
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

Quasi-Newton methods for machine learning:
forget the past, just sample

A. S. Berahas, M. Jahani, P. Richtárik & M. Takáč

To cite this article: A. S. Berahas, M. Jahani, P. Richtárik & M. Takáč (2021): Quasi-Newton
methods for machine learning: forget the past, just sample, Optimization Methods and Software,
DOI: 10.1080/10556788.2021.1977806

To link to this article: https://doi.org/10.1080/10556788.2021.1977806

Published online: 15 Oct 2021.

Submit your article to this journal

Article views: 7

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2021.1977806
https://doi.org/10.1080/10556788.2021.1977806
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2021.1977806
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2021.1977806
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2021.1977806&domain=pdf&date_stamp=2021-10-15
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2021.1977806&domain=pdf&date_stamp=2021-10-15

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2021.1977806

Quasi-Newtonmethods for machine learning: forget the past,
just sample

A. S. Berahas a, M. Jahani b, P. Richtárik c and M. Takáč d

aDepartment of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA;
bDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA;
cComputer, Electrical and Mathematical Science and Engineering Division, KAUST, Thuwal, Saudi Arabia;
dMohamed bin Zayed University of Artificial Intelligence (MBZUAI), Masdar City – Abu Dhabi, United Arab
Emirates

ABSTRACT
We present two sampled quasi-Newton methods (sampled LBFGS
and sampled LSR1) for solving empirical risk minimization problems
that arise in machine learning. Contrary to the classical variants of
these methods that sequentially build Hessian or inverse Hessian
approximations as the optimization progresses, our proposedmeth-
ods sample points randomly around the current iterate at every iter-
ation to produce these approximations. As a result, the approxima-
tions constructed make use of more reliable (recent and local) infor-
mation and do not depend on past iterate information that could be
significantly stale. Our proposed algorithms are efficient in terms of
accessed data points (epochs) and have enough concurrency to take
advantage of parallel/distributed computing environments. We pro-
vide convergence guarantees for our proposed methods. Numerical
tests on a toy classification problem as well as on popular bench-
markingbinary classification andneural network training tasks reveal
that the methods outperform their classical variants.

ARTICLE HISTORY
Received 26 September 2020
Accepted 26 July 2021

KEYWORDS
Quasi-Newton; curvature
pairs; sampling; machine
learning; deep learning

1. Introduction

In supervised machine learning, one seeks to minimize the empirical risk,

min
w∈Rd

F(w) := 1
n

n∑
i=1

f (w; xi, yi) = 1
n

n∑
i=1

fi(w) (1)

where f : Rd → R is the composition of a prediction function (parametrized by w) and a
loss function, and (xi, yi), for i = 1, . . . , n, denote the training examples (samples).Difficul-
ties arise inminimizing the function F for three main reasons: (1) the number of samples n
is large; (2) the number of variables d is large; and, (3) the objective function is nonconvex.

In the last decades, much effort has been devoted to the development of stochastic first-
order methods that have a low per-iteration cost, enjoy optimal complexity, are easy to

CONTACT A. S. Berahas albertberahas@gmail.com

Supplemental data for this article can be accessed here. https://doi.org/10.1080/10556788.2021.1977806

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2021.1977806&domain=pdf&date_stamp=2021-10-14
http://orcid.org/0000-0002-2371-9398
http://orcid.org/0000-0002-7048-0981
http://orcid.org/0000-0003-4380-5848
http://orcid.org/0000-0001-7455-2025
mailto:albertberahas@gmail.com
https://doi.org/10.1080/10556788.2021.1977806

2 A. S. BERAHAS ET AL.

implement, and that have proven to be effective for many machine learning applications.
At present, the preferred method for large-scale applications is the stochastic gradient
(SG) method [8,56], and its variance-reduced [22,34,51,58] and adaptive variants [23,38].
However, these methods have several issues: (1) they are highly sensitive to the choice of
hyper-parameters (e.g. steplength and batch size) and tuning can be cumbersome; (2) they
suffer from ill-conditioning; and, (3) they often offer limited opportunities for parallelism;
see [5,9,40,57,63].

