAN o o @ None None e 1111 PO latent variables portrait o >128x128
[123] 2017 RDFT .o None None 1110 . . . portrait portrait o 256x256
[189] 2017 FE-CDAE L) None None e 1 120e LI portrait AU label . 32x32
[112] 2018 paGAN ceee None None e 1111 e . . portrait portrait - neutral e 512x512
[171] 2018 X2Face LU None None 2201 . . . portrait 1-3 portraits . 256x256
[134] 2018 GANnotation e e None None e 1113 . . . o portrait/landmarks portrait . 128x128
[126] 2018 GATH L) None None e 1 112e . . portrait/AUs portrait . 100x100
[140] 2018  FaceID-GAN o o o None None e 1121 . e o 0 portrait portriat . 128x128
[141] 2018 FaceFeat-GAN e o o None None e 1 134 e ° o o latent variables portrait . 128x128
[70] 2018 CAPG-GAN . None None e 1121 . LI . portrait portrait . 128x128
[158] 2018  DR-GAN . None None e 1110 oo pose 1+portraits 96x96
[145] 2018 Deformable GAN . . None None e 1110 o o o . body image/landm. body image . 256x256
[14] 2018 SHUP o« o None None © 3311 o« o o body image body image/pose o 256x256
[46] 2018 DPIG o« o None None 4210 . . body image body image o 128x64
[116] 2018 Dense Pose Tr. o« o None None ° 25251 2 . . . body image bodyimage e  256x256
[146] 2018 Songetal .o None None 2130 . . audio portrait o 128x128
[60] 2019  wg-GAN e e None None e 2230 . . . portrait portrait . 256x256
>\[120] 2019 FSGAN LRI None None e 1111 . . . . e portrait/landmarks portrait . 256x256
(1272019  GANimation o e None None e 22116 . portrait/AUs portrait o 128x128
= [159] 2019 ICface LRI None None e 2 212e . . . portrait/AUs portrait . 128x128
£ [184] 2019  FaceSwapNet o o None None © 4210 o . e portrait/landmarks portrait/landmarks e 256x256
‘?[ 43] 2019  Monkey-Net o ore None None ® 3310 . . . . portrait/body portrait/body e 64x64
£ [144] 2019 First-Order-Model & o ¢ ore None None ® 3311 o« o . e portrait/body portrait/body e 256x256
*[124] 2019  M&TGAN e None None 2121 .« . . o expression label portrait o Gax6d
[48] 2019 AF-VAE LU None None e 2101 . . portrait/boundaries portrait . 256x256
[56] 2019 Fuetal. 2019 o o o None None ® 3234 . LI portrait/label portrait e 1024x1024
[185] 2019 FusionNet LI None None e 1233 . . portriat/landmarks portrait . 256x256
[23] 2019 AD-GAN . None None ® 2221 . o pose portrait . 128x128
[163] 2019 SpeechD.Anm.1 e o o None None ® 5123 . . . audio portrait o 96x128
[164] 2019 SpeechD.Anm.2 e o o None None e 5133 . . . audio portrait e 96x128
[79] 2019 SpeechD.Anm.3 e o o None None e 5133 . . . audio portrait ®  96x128
[188] 2019 DAVS . None None ® 3114 .o . e audio/portrait video portrait o e 256x256
[27] 2019 ATVGnet . None None e 1015 o« o . . audio portiat video o 128x128
[74] 2019 Speech2Vid . None None 3102 . . . audio portiat video ® 109x109
[181] 2019 DwNet . None None 2113 . .o . . body video body image o 256x256
[62] 2019  LW-GAN . None None © 3312 . o . . body image body image e  256x256
[35] 2019  C-DGPose o e None None 2110 o . . body image body/pose image e 64x64
[192] 2019 PPAT-PIG o e None None e 2121 . . body image body/pose image o 256x256
[170] 2020  ImaGINator e e None None e 1120 . . e expression label portrait o 64x64
[65] 2020  MarioNETte LRI None None e 2213 . . . . portrait 1-8 portraits . 256x256
[62] 2020 FLNet LU None None e 1511 . . o o . portrait 16 portraits . 224x224

either provide this context to G and D, implement temporal coherence losses, use RNNs,
or perform a combination thereof.

4 REENACTMENT

In this section, we present a chronological review of deep learning based reenactment, organized
according to their class of identity generalization. Table 1 provides a summary and systematization
of all the works mentioned in this section. Later, in Section 7, we contrast the various methods and
identify the most significant approaches.
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4.1 Expression Reenactment

Expression reenactment turns an identity into a puppet, giving attackers the most flexibility to
achieve their desired impact. Before we review the subject, we note that expression reenactment
has been around long before deepfakes were popularized. In 2003, researchers morphed models of
3D scanned heads [19]. In 2005, it was shown how this can be done without a 3D model [26], and
through warping with matching similar textures [58]. Later, between 2015 and 2018, Thies et al.
demonstrated how 3D parametric models can be used to achieve high-quality and real-time results
with depth sensing and ordinary cameras (see Refs [155]-[157]).

Regardless, today deep learning approaches are recognized as the simplest way to generate
believable content. To help the reader understand the networks and follow the text, we provide
the model’s network schematics and loss functions in Figures 6-8.

4.1.1  One-to-One (Identity-to-Identity). In 2017, the authors of Ref. [175] proposed using a Cy-
cleGAN for facial reenactment without the need for data pairing. The two domains were video
frames of s and t. However, to avoid artifacts in x,, the authors note that both domains must share
a similar distribution (e.g., poses and expressions).

In 2018, Bansal et al. proposed a generic translation network based on CycleGAN called Recycle-
GAN [15]. Their framework improves temporal coherence and mitigates artifacts by including
next-frame predictor networks for each domain. For facial reenactment, the authors train their
network to translate the facial landmarks of x into portraits of x;.

4.1.2  Many-to-One (Multiple Identities to a Single Identity). In 2017, the authors of Ref. [16]
proposed a conditional VAE-GAN (CVAE-GAN) where the generator is conditioned on an attribute
vector or class label. However, reenactment with CVAE-GAN requires manual attribute morphing
by interpolating the latent variables (e.g., between target poses).

Later, in 2018, a large number of source-identity agnostic models were published, each proposing
a different method to decoupling s from ¢:°

Facial Boundary Conversion. One approach was to first convert the structure of source’s facial
boundaries to that of the target’s before passing them through the generator [173]. In their frame-
work “ReenactGAN,” the authors use a CycleGAN to transform the boundary b; to the target’s
face shape as b; before generating x, with a pix2pix-like generator.

Temporal GANs. To improve the temporal coherence of deepfake videos, the authors of Ref. [161]
proposed motion and content GAN (MoCoGAN): a temporal GAN that generates videos while
disentangling the motion and content (objects) in the process. Each frame is generated using a
target expression label z., and a motion embedding ZECI) for the i-th frame, obtained from a noise
seeded RNN. MoCoGAN uses two discriminators, one for realism (per frame) and one for temporal
coherence (on the last T frames).

In Ref. [168], the authors proposed a framework called Vid2Vid, which is similar to pix2pix but
for videos. Vid2Vid considers the temporal aspect by generating each frame based on the last L
source and generated frames. The model also considers optical flow to perform next-frame occlu-
sion prediction (due to moving objects). Similar to pix2pixHD, a progressive training strategy is
to generate high-resolution imagery. In their evaluations, the authors demonstrate facial reenact-
ment using the source’s facial boundaries. In comparison to MoCoGAN, Vid2Vid is more practical
since the deepfake is driven by x; (e.g., an actor) instead of crafted labels.

