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We propose a novel framework for enabling scalable database-driven dynamic spectrum access and

sharing of heterogeneous wideband spectrum. The proposed framework consists of two complemen-

tary approaches that exploit the merits of compressive sensing theory, low-rank matrix theory, and

user cooperation to build an accurate heterogeneous wideband spectrum map by overcoming the time-

variability of the number of occupied bands, the need for a high number of measurements per sensing

node (SN), the inherent wireless channels’ impairments, and the high reporting network overhead.

First, exploiting the fact that close-by SNs have a highly correlated spectrum observation, we leverage

distributed compressive sensing to enable cooperative heterogeneous wideband spectrum sensing

only from a small number of measurements per each SN. Second, to reduce the network overhead

due to the high width of the spectrum of interest, we propose a two-step approach that performs

spectrum occupancy recovery using the local low-rank property of occupancy sub-matrices. Then,

we combine the completed sub-matrices entries to produce the whole spectrum occupancy matrix.

Through simulations, we show that the proposed framework efficiently achieves high detection in the

sensing step and minimizes the spectrum occupancy matrix recovery error while reducing the overall

network overhead.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The proliferation of wireless devices and applications dur-
ing the last decade (e.g., IoT devices and 5G) has increased the
demand for wireless bandwidth, and hence a serious shortage
problem in the radio spectrum supply has come to the sur-
face. Dynamic spectrum access is a potential solution to address
the need for high data-rates and support the connectivity of
the growing number of wireless devices in the era of 5G by
overcoming the spectrum scarcity and enhancing the spectrum
utilization [3]. It achieves that by allowing opportunistic ac-
cess to temporarily unused portions of the spectrum without
interfering with the primary users or other protected wireless
systems through spectrum awareness techniques, which can be
classified into two families: sensing-based approaches [4–7] and
database-driven approaches [8–13]. Sensing-based sensing ap-
proaches enable secondary users (SU)s to detect the empty chan-
nels in the spectrum on their own by locally scanning it. In

� Parts of this paper (Khalfi et al., 2018 [1,2]) have been presented in proc.

of IEEE Global Telecommunications Conference (Globecom) 2018.∗ Corresponding author.
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ontrast, database-driven approaches provide SUs with a spec-
rum occupancy database, which they can query for temporarily
vailable spectrum resources. These spectrum databases are con-
tructed by combining all the local measurement reports from
ifferent sensing nodes (SNs) via a fusion center that manages the
pectrum access policies. These SNs are dedicated to sensing the
ocal environment, which have also been referred to as Environ-
ent Sensing Capability (ESC) [9]. ESC plays a critical role in the
itizen Broadband Radio Service (CBRS) spectrum sharing system
n the United States. They are deployed in the coastal area to
etect incumbent users’ transmission activities and then update
he spectrum sharing system (SAS) to adjust their database. While
ensing-based approaches have been considered in 4G and 5G
ystems for re-using Wi-Fi 5 GHz bands through License Assisted
ccess (LAA) feature, database-driven approaches have been em-
raced and promoted by various companies (e.g., Google [12],
adioSoft [13] and few others), standards organizations (e.g., 5G
nd CBRS), and independent federal agencies (e.g., FCC [14]).
The current focus of database-driven approaches has been

n the TV spectrum band [8] and, more recently, on the DoD’s
.5 GHz radar band [9]. Many other bands can be shared in the
ear future, which will bear significant fruits to the wireless
pectrum industry. Additionally, TV signals propagate long dis-
ances, which can be sensed with a small number of SNs in a
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iven region. Therefore, extending spectrum databases to cover
ider bandwidth, around 30 GHz bandwidth or more, faces two
ain challenges: (i) the high sampling rate requirement resulting

rom the wideband spectrum at hand, and (ii) the wireless signal
ropagation loss and attenuation resulting from the transmission
t high frequencies.
To overcome the first challenge, sub-Nyquist sampling ap-

roaches relying on the theory of compressive sensing (CS) have
een proposed [4,15], allowing wideband spectrum occupancy
ecovery from small numbers of samples by taking advantage of
he spectrum occupancy sparsity. Despite overcoming the need
or high sampling rates, existing CS-based approaches have two
ain shortcomings. First, practical receiver hardware designs
llow only a much smaller number of measurements than what
hese CS-based approaches necessitate to operate, which typically
ddressed through either sequential sensing (a device performs
ultiple sequential sensing scans) or by sensing only a smaller
umber of bands [16–18]. However, these approaches incur ei-
her excessive recovery delays or limit the number of bands that
an be exploited. Second, the number of implemented hardware
ranches in the CS-based approaches is fixed and it depends on
he band occupancy – or sparsity – level. Practically, a SU does not
ave a prior knowledge about this parameter, and it changes over
ime, making it challenging to achieve accurate recovery [15,16].
ence, if the number of present signals exceeds the pre-specified
parsity, the signal recovery of the system will not be reliable.
n the other hand, implementing more hardware branches than
hat is needed would increase the system’s complexity and
esults in an excessive Silicon area.

