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Abstract. This paper proposes Barnum, an offline control flow attack
detection system that applies deep learning on hardware execution traces
to model a program’s behavior and detect control flow anomalies. Our
implementation analyzes document readers to detect exploits and ABI
abuse. Recent work has proposed using deep learning based control flow
classification to build more robust and scalable detection systems. These
proposals, however, were not evaluated against different kinds of control
flow attacks, programs, and adversarial perturbations.

We investigate anomaly detection approaches to improve the secu-
rity coverage and scalability of control flow attack detection. Barnum is
an end-to-end system consisting of three major components: (1) trace
collection, (2) behavior modeling, and (3) anomaly detection via binary
classification. It utilizes IntelR© Processor Trace for low overhead exe-
cution tracing and applies deep learning on the basic block sequences
reconstructed from the trace to train a normal program behavior model.
Based on the path prediction accuracy of the model, Barnum then deter-
mines a decision boundary to classify benign vs. malicious executions.

We evaluate against 8 families of attacks to Adobe Acrobat Reader
and 9 to Microsoft Word on Windows 7. Both readers are complex pro-
grams with over 50 dynamically linked libraries, just-in-time compiled
code and frequent network I/O. Barnum shows its effectiveness with 0%
false positive and 2.4% false negative on a dataset of 1,250 benign and
1,639 malicious PDFs. Barnum is robust against evasion techniques as it
successfully detects 500 adversarially perturbed PDFs.

Keywords: Malware · Automated analysis · Classification ·

Deep-learning

1 Introduction

Control flow hijack attacks are still prevalent with nearly one million new exploit
malware being reported in Q2, 2018 [3]. These attacks typically exploit memory
corruption vulnerabilities to redirect the target program’s control flow and gain

c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): ISC 2019, LNCS 11723, pp. 341–359, 2019.
https://doi.org/10.1007/978-3-030-30215-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30215-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-30215-3_17


342 C. Yagemann et al.

arbitrary code execution. They continue to exist despite protection mechanisms
like control flow integrity (CFI) and code-pointer integrity (CPI) [22] due to
compromises between accuracy and performance.

A serious concern to these systems is that they have been proven to only
detect deviations from their models, which does not account for all control flow
anomalies. Beyond exploits, over 97% of document malware rely on macros and
ABIs that do not violate program integrity [29,34]. Such abuse requires anomaly
detection rather than integrity enforcement to detect and analyze.

In this context, neural networks able to automatically learn features show
great promise in detecting complex malware with high accuracy and scalabil-
ity. Deep learning based malware detection has mostly focused on analyzing
executable files and runtime ABI calls. The static analysis approaches use the
headers, instruction opcodes, or raw bytes of an executable file to build models
and classify the file before execution [10,35,36]. The dynamic approaches pro-
file user or kernel ABI call sequences during execution [19,21,39]. Despite their
potential, these classifiers are vulnerable to adversarial attacks [15,17,37].

We investigate anomaly detection approaches to build a robust offline system
to detect control flow attacks. To be particular, we want to extend detection to
unknown attacks against binaries that lack source code such as commercial off-
the-shelf software, third-party libraries, and legacy programs. For security use
cases, anomaly detection is more suitable than classification, since it is neither
practical nor scalable to create behavior models for all possible attacks. In this
paper, we describe Barnum, an anomaly detection based system that applies
deep learning on hardware execution traces to build a per-application behavioral
model and detect control flow attacks. The recent advancement in deep learning
behavior modeling and hardware execution tracing enables us to efficiently trace
many executions of a program with different inputs and build an automated
system to identify expected behaviors from this vast volume of data.

We utilize IntelR© Processor Trace (IntelR© PT), a low overhead tracing fea-
ture in the CPU, to get the complete control flow audit of a program execution.
IntelR© PT records the non-deterministic control flow transfers, contextual, tim-
ing, etc. information, which combined with the program binary can be used to
reconstruct the executed instruction sequences. We summarize the instructions
into basic blocks (BBs), a sequence of linear instructions ending with a branch-
ing instruction, and assign each BB a unique BBID, creating a long sequence.
We develop a hypervisor-based framework that makes the trace collection and
processing secure and portable across OSes. Utilizing low level tracing also adds
to the portability of Barnum across different OSes and hardware.