5 Although works such as Refs [123] and [189] achieved fully agnostic models (many-to-many) in 2017, their works were
on low resolution or partial faces.
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X5, Xp, Xg: The source, target, and generated images (e.g., portraits)
y: Alabel (e.g., fake vs real, one-hot encoding, ...)
x': Another sample from the same distribution, X: reconstructed
m: Binary mask, s: Segmentation map, l: Landmark or Keypoint, z: Noise
(&3] : Concatenate, O: Subtract, @:Multiply (®: Add : Paste content
,3,: Crop out region a from image where a € {f:face, e:eye, m:mouth}
é: Create mask using region a of the image where a € {f:face, e:eye, m:mouth}
x{®: Image x cropped to the region of a € {f :face, e:eye, m:mouth}
@: Spatial replication of a vector (channel-wise or dim-wise)
: Scale image down by factor of X
LE, BE, AE, 3DE: Landmark, Boundary, Action Unit (AU),
and 3DMM facial model Extractors (open source CV library)
LT,3DT: Landmark and 3D model transformers, from s to t
ME: MFCC audio feature extractor

X

Losses: L1
Feature Matching, Lperc : Perceptual, Leyc @ Cycle Consistency, Lart
Attention, Lyrjp : Triplet, Lt : Total Variance, L1, : KL Divergence

[161] MocoGAN:

Ys: source expression label, e;: one-hot encoding of target identity,
e,: temporal expression embedding, GRU: Gated Recurrent Unit of an RNN
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[83] Deep Video Portrait:
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[127] GANimation:
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Y. Mirsky and W. Lee

[173] Reenact GAN:
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[168] Vid2Vid:

T: frames in the video clip, L, K: system parameters
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[126] GATH:
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[134] GANotation:

mg: attention mask, m,: color map, training: s and t have same ID
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[141] FaceFeat-GAN:

z: Sample of random noise later mapped to x;
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Fig. 6. Architectural schematics of reenactment networks. Black lines indicate prediction flows used during
deployment; dashed gray lines indicate dataflows performed during training. Zoom in for more detail.
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[112] paGAN:

xUV: UV correspondence map, x°9¢: 3D rendered image of x, x4¢Pt": image of depth
map of model x Va
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[56] Fu et al. 2019:
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[48] AF-VAE:

AME:: Additive Memory Encoder — models e, as a Gaussian mixture of clustered
facial boundaries.
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[124] Motion&Texture-GAN:

x": cropped neutral expression face, ys: face expression label of source, s: an SRVF

point on a spherical manifold, LR: landmark reconstruction from s, I: facial landmarks
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[171] X2Face:

v: vector map of pixel deltas (changes), x: a face with a neutral expression/pose,
a: some other modality (e.g., audio)
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[170] ImaGINator:

1: One-hot label encoding of expression, z: Random value z~N(0,1)
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Fig. 7. Architectural schematics of reenactment networks. Black lines indicate prediction flows used during
deployment; dashed gray lines indicate dataflows performed during training. Zoom in for more detail.
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[143] Monkey-NET: [182] Neural Talking Heads:

k: 2D matrix of keypoints, v: vector field, vy, Uco,: residual and coarse motion fields,
m: estimated motion mask [0 R

Xy
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[65] MarioNETte: [104] Liu et al. 2019:
Lge: t's landmarks with s’s expression, v: feature maps, w: warped feature maps UBKE: Upper-body Key point Extractor
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T TTmTTmTTIIIIIICITIIIIITIIIIIIIIIIIIIIIIIIIIIIII (t-1) X,
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by~ o Imaae Generator
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Fig. 8. Architectural schematics of the reenactment networks. Black lines indicate prediction flows used
during deployment; dashed gray lines indicate dataflows performed during training. Zoom in for more detail.

The authors of Ref. [83] took temporal deepfakes one step further achieving complete facial
reenactment (gaze, blinking, pose, mouth, etc.) with only 1 minute of training video. Their ap-
proach was to extract the source and target’s 3D facial models from 2D images using monocular
reconstruction. Then, for each frame, (1) transfer the facial pose and expression of the source’s
3D model to the target’s; and (2) produce x, with a modified pix2pix framework, using the last 11
frames of rendered heads, UV maps, and gaze masks as the input.

4.1.3  Many-to-Many (Multiple IDs to Multiple IDs). Label Driven Reenactment. The first
attempts at identity agnostic models were made in 2017, where the authors of Ref. [123] used a
conditional GAN (CGAN) for the task. Their approach was to (1) extract the inner-face regions
as (x;,x,), and then (2) pass them to an ED to produce x, subjected to £ and L,4, losses. The
challenge of using a CGAN was that the training data had to be paired (images of different identities
with the same expression).

Going one step further, in Ref. [189] the authors reenacted full portraits at low resolutions.
Their approach to decoupling the identities was to use a conditional adversarial autoencoder to
disentangle the identity from the expression in the latent space. However, their approach is limited
to driving x; with discreet AU expression labels (fixed expressions) that capture x;. A similar label-
based reenactment was presented in the evaluation of StarGAN [29]; an architecture similar to
CycleGAN but for N domains (poses, expressions, etc).

Later, in 2018, the authors of Ref. [126] proposed GATH which can drive x; using continuous
AU as an input, extracted from x;. Using continuous AUs enables smoother reenactments over
previous approaches [29, 123, 189]. Their generator is ED network trained on the loss signals from
using three other networks: (1) a discriminator, (2) an identity classifier, and (3) a pretrained AU
estimator. The classifier shares the same hidden weights as the discriminator to disentangle the
identity from the expressions.

ACM Computing Surveys, Vol. 54, No. 1, Article 7. Publication date: December 2020.



The Creation and Detection of Deepfakes: A Survey 7:15

Self-Attention Modeling. Similar to Ref. [126], another work called GANimation [127] reenacts
faces through AU value inputs estimated from x;. Their architecture uses an AU-based generator
that uses a self attention model to handle occlusions, and mitigate other artifacts. Furthermore,
another network penalizes G with an expression prediction loss, and shares its weights with the
discriminator to encourage realistic expressions. Similar to CycleGAN, GANimation uses a cycle
consistency loss, which eliminates the need for image pairing.

Instead of relying on AU estimations, the authors of Ref. [134] propose GANnotation, which uses
facial landmark images. Doing so enables the network to learn facial structure directly from the
input but is more susceptible to identity leakage compared to AUs that are normalized. GANotation
generates x, based on (x;, [;), where [ is the facial landmarks of x;. The model uses the same self
attention model as GANimation, but proposes a novel “triple consistency loss” to minimize artifacts
in x4. The loss teaches the network how to deal with intermediate poses/expressions not found in
the training set. Given I, [; and I, sampled randomly from the same video, the loss is computed as

Lirip = 1G(xs, I5) = G(Glxr, L), L) II? 4)

3D Parametric Approaches. Concurrent to the work of Ref. [83], other works also leveraged 3D
parametric facial models to prevent identity leakage in the generation process. In Ref. [140], the
authors propose FaceID-GAN, which can reenact ¢ at oblique poses and high resolution. Their ED
generator is trained in tandem with a 3DMM face model predictor, where the model parameters
of x; are used to transform x; before being joined with the encoder’s embedding. Furthermore, to
prevent identity leakage from x; to x4, FaceID-GAN incorporates an identification classifier within
the adversarial game. The classifier has 2N outputs where the first N outputs (corresponding to
training set identities) are activated if the input is real and the rest are activated if it’s fake.

Later, the authors of Ref. [140] proposed FaceFeat-GAN, which improves the diversty of the faces
while preserving the identity [141]. The approach is to use a set of GANs to learn facial feature
distributions as encodings, and then use these generators to create new content with a decoder.
Concretely, three encoder/predictor neural networks P, Q, and I, are trained on real images to
extract feature vectors from portraits. P predicts 3DMM parameters p, Q encodes the image as
q capturing general facial features using feedback from I, and I is an identity classifier trained
to predict label y;. The next two GANs, seeded with noise vectors, produce p” and ¢’, while a
third GAN is trained to reconstruct x; from (p, q, y;) and x4, from (p’, ¢’, y;). To reenact x;, (1) y; is
predicted using I (even if the identity was previously unseen), (2) z, and z, are selected empirically
to fit x;, and (3) the third GAN’s generator uses (p’, q’,y;) to create x,. Although FaceFeat-GAN
improves image diversty, it is less practical than FaceID-GAN since the GAN’s input seed z can be
selected empirically to fit x;.

In Ref. [112], the authors present paGAN, a method for complete facial reenactment of a 3D
avatar, using a single image of the target as input. An expression neutral image of x; is used to
generate a 3D model, which is then driven by x;. The driven model is used to create inputs for a
U-Net generator: the rendered head, its UV map, its depth map, a masked image of x; for texture,
and a 2D mask indicating the gaze of x;. Although paGAN is very efficient, the final deepfake is
3D rendered, which detracts from the realism.