As for overcoming the second challenge—i.e., signal propa-
ation decay and attenuation, some research efforts relying on
enser SN deployment and on leveraging low-rank matrix theory
o exploit the spatial correlation between SNs’ observations have
een proposed [7,19]. The basic idea behind these approaches is
xploiting the fact that SNs deployed within the same vicinity
re very likely to observe the same (roughly) wideband spectrum
ccupancy, thereby resulting in a spectrum occupancy matrix,
hose columns represent the either occupancy decisions or the
pectrum measurement reports from the close-by SNs, possesses
ow-rank matrix property. The low-rank matrix property en-
bles the system to reconstruct the spectrum occupancy matrix
ased on a small number of its entries [7,19]. Although these
pproaches reduce the network overhead substantially, they fail
hen the number of bands increases and the bandwidth of in-
erest is at high frequencies, due to the propagation decay that
ignals experience at different frequencies (e.g., millimeter wave
requencies adopted by 5G systems [20]). This is because SNs
ocated at different locations tend to observe utterly different
pectrum occupancies (especially at high frequencies), which vi-
lates the low-rank property of the spectrum occupancy matrix
nd precludes exploiting in the case of wideband access.
In this paper, we propose complementary methods that ex-

loit the wideband spectrum occupancy heterogeneity and char-
cteristics to build an accurate database for wideband spectrum
ccess systems with minimum overhead. First, we leverage the
istributed compressive sensing theory to overcome the need for
high number of measurements per SN while accounting for the
pectrum occupancy heterogeneity [1]. Second, we propose a local
ow-rank matrix approximation framework that builds on the low-
ank matrix theory by adding the spatial dimension to allow a
recise global occupancy recovery while reducing sensing over-
ead [2]. Our approach focuses on exploiting the low-rank matrix
roperty that is present at different sub-matrices of the overall
pectrum occupancy matrix, with each sub-matrix corresponds
o one neighborhood.
The contributions of this paper can be summarized as follows: r

2

• We propose an efficient wideband sensing framework that
enables scalable construction of the spectrum occupancy
matrix for wideband spectrum access.

• We prove that taking a small number of measurements per
SN is enough to decide on the spectrum occupancy in the
neighborhood of each SN through distributed compressive
sensing while exploiting spectrum occupancy heterogeneity.

• To the best of our knowledge, we are the first to use local
low-rank matrix approximation theory to reduce network
overhead and exploit that to build a global and scalable
wideband spectrum occupancy database.

The rest of this paper is organized as follows. Section 2
resents the related works. Section 3 presents our system model.
ection 4 presents our cooperative approach for efficient wide-
and spectrum recovery. Section 5 presents our approach for
educing database construction overhead through local low-rank
atrix approximation. Section 6 presents the performance eval-
ation and result analysis. Section 7 concludes the paper.

. Related works

Spectrum awareness. Our framework combines advances in
ideband spectrum sensing [4–8,21–30] and recent advances

n recommendation systems [31,32]. Authors in [8] propose a
rustworthy spectrum availability database for only TV band
pectrum. Similarly, authors in [33] formulate the spatial reuse
f the TV White Space (TVWS) spectrum as a schematic opti-
ization approach in which they used a fast matrix completion,
nonlinear support vector machine, and opportunistic spatial

euse algorithms. This approach aims to build a location-specific
VWS database that can be used by a D2D link to determine the
aximum permitted power level based on hardware constraints
nd the acceptable level of interference. Spectrum occupancy
atabase is one of the main entities in a CBRS spectrum Access
haring (SAS). It provides all band-related information required in
he access policy-making process, such as occupancies, spectral
ocations of CBRS and incumbent devices, operation duration,
nd transmission power levels. In [27], a wideband sensing-
ased framework is proposed to achieve high spatial reuse of
he unlicensed spectrum in crowded IoT networks. In [9], authors
iscuss spectrum occupancy databases for CBRS. To illustrate the
ractical feasibility of 1 GHz bandwidth sensing, authors in [4]
rovide a proof of concept. More recently, some efforts have
een dedicated to applying machine learning and compressive
ampling theories for spectrum sensing [6,25,34,35]. For instance,
uthors in [34] propose a framework called Rxminer that relies
n mixed Gaussian and Rayleigh models to identify the spectrum
ccupancy. Also, authors in [36] combine between compressive
ensing theory and cyclostationarity pf signals to estimate the
ideband spectrum signal parameters. Their technique outper-

orms the energy detection-based methods in low SNR regime.
n [6], authors exploit the low-rank property of the measurement
atrix to recover unreported measurements in the context of
ollaborative spectrum sensing. This modeling fails to capture
requency reuse, a property of high-frequency bands. More re-
ently, authors extended this approach to detect malicious users
n [24]. Authors in [37] propose a joint tensor completion and
rediction scheme that combines prediction models with a tensor
ompletion algorithm to retrieve the incomplete measurements.
owever, to the best of our knowledge none of the related works
onsidered the wideband spectrum sensing from a minimal num-
er of measurements per SN and exploited the heterogeneous
pectrum occupancy the way we did.
Collaborative filtering. To predict consumers choices, collab-

rative filtering was introduced in recommendation systems by

elying on the similarity between users and ratings. The two main
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hallenges for collaborative systems are sparsity and scalability. It
ses matrix factorization to address scalability issues [38], which
tems from the fact that the users’ preference for a particular
tem is only controlled by a small number or a subset of latent
actors, which translates to a low-rank rating matrix. However,
his assumption does not hold in real-world applications as in-
estigated in [31], which shows that when the global matrix
an be split into several low-rank sub-matrices, more splendid
erformances can be achieved. The main shortcoming of this
roposed approach is the construction of the sub-matrices, which
s done by first randomly selecting a number of anchor points,
nd then, by using distance metrics, points are connected to their
losest anchor points. Besides, it suffers from high computation
nd storage costs. Recently, authors in [32] have proposed SLOMA
o overcome previous weaknesses by incorporating the social
onnections among users. We tailored this approach to make
fficient wideband spectrum sensing in a spectrum database.