Barnum divides the control flow attack detection into two layers: (1) control
flow modeling and (2) anomaly detection via binary classification. First, we
train the normal behavior model of a program via self-supervised learning on
benign traces. We then apply this model on unlabeled traces to predict the next
BBIDs and use the prediction accuracy and confidence to learn the classification
threshold of benign vs. anomalous traces.
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We evaluate Barnum against 8 families of attacks (labeled by AVClass [42]) to
Adobe Acrobat Reader and 9 to Microsoft Word on Windows 7. Both readers are
complex programs with over 50 dynamically linked libraries, frequent use of just-
in-time (JIT) compilation, network I/O for auto-updating and fetching remote
content, and have known bugs that have been successfully exploited in the wild
by attackers. Barnum shows its effectiveness with 0% false positive (FP) and
2.4% false negative (FN) on a dataset of 1,250 benign and 1,639 malicious PDFs
and 0% FP, 10% FN on 200 benign and 379 malicious Word documents. The
latter dataset is more challenging because 94% of the samples rely on ABI abuse,
not exploits, which is outside the scope of related dynamic analysis systems.
2 detected Word malware samples are fully undetected on VirusTotal (VT).
Barnum is able to handle programs that utilize JIT compilation by observing the
control flow into and out of JIT regions without having to analyze the JIT code
execution. Additionally, we use Mimicus [45] to perturb 500 malicious samples
and confirm that the performance of Barnum does not degrade.

To summarize, we make the following contributions:

– We develop an offline anomaly detection based control flow attack detection
system that applies deep learning on fine-grained control flow traces of an
application. We describe the design challenges and architecture of Barnum.

– We utilize IntelR© PT to collect control flow traces. The hypervisor based pro-
cessing of low level traces make Barnum secure and portable across systems.

– We represent the control flow trace as a sequence of basic blocks and develop
a multi-layer system to model program behavior for anomaly detection.

– We extensively evaluate Barnum against 8 families of attacks to Adobe Reader
and 9 to Microsoft Word on Windows 7 64 bit. The experimental results
show 0% FP, 2.4% FN and 0% FP, 10% FN to classify benign and malicious
PDF and Word documents, respectively. We show that Barnum is resilient to
adversarial attacks like Mimicus.

The rest of the paper is organized as follows: the next section describes
the problem and provides background information. Section 3 details the design
of Barnum. Our evaluation of Barnum on document malware is presented in
Sect. 4. Section 5 covers related work and we conclude in Sect. 6.

All the Barnum source code, malware hashes, and data for reproducing results
are available at the project homepage1 or by contacting the first author.

2 Problem and Background

This section describes the problem Barnum is designed to address. We discuss
our assumptions in the context of our adversary model and evaluation scenarios.

1 https://tinyurl.com/y27clrfl.

https://tinyurl.com/y27clrfl
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2.1 Threat Model and Assumptions

In this work, our goal is to detect document malware via control flow anoma-
lies. Most attacks against programs rely to some degree on changing the exe-
cution flow of the target program. Although it is possible to construct data-
only attacks [8], most adversaries still rely on techniques like Return-Oriented-
Programming to craft exploit payloads [6]. With this in mind, we consider a
target program that may contain memory corruption vulnerabilities that an
adversary can exploit to run a control flow manipulation attack. We also con-
sider patterns like ABI abuse, which do not violate integrity. For example, a
malicious script may invoke one ABI to save a file followed by another to exe-
cute it. This is allowed by the software specification, but is not the typical usage
pattern.

We also assume that the libraries imported by the program contain vulnera-
bilities and that there may be dynamic code generation, even when the program
is not under attack. For example, Adobe Acrobat Reader performs just-in-time
(JIT) compilation on JavaScript.

2.2 Document Malware

We focus on offline analysis rather than online detection or prevention. We rely
on dynamic analysis that, similar to related systems [38], executes the given
sample for a fixed duration of time. It is possible for malware to employ tech-
niques that detect the analysis environment [12,31] or delay execution beyond
the observed time frame [20]. However, unlike general executables, malicious
documents begin in a viewer program and rely on either scripts or malformed
elements (e.g. CVE-2018-4990) to gain control. Thus, their options for environ-
ment detection are limited and can in themselves create a detectable signal. If
the viewer is closed before the malware has gained control, the attack will be
prematurely terminated. Thus, document malware cannot stall or inject benign
activity for the durations general malware can. Therefore we acknowledge the
known limitations of virtualized dynamic analysis, but argue the compromises
are reasonable for the document malware context.