In order to alleviate these issues, stochastic Newton [6,14,47,57,62] and stochastic
quasi-Newton [2,3,15,19,27,31,32,35,49,59] methods have been proposed. These methods
attempt to combine the speed of Newton’s method and the scalability of first-order meth-
ods by incorporating curvature information in a judicious manner, and have proven to
work well for several machine learning tasks [5,63].

With the advances in distributed and GPU computing, it is now possible to go beyond
stochastic Newton and quasi-Newton methods and use large batches, or even the full
dataset, to compute function, gradient and Hessian vector products in order to train
machine learning models. In the large batch regime, one can take advantage of parallel
and distributed computing and fully utilize the capabilities of GPUs. However, researchers
have observed thatwell-tuned first-order methods (e.g. ADAM) are far more effective than
full batch methods (e.g. LBFGS) for large-scale applications [29,36].

Nevertheless, in this paper, we focus on (full) batch methods that incorporate local
second-order (curvature) information of the objective function. These methods mitigate
the effects of ill-conditioning, avoid or diminish the need for hyper-parameter tuning,
have enough concurrency to take advantage of parallel computing, and, due to requiring
fewer iterations enjoy low communication costs in distributed computing environments.
Specifically, we focus on quasi-Newton methods [53]; methods that construct curvature
information using first-order (gradient) information. We propose two variants of classical
quasi-Newton methods that sample a small number of random points at every iteration to
build (inverse) Hessian approximations.

We aremotivated by the results presented in Figure 1 that illustrate the performance (for
10 different starting points) of several stochastic and deterministic, first- and second-order
methods on a toy neural network classification task, given budget; see Section 8 for details.
As is clear from the results, first-order methods converge very slowly, and sometimes even
fail to achieve 100% accuracy. Similarly, classical quasi-Newton methods are also slow or

Figure 1. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, Newton-TR (CG, Exact) on a toy classifica-
tion problem.

OPTIMIZATION METHODS & SOFTWARE 3

stagnate. On the other hand, methods that use the true Hessian are able to converge in very
few iterations from all starting points. This seems to suggest that for some neural network
training tasks second-order information is important and that the curvature information
captured by classical quasi-Newton methods may not be adequate or useful.

The key idea of our proposedmethods is to leverage the fact that quasi-Newtonmethods
can incorporate second-order information using only gradient information at a reasonable
cost, but at the same time to enhance the (inverse) Hessian approximations by using more
reliable (recent and local) information. The fundamental component of our methods, and
what differentiates them from the classical variants, is the manner in which the curvature
pairs are constructed. To this end, we propose to forget past curvature information and
sample new curvature pairs at every iteration.
Contributions. Our contributions can be summarized as follows:

• We propose two novel quasi-Newton methods that use sampling to construct Hessian
approximations.We analyse the convergence properties of both methods and show that
their theoretical guaranteesmatch those of their classical limited-memory counterparts.

• We derive expressions for the probability of accepting curvature pairs within our quasi-
Newton frameworks. Moreover, we illustrate empirically the probability of accepting
curvature pairs on a toy classification problem.

• We discuss the implementation costs of the sampled quasi-Newton methods and com-
pare them to the classical variants, and illustrate the scaling properties of the methods
compared to the SG method on distributed computing platforms on real large-scale
network architectures.

• We illustrate the practical performance of the methods on a toy classification problem
as well as on popular benchmarking binary classification and neural network training
tasks, and show their advantages over the classical variants. We posit that this is the case
since the (inverse) Hessian approximations constructed by our proposed methods cap-
ture better (more informative) curvature information.Moreover, the proposedmethods
are easily parallelizable and efficient in terms of iteration, epochs and communication.