. Background and system model

.1. Wideband spectrum occupancy model

We consider a heterogeneous wideband spectrum sensing
WSS) system with I frequency bands. Since, in practice, the spec-
rum accommodates different types of applications, we assume
he spectrum is divided into multiple blocks, with each block
ontaining multiple frequency bands that are allocated to the
ame application. Formally, the I narrow bands are grouped into
disjoint contiguous blocks, with each block, Gn, consisting of Ln

contiguous bands with n = 1 . . .L, being assigned to one applica-
tion type as illustrated in Fig. 1. We model the state of each band
i using a Bernoulli model with parameter pi ∈ [0, 1] where pi
represents the probability that some primary user (PU) occupies
the band i. For simplicity, we assume that a PU cannot occupy
more than one band and the band occupancy is independent.
Hence, the estimated number of occupied bands within a block Gn
equals to the sum of states of all the bands pi within that block,
K̄n =

∑
i∈Gn

pi. According to real measurement studies [39],
the band occupancy statistics (e.g., K̄n) vary from one block
to another; that is, the spectrum occupancy is heterogeneous
with average occupancies varying significantly from one block to
another.

3.2. Spectrum occupancy database model

A database-driven spectrum access system has two main com-
ponents: the spectrum database, which contains the spectrum
occupancy information or map, and multiple SNs, which are to
be deployed in the region to perform sensing and report their
measurements to the database. We assume that the wideband
spectrum of interest is very wide and that each SN can only sense
g ≪ L blocks among the L blocks of the wideband spectrum
containing N bands using sub-Nyquist sampling. We assume the
average number of occupied bands in the g blocks to be K̄.

The time-domain signal, rj(t), received by a SN j can be ex-
pressed as

rj(t) =

K(t)∑
i=1

hij(t) ⊗ si(t) + wj(t)

= hj(t) ⊗ s(t) + wj(t), (1)

where hij(t) is the channel impulse response between the ith
PU and the jth SN, hj(t) = [hij(t)]

K(t)
i=1 , si(t) is the ith PU’s signal

with zero mean and power P, s(t) = [si(t)]
K(t)
i=1 ,wj(t) is an Additive

White Gaussian Noise with variance N ×N0 (assuming a normal-
ized bandwidth; N is the noise variance), ⊗ is the convolution
0

3

operator, and K(t) is the number of instantaneous active PUs
within the sensed g blocks; for simplicity K(t) is assumed to be
equal to the number of occupied bands.

Consider rj[p] = rj(t)|t=pT0 with p = 1, . . . ,
∑z+g−1

k=z Lk and T0
s the Nyquist sampling period and z is the first block of the g
ontiguous frequency blocks sensed by SN j. The discrete Fourier
ransform of SN j’s received signal can be expressed as Rj =

jS+Wj = xj+Wj, where Hj, S, and Wj are the Fourier transforms
f hj(t), s(t), and wj(t), respectively. The vector xj represents the
aded version of the PUs’ signals being sent on the different bands.
rom the CS theory, it follows that the compressed measurements
aken by SN j are [15]:

j = ΦF−1(xj + Wj) = Ψxj + ηj, (2)

here y j ∈ RM is the measurement vector, F−1 is the inverse
iscrete Fourier transform, and Φ is the M × N sensing matrix
ssumed to be full rank, i.e. rank(Φ) = M. Unlike previous
orks [6,24], we exploit the heterogeneity feature of wideband
pectrum occupancy by considering a non-uniform sensing ma-
rix, Φ, whose coefficients are drawn from a nonuniform Bernoulli
istribution as follows. Each coefficient in the nth block of Φ is
±K̄n√
M

}. The sensing noise ηj is defined as ΦF−1Wj. From a practical
viewpoint, one approach of acquiring the average occupancy of
each block, K̄n, is by monitoring the occupancy of each band
ithin the block and averaging them over time, as already been
roposed in [40,41]. Other machine learning-based prediction
pproaches can also be used to provide good estimates of the
verage occupancy.

. Wideband spectrum occupancy recovery through coopera-
ive compressed sensing

.1. Limitations of conventional recovery approaches

Broadly speaking, CS-based signal reconstruction approaches
hat can be exploited to recover the spectrum occupancy vector
from the measurement vector y (Eq. (2)) (subscript j is omitted

or simplicity) can be divided into two categories: (i) greedy algo-
ithm approaches, such as Matching Pursuit (MP), and Orthogonal
atching Pursuit (OMP) [42], which are fast, easy to implement,
nd have a low computational cost, but not as mush as accurate,
nd (ii) convex optimization approaches such as Basis Pursuit
BP) [43] and LASSO which has a better accuracy and robustness,
ut requires more computational cost. A well known example of
he convex optimization class is ℓ1−minimization [44,45], which
ecovers the occupancy decision vector x by solving

: min
z

∥z∥ℓ1 s.t. ∥Ψz − y∥ℓ2 ≤ ϵ (3)

here ϵ is a pre-specified error threshold parameter.
Recall that the number of required measurements for enabling

uccessful spectrum occupancy recovery using the CS-based sens-
ng approaches is M = O(K log(N/K)) [17,46] or a recent tighter
ound as in [47] or [48], which is a function of the total number
f bands, N , and the sparsity level of spectrum, K. This gives rise
o key challenges, which we illustrate next.