An additional challenge to document malware analysis is that even when
an application is under attack, most of the overall activity can still be benign.
For example, a trace of Acrobat Reader opening a malicious PDF will contain
behaviors like creating the GUI, which our analysis must be robust to.

Lastly, not all document malware rely on exploits. While many do use vul-
nerabilities in the document viewer to hijack the program execution, some rely
instead on combining the provided ABIs in abusive ways. For example, several
PDF malware use exportDataObject to save and execute an attachment. The
user is warned about such behavior with a message window, but if they click
accept or disable the warning, the attack will succeed. Since ABI abuse does
not violate control flow integrity (i.e. the program is functioning as intended),
mechanisms like CFI and memory safety are not appropriate solutions. These
ABI invocations, however, are reflected in the resulting control flow trace and
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hence, still create a signal. In Sect. 4 we show that compared to exploits, ABI
abuse is harder for Barnum to detect, but is still distinguishable in many cases.

3 Design

Figure 1 shows the system architecture of Barnum. It consists of three major
components: (1) execution trace collection, (2) program behavior modeling, and
(3) anomaly detection via binary classification. Barnum is evaluated on docu-
ment malware targeting Acrobat Reader and Microsoft Word on Windows 7,
but due to its OS and program agnostic design, the methodology can easily
be expanded to cover other programs that process discrete inputs, such as web
services.

Fig. 1. Barnum has three components: (1) trace collection, (2) behavior modeling, and
(3) anomaly detection.

3.1 Control Flow Tracing

The analysis of a program input begins with the collection of a trace. For this
component, there are several design challenges that need to be addressed: (a)
how do we efficiently generate traces of the program execution, (b) since we need
a trusted component to collect traces, how does it bridge the semantic gap to the
rest of the system, and (c) how do we collect the traces and process them into
a useful representation? Underpinning this is the obvious security requirement
that traces must be complete, untampered with, and difficult to evade.

Efficient Tracing. We need an efficient and secure way to collect control flow
traces so we can analyze document malware. For this reason, we decide to lever-
age IntelR© PT at the hypervisor level. IntelR© PT is a hardware tracing feature
found in recent IntelR© CPUs. Using IntelR© PT, developers can trace the CPU
to get a rich stream of data including branching taken-not-taken (TNT), target
instruction pointer (TIP) for indirect calls and jumps, power events, hardware
interrupts, etc. These events are recorded asynchronously as a stream of pack-
ets directly into memory. The CPU guarantees that packets will be recorded
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in the correct order upon instruction retirement. In other words, an IntelR© PT
trace only records what is actually executed. Due to its asynchronous nature,
IntelR© PT introduces minimal performance overhead; under 4% in our measure-
ments. This is several orders of magnitude faster than approaches like binary
instrumentation, allowing Barnum to analyze and classify more samples.

Semantic Gap. IntelR© PT has built-in filtering options to control what is traced.
Of particular interest to this work are CR3 and current privilege level (CPL)
filtering. As these names imply, they configure IntelR© PT to only enable tracing
when a particular value is loaded into the CR3 register and when the CPU is in
a particular CPL. We combine these filters to trace only the user space activity
of our target process. We use a configurable agent inside the virtual machine
(VM) to start the target program and open the document sample.

One caveat to this approach is we need a way to associate CR3 values with
processes. To overcome this challenge, we leverage virtual machine introspection
(VMI) to monitor the guest kernel’s process list.

For security and portability, we control IntelR© PT from a hypervisor and
configure it to write the trace into reserved memory. Since the hypervisor has
exclusive control over the IntelR© PT configuration, the traces are ensured to be
complete and untampered with. The trace is then saved to storage for analysis.

Data Preprocessing. Unfortunately, an IntelR© PT trace alone does not tell the
full story about the program control flow. For example, TNT packets record
a single 1/0 bit for conditionals, which is insufficient to detect loops. To con-
struct meaningful representations of the control flow, we need the corresponding
instructions so we can calculate all the branch targets. This requires additional
sideband data. Specifically, we use VMI to read the memory mapping from
the guest kernel’s data structures and recover the executable pages immediately
before opening the document sample. Thus, we only miss dynamically generated
code or late loaded libraries. Once collected, we combine the program binary
with the IntelR© PT trace to reconstruct the exact sequence of instructions exe-
cuted and their corresponding addresses. We then use the memory mapping to
normalize addresses as offsets within libraries and executables.