The paper is organized as follows. We conclude this section with a literature review
of quasi-Newton methods. We describe the classical (L)BFGS and (L)SR1 methods in
Section 2, and in Section 3, we present our proposed sampled quasi-Newton variants. In
Section 4, we discuss the computational cost of the proposedmethods and show their scal-
ing properties. We show the theoretical properties of our proposed methods in Section 5.
In Section 7, we provide a theoretical and numerical analysis on the probabilities of accept-
ing the sampled points within our proposed quasi-Newton frameworks. Numerical results
on neural network training tasks are reported in Section 8. Finally, in Section 9, we provide
some final remarks and discuss several avenues for future work.
Literature review. Quasi-Newton methods, such as BFGS [10,24,26,60] and SR1 [13,17,37]
and their limited-memory variants LBFGS [44,52] and LSR1 [11,46], respectively, have
been studied extensively in the deterministic nonlinear optimization literature. These
methods incorporate curvature (second-order) information using only gradient (first-
order) information, have good theoretical guarantees, and have proven to be effective in
practice.

4 A. S. BERAHAS ET AL.

In the context of deep neural networks, both full batch and stochastic quasi-Newton
methods seem to perform worse than (stochastic) first-order methods. Nevertheless,
several stochastic quasi-Newton methods have been proposed; see e.g.[2,15,59]. What
distinguishes these methods from one another is the way in which curvature pairs are con-
structed. Our methods borrow some of the ideas proposed in [15,27,45]. Specifically, we
use Hessian vector products in lieu of gradient displacements.

Possibly the closest works to ours are Block BFGS [25] and its stochastic variant [27].
These methods construct multiple curvature pairs to update the quasi-Newton matrices.
However, there are several key features that are different fromour approach; in these works,
(1) the Hessian approximation is not updated at every iteration, and (2) they enforce that
multiple secant equations hold simultaneously.

2. Quasi-Newtonmethods

In this section, we review two classical quasi-Newton methods (BFGS and SR1) and their
limited memory variants (LBFGS and LSR1). This will set the stage for our proposed
sampled quasi-Newton methods.

2.1. BFGS and LBFGS

Let us begin by considering the BFGS method and then consider its limited-memory
version. At the kth iteration, the BFGS method computes a new iterate by the formula

wk+1 = wk − αkHk∇F(wk), (2)

whereαk is the step length,∇F(wk) is the gradient of (1) andHk is the inverse BFGSHessian
approximation that is updated at every iteration by means of the formula

Hk+1 = VT
k HkVk + ρksksTk ,

ρk = 1
yTk sk

, Vk = I − ρkyksTk ,

where the curvature pairs (sk, yk) are defined as

sk = wk − wk−1, yk = ∇F(wk) − ∇F(wk−1). (3)

As is clear, the curvature pairs (3) are constructed sequentially (at every iteration), and as
such the inverse Hessian approximation at the kth iteration Hk depends on iterate (and
gradient) information from past iterations.

The inverse BFGS Hessian approximations are constructed to satisfy two conditions:

Hk+1yk = sk, and sTk yk > 0,

the secant and curvature conditions, respectively, as well as symmetry. Consequently, as
a result, as long as the initial inverse Hessian approximation is positive definite, then all
subsequent inverse BFGS Hessian approximations are also positive definite. Note, the new
(inverse) Hessian approximation Hk+1 differs from the old approximation Hk by a rank-2
matrix.

OPTIMIZATION METHODS & SOFTWARE 5

In the limited-memory version, the matrixHk is defined at each iteration as the result of
applyingm BFGS updates to amultiple of the identitymatrix using the set ofmmost recent
curvature pairs {si, yi} kept in storage. As a result, one need not store the dense inverse
Hessian approximation, rather one can store twom × dmatrices and compute the matrix-
vector product in (2) via the two-loop recursion [53]. After the step has been computed,
the oldest pair (sj, yj) is discarded and the new curvature pair is stored.