• Challenge 1: Hardware limitation. Existing CS-based hard-
ware architectures consist of physical hardware branches
correspond to each required incoherent measurement of
M. The relationship mentioned above between the number
of required incoherent measurements (hardware branches),
total number of bands, and sparsity level shows that the
number of hardware branches required for CS-based recov-
ery approaches is still high and impractical. For example,
for a wideband with a total number of bands N = 100

with a low number of active bands K = 8, the number
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Fig. 1. Wideband spectrum occupancy model. Only small number of bands (the green ones) are occupied at each sensing period.
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of required incoherent measurements (hardware branches)
still can be as high as M = 26 [17]. In practice, however, the
number of branches that reasonable receiver designs have
is typically in the order of 4 to 8 [16], which is still much
lower than the required number of hardware branches, M,
in the CS-based approaches. Hardware challenges limit CS-
based approaches’ ability to accurately recover a wide range
of bands in the entire spectrum, and hence, each SN can only
operate on a small portion of the spectrum.

• Challenge 2: Uncertain and time-varying sparsity. Most
CS approaches assume that the sparsity level, K, is known
to the receiver beforehand and fixed, which equals to the
overall estimated spectrum sparsity such as in the works [4,
49] and the references therein or over-estimated [50]. In
practice, however, a receiver does not have prior informa-
tion about the sparsity level of a spectrum, and it depends
on the current state of the channels, which is time-variant.
Therefore, the time variability of the wideband occupancy
sparsity and the lack of a priori knowledge makes existing
approaches either non-reliable or creating an unnecessarily
high overhead.

To address the above two challenges, cooperative spectrum
sensing approaches have several advantages as they are, in gen-
eral, expected to have a higher detection rate and overall perfor-
mance. Cooperative spectrum sensing approaches are proposed
to share the local spectrum availability information of one SN to
other SNs, often located on different geographic locations. This
property allows the cooperative approaches to reduce the infor-
mation acquisition and the computation recourse costs since they
scan only a portion of the spectrum and then share it with other
SNs, which do the same thing to provide the global spectrum
information for every close-by SN. Hence, we avoid the redundant
scanning of the same area from different SNs and eliminate the
unnecessary costs. Nevertheless, wireless channels’ fading nature
introduces a pivotal challenge to cooperative sensing approaches
that will be discussed in challenge 3.

• Challenge 3: Inconsistent observations. In practice, dif-
ferent SNs may observe different spectrum occupancy due
to wireless channel impairments (e.g., fading, shadowing,
etc.), leading to inconsistent measurements across the dif-
ferent SNs. This presents a challenge when it comes to
using CS-based sensed measurements to collaboratively re-
cover the spectrum occupancy information because the fu-
sion center will receive contradicting measurement reports
about the same portion of the spectrum.

4.2. The proposed wideband spectrum recovery approach

Fading channels generate inconsistency in the measurement
reports from the cooperative SNs in the same vicinity. Each SN j
eports a different spectrum occupancy vector to the fusion cen-
er. However, most of the reports share the same support, the
4

occupied bands, of the (nearly) sparse occupancy vector. Hence,
to be able to detect the support Ω , we propose to compute, for
each SN j, the contribution ξj,n of every column of SN j’s sensing
matrix, Ψj, to y j on each band n; i.e., ξj,n = ⟨y j, ψj,n⟩

2
= (yT

j ψj,n)
2

for n = 1..N . For this, we define the sample mean ξn as

ξn =
1
J

J∑
j=1

ξj,n =
1
J

J∑
j=1

⟨y j, ψj,n⟩
2 for n = 1..N (4)

Once ξn, is computed, the indices corresponding to the K
highest values among the N statistics are selected iteratively. The
selected indices represent the support of the spectrum occupancy.
Although inspired by the approach proposed in [51], our proposed
recovery approach differs in the following aspects: in our work,
(i) we model the signals at the occupied bands as mixed Gaus-
sian and Rayleigh distributions instead of just Gaussian signals,
while modeling the unoccupied bands as Gaussian signals with
a zero mean and variance N0. The signal distribution on the
occupied bands is affected by the distance between each SU and
the active PU. (ii) we model the sensing matrices as non-uniform
Bernoulli distribution, with a mean of 0 and variance 1

ω2
i

with

ωi = 1/K̄n for each column i if i belongs to the nth block; and (iii)
the columns of the sensing matrices are highly correlated due to
the low number of measurements, M in each matrix. Due to a
arge number of channels, N , it is hard to maintain the orthogo-
ality between columns. Our iterative method for recovering the
pectrum support of each SN is presented in Algorithm 1. Recall
hat the goal is to recover the support vector’s indices, not their
ctual signal values.