We summarize the instructions into basic blocks (BBs), defined as a sequence
of linear instructions ending with a branching instruction (i.e. indirect calls and
jumps, direct branches, and returns) and assign each basic block a universally
unique BBID. We represent the control flow trace as a long sequence of BBIDs for
program behavior modeling. Our implementation extends kAFL [41] to support
user space tracing and we use libipt [1] for trace decoding.

Just-In-Time Compilation. For many programs, dynamic code generation occurs
due to JIT compilation of scripting languages like JavaScript. Since it is not
feasible to enumerate a representative set of possible scripts for documents, we
instead elect to disregard this code in our analysis. When the program jumps into
a code region that is dynamically generated, we stop disassembling the IntelR© PT
trace until the execution returns to a region that was not dynamically generated,
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Last Instr inc movzx icall pop ret push push icall pop pop pop ret pop inc

Subseq #1 701 224 612 968 511 332 172 82 179 20 721 33 422 187

Subseq #2 701 224 612 968 511 332 172 82 179 20 721 33 422 187

Subseq #3 701 224 612 968 511 332 172 82 179 20 721 33 422 187

Subseq #4 701 224 612 968 511 332 172 82 179 20 721 33 442 187

Fig. 2. An example of sub-sequencing the BBIDs for a sliding window of size 3. The
cells contain BBIDs and the top row is the last instruction in each BB. Each row shows
a subsequence contained in the same 14 BBIDs. The lighter cells are the features and
the darker cells are the labels.

upon which we resume disassembly. This means that while we do not attempt
to analyze the control flow inside the JIT code, we still capture the points at
which the program enters and exits it. Similarly, while we do not record kernel
space, the trace captures where entries and exits occur. This allows us to observe
the boundary between these worlds, which is sufficient to detect patterns like
ROP chains and shellcode injection because programs typically have a binding
layer that the control flow always passes through [33]. In other words, observing
transitions that do not go through the binding layer of the program, enter system
libraries directly from JIT code, etc., are indicative of an attack.

3.2 Control Flow Behavior Modeling of a Program

To model the normal control flow of a target program, we have to address the
following: (a) how do we slice the long BBID sequence into manageable subse-
quences, (b) what model should we use to represent normal control flow paths,
and (c) what do we do about code coverage?

Data Slicing. Since control flow hijacking only occurs at indirect calls, jumps,
and returns, we only need to analyze subsequences that end on one of these
instructions. Figure 2 shows how we use a fixed sliding window with variable
width steps so that each frame ends on such instructions. The next BBID after
the frame will become its label, which we discuss later. The optimal window size
is experimentally found to be 32 BBIDs for our model.

Deep Learning Model Selection. While we have the intuition that knowing past
control flow is useful for predicting future execution, shadow stacks being one
such example, it is not trivial to utilize this history to achieve accurate predic-
tions. Using heuristics would be neither practical nor scalable. Instead, we turn
to machine learning (ML) to find these patterns automatically.

We structure our behavior model as a supervised learning problem where,
given a fixed window of past BBIDs, we want to predict the next BBID. In
machine learning terms, the features are the sequence of past BBIDs and the
label is the next BBID in the trace. As we explain earlier, we do not directly
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analyze JIT code. Therefore, the max number of BBIDs is fixed and can be over-
approximated. Since the trace encodes both the features and labels, this type
of learning falls into the subcategory of self-supervised learning. The advantage
of this approach is it does not require manual ground truth annotation, allowing
for better scalability. This is essential given how much data Intel R©PT generates.
To train a program behavior model, we only use traces from the benign dataset
since we want to learn paths under normal conditions.

Fig. 3. The layers, shapes, and activations of our model. Recall that the subsequence
length is 32, hence 32 features. Not shown is a 50% dropout between the two dense
neural layers. We bucket the BBID predictions into 1,024 labels to reduce model size.