Using Multi-Modal Sources. In Ref. [171], the authors propose X2Face, which can reenact x;
with x5 or some other modality such as audio or a pose vector. X2Face uses two ED networks: an
embedding network and a driving network. First, the embedding network encodes 1-3 examples
of the target’s face to v;: the optical flow field required to transform x; to a neutral pose and
expression. Next, x; is interpolated according to m, producing x,. Finally, the driving network
maps X; to the vector map vy, crafted to interpolate x; to x4, having the pose and expression of x.
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During training, first £, loss is used between x; and x4, and then an identity loss is used between
xs and x4 using a pre-trained identity model trained on the VGG-Face Dataset. All interpolation is
performed with a tensorflow interpolation layer to enable back propagation using x; and xg4. The
authors also show how the embedding of driving network can be mapped to other modalities such
as audio and pose.

In 2019, nearly all works pursued identity agnostic models:

Facial Landmark and Boundary Conversion. In Ref. [184], the authors propose FaceSwapNet,
which tries to mitigate the issue of identity leakage from facial landmarks. First, two encoders and
a decoder are used to transfer the expression in landmark [ to the face structure of I;, denoted ;.
Then, a generator network is used to convert x; to x, where I, is injected into the network with
Adaln layers like a Style-GAN. The authors found that it is crucial to use triplet perceptual loss
with an external VGG network.

In Ref. [56], the authors propose a method for high-resolution reenactment and at oblique angles.
A set of networks encode the source’s pose, expression, and the target’s facial boundary for a
decoder that generates the reenacted boundary b,,. Finally, an ED network generates x, using an
encoding of x,’s texture in its embedding. A multi-scale loss is used to improve quality, and the
authors utilize a small labeled dataset by training their model in a semi-supervised way.

In Ref. [120], the authors present FSGAN: a face swapping and facial reenactment model that
can handle occlusions. For reenactment, a pix2pixHD generator receives x; and the source’s 3D
facial landmarks [, represented as a 256x256x70 image (one channel for each of the 70 landmarks).
The output is x4 and its segmentation map m, with three channels (background, face, and hair).
The generator is trained recurrently where each output is passed back as input for several iter-
ations, while [ is interpolated incrementally from I to I;. To improve results further, Delaunay
Triangulation and barycentric coordinate interpolation are used to generate content similar to the
target’s pose. In contrast to other facial conversion methods [56, 184], FSGAN uses fewer neural
networks enabling real-time reenactment at 30fps.

Latent Space Manipulation. In Ref. [159], the authors present a model called ICFace where the
expression, pose, mouth, eye, and eyebrows of x; can be driven independently. Their architecture
is similar to a CycleGAN in that one generator translates x; into a neutral expression domain
as x, and another generator translates x; into an expression domain as x4. Both generators ar
conditioned on the target AU.

In Ref. [48], the authors propose an Additive Focal Variational Auto-encoder (AF-VAE) for high-
quality reenactment. This is accomplished by separating a CVAE’s latent code into an appearance
encoding e, and identity-agnostic expression coding e,. To capture a wide variety of factors in e,
(e.g., age, illumination, complexion), the authors use an additive memory module during training,
which conditions the latent variables on a Gaussian mixture model, fitted to a clustered set of
facial boundaries. Subpixel convolutions were used in the decoder to mitigate artifacts and improve

fidelity.

Warp-based Approaches. In the past, facial reenactment was done by warping the image x; to
the landmarks [; [13]. In Ref. [60], the authors propose wgGAN, which uses the same approach
but creates high-fidelity facial expressions by refining the image though a series of GANs: one for
refining the warped face and another for in-painting the occlusions (eyes and mouth). A challenge
with wgGAN is that the warping process is sensitive to head motion (change in pose).

In Ref. [185], the authors propose a system that can also control the gaze: a decoder generates
x4 with an encoding of x; as the input and a segmentation map of x; as reenactment guidance via
SPADE residual blocks. The authors blend x, with a warped version, guided by the segmentation,
to mitigate artifacts in the background.
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To overcome the issue of occlusions in the eyes and mouth, the authors of Ref. [62] use multiple
images of ¢ as a reference, in contrast to Refs [60] and [185], which only use one. In their approach
(FLNet), the model is provided with N samples of ¢ (X;) having various mouth expressions, along
with the landmark deltas between X; and x5 (L;). Their model is an ED (configured like GANi-
mation [127]), which produces (1) N encodings for a warped x4, (2) an appearance encoding, and
(3) a selection (weight) encoding. The encodings are then coverted into images using separate CNN
layers and merged together through masked multiplication. The entire model is trained end-to-end
in a self-supervised manner using frames of t taken from different videos.

Motion-Content Disentanglement. In Ref. [124], the authors propose a GAN to reenact neutral
expression faces with smooth animations. The authors describe the animations as temporal curves
in 2D space, summarized as points on a spherical manifold by calculating their square-root velocity
function (SRVF). A WGAN is used to complete this distribution given target expression labels, and
a pix2pix GAN is used to convert the sequences of reconstructed landmarks into video frames of
the target.

In contrast to MoCoGAN [161], the authors of Ref. [170] propose ImaGINator: a conditional
GAN that fuses both motion and content and uses them with transposed 3D convolutions to cap-
ture the distinct spatio-temporal relationships. The GAN also uses a temporal discriminator, and to
increase diversity, the authors train the temporal discriminator with some videos using the wrong
label.

A challenge with works such as Refs [124] and [170] is that they are label driven and produce
videos with a set number of frames. This makes the deepfake creation process manual and less
practical. In contrast, the authors of Ref. [143] propose Monkey-Net: a self supervised network
for driving an image with an arbitrary video sequence. Similar to MoCoGAN [161], the authors
decouple the source’s content and motion. First a series of networks produce a motion heat map
(optical flow) using the source and target’s key-points, and then an ED generator produces x4
using xs and the optical flow (in its embedding).

Later, in Ref. [144], the authors extend Monkey-Net by improving the object appearance when
large pose transformations occur. They accomplish this by (1) modeling motion around the key-
points using affine transformations, (2) updating the key-point loss function accordingly, and
(3) having the motion generator predict an occlusion mask on the preceding frame for in-painting
inference. Their work has been implemented as a free real-time reenactment tool for video chats,
called Avitarify.®

4.14 Few-Shot Learning. Toward the end of 2019 and into the beginning of 2020, researchers
began looking into minimizing the amount of training data further via one-shot and few-shot
learning.

In Ref. [182], the authors propose a few-shot model that works well at oblique angles. To ac-
complish this, the authors perform meta-transfer learning, where the network is first trained on
many different identities and then fine-tuned on the target’s identity. Then, an identity encoding
of x; is obtained by averaging the encodings of k sets of (x;,[;). Then, a pix2pix GAN is used to
generate x4 using [; as an input, and the identity encoding via AdaIN layers. Unfortunately, the
authors note that their method is sensitive to identity leakage.

In Ref. [167], the authors of Vid2Vid (Section 4.1.2) extend their work with few-shot learn-
ing. They use a network weight generation module, which utilizes an attention mechanism. The
module learns to extract appearance patterns from a few samples of x;, which are injected into
the video synthesis layers. In contrast to FLNet, Refs [62], [182], and [167] merge the multiple

Shttps://github.com/alievk/avatarify.
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representations of t before passing it through the generator. This approach is more efficient be-
cause it involves fewer passes through the model’s networks.

In Ref. [65], the authors propose MarioNETte, which alleviates identity leakage when the pose
of x; is different than x;. In contrast to other works that encode the identity separately or use of
AdalN layers, the authors use an image attention block and target feature alignment. This enables
the model to better handle the differences between face structures. Finally, the identity is also
preserved using a novel landmark transformer inspired by Ref. [21].

4.2 Mouth Reenactment (Dubbing)

In contrast to expression reenactment, mouth reenactment (a.k.a. video or image dubbing) is con-
cerned with driving a target’s mouth with a segment of audio. Figure 9 presents the relevant
schematics for this section.

4.2.1  Many-to-One (Multiple Identities to a Single Identity).

Obama Puppetry. In 2017, the authors of Ref. [151] created a realistic reenactment of former
president Obama. This was accomplished by (1) using a time delayed RNN over Mel-frequency
cepstral coefficient (MFCC) audio segments to generate a sequence of mouth landmarks (shapes),
(2) generating the mouth textures (nose and mouth) by applying a weighted median to images with
similar mouth shapes via PCA-space similarity, (3) refining the teeth by transferring the high-
frequency details other frames in the target video, and (4) by using dynamic programming to
re-time the target video to match the source audio and blend in the texture.