Algorithm 1: Spectrum occupancy recovery
Input : y j , Ψj , r j,0 = y j , j = 1..Ji , k = 1

1 begin
2 while ∥r j,k∥ℓ2 ≥ ϵ∥y j∥ℓ2 , j = 1..N do
3 nk = argmaxn∈{1..N }

1
Ji

∑Ji
j=1|⟨r j,k−1, ψj,n⟩|

2

4 Ω = Ω
⋃

{nk}

5 r j,k = r j,k−1 −
⟨r j,k−1,ψj,nk ⟩

∥ψj,nk ∥
2
ℓ2

ψj,nk

6 k = k + 1

7 return Ωi

Now that we presented our proposed algorithm, which lever-
ages cooperation to lower the number of required measurements
per SN for recovering the support (non-empty channels) of the
wideband spectrum, the algorithm’s correctness is examined in
the following section.

4.3. Correctness of the proposed spectrum recovery approach

The following theorem states the support set, Ω , is almost
uaranteed to be covered from only a small number of measure-
ents per SN, when we consider a fairly large number of SNs.
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heorem 1. Consider J SNs, and let the measurement matrix Ψj
f SN j contains independent Bernoulli elements, with column i’s
lements being set to {

±1
ωi

}. The vector x is nearly sparse such that
xℓ is i.i.d. Gaussian with zero mean and variance N0 if ℓ /∈ Ω and
ero mean and variance E(x2ℓ) > N0 if ℓ ∈ Ω . With M > 1
easurements per SN, Algorithm 1 recovers Ω with a probability
pproaching one as J → ∞.

emark 1. Recall that we propose a non-uniformly Bernoulli dis-
ributed sensing matrix, and hence, we can improve the detection
robability by exploiting any prior knowledge about the spectrum
ccupancy statistics.

roof. The proof is based on Kolmogorov’s Strong Law of Large
umbers (SLLN) [52], following the same line of argument as
n [51]. The main point is to show that the values of ξn of a band
are adequately distinguishable when it is occupied and when it

s not. SLLN [52] states that the sample mean X̄n =
1
n

∑n
i=1 Xi

of n independent random variables, X1, X2, · · ·, Xn, with finite
expectations (E(Xn) < ∞ for n ≥ 1) converges almost surely to
E(Xn); i.e., P(limn→∞ X̄n = E(Xn)) = 1, and that SLLN holds if one
of the following conditions is satisfied:

(1) X1, X2, · · ·, Xn are identically distributed.
(2) Var[Xn] < ∞ and

∑
∞

n=1
Var[Xn]

n2
< ∞ for all n.

Considering ξj,n = ⟨y j,ψj,n⟩
2, first we need to prove that the

xpectations of these ξj,n are finite. Then, since ξj,n are not identi-
ally distributed (due to the presence of fading), we have to prove
he second part of Kolmogorov’s theorem. Therefore, we start by
omputing the mean and variance of ξj,n for every band n to show
hat both are finite. Without loss of generality, we will assume the
ccupied bands reside in the first K bands while the other bands
re empty since they contain energy that is less than the specified
hreshold. The means and variances are given by the following
roposition.

roposition 1. Consider the nth band. The mean of ξj,n is

(ξj,n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K∑
ℓ=1

E(x2ℓ)M
ω2
ℓω

2
n

+

N∑
ℓ=K+1
ℓ̸=n

N0M
ω2
ℓω

2
n

+
N0M2

ω4
n
, if n /∈ Ω

E(x2n)M
2

ω4
n

+

K∑
ℓ=1
ℓ̸=n

E(x2ℓ)M
ω2
ℓω

2
n

+

N∑
ℓ=K+1

N0M
ω2
ℓω

2
n
, if n ∈ Ω

(5)

and the variance of ξj,n, Var(ξj,n), is given by Eq. (12).

To prove Proposition 1, we use the definitions of mean and
variance and the following Lemma whose proof follows straight-
forwardly from the definition.

Lemma 1. Let ψn be the nth column of the sensing matrix Ψ whose
elements are Bernoulli with zero mean and variance 1

ω2
n
. Then, we

ave the following results.

(⟨ψn, ψℓ⟩
2) =

M

ω2
nω

2
ℓ

(6)

E(⟨ψn, ψℓ⟩
4) =

M(3M − 2)
ω4

nω
4
ℓ

(7)

E(⟨ψn, ψℓ⟩
2
⟨ψn, ψp⟩

2) =
M2

ω4
nω

2
pω

2
ℓ

(8)

E(∥ψℓ∥4
⟨ψn, ψℓ⟩

2) =
M3

2 6 (9)

ωnωℓ

o

5

E(∥ψℓ∥4) =
M2

ω4
ℓ

(10)

E(∥ψℓ∥8) =
M4

ω8
ℓ

(11)

Var(ξj,n)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
ℓ=1

E(x4ℓ)M(3M − 2)
ω4
ℓω

4
n

+ 2
K∑
ℓ=1

K∑
m=1
m̸=ℓ

E(x2ℓ)E(x
2
m)

ω2
ℓω

2
mω

4
n

+
N02M4

ω8
n

+6

[
K∑
ℓ=1

E(x2ℓ)M
ω2
ℓω

2
n

][
N∑

ℓ=K+1
ℓ̸=n

N0M
ω2
ℓω

2
n

+
N0M2

ω4
n

]