Since our features are temporally related, we center our model around recur-
rent neural networks, specifically Long Short Term Memory (LSTM). Our model
consists of an embedding layer followed by three LSTM layers and a final
dense neural network, as shown in Fig. 3. We find the exact layout and hyper-
parameters experimentally. To reduce model size and improve runtime perfor-
mance, we map the BBIDs to buckets, which shrinks the input and output
spaces. To find the ideal number of buckets, we start with each BBID being its
own bucket (i.e. no reduction) and merge buckets until accuracy degrades. For
our datasets, the ideal number is 1024. We decide not to use classical ML mod-
els like n-gram because small n values miss features and large values produce
sparsity leading to performance degradation. In short, picking n is hard whereas
deep learning simplifies feature selection. The ability of LSTM to automatically
extract both long and short-term features makes it well suited to our context.
By contrast, convolutional neural networks have yet to demonstrate higher accu-
racy, but are known to be susceptible to minimal perturbations [4]. In Sect. 4,
we evaluate simpler approaches to this problem to demonstrate the added value
of our ML technique.

Code Coverage. A legitimate concern is whether the training dataset can cover
all possible benign execution paths of a target program. This is known as the
code coverage problem [11]. Code coverage is known to be difficult to guarantee,
especially when source code is not available. We approximate the coverage of
our dataset in Sect. 4 by counting the number of executed instructions.

3.3 Anomaly Detection

Now that we have trained a behavior model to predict normal control flow paths,
we move on to the third major component of Barnum: anomaly detection. The
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major challenge here is how to go from path prediction to anomaly detection.
We use the accuracy and confidence of the model on benign traces to determine
a decision boundary for classifying benign vs. anomalous executions. Given the
BBID subsequences for a trace and the behavior model, we feed each subsequence
into the model, get the prediction and confidence for the next BBID, and check
whether the prediction is correct or not. This process results a sequential list
of 〈confidence percentage, prediction correctness〉 tuples. Since Barnum is a
dynamic analysis framework that records traces for a fixed duration of time, for
a given trace, we average the prediction accuracy and confidence corresponding
to wrong predictions. This gives us two dimensions to examine with our intuition
being that wrong predictions with high confidence are a signal for anomalies.

Given these dimensions, we create a linear decision boundary to express a
threshold. Any data points above the threshold are considered normal while
points below the threshold are anomalous. It is possible to use other kernels to
express the decision threshold, but in practice we find a linear boundary to be
sufficient to achieve high classification accuracy.

4 Evaluation

In this section, we present our evaluation results for Barnum. Specifically, we
evaluate each of the three components of Barnum in the context of analyzing
document malware targeting Adobe Acrobat Reader 9.3 and Microsoft Word
2010 on 64 bit Windows 7. We analyze two distinct programs to demonstrate
Barnum is not overly tailored to a particular program.

4.1 Overview

To evaluate Barnum, we ask several questions:

– Path prediction. How well can Barnum learn the control flow of complex
programs like Acrobat Reader? How does it compare to simpler methods like
rote learning?

– Document malware classification. How accurately can Barnum classify
previously unseen traces to separate benign and malicious documents? How
does it compare to other related work in malware classification?

– Resource consumption. How much memory and storage does Barnum con-
sume to analyze samples? How long does it take to perform analysis?

4.2 Datasets and Experimental Setup

For our PDF dataset, we consider 3,660 samples, of which 1,250 are benign and
2,410 are malicious. These samples are picked randomly from a malware feed
spanning several years. The benign samples are from several sources including
past conference proceedings and the 2013 Contagio dataset [30]. We confirm that
our benign documents contain embedded JavaScript, Flash, and Shockwave so
simply detecting active content will not trivially lead to accurate classification.
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For our malicious dataset, we start with 2,410 malicious samples that match
known signatures from anti-virus companies. Since our system is built on runtime
tracing, we have to manually verify that these samples exhibit their malicious
behavior in our target VM. For example, some malicious PDFs carry exploits for
particular versions of Acrobat Reader and will not perform any malicious activity
if this requirement is not satisfied. We use older program versions to maximize
the chance of triggering the malware, but even then there are unreliable exploits
that simply crash. Lastly, some attacks are embedded in remote content that
the document references. Once the hosting server is taken down, the document
becomes benign. After manual filtering, our malicious dataset contains 1,639
samples; about 68% of the original set. In the context of evaluating dynamic
malware analysis systems, this is typical. For comparison, PlatPal [48] had only
320 malware after filtering, of which their system detected 75.9%.