Later that year, the authors of Ref. [89] presented ObamaNet: a network that reenacts an indi-
vidual’s mouth and voice using text as input instead of audio, like in Ref. [151]. The process is to
(1) convert the source text to audio using Char2Wav [147], (2) generate a sequence of mouth-
keypoints using a time-delayed LSTM on the audio, and (3) use a U-Net CNN to perform in-painting
on a composite of the target video frame with a masked mouth and overlayed keypoints.

Later in 2018, Jalalifar et al. [73] proposed a network that synthesizes the entire head portrait
of Obama, and therefore does not require pose re-timing and can be trained end-to-end, unlike
Refs [151] and [89]. First, a bidirectional LSTM coverts MFCC audio segments into sequence of
mouth landmarks, and then a pix2pix-like network generates frames using the landmarks and a
noise signal. After training, the pix2pix network is fine-tuned using a single video of the target to
ensure consistent textures.

3D Parametric Approaches. Later on in 2019, the authors of Ref. [55] proposed a method for
editing a transcript of a talking heads which, in turn, modifies the target’s mouth and speech
accordingly. The approach is to (1) align phenomes to as, (2) fit a 3D parametric head model to
each frame of X; like Ref. [83], (3) blend matching phenomes to create any new audio content,
(4) animate the head model with the respective frames used during the blending process, and
(5) generate X, with a CGAN RNN using composites as inputs (rendered mouths placed over the
original frame).

The authors of Ref. [153] had a different approach: (1) animate the reconstructed 3D head with
the predicted blend shape parameters from a; using a DeepSpeech model for feature extraction,
(2) use Deferred Neural Rendering [154] to generate the mouth region, and then (3) use a network
to blend the mouth into the original frame. Compared to previous works, the authors found that
their approach only requires 2—-3 minutes of video while producing very realistic results. This is
because neural rendering can summarize textures with a high fidelity and operate on UV maps,
mitigating artifacts on how the textures are mapped to the face.

4.2.2  Many-to-Many (Multiple IDs to Multiple IDs). One of the first works to perform identity
agnostic video dubbing was Ref. [142]. There, the authors used an LSTM to map MFCC audio
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Fig. 9. Architectural schematics for some mouth reenactment networks. Black lines indicate prediction flows
used during deployment; dashed gray lines indicate dataflows performed during training.

segments to the face shape. The face shapes were represented as the coefficients of an active ap-
pearance model (AAM), which were then used to retrieve the correct face shape of the target.

Improvements in Lip-Sync. Noting a human’s sensitivity to temporal coherence, the authors
of Ref. [146] use a GAN with three discriminators: on the frames, video, and lip-sync. Frames
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are generated by (1) encoding each MFCC audio segment agi) and x; with separate encoders,

(2) passing the encodings through an RNN, and (3) decoding the outputs as x;i) using a decoder.

In Ref. [178], the authors try to improve the lipsyncing with a textual context. A time-delayed
LSTM is used to predict mouth landmarks given MFCC segments and the spoken text using a text-
to-speech model. The target frames are then converted into sketches using an edge filter, and the
predicted mouth shapes are composited into them. Finally, a pix2pix-like GAN with self-attention
is used to generate the frames with both video and image conditional discriminators.

Compared to direct models such as the direct models of Refs [146] and [178], the authors of
Ref. [27] improve the lip-syncing by preventing the model from learning irrelevant correlations
between the audiovisual signal and the speech content. This was accomplished with LSTM audio-
to-landmark network and a landmark-to-identity CNN-RNN used in sequence. There, the facial
landmarks are compressed with PCA, and the attention mechanism from Ref. [127] is used to help
focus the model on the relevant patterns. To improve synchronization further, the authors pro-
posed a regression-based discriminator, which considers both sequence and content information.

EDs for Preventing Identity Leakage. The authors in Ref. [188] mitigate identity leakage by
disentangling the speech and identity latent spaces using adversarial classifiers. Since their speech
encoder is trained to project audio and video into the same latent space, the authors show how x,
can be driven using x; or as.

In Ref. [74], the authors propose Speech2Vid, which also uses separate encoders for audio and
identity. However, to capture the identity better, the identity encoder En; uses a concatenation of
five images of the target, and there are skip connections from the En; to the decoder. To blend the
mouth in better, a third “context” encoder is used to encourage in-painting. Finally, a VDSR CNN
is applied to x4 to sharpen the image.

A disadvantage with Refs [188] and [74] is that they cannot control facial expressions and blink-
ing. To resolve this, the authors in Ref. [163] generate frames with a stride transposed CNN decoder
on GRU-generated noise, in addition to the audio and identity encodings. Their video discrimina-
tor uses two RNNs for both the audio and video. When applying the L1 loss, the authors focus on
the lower half of the face to encourage better lip-sync quality over facial expressions.

Later, in Ref. [164], the same authors improve the temporal coherence by splitting the video
discriminator into two: (1) for temporal realism in mouth to audio synchronization and (2) for
temporal realism in overall facial expressions. Then, in Ref. [79], the authors tune their approach
further by fusing the encodings (audio, identity, and noise) with a polynomial fusion layer as op-
posed to simply concatenating the encodings together. Doing so makes the network less sensitive
to large facial motions compared to Refs [164] and [74].

4.3 Pose Reenactment

Most deep learning works in this domain focus on the problem of face frontalization. However,
there are some works that focus on facial pose reenactment.

In Ref. [70], the authors use a U-Net to convert (x;,l;,[;) into x; using a GAN with two dis-
criminators: one conditioned with the neutral pose image, and the other conditioned with the
landmarks. In Ref. [158], the authors propose DR-GAN for pose-invariant face recognition. To ad-
just the pose of x;, the authors use an ED GAN, which encodes x; as e; and then decodes (e;, ps, z)
as x4, where p; is the source’s pose vector, and z is a noise vector. Compared to Ref. [70], Ref. [158]
has the flexibility of manipulating the encodings for different tasks and the authors improve the
quality of x, by averaging multiple examples of the identity encoding before passing it through the
decoder (similar to Refs [62], [167], and [182]). In Ref. [23], the authors suggest using two GANs:
The first frontalizes the face and produces a UV map, and second rotates the face, given the target
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Fig. 10. Architectural schematics for some body reenactment networks. Black lines indicate prediction flows
used during deployment; dashed gray lines indicate dataflows performed during training.

angle as an injected embedding. The result is that each model performs a less complex operation,
and the models can, therefore, collectively produce a higher quality image.

4.4 Gaze Reenactment

There are only a few deep learning works that have focused on gaze reenactment. In Ref. [57],
the authors convert a cropped eye x;, its landmarks, and the source angle, to a flow (vector) field
using a two-scale CNN. x, is then generated by applying a flow field to x; to warping it to the
source angle. The authors then correct the illumination of x, with a second CNN. A challenge
with Ref. [57] is that the head must be frontal to avoid inconsistencies due to pose and perspective.
To mitigate this issue, the authors of Ref. [180] proposed the Gaze Redirection Network (GRN). In
GRN, the target’s cropped eye, head pose, and source angle are encoded separately and then passed
though an ED network to generate an optical flow field. The field is used to warp x; into x,. To
overcome the lack of training data and the challenge of data pairing, the authors (1) pre-train their
network on 3D synthesized examples, (2) further tune their network on real images, and then
(3) fine tune their network on 3-10 examples of the target.

4.5 Body Reenactment

Several facial reenactment papers from Section 4.1 discuss body reenactment, too, for example,
Vid2Vid [167, 168], MocoGAN [161], and others [143, 144]. In this section, we focus on methods
that specifically target body reenactment. Schematics for some of these architectures can be found
in Figure 10.

4.5.1 One-to-One (Identity-to-Identity). In the work of Ref. [104], the authors perform facial
reenactment with the upper-body as well (arms and hands). The approach is to (1) use a pix2pixHD
GAN to convert the source’s facial boundaries to the targets, (2) then paste them onto a captured
pose skeleton of the source and (3) use a pix2pixHD GAN to generate x, from the composite.
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4.5.2  Many-to-One (Multiple Identities to a Single Identity).

Dance Reenactment. In Ref. [25], the authors make people dance using a target specific
pix2pixHD GAN with a custom loss function. The generator receives an image of the captured
pose skeleton and the discriminator receives the current and last image conditioned on their poses.
The quality of face is then improved with a residual predicted by an additional pix2pixHD GAN,
given the face region of the pose. A many-to-one relationship is achieved by normalizing the input
pose to that of the target’s.