+

N∑
ℓ=K+1
ℓ̸=n

N02M(3M − 2)
ω4
ℓω

4
n

+2
∑N

ℓ=K+1
ℓ̸=n

∑N
m=K+1
m̸=ℓ
m̸=n

N02M2

ω2
ℓ
ω2
mω

4
n

+6 N0M2

ω4
n

[∑N
ℓ=K+1
ℓ̸=n

N0M
ω2
nω

2
ℓ

+
N0M2

ωn

]
, if n /∈ Ω

K∑
ℓ=1
ℓ̸=n

E(x4ℓ)M(3M − 2)
ω4

nω
4
ℓ

+ 2
K∑
ℓ=1
ℓ̸=n

K∑
p=1
p̸=ℓ
p̸=n

E(x2p)E(x
2
ℓ)M

2

ω4
nω

4
ℓω

2
p

+6

[
K∑
ℓ=1
ℓ̸=n

E(x2ℓ)M
ω2

nω
2
ℓ

+
E(x2ℓ)M

2

ω4
n

][
N∑

ℓ=K+1

E(x2ℓ)M
ω2

nω
2
ℓ

]

+4
K∑
ℓ=1
ℓ̸=n

E(x2p)E(x
2
ℓ)M

3

ω6
nω

2
ℓ

+
E(x4n)
ω8

n

+

N∑
ℓ=K+1

E(x4ℓ)M(3M − 2)
ω4

nω
4
ℓ

+2
N∑

ℓ=K+1

N∑
p=K+1
p̸=ℓ

E(x2ℓ)E(x
2
p)M

2

ω4
nω

2
pω

2
ℓ

, if n ∈ Ω

(12)

In order to prove that the expectations of ξj,n are finite, it is
sufficient to show that E(x2ℓ) and E(x4ℓ) are finite. By exploiting
the fact that PUs use finite powers in their transmissions, and
E(x2ℓ) and E(x4ℓ) are upper bounded by the transmit power P
and P2, we can say that E(x2ℓ) and E(x4ℓ) are finite which also
means that expectations of ξj,n are finite.

∑
∞

j=1
Var(ξj,n)

j2
is finite

(upper bounded by
(
max

j
Var(ξj,n)

) ∞∑
k=1

1
k2

) which according to

Kolmogorov’s theorem is sufficient to prove that ξn almost surely
converges to the mean given by Proposition 1. Finally, we have
1
J

∑J
j=1 ξj,n converge to E(ξj,n) for n = 1..N . To finish the proof,

we still need to show that the mean of an occupied band n is
adequately distinguishable from its mean when it is unoccupied.
The clear distinction between the two cases is preserved even
in the case of uniformly distributed sensing matrices. Yet, it has
more importance in our case, non-uniformly distributed sensing
matrices. Fig. 2 shows the ratio of the means of the two afore-
mentioned cases for different SNRs and number of measurements
M. ■

4.4. Exploiting user closeness

Theorem 1 confirms that relying on multiple SNs allows to
vercome the two challenges related to hardware limitation and
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Fig. 2. E(ξn)/E(ξn′ ) with n is an occupied band and n′ is an unoccupied band for
ifferent SNRs: N = 256, Ki = 29, weights in the occupied bands ωin = 1/Ki ,
eights in the unoccupied bands ωout = 1, N0 = −120 dBm.

fading environments. Nevertheless, a large number of SNs is
needed to be able to overcome these challenges. However, we can
show that the number of required SNs can be largely reduced by
leveraging the closeness between SNs. To illustrate this further,
consider two SNs with measurement vectors y1 = Ψ1x1 + η1
and y2 = Ψ2x2 + η2. When the received signals at the SNs
are quite similar, say x2 = x1 + δx, y2 can be expressed as
y2 = Ψ2x1 + η2 + Ψ2δx. This is equivalent to a sequential
spectrum sensing where one SN senses the spectrum twice,
i.e., yc = [yT

1 yT
2]

T , Ψc = [ΨT1 ΨT2]
T , and η = [ηT1 η

T
2 + (Ψ2δx)T ]T .

With a higher number of measurements, conventional recovery
approaches such as LASSO [43] and OMP [42] can be used. Clearly,
as one of the signals starts to deviate from the other due to having
a higher noise variance, the detection probability of the recovery
gradually decreases. We will show the effectiveness of exploiting
the closeness of the SNs in the simulations results section.

4.5. Limitations of the proposed recovery approach

So far, we have presented techniques that allow each SN to
recover the occupancies of a subset of spectrum blocks within its
vicinity. Although these techniques can be useful for individual
SNs, they do not provide occupancy information for all blocks
at every location. Hence, they cannot be used for constructing
wideband spectrum databases, which require acquiring knowl-
edge about spectrum occupancy of all blocks at all locations. To
be able to do this, (1) each SN is required to sense and report
spectrum occupancies in all bands of the spectrum and (2) each
physical location must be covered by some SNs. However, this
would incur substantial overhead in terms of the number of
measurements needed per SN (and hence the amount of traffic),
as well as the sensing delay due to sequential sensing. In addition,
this becomes more difficult to realize when considering a large
wideband spectrum. This is because large wideband spectrum
may contain high-frequency components that are susceptible to
high signal attenuations, thus calling for higher numbers of SNs
to be able to overcome such high attenuations.

In the next section, we present an efficient approach that
exploits the low-rank matrix theory to address these aforemen-
tioned limitations.