PDF

pdfjsc perferd name singleton tiff swrort pidief pdfka

2 2 4 7 10 99 201 1,314

Word

powload emotet powdow sagent valyria sload donoff obfuse singleton

3 5 8 8 23 25 33 61 206

Fig. 4. AVClass label counts. Singleton labels are merged into a single category.

In total, AVClass produces 8 unique labels for this dataset with 7 samples
producing no family label (i.e. AVClass classifies them as singletons). The distri-
bution is shown in Fig. 4. We also randomly perturb 500 of our malicious samples
using Mimicus [45] to evaluate the robustness of Barnum.

To demonstrate that Barnum is not tailored to Acrobat Reader, we also
evaluate a dataset of 200 benign and 379 malicious Word documents. AVClass
produces 9 unique labels for this dataset with 206 samples classified as single-
tons. The high number of singletons is due to low detection rates and matches
to signatures with uninformative names on VT. For example, 19 malware are
detected by 3 or less of the 60 anti-virus products used by VT and 2 samples are
fully undetected at the time of writing. Several matched signatures are simply
named heuristic. In short, our Microsoft Word dataset is more challenging for
existing anti-virus than the PDF dataset.

A point worth stressing is Barnum handles Acrobat Reader and Microsoft
Word without modifying any lines of source code. We only adjust two settings to
select which program the agent starts and the process name to trace.

Our experiments are performed on a single desktop with an IntelR© i7-6700K
CPU and Nvidia 1080-Ti GPU. The GPU is only used by the behavior model.
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4.3 Baseline for Comparing PDF Detection

Most existing solutions for PDF malware analysis examine static features
extracted from the document [9,26,28]. These systems are very accurate (>95%),
but are also known to be vulnerable to perturbations like the one proposed
in Mimicus. For dynamic analysis, solutions like CWXDetector [47] achieve
upwards of 93% detection, but have limitations like not being able to detect
exploit based attacks [40,44,46] or code reuse [25]. A more recent work, Plat-
Pal [48], avoids these limitations, but only detects 75.9% of their 320 samples as
malicious or suspicious. We compare Barnum accordingly:

1. We compare the behavior model to a database that performs rote learning to
measure the value our LSTM model adds to Barnum.

2. We show that our detection accuracy is better than CWXDetector and Plat-
Pal, which also perform dynamic analysis on PDF malware.

3. We show that our detection is robust against Mimicus [45], which evades
systems based on static document input features.

[25] [47] [48] Barnum

TP 91.7% (917) 93.2% (6,781) 75.9% (243) 97.8% (1,600)

FN 8.3% (83) 6.8% (497) 24.1% (77) 2.4% (39)

TN 100% (994) 100% (7,278) 100% (1,030) 100% (375)

FP 0% (0) 0% (0) 0% (0) 0% (0)

Fig. 5. Comparison of Barnum against related dynamic PDF analysis systems in terms
of true positive (TP), false negative (FN), true negative (TN), and false positive (FP)
rates. Values are shown as counts and percentages. Barnum has the best TP and FN.

A comparison of our results to related work is presented in Fig. 5.

4.4 Path Prediction for PDF Dataset

To evaluate the accuracy of our behavior model, we randomly split our benign
PDF samples into a training set of 875 and a testing set of 375. Recall that we
do not use the malicious PDFs in this stage of the pipeline.

We also use these same sets to train and test a model based on rote learning.
Specifically, for each subsequence given to the rote learner during training, it
looks up the corresponding row in its database and increments the label (i.e. the
next BBID that follows the subsequence) by one. This creates a database that
counts how often each label occurs for any subsequence seen during training. To
conserve memory, we store this database in Redis, which uses a compressed key-
value encoding and only create rows for subsequences seen during training. For
testing, the model checks if it has seen the given subsequence before. If it has, it
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makes a weighted random guess based on the counts of all the possible labels. If
the subsequence never occurred in training, it makes a completely random guess.

Note that we can adjust the learning capacity of the LSTM model by adding
and removing nodes, which impacts accuracy and in-memory size. For compari-
son, we adjust the LSTM to achieve the same accuracy as the rote learner. Under
this condition, the rote learner’s database takes up 2,030 MB of memory whereas
the LSTM model only needs 2.7 MB. In short, back-propagation enables LSTM
to extract the most important patterns instead of memorizing everything.