The authors of Ref. [102] then tried to overcome artifacts that occur in Ref. [25] such as stretched
limbs due to incorrectly detected pose skeletons. They used photogrammetry software on hun-
dreds of images of the target and then reenacted the 3D rendering of the target’s body. The ren-
dering, partitioned depth map, and background are then passed to a pix2pix model for image gen-
eration using an attention loss.

Another artifact in Ref. [25] was that the model could not generalize well to unseen poses. To
improve the generalization, the authors of Ref. [2] trained their network on many identities other
than s and t. First, they trained the GAN on paired data (the same identity doing different poses)
and then later added another discriminator to evaluate the temporal coherence given (1) x;i) driven
by another video and (2) the optical flow predicted version.

A challenge with the previous works was that they required lots of training data. This was
reduced from about an hour of video footage to only 3 minutes in Ref. [190] by segmenting and
orienting the limbs of x; according to x; before the generation step. Then, a pix2pixHD GAN used
this composition and the last k frames’ poses to generate the body. Finally, another pix2pixHD
GAN is used to blend the body into the background.

4.5.3  Many-to-Many (Multiple IDs to Multiple IDs).

Pose Alignment. In Ref. [145] the authors try to resolve the issue of misalignment when using
pix2pix like architectures. They propose “deformable skip connections,” which help orient the
shuttled feature maps according to the source pose. The authors also propose a novel nearest
neighbor loss instead of using L1 or L2 losses. To modify unseen identities at test time, an encoding
of x; is passed to the decoder’s inner layers.

Although the work of Ref. [145] helps align the general images, artifacts can still occur when
xs and x; have very different poses. To resolve this, the authors of Ref. [192] use novel Pose-
Attentional Transfer blocks (PATB) inside their GAN-based generator. The architecture passes x;
and the poses ps concatenated with p; through separate encoders that are passed though a series
of PATBs before being decoded. The PATBs progressively transfer regional information of the
poses to regions of the image to ultimately create a body that has better shape and appearance
consistency.

Pose Warping. In Ref. [116], the authors use a pre-trained DensePose network [9] to refine a
predicted pose with a warped and in-painted DensePose UV spatial map of the target. Since the
spatial map covers all surfaces of the body, the generated image has improved texture consistency.
In contrast to Refs [145] and [192], which use feature mappings to alleviate misalignment, the
authors of Ref. [181] use warping, which reduces the complexity of the network’s task. Their

Y warped to pgi),

model, called DwNet, uses a “warp module” in an ED network to encode xii_
where p is a UV body map of a pose obtained as a DensePose network.

A challenge with the alignment techniques of the previous works is that the body’s 3D shape
and limb scales are not considered by the network, resulting in identity leakage from x;. In Ref.
[103], the authors counter this issue with their Liquid Warping GAN. This is accomplished by

predicting target and source’s 3D bodies with the model in Ref. [77] and then by translating the
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One-to-One [138] 2018 FaceSwap-GAN e  2k-5k portraits 1221 ° ° o - portrait  256x256
[71] 2018 DeepFaceLab e 2k-5k portraits 12010 o - portrait  256x256
One-to-Many [88] 2017 Fast Face Swap e 60 portraits None. 00 0 2 o o o . portrait portrait 256x256
[114] 2018 RSGAN . None None 43 2 1 . . portrait portrait 128x128
[113] 2018 FSNet e None None 34 50 e o o 0 portrait portrait 128x128
[17] 2018 OSIP-FS e None None 21 20 ° . portrait portrait 128x128
[111] 2018  DepthNets o None None ® 3 2 2 1 L) . portrait portrait ~ 80x80
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[150] 2018 I0-FR e None Nonee 11 1 1e ° ° portrait portrait  256x256
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[174] 2019 IHPT ° None None e 21 2 0 . . e cropped cropped 128x128
[93] 2019  FaceShifter e None Nonee 33 3 0 ° . portrait portrait  256x256

two through a novel liquid warping block (LWB) in their generator. Specifically, the estimated UV
maps of x; and x;, along with their calculated transformation flow, are passed through a three-
stream generator, which produces (1) the background via in-painting, (2) a reconstruction of the
x5 and its mask for feature mapping, and (3) the reenacted foreground and its mask. The latter two
streams use a shared LWB to help the networks address multiple sources (appearance, pose, and
identity). The final image is obtained through masked multiplication, and the system is trained
end-to-end.

Background Foreground Compositing. In Ref. [14], the authors break the process down into
three stages, trained end-to-end: (1) use a U-Net to segment x;’s body parts and then orient them
according to the source pose ps, (2) use a second U-Net to generate the body x, from the compos-
ite, and (3) use a third U-Net to perform in-painting on the background and paste x4 into it. The
authors of Ref. [46] then streamlined this process by using a single ED GAN network to disentan-
gle the foreground appearance (body), background appearance, and pose. Furthermore, by using
an ED network, the user gains control over each of these aspects. This is accomplished by seg-
menting each of these aspects before passing them through encoders. To improve the control over
the compositing, the authors of Ref. [35] used a CVAE-GAN. This enabled the authors to change
the pose and appearance of bodies individually. The approach was to condition the network on
heatmaps of the predicted pose and skeleton.

4.5.4 Few-Shot Learning. In Ref. [91], the authors demonstrate the few-shot learning technique
of Ref. [53] on a pix2pixHD network and the network of Ref. [14]. Using just a few sample images,
they were able to transfer the resemblance of a target to new videos in the wild.

5 REPLACEMENT

The network schematics and summary of works for replacement deepfakes can be found in
Figure 12 and Table 2, respectively.
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Fig. 11. The basic schematic for the Reddit “deepfakes” model and its variants [1, 71, 138].

5.1 Swap

At first, face swapping was a manual process accomplished using tools such as Photoshop. More
automated systems first appeared between 2004-08 in Refs [20] and [18]. Later, fully automated
methods were proposed in Refs [34], [80], [121], and [162] using methods such as warping and
reconstructed 3D morphable face models.

5.1.1  One-to-One (Identity-to-Identity).

Online Communities. After the Reddit user “deepfakes” was exposed in the media, researchers
and online communities began finding improved ways to perform face swapping with deep neu-
ral networks. The original deepfake network, published by the Reddit user, is an ED network
(visualized in Figure 11). The architecture consists of one encoder En and two decoders De;
and De;. The components are trained concurrently as two autoencoders: Des(En(xs)) = X5 and
De;(En(x;)) = %;, where x is a cropped face image. As a result, En learns to map s and ¢ to a
shared latent space, such that

Des(En(x;)) = x4 ®)
Currently, there are a number of open source face swapping tools on GitHub based on the original
network. One of the most popular is DeepFaceLab [71]. Their current version offers a wide variety
of model configurations, including adversarial training, residual blocks, a style transfer loss, and
masked loss to improve the quality of the face and eyes. To help the network map the target’s
identity into arbitrary face shapes, the training set is augmented with random face warps.

Another tool called FaceSwap-GAN [138] follows a similar architecture but uses a denoising
autoencoder with self-attention mechanisms, and offers cycle-consistency loss, which can reduce
the identity leakage and increase the image fidelity. The decoders in FaceSwap-GAN also generate
segmentation masks, which helps the model handle occlusions and is used to blend x, back into the
target frame. Finally, Ref. [1] is another open source tool that provides a graphical user interface
(GUI). Their software comes with 10 popular implementations, including that of Ref. [71], and
multiple variations of the original Redit user’s code.

5.1.2  One-to-Many (Single Identity to Multiple Identities). In Ref. [88], the authors use a modi-
fied style transfer with CNN, where the content is x, and the style is the identity of x;. The process
is (1) align x; to a reference xs, (2) transfer the identity of s to the image using a multi scale CNN,
trained with style loss on images of s, and (3) align the output to x; and blend the face back in with
a segmentation mask.

5.1.3  Many-to-Many (Multiple IDs to Multiple IDs). One of the first identity agnostic methods
was Ref. [123], mentioned in Section 4.1.3. However, to train this CGAN, one needs a dataset of
paired faces with different identities having the same expression.