5. Wideband database construction through local low-rank
matrix approximation

Once the vectors xjs are recovered by the SNs from the com-
pressed measurements y js, such vectors will be used to construct
the spectrum occupancy matrix (spectrum database) R whose
columns correspond to the SNs and rows correspond to the bands.
Since each SN senses only a small portion of the wideband spec-
trum, the occupancy matrix will only be partially filled; i.e., most
6

of its entries will be missing. For instance, the ith column of
the matrix, R, contains the occupancy decisions deduced from
xj and the rest of the entries are empty. One approach that has
been used in the literature to fill in the rest of the entries of
R is the use of collaborative filtering, which is known to work
as long as the number of observed decisions in R, ∆, is at least
ξ = O(m5/4r logm) with r is the rank of R andm = max(I,J ) [19,
Theorem 1.1]. That is, the recovery of the missing entries of R can
be formulated as a convex optimization

Prank : min
X

rank(X) s.t.
∑
(i,j)∈∆

(
Rij − Xij

)2
≤ ϵ (13)

or

Pnucl : min
X

∥X∥∗ s.t.
∑
(i,j)∈∆

(
Rij − Xij

)2
≤ ϵ (14)

where ∥ · ∥∗ is the nuclear norm. Note that the main difference
between both approaches is that Pnucl does not depend on the
value of the rank of R.

One of the failing points of this approach is the inconsistent
observations of the cooperative SNs that are located in different
locations when dealing with relatively high frequencies. In high-
frequency bands, the chances that different SNs receiving a totally
different spectrum occupancy is very high. Hence, the low-rank
matrix property is violated and therefore the aforementioned
convex optimization equations are no longer valid. Neverthe-
less, the low-rank property is still preserved at the sub-matrix
levels. Hence, in our framework, we propose an approach that
leverages this fact to use the convex optimization equations to
construct the sub-matrices and therefore be able to construct
the global occupancy matrix. Observations showed that even
when the overall spectrum occupancy matrix violates the low-
rank property, the sets of the matrix (sub-matrix) representing
information from close-by SNs still preserve that property. Each
sub-matrix can be considered as a separate matrix that can be
efficiently completed/constructed using (14), as described in the
next section. The assembly of all sub-matrices can form the global
occupancy matrix.

5.1. Spectrum matrix construction

The occupancy matrix of the spectrum can be conceived as a
flag matrix filled with zeros and ones, where zero flags represent
empty bands while the one flags represent the occupied bands.
First, we normalize the matrix entries to have a zero mean value
by subtracting 0.5 from each entry of the observed entries in the
matrix. The normalization is critical to differentiate between the
observed occupancies (part of ∆) and the entries to be recovered
(containing zeros) using the low-rank matrix theory. Depending
on how many sub-matrices are to be considered, we determine
the number of anchor points, q, to be deployed. Now, the spec-
trum observations of SNs within a given distance from each an-
chor point are arranged in each sub-matrix. This distance is deter-
mined by considering the range of detection for the highest car-
rier frequency. The width of each sub-region is decided based on
the detection range of the highest carrier frequency, which can be
estimated using practical propagation models for high frequen-
cies [20]. Overlapping between the sub-regions is desired to help
decide on the occupancy of the SNs in the sub-regions boundaries.

5.1.1. Local low-rank spectrum sub-matrices recovery
The occupancy of each spectrum sub-matrix, Mk, for k =

1, . . . , q is the solution to the optimization problem

P : min
X

∥X∥∗ s.t.
∑ (

Ok
ij − Xij

)2
≤ ϵ (15)
(i,j)∈∆k
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Fig. 3. The different steps of the local low-rank matrix based recovery. (1) Spectrum sub-matrices construction, (2) Local low-rank matrix completion of each
sub-matrix, (3) and (4) Global matrix completion.
where ∆k is a subset of ∆ containing observations used to com-
plete the matrix Mk. Note that P is similar to (14) except
that it does not consider the entire observed matrix spectrum
occupancies ∆.

5.1.2. Global recovery via weighted decisions
After completing all the sub-matrices, a global decision is

made by assembling all of them into their original global matrix.
This is illustrated in Fig. 3. Since the recovered spectrum decision
of each SN depends on the neighborhood the SN is situated at, the
final spectrum decision is made by combining all the decisions
made by neighboring nodes. The entries of the global spectrum
occupancy matrix R̂ is then expressed as

R̂ij =

q∑
k=1

Kk
ij∑q

s=1 K
s
ij
Mk

ij (16)

here Kk
ij is a kernel function that depends on the distance, dik,

etween SN i and an anchor point ck. We adopt the following
imilarity function (Kernel)

k
ij(dik) =

{
1, if dik < dth

e−βdik , otherwise
(17)

here dth is the maximum distance over which the similarity is
reserved, and β is a decay parameter. This similarity function
reserves a unity gain within the range of the distance thresh-
ld dth, and as the SNs get further, the similarity diminishes
xponentially to zero.
Finally, the sign of each entry of the matrix R represents the

inal binary matrix.

.2. Computational and communication overhead reduction

Conventionally, the occupancy decisions of spectrum in the
icinity of a SN incurs a communication overhead that is linear
n I and J . When using compressive sensing without low-rank
atrix recovery, the incurred communication overhead is linear

n J , the number of compressed samples M, and ⌊I/N⌋. Our
roposed framework manages to reduce the complexity by elim-
nating the linearly dependent overhead on ⌊I/N⌋. Hence, an
verall network overhead reduction and lesser reporting energy
re achieved with our proposed scheme. Specifically, the global
ccupancy matrix recovery complexity equals to q times the
omplexity of the optimization problem in (15), or even smaller
ince this can be executed in parallel.
7

Fig. 4. The detection probability for N = 128.