4.5 Training Coverage of PDF Dataset

As part of the evaluation for our behavior model, we consider how well our benign
PDF training dataset covers Acrobat Reader. First, we measure the novelty each
additional trace adds to training. Specifically, for each trace, we extract the
BBID subsequences and calculate the percentage that do not occur in previous
traces. The result is summarized in Fig. 6(a). Note that within a single trace, if
the same subsequence occurs multiple times, it is only considered once in the
percentage calculation. As the figure shows, by the end of training we are still
encountering traces where 15% of the subsequences are new. Unfortunately, the
plot also appears to fit a power curve. If this trend is accurate, it implies that
while getting decent coverage is doable, achieving excellent coverage is hard.
Recent work in ML theory supports our finding [16]. However, even with only
875 benign training traces, we achieve better detection accuracy than the related
work considered in Fig. 5.

In addition to the previous metric, we also consider code coverage in terms
of how many unique instructions we encounter across Acrobat Reader and
all its loaded libraries. The result is summarized in Fig. 6(b). Note that this
figure is shown in log scale. We successfully cover 100% of the instructions in

(a) Novelty Curve (b) Instruction Coverage

Fig. 6. The percentage of new subsequences appearing in each subsequent trace (left)
and the coverage of instructions by library (right) for the Acrobat Reader dataset. Note
that we do not expect full coverage of third-party libraries.
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AcroRd32.exe, but on closer inspection we notice this binary is fairly small;
only a few thousand machine instructions. It is likely that this is mostly boot-
strapping logic and the core functionality is actually located in AcroRd32.dll,
where we cover only 12% of the instructions. This low coverage is not surprising
given all the features Acrobat Reader contains that we do not invoke like auto-
matic updating and document editing tools. It is unclear to what degree (if any)
adding more traces would increase coverage. Similarly, low coverage in libraries
is expected since no program uses every function in every linked library. Interest-
ingly, we cover 37% of ntdll.dll, which is used to interact with the Windows
kernel.

4.6 Anomaly Detection for PDF Dataset

As described in Sect. 3, once Barnum has a model trained for predicting the
normal paths of our target program, it can be used by the next layer to perform
binary classification between normal and anomalous traces. To start, we take our
benign training samples and calculate the behavior model’s average accuracy and
misprediction confidence for each. We then set a threshold expressed as a linear
decision boundary such that all these samples fall on one side. This becomes
the normal side. Anything that falls on the other side is an anomaly. Figure 7(a)
shows that Barnum classifies the PDFs with 0% false positive and 2.4% false
negative. This translates to 98.1% accuracy, 100% precision, and 97.6% recall.
These results are significantly better than CWXDetector (6.8% false negative)
and PlatPal (24.1% false negative). In Fig. 7(b), we show the ROC curve for
different thresholds.

To investigate, we randomly pick some misclassified samples and manually
analyze them. Our finding is the malicious samples near the threshold boundary
tend to abuse the Acrobat Reader ABIs (e.g. calling ABIs to save and execute an
attachment) whereas those further from the boundary use exploits. For example,

(a) PDF Dataset (b) ROC Curve

Fig. 7. Classification of our testing PDF dataset of 375 benign, 1,639 malicious, and
500 Mimicus perturbed PDFs. At 0% false positive, the false negative rate is 2.4%.
The accuracy is not degraded by Mimicus.
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all the pdfka traces contain an indirect transfer that appears hundreds of times,
which is mispredicted by the model, causing this family to fall further from the
decision boundary. The transfer site does not appear in any other traces and
we believe it is indicative of an exploit against Acrobat Reader’s TIFF parser
(CVE-2010-0188). We could not find or create a benign PDF that invokes the
same path.

To further demonstrate the value of Barnum, we randomly pick 500 samples
from our set of 1,639 malicious PDFs and perturb them using Mimicus [45].
This is an evasion technique that adds additional DOM elements before the
PDF trailer and modifies meta-data fields (e.g. author) to change the sample’s
appearance without altering its runtime behavior. As a result, it is effective
against systems that rely on static features of the input document. Since Mimicus
guarantees that the runtime behavior (e.g. exploit) is preserved, it is not effective
against dynamic systems like Barnum. However, we do not claim that our system
cannot be evaded just because it resists Mimicus. Rather, the point of including
these samples is to show that Barnum achieves accuracy that is comparable to
systems based on static features while also achieving robustness comparable to
dynamic systems. For the adversary, changing the malicious PDF’s behavior is
more difficult than manipulating the static document features used by existing
solutions because the former requires tweaking the exploit, without breaking it,
while the latter is achievable with DOM element appends and meta-data tweaks.