2.2. SR1 and LSR1

Contrary to the BFGS updating formula, and as suggested by the name, the symmetric-
rank-1 (SR1) updating formula allows one to satisfy the secant equation and maintain
symmetry with a simpler rank-1 update. However, unlike BFGS, the SR1 update does not
guarantee that the updatedmatrixmaintains positive definiteness. As such, the SR1method
is usually implemented with a trust region; we introduce it in this way below.

At the kth iteration, the SR1 method computes a new iterate by the formula

wk+1 = wk + pk, (4)

where pk is the minimizer of the following subproblem

min
p

mk(p) = F(wk) + ∇F(wk)
Tp + 1

2p
TBkp,

s.t. ‖p‖ ≤ �k,
(5)

�k is the trust region and Bk is the SR1 Hessian approximation computed as

Bk+1 = Bk + (yk−Bksk)(yk−Bksk)T

(yk−Bksk)Tsk
. (6)

Similar to LBFGS, in the limited-memory version of SR1 the matrix Bk is defined at each
iteration as the result of applyingm SR1 updates to a multiple of the identity matrix, using
a set ofm correction pairs {si, yi} kept in storage.

3. Sampled quasi-Newtonmethods

In this section, we describe our two proposed sampled quasi-Newton methods; S-LBFGS
and S-LSR1. Themain idea of these methods, and what differentiates them from the classi-
cal variants, is the way in which curvature pairs are constructed. At every iteration, a small
number (m) of points are sampled around the current iterate and used to construct a new
set of curvature pairs. In other words, contrary to the sequential nature of classical quasi-
Newton methods, our proposed methods forget all past curvature pairs and construct new
curvature pairs from scratch via sampling.

Our motivation stems from the following observation: by constructing Hessian approx-
imations via sampling, one is able to better capture curvature information of the objective
function. In Figures 2 and 3, we show the spectrum of the true Hessian, and compare it
to the spectra of different SR1 Hessian approximations at several points for two toy clas-
sification problems. As is clear from the results, the eigenvalues of the S-LSR1 Hessian
approximations better match the eigenvalues of the true Hessian compared to the eigen-
values of the SR1 and LSR1 Hessian approximations. This is not surprising since S-LSR1

6 A. S. BERAHAS ET AL.

Figure 2. Comparison of the eigenvalues of (L)SR1 and S-LSR1 (@A, B, C) for a toy classification problem
(small network). The x-axis in the left-most plot (in Figures 2 and 3) depicts the iterations; the x-
axis in the plots in columns 2-4 (Figures 2 and 3) depicts the indices of eigenvalues (sorted in ascending
order) of the Hessian and Hessian approximations.

Figure 3. Comparison of the eigenvalues of (L)SR1 and S-LSR1 (@A, B, C) for a toy classification problem
(medium network).

uses newly sampled local information, and unlike the classical variants does not rely on
past information that could be significantly stale. Similar results were obtained for other
problems; see [4, Section A.2] for details.

This, of course, does not come for free. The classical variants construct curvature pairs
as the optimization progresses at no additional cost, whereas the sampled quasi-Newton
methods require the construction of m new curvature pairs at every iteration. We discuss
implementation issues and the computational cost of the sampled quasi-Newton methods
in Sections 3.1 and 4.

We now discuss the way in which curvature pairs are constructed, and then formally
introduce our proposed sampled quasi-Newton methods.

3.1. Sampling curvature pairs

As mentioned above, the key component of our proposed algorithms is the way in which
curvature pairs are constructed. A pseudo-code of our proposed sampling strategy and
construction of the curvature pairs in given in Algorithm 1. Let S ∈ R

d×m and Y ∈ R
d×m

denote the matrices of all curvature pairs constructed during the kth iteration.
Both S-LBFGS and S-LSR1 use the subroutine described in Algorithm 1. At every

iteration, given the current iterate and gradient, m curvature pairs are constructed. The
subroutine first samples points around the current iterate along a random directions σi
and sets the iterate displacement curvature pair (s), and then creates the gradient difference
curvature pair (y) via gradient differences (Option I) or Hessian vector products (Option
II). Note that the random directions σi can be arbitrary; in the latter part of the paper
(Sections 8 and 7), we make an explicit choice on the directions.