Disentanglement with EDs. However, to provide more control, the authors in Ref. [17] use an
ED to disentangle the identity from the attributes (pose, hair, background, and lighting) during
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Fig. 12. Architectural schematics of the replacement networks with their generation and training dataflows.
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the training process. The identity encodings are the last pooling layer of a face classifier, and
the attribute encoder is trained using a weighted L2 loss and a KL divergence loss to mitigate
identity leakage. The authors also show that they can adjust attributes, expression, and pose via
interpolation of the encodings. Instead of swapping identities, the authors of Ref. [150] wanted to
variably obfuscate the target’s identity. To accomplish this, the authors used an ED to predict the
3D head parameters, which were either modified or replaced with the source’s. Finally, a GAN was
used to in-paint the face of x; given the modified head model parameters.

Disentanglement with VAEs. In Ref. [114], the authors propose RSGAN: a VAE-GAN consisting
of two VAEs and a decoder. One VAE encodes the hair region and the other encodes the face region,
where both are conditioned on a predicted attribute vector ¢ describing x. Since VAEs are used,
the facial attributes can be edited through c.

In contrast to Ref. [114], the authors of Ref. [113] use a VAE to prepare the content for the
generator, and use a network to perform the blending via in-painting. A single VAE-ED network
is run on x, and then x;, producing encodings for the face of x; and the landmarks of x;. To perform
aface swap, a generator receives the masked portrait of x; and performs in-painting on the masked
face. The generator uses the landmark encodings in its embedding layer. During training, randomly
generated faces are used with triplet loss on the encodings to preserve identities.

Face Occlusions. FSGAN [120], mentioned in Section 4.1.3, is also capable of face swapping and
can handle occlusions. After the face reenactment generator produces x;, a second network pre-

dicts the target’s segmentation mask m;. Then, (xﬁf >, my;) is passed to a third network that performs
in-painting for occlusion correction. Finally, a fourth network blends the corrected face into x;
while considering ethnicity and lighting. Instead of using interpolation like Ref. [120], the authors
of Ref. [93] propose FaceShifter, which uses novel Adaptive Attentional Denormalization (AAD)
layers to transfer localized feature maps between the faces. In contrast to Ref. [120], FaceShifter re-
duces the number of operations by handling the occlusions through a refinement network trained
to consider the delta between the original x; and a reconstructed x;.

5.1.4 Few-Shot Learning. The same author of FaceSwap-GAN [138] also hosts few-shot ap-
proach online dubbed “One Model to Swap Them All” [139]. In this version, the generator receives
(x§f>, xﬁﬁ, m;) where its encoder is conditioned on VGGFace2 features of x; using FC-AdalN lay-
ers, and its decoder is conditioned on x; and the face structure m; via layer concatenations and
SPADE-ResBlocks, respectively. Two discriminators are used: one on image quality given the face

segmentation and the other on the identities.

5.2 Transfer

Although face transfers precede face swaps, today there are very few works that use deep learning
for this task. However, we note that a face transfer is equivalent to performing self-reenactment
on a face swapped portrait. Therefore, high-quality face transfers can be achieved by combining a
method from Section 4.1 and Section 5.1.

In 2018, the authors of Ref. [111] proposed DepthNets: an unsupervised network for capturing
facial landmarks and translating the pose from one identity to another. The authors use a Siamese
network to predict a transformation matrix that maps the x,’s 3D facial landmarks to the corre-
sponding 2D landmarks of x;. A 3D renderer (OpenGL) is then used to warp xﬁf> to the source pose
l;, and the composition is refined using a CycleGAN. Since warping is involved, the approach is
sensitive to occlusions.

Later in 2019, the authors of Ref. [174] proposed a self-supervised network that can change the
identity of an object within an image. Their ED disentangles the identity from an objects pose using
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Table 3. Summary of Deepfake Detection Models
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*Only the best reported performance, averaged over the test datasets, is displayed to capture the ‘best-case’ scenario.

a novel disentanglement loss. Furthermore, to handle misaligned poses, an L1 loss is computed
using a pixel mapped version of x, to x; (using the weights of the identity encoder). Similarly, the
authors of Ref. [99] proposed a method disentangled identity transfer. However, neither Ref. [174]
nor Ref. [99] were explicitly performed on faces.

6 COUNTERMEASURES

In general, countermeasures to malicious deepfakes can be categorized as either detection or pre-
vention. We will now briefly discuss each accordingly. A summary and systematization of the
deepfake detection methods can be found in Table 3.

6.1 Detection

The subject of image forgery detection is a well-researched subject [187]. In our review of detection
methods, we will focus on works that specifically deal with detecting deepfakes of humans.
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6.1.1  Artifact-Specific. Deepfakes often generate artifacts that may be subtle to humans but can
be easily detected using machine learning and forensic analysis. Some works identify deepfakes
by searching for specific artifacts. We identify seven types of artifacts: Spatial artifacts in blend-
ing, environments, and forensics; temporal artifacts in behavior, physiology, synchronization, and
coherence.

Blending (spatial). Some artifacts appear where the generated content is blended back into the
frame. To help emphasize these artifacts to a learner, researchers have proposed edge detectors,
quality measures, and frequency analysis [4, 8, 42, 110, 186]. In Ref. [94], the authors follow a more
explicit approach to detecting the boundary. They trained a CNN network to predict an image’s
blending boundary and a label (real or fake). Instead of using a deepfake dataset, the authors trained
their network on a dataset of face swaps generated by splicing similar faces found through facial
landmark similarity. By doing so, the model has the advantage that is focused on the blending
boundary and not other artifacts caused by the generative model.

Environment (spatial). The content of a fake face can be anomalous in context to the rest of the
frame. For example, residuals from face warping processes [97, 98, 100], lighting [149], and varying
fidelity [86] can indicate the presence of generated content. In Ref. [95], the authors follow a dif-
ferent approach by contrasting the generated foreground to the (untampered) background using a
patch and pair CNN. The authors of Ref. [122] also contrast the fore/background but enable a net-
work to identify the distinguishing features automatically. They accomplish this by (1) encoding
the face and context (hair and background) with an ED and (2) passing the difference between the
encodings with the complete image (encoded) to a classifier.

Forensics (spatial). Several works detect deepfakes by analyzing subtle features and patterns
left by the model. In Refs [179] and [106], the authors found that GANs leave unique fingerprints
and show how it is possible to classify the generator given the content, even in the presence of
compression and noise. In Ref. [85] the authors analyze a camera’s unique sensor noise, called
photo response non-uniformity (PRNU), to detect pasted content. To focus on the residuals, the
authors of Ref. [107] use a two-stream ED to encode the color image and a frequency enhanced
version using “Laplacian of Gaussian layers” (LoG). The two encodings are then fed through an
LSTM, which then classifies the video based on a sequence of frames.

Instead of searching for residuals, the authors of Ref. [177] search for imperfections and found
that deepfakes tend to have inconsistent head poses. Therefore, they detect deepfakes by predicting
and monitoring facial landmarks. The authors of Ref. [166] had a different approach by training
classifiers to focus on the imperfections instead of the residuals. This was accomplished by using
a dataset generated using a ProGAN instead of other GANs since the ProGAN’s images contain
the least amount of frequency artifacts. In contrast to Ref. [166], the authors in Ref. [64] use a
network to emphasize the residuals and suppress the imperfections in a preprocessing step for a
classifier. Their network uses adaptive convolutional layers that predict residuals to maximize the
artifacts’ influence. Although this approach may help the network identify artifacts better, it may
not generalize as well to new types of artifacts.

Behavior (temporal). With large amounts of data on the target, mannerisms and other behaviors
can be monitored for anomalies. For example, in Ref. [6] the authors protect world leaders from a
wide variety of deepfake attacks by modeling their recorded stock footage. Recently, the authors
of Ref. [109] showed how behaviors can be used with no reference footage of the target. The
approach is to detect discrepancies in the perceived emotion extracted from the clip’s audio and
video content. The authors use a custom Siamese network to consider the audio and video emotions
when contrasted to real and fake videos.
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Physiology (temporal). In 2014, researchers hypothesized that generated content will lack phys-
iological signals and identified computer generated faces by monitoring their heart rate [32]. Re-
garding deepfakes, Ref. [30] monitored blood volume patterns (pulse) under the skin, and Ref. [96]
took a more robust approach by monitoring irregular eye blinking patterns. Instead of detecting
deepfakes, the authors of Ref. [31] use the pulse signal to help determine the model used to create
the deepfake.