(a) Word Dataset (b) ROC Curve

Fig. 8. Barnum classifies 100 benign and 379 malicious Word documents with 0% false
positive and 10% false negative. The right figure shows the ROC curve.

4.7 Anomaly Detection for Word Dataset

To demonstrate that Barnum is not limited to Adobe Acrobat Reader, we also
evaluate a set of 100 benign training, 100 testing, and 379 malicious Word doc-
uments using Microsoft Word 2010. The resulting classification and ROC curve
are shown in Fig. 8. Barnum achieves 0% false positive and 10% false negative
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rates on this dataset. The lower performance compared to the PDF dataset is
due to most of the attacks relying on macros. Only 25 of the Word malware do
not contain macros. Exploits are more prevalent in the PDF dataset and easier
for Barnum to detect because their control flow overlaps less with benign traces.
If we consider only the 25 Word samples without macros, our system’s accuracy
becomes 100% with no false positives or negatives. Two recent related work,
ALDOCX [32] and the work by Bearden et al. [5], achieve lower false negative
rates; 5.6% and 3.7% respectively. However, they use static document features,
making them vulnerable to evasion techniques like Mimicus.

4.8 Runtime and Space Performance

The majority of our runtime cost comes from training the behavior model and
using it to make predictions. It takes 3 epochs and 1.5 days to train on 875 benign
PDFs. The low number of epochs is due to traces being long and repetitive,
meaning fewer iterations are needed to converge. At test time, about 25% of
the runtime is preprocessing, 75% is querying the path prediction model, and
less than 1% is calculating the classification decision. Testing 1,783 PDFs takes
5.7 hours, which equates to about 7,500 samples per day per GPU. Traces are
30 MB on average when saved to storage (i.e. at rest).

5 Related Work

In this section, we summarize the related work in anomaly detection and docu-
ment malware analysis.

5.1 Machine Learning Based Malware Detection

Anomaly detection has been applied to numerous domains such as network-
ing [14,24], videos [27], and programs [13]. More recently, researchers have
started exploring the value machine learning can add to anomaly detection [2,7].
LSTM in particular models anomalies well because it can handle sequences.

Barnum relates most closely to HeNet [7] in that both systems apply deep-
learning on hardware traces to detect control flow attacks. Our work, however,
surpasses HeNet in several regards. First, HeNet focuses solely on detecting
exploit based attacks whereas Barnum expands its scope to include other attacks
such as ABI abuse. Second, HeNet directly encodes its traces as images and uses
transfer learning, whereas our behavior model is trained from scratch on BBIDs.
While transfer learning makes training faster, training from scratch ensures that
the layers only inherit deep latent features of trace data. Transfer learning cannot
make this guarantee. Third, HeNet has not been extensively evaluated against
a large dataset or adversarial inputs.
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5.2 Document Malware

The proposals for document malware classification fall into two broad categories:
analysis of static input features and dynamic execution. Analysis based on static
input features has received the most attention [9,18,23,28,43] because it is faster,
easier to scale, and takes advantage of the formal format structure of documents.
Unfortunately, while they have solved problems like de-obfuscating scripts, they
are known to be vulnerable to ML evasion techniques [45,49]. As we demonstrate
in Sect. 4, since Barnum is based on control flow, altering the static structure is
not enough to evade our system. Although we cannot claim our system cannot
be evaded, evading our system is harder than evading systems based on input
features because doing so requires alteration of the exploit.

On the other hand, there are fewer systems that classify documents based
on dynamic behavior [26,47]. Most interesting is PlatPal [48], which runs a
PDF in two different OSes and uses differential analysis to detect exploitation.
Unfortunately, this approach is error prone due to sources of nondeterminism
and subtle differences between implementations of the same program for different
OS. It is also expensive due to the need for two virtual machines per sample.

6 Conclusion

This work introduces a methodology for collecting, modeling, and detecting con-
trol flow anomalies in an OS and program agnostic manner. We present Barnum,
a prototype end-to-end system for collecting and analyzing traces of document
editors opening benign and malicious PDF and Microsoft Word documents on
Windows 7. We show that Barnum can classify documents with higher accuracy
than other dynamic analysis frameworks and resists perturbations that thwart
systems using static input feature.
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