6. Performance evaluation results

We start our performance evaluation by the proposed spec-
trum occupancy recovery approach discussed in Section 4. We
consider a primary system operating over a wideband consisting
of N = 128 bands grouped into g = 4 blocks with equal
sizes. The average probabilities of occupancy in each block are as
follows: K̄1 = p1 ×32, K̄2 = p2 ×32, K̄3 = p3 ×32, K̄4 = p4 ×32,
where p1 = p3 = 0.1 and p2 = p4 = 0.001. The PUs are randomly
deployed in a cell. We assume all PUs are transmitting with a
constant power P = 10 W. We also model the spectrum channels
as a Rayleigh distributed channels with mean 1/d3/2. We model
the noise in the unoccupied bands as Gaussian with zero mean
and variance N0 = −120 dBm.

Fig. 4 shows the detection probability as a function of the
number of cooperating SNs, J . First, we observe that as the
number of cooperating SNs increases, a high detection probability
is achieved regardless of the number of measurements each SN is
taking, thus confirming our main theorem result. This is mainly
because as J increases, ξj,n converges to its expectation E(ξj,n),
and hence, a better distinction between the bands is achieved.
Second, we also observe that a high detection probability is
achieved by considering a higher number of measurements, M,
for the same number of sensing nodes, J . We notice that with
M = 16, only a small number of SNs (4 or 5) is needed to
get a very high detection probability. If SNs cannot afford this
number of measurements, then it can be reduced with the price
of increasing the number of SNs.

Instead of requiring a large number of SNs at different geo-
graphic locations, we rather consider to exploit SNs’ closeness to
each other to reduce the required number of SNs. We examine the
potential of this method by applying OMP and LASSO on the data
captured by 6 close-by SNs. Fig. 5 clearly shows that the detection
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Fig. 5. The detection probability for M = 8 and N = 128.

ate of our method is very comparable with the results obtained
rom the approach that requires a high number of SNs, which
onfirms our hypothesis. Furthermore, our proposed approaches
utperform the sequential sensing approach proposed in [16],
ainly because of their ability to overcome the hidden terminal
roblem due to signal propagation decay.
Now that we validated the spectrum sensing techniques, we

xamine the efficiency of the local low rank spectrum occupancy
atrix completion that aims at reducing the network overhead.
e assume the presence of multiple PUs operating in some of
= 250 bands (this can be in the 5 − 15 GHz range with

0 MHz bandwidth each). The deployment of the active users
ollows a Poisson Point Process (PPP) with a density of 2/Km2

eployed in the 2D plane. To mimic real-world scenarios, we
ssume that high-frequency bands are reused more frequently
han low-frequency bands. We also assume that each SN senses
/5 of the bands. Sub-matrices are defined based on how far a
ignal sent over a frequency fc . We adopted the 3GPP TR 38.901
Ma LOS path loss model [20] given by

LdB = 32.4 + 20 log10
(
d(m)

)
+ 30 log10

(
fc(GHz)

)
(18)

or 0.5 < fc < 100 GHz and the shadow fading standard deviation
qual to 7.8 dB. We consider the sensitivity to be −120 dBm,
elow which a signal a considered absent. The SNs are deployed
ccording to a uniform PPP with density 10/Km2 deployed in the
D plane and are linked to the closest anchor point forming the
ub-matrices.
To assess the performance of our scheme, we generate the

ntire spectrum occupancy matrix to compare the final recov-
ry matrix with it. Since our focus is on completing the con-
truction of the spectrum occupancy matrix, we consider the
ideband spectrum recovery of the observed portion from each
N to be error free. The spectrum sub-matrix completion is done
sing [53].
First, we observed from the generated spectrum occupancy

atrix that the low-rank property for the sub-matrices is con-
irmed while the global matrix has no low-rank property (rank >
0 for the case of having 250 bands).
Fig. 6 shows the recovery error (computed as the Frobenius

orm) as a function of the number of frequency bands. First,
bserve that our proposed framework allows achieving a high
eduction gain in error (about 10X gain) compared to the classical
pproach. This is thanks to the observation of the local low rank
roperty (confirmed through simulations). Second, we observe
hat the recovery error decays as we increase the number of
requency bands for both the proposed and classical methods
ith a steeper fall in the proposed approach. This trend is because
he property of global low-rank is strengthened as we increase
he number of frequency bands , and therefore, the recovery error
s decreased.

Fig. 7 studies the effect of the number of anchor points. Over-
ll, we observe that as the number of anchor points increases,
reduction in the error is achieved, which confirms the same

bservation made in Fig. 6.

8

Fig. 6. Error: proposed approach vs traditional approach.

Fig. 7. Effect of the number of submatrices.

7. Conclusions

A framework that builds an accurate spectrum occupancy map
for wideband spectrum sharing is proposed. We exploited user
cooperation to cope with the SNs’ hardware limitations, the time
variability in the wideband spectrum occupancy, and the network
overhead to improve sensing for each block of the spectrum.
Also, we discussed and showed the potential of distributed com-
pressive sampling-based spectrum sensing to overcome sensing
overhead by reducing the number of measurements an SU needs
to take. Moreover, we showed that the impact of fading could
be overcome by considering close-by SNs and exploited the spa-
tial correlation between sensing nodes to achieve scalable deci-
sions for the spectrum occupancy at minimum communication
overhead.
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