Synchronization (temporal). Inconsistencies are also a revealing factor. In Refs [87] and [47], the
authors noticed that video dubbing attacks can be detected by correlating the speech to landmarks
around the mouth. Later, in Ref. [5], the authors refined the approach by detecting when visemes
(mouth shapes) are inconsistent with the spoken phonemes (utternaces). In particular, they focus
on phonemes where the mouth is fully closed (B, P, M) since deepfakes in the wild tend to fail in
generating these visemes.

Coherence (temporal). As noted in Section 4.1, realistic temporal coherence is challenging to
generate, and some authors capitalize on the resulting artifacts to detect the fake content. For
example, Ref. [63] uses an RNN to detect artifacts such as flickers and jitter, and Ref. [131] uses
an LSTM on the face region only. In Ref. [25], a classifier is trained pairs of sequential frames,
and in Ref. [11], the authors refine the network’s focus by monitoring the frames’ optical flow.
Later, the same authors use an LSTM to predict the next frame and expose deepfakes when the
reconstruction error is high [10].

6.1.2  Undirected Approaches. Instead of focusing on a specific artifact, some authors train deep
neural networks as generic classifiers and let the network decide which features to analyze. In
general, researchers have taken one of two approaches: classification or anomaly detection.
Classification. In Refs [105], [118], and [130], it was shown that deep neural networks tend to
perform better than traditional image forensic tools on compressed imagery. Various authors then
demonstrated how standard CNN architectures can effectively detect deepfake videos [3, 38, 39,
152]. In Ref. [69], the authors train the CNN as a Siamese network using contrasting examples
of real and fake images. In Ref. [52], the authors were concerned that a CNN can only detect the
attacks on which they trained. To close this gap, the authors propose using Hierarchical Memory
Network (HMN) architecture, which considers the contents of the face and previously seen faces.
The network encodes the face region, which is then processed using a bidirectional GRU while
applying an attention mechanism. The final encoding is then passed to a memory module, which
compares it to recently seen encodings and makes a prediction. Later, in Ref. [128], the authors
use an ensemble approach and leverage the predictions of seven deepfake CNNs by passing their
predictions to a meta classifer. Doing so produces results that are more robust (fewer false pos-
itives) than using any single model. In Ref. [36], the authors tried a variety of different classic
spatio-temproal networks and feature extractors as a baseline for temporal deepfake detection.
They found that a 3D CNN, which looks at multiple frames at once, out performs both recurrent
networks and the state-of-the-art ID3 architecture.

To localize the tampered areas, some works train networks to predict masks learned from a
ground truth dataset, or by mapping the neural activations back to the raw image [41, 92, 117,
148].

In general, we note that the use of classifiers to detect deepfakes is problematic since an at-
tacker can evade detection via adversarial machine learning. We will discuss this issue further in
Section 7.2.

Anomaly Detection. In contrast to classification, anomaly detection models are trained on the
normal data and then detect outliers during deployment. By doing so, these methods do not make
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assumptions on how the attacks look and thus generalize better to unknown creation methods.
The authors of Ref. [165] follow this approach by measuring the neural activation (coverage) of a
face recognition network. By doing so, the model is able to overcome noise and other distortions
by obtaining a stronger signal than from just using the raw pixels. Similarly, in Ref. [81], a one-
class VAE is trained to be used to reconstruct real images. Then, for new images, an anomaly score
is computed by taking the MSE between mean component of the encoded image and the mean
component of the reconstructed image. Alternatively, the authors of Ref. [17] measure an input’s
embedding distance to real samples using an ED’s latent space. The difference between these works
is that Refs [165] and [81] rely on a model’s inability to process unknown patterns while Ref. [17]
contrasts the model’s representations.

Instead of using a neural network directly, the authors of Ref. [51] use a state-of-the-art
attribution-based confidence (ABC) metric. To detect a fake image, the ABC is used to determine
if the image fits the training distribution of a pretrained face recognition network (e.g., VGG).

6.2 Prevention and Mitigation

Data Provenance. To prevent deepfakes, some have suggested that data provenance of multi-
media should be tracked through distributed ledgers and blockchain networks [54]. In Ref. [44],
the authors suggest that the content should be ranked by participants and Al In contrast, Ref.
[68] proposes that the content should be authenticated and managed as a global file system over
Etherium smart contracts.

Counter Attacks. To combat deepfakes, the authors of Ref. [101] show how adversarial machine
learning can be used to disrupt and corrupt deepfake networks. The authors perform adversarial
machine learning to add crafted noise perturbations to x, which prevents deepfake technologies
from locating a proper face in x. In a different approach, the authors of Ref. [137] use adversarial
noise to change the identity of the face so that web crawlers will not be able find the image of ¢ to
train their model.

7 DISCUSSION
7.1 The Creation of Deepfakes

7.1.1  Tradeoffs between the Methodologies. In general, there is a different cost and payoff for
each deepfake creation method. However, the most effective and threatening deepfakes are those
that are (1) the most practical to implement (Training Data, Execution Speed, and Accessibility) and
(2) are the most believable to the victim (Quality):

Data vs. Quality. Models trained on numerous samples of the target often yield better results
(e.g., see Refs [25], [55], [71], [73], [89], [104], [151], and [173]). For example, in 2017, Ref.
[151] produced an extremely believable reenactment of Obama, which exceeds the quality
of recent works. However, these models require many hours footage for training, and are
therefore are only suitable for exposed targets such as actors, CEOs, and political leaders.
An attacker who wants to commit defamation, impersonation, or a scam on an arbitrary
individual will need to use a many-to-many or few-shot approach. On the other hand,
most of these methods rely on a single reference of ¢ and are therefore prone to generat-
ing artifacts. This is because the model must “imagine” missing information (e.g., different
poses and occlusions). Therefore, approaches that provide the model with a limited num-
ber of reference samples [62, 65, 158, 167, 171, 180, 182] strike the best balance between
data and quality.

Speed vs. Quality. The tradeoff between these aspects depends on whether the attack is on-
line (interactive) or offline (stored media). Social engineering attacks involving deepfakes
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are likely to be online and thus require real-time speeds. However, high-resolution mod-
els have many parameters and sometimes use several networks (e.g., Ref. [56]) and some
process multiple frames to provide temporal coherence (e.g., Refs [15], [83], and [168]).
Other methods may be slowed down due to their pre/post-processing steps, such as warp-
ing [60, 62, 185], UV mapping or segmentation prediction [23, 112, 123, 180], and the use
of refinement networks [25, 60, 83, 93, 111, 153]. To the best of our knowledge, [74], [88],
[112], [120], and [144] are the only papers that claim to generate real-time deepfakes,
yet they subjectively tend to be blurry or distort the face. Regardless, a victim is likely
fall for an imperfect deepfake in a social engineering attack when placed under pressure
in a false pretext [172]. Moreover, it is likely that an attacker will implement a complex
method at a lower resolution to speed up the frame rate. In which case, methods that have
texture artifacts would be preferred over those that produce shape or identity flaws (e.g.,
Refs [144] vs. [182]). For attacks that are not real-time (e.g, fake news), resolution and
fidelity is critical. In these cases, works that produce high-quality images and videos with
temporal coherence are the best candidates (e.g., Refs [65] and [168]).

Availability vs. Quality. We also note that availability and reproducibility are key factors
in the proliferation of new technologies. Works that publish their code and datasets on-
line (e.g., Refs [79], [134], [144], [161], [171], and [173]) are more likely to be used by
researchers and criminals compared to those that are unavailable [2, 55, 65, 83, 120, 126,
153, 170, 184] or require highly specific or private datasets [57, 112, 180]. This is because
the payoff in implementing a paper is minor compared to using a functional and effective
method available online. Of course, this does not include state-actors who have plenty of
time and funding.

We have also observed that approaches that augment a network’s inputs with synthetic ones
produce better results in terms of quality and stability, for example, by rotating limbs [104, 190],
refining rendered heads [14, 55, 112, 153, 169, 178], providing warped imagery [60, 111, 116, 181],
and UV maps [23, 62, 83, 124, 181]. This is because the provided contextual information reduces
the problem’s complexity for the neural network.

Given these considerations, in our opinion, the most significant and available deepfake tech-
nologies today are [144] for facial reenactment because of its efficiency and practicality; [27] for
mouth reenactment because of its quality; and [71] for face replacement because its high fidelity
and widespread use. However, this is a subjective opinion based on the samples provided online
and in the respective papers. A comparative research study, where the methods are trained on
the same dataset and evaluated by a number of people, is necessary to determine the best quality
deepfake in each category.

7.1.2  Research Trends. Over the last few years, there has been a shift toward identity agnos-
tic models and high-resolution deepfakes. Some notable advancements include (1) unpaired self-
supervised training techniques to reduce the amount of initial training data; (2) one/few-shot
learning, which enables identity theft with a single profile picture; (3) improvements of face qual-
ity and identity through AdalN layers, disentanglement, and pix2pixHD network components;
(4) fluid and realistic videos through temporal discriminators and optical flow prediction; and
(5) the mitigation of boundary artifacts by using secondary networks to blend composites into
seamless imagery (e.g., Refs [55], [153], and [169]).

Another large advancement in this domain was the use of perceptual loss on a pre-trained VGG
face recognition network. The approach boosts the facial quality significantly, and, as a result, has
been adopted in popular online deepfake tools [1, 138]. Another advancement being adopted is the
use of a network pipeline. Instead of enforcing a set of global losses on a single network, a pipeline
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of networks is used where each network is tasked with a different responsibility (conversion, gen-
eration, occlusions, blending, etc.) This give more control over the final output and has been able
to mitigate most of the challenges mentioned in Section 3.7.

7.1.3  Current Limitations. Aside from quality, there are a few limitations with the current deep-
fake technologies. First, for reenactment, content is always driven and generated with a frontal
pose. This limits the reenactment to a very static performance. Today, this is avoided by face swap-
ping the identity onto a lookalike’s body, but a good match is not always possible and this approach
has limited flexibility. Second, reenactments and replacements depend on the driver’s performance
to deliver the identity’s personality. We believe that next generation deepfakes will utilize videos
of the target to stylize the generated content with the expected expressions and mannerisms. This
will enable a much more automatic process of creating believable deepfakes. Finally, a new trend
is real-time deepfakes. Works such as Refs [74] and [120] have achieved real-time deepfakes at
30fps. Although real-time deepfakes are an enabler for phishing attacks, the realism is not quite
there yet. Other limitations include the coherent rendering of hair, teeth, tongues, shadows, and
the ability to render the target’s hands (especially when touching the face). Regardless, deepfakes
are already very convincing [130] and are improving at a rapid rate. Therefore, it is important that
we focus on effective countermeasures.

7.2 The Deepfake Arms Race

Like any battle in cyber security, there is an arms race between the attacker and defender. In our
survey, we observed that the majority of deepfake detection algorithms assume a static game with
the adversary: They are either focused on identifying a specific artifact, or do not generalize well to
new distributions and unseen attacks [33]. Moreover, based on the recent benchmark of Ref. [100],
we observe that the performance of state-of-the-art detectors are decreasing rapidly as the quality
of the deepfakes improve. Concretely, the three most recent benchmark datasets (DFD by Google
[119], DFDC by Facebook [40], and Celeb-DF by Ref. [100]) were released within one month of
each other at the end of 2019. However, the deepfake detectors only achieved an area under the
curve (AUC) of 0.86, 0.76, and 0.66 on each, respectively. Even a false alarm rate of 0.001 is far too
low considering the millions of images published online daily.

Evading Artifact-based Detectors. To evade an artifact-based detector, the adversary only needs
to mitigate a single flaw to evade detection. For example, G can generate the biological signals
monitored by Refs [30] and [96] by adding a discriminator that monitors these signals. To avoid
anomalies in extensive neuron activation [165], the adversary can add a loss that minimizes neuron
coverage. Methods that detect abnormal poses and mannerisms [6] can be evaded by reenacting
the entire head and by learning the mannerisms from the same databases. Models that identify
blurred content [110] are affected by noise and sharpening GANs [73, 84]; and models that search
for the boundary where the face was blended in [4, 8, 42, 94, 110, 186] do not work on deepfakes
passed through refiner networks, which use in-painting, or those which output full frames (e.g.,
Refs [83], [93], [102], [112], [113], [120], [181], and [190]). Finally, solutions that search for forensic
evidence [85, 106, 179] can be evaded (or at least raise the false alarm rate) by passing x, through
filters, or by performing physical replication or compression.

Evading Deep Learning Classifiers. There are a number of detection methods that apply deep
learning directly to the task of deepfake detection (e.g., Refs [3], [38], [39], [52], and [152]).
However, an adversary can use adversarial machine learning to evade detection by adding small
perturbations to x;. Advances in adversarial machine learning has shown that these attacks trans-
fer across multiple models regardless of the training data used [125]. Recent works have shown
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how these attacks not only work on deepfakes classifiers [115] but also work with no knowledge
of the classifier or its training set [24].

Moving Forward. Nevertheless, deepfakes are still imperfect, and these methods offer a modest
defense for the time being. Furthermore, these works play an important role in understanding
the current limitations of deepfakes, and raise the difficulty threshold for malicious users. At some
point, it may become too time-consuming and resource-intensive for a common attacker to create a
good-enough fake to evade detection. However, we argue that solely relying on the development of
content-based countermeasures is not sustainable and may lead to a reactive arms-race. Therefore,
we advocate for more out-of-band approaches for detecting and preventing deepfakes, for example,
the establishment of content provenance and authenticity frameworks for online videos [44, 54,
68], and proactive defenses such as the use of adversarial machine learning to protect content from
tampering [101].

7.3 Deepfakes in Other Domains

In this survey, we put a focus on human reenactment and replacement attacks—the type of deep-
fakes that has made the largest impact so far [12, 66]. However, deepfakes extend beyond human
visuals, and have spread to many other domains. In healthcare, the authors of Ref. [108] showed
how deepfakes can be used to inject or remove medical evidence in CT and MRI scans for insur-
ance fraud, disruption, and physical harm. In Ref. [75], it was shown how one’s voice can be cloned
with only five seconds of audio, and in September 2019, a CEO was scammed out of $250K via a
voice clone deepfake [37]. The authors of Ref. [22] have shown how deep learning can generate
realistic human fingerprints that can unlock multiple users’ devices. In Ref. [135], it was shown
how deepfakes can be applied to financial records to evade the detection of auditors. Finally, it has
been shown how deepfakes of news articles can be generated [183] and that deepfake tweets exist
as well [50].

These examples demonstrate that deepfakes are not just attack tools for misinformation,
defamation, and propaganda, but also sabotage, fraud, scams, obstruction of justice, and poten-
tially many more.

7.4 What’s on the Horizon

We believe that in the coming years, we will see more deepfakes being weaponized for moneti-
zation. The technology has proven itself in humiliation, misinformation, and defamation attacks.
Moreover, the tools are becoming more practical [1] and efficient [75]. Therefore, is seems natural
that malicious users will find ways to use the technology for a profit. As a result, we expect to see
an increase in deepfake phishing attacks and scams targeting both companies and individuals.

As the technology matures, real-time deepfakes will become increasingly realistic. Therefore,
we can expect that the technology will be used by hacking groups to perform reconnaissance as
part of an advanced persistent threat (APT), and by state actors to perform espionage and sabotage
by reenacting officials or family members.

To keep ahead of the game, we must be proactive and consider the adversary’s next step, not
just the weaknesses of the current attacks. We suggest that more work be done on evaluating the
theoretical limits of these attacks. For example, by finding a bound on a model’s delay can help
detect real-time attacks such as Ref. [75], and determining the limits of GANs like Ref. [7] can
help us devise the appropriate strategies. As mentioned earlier, we recommend further research
on solutions that do not require analyzing the content itself. Moreover, we believe it would be
beneficial for future works to explore the weaknesses and limitations of current deepfakes detec-
tors. By identifying and understanding these vulnerabilities, researchers will be able to develop
stronger countermeasures.
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8 CONCLUSION

Not all deepfakes are malicious. However, because the technology makes it so easy to create be-
lievable media, malicious users are exploiting it to perform attacks. These attacks are targeting
individuals and causing psychological, political, monetary, and physical harm. As time goes on,
we expect to see these malicious deepfakes spread to many other modalities and industries.

In this survey, we focused on reenactment and replacement deepfakes of humans. We provided
a deep review of how these technologies work, the differences between their architectures, and
what is being done to detect them. We hope this information will be helpful to the community in
understanding and preventing malicious deepfakes.
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