Our theory holds for both options; however, in our numerical experiments, we present
results with Option II only for the following reasons. Option I requiresm gradient evalua-
tions (m epochs), and thus requires accessing the datam times. On the other hand, Option

OPTIMIZATION METHODS & SOFTWARE 7

Algorithm 1 Compute new (S,Y) curvature pairs
Input: w (iterate), m (memory), r (sampling radius), S = [], Y = [] (curvature pair
containers).
1: Compute ∇F(w)

2: for i = 1, 2, . . . ,m do
3: Sample a random direction σi
4: Construct w̄ = w + rσi
5: Set s = w − w̄ and

y =
{

∇F(w) − ∇F(w̄), Option I
∇2F(w)s, Option II

6: Set S = [S s] and Y = [Y y]
7: end for

Output: S,Y

II only requires a single Hessian matrix product which can be computed very efficiently
on a GPU, as the y curvature pairs can be constructed simultaneously, i.e. Y = ∇2F(w)S,
and thus only requires accessing the data once. Moreover, Option I requires choosing the
sampling radius r, whereas Option II does not since it is scale invariant.

Before we proceed with our presentation of the S-LBFGS and S-LSR1 methods, we
empirically compare the performance of a method that uses Option I and Option II. As
is clear from Figures 4 and 5, the performance of the method that uses Option I is highly
dependant on the choice of the sampling radius (r). If this parameter is not chosen appro-
priately, the performance of the method can be slow. This is not the case when Option II is
utilized, and one can attribute this to the fact that Option II is scale invariant.Moreover, the
benefits of using Option II can clearly be observed in the plots in terms of epochs. Again,
this is due to the fact each iteration using Option I requires accessing the data atm times to

Figure 4. Comparison of algorithms with Option I and Option II on toy classification problem (small
network).

Figure 5. Comparison of algorithmswith Option I and Option II on toy classification problem (medium
network).

8 A. S. BERAHAS ET AL.

construct the curvature pairs, whereas Option II required only a single access of the data
to construct the curvature pairs.

3.2. Sampled LBFGS (S-LBFGS)

At the kth iteration, the S-LBFGSmethod computes a new iterate via (2), where the inverse
Hessian approximation is constructed using the curvature pairs sampled by Algorithm 1.
The S-LBFGS method is outlined in Algorithm 2.

Algorithm 2 Sampled LBFGS (S-LBFGS)
Input: w0 (initial iterate),m (memory), r (sampling radius).
1: for k = 0, 1, 2, . . . do
2: Compute new (Sk,Yk) pairs via Algorithm 1
3: Compute the search direction pk = −Hk∇F(wk)

4: Choose the steplength αk > 0
5: Set wk+1 = wk + αkpk
6: end for

Algorithm 2 is almost identical to the classical (L)BFGS algorithm [53]; however, it has
two key differentiating elements: (1) the way in which curvature pairs are created; and, (2)
the location in the algorithmwhere the curvature pairs are constructed. Both elements can
be interpreted as features of S-LBFGS. First, using a similar argument as that for the S-
LSR1 method (Figure 2), the inverse Hessian approximations constructed by this method
better capture local curvature information of the objective function. Moreover, notice that
the first set of curvature pairs is constructed before a single step is taken by the method
(Line 2). This allows the method to take a quasi-Newton-type (well-scaled) step from the
first iteration which is not the case for classical BFGSmethods that usually take a gradient-
type step in the first iteration, and in which imposing the correct scale can be an issue.
This, possibly, is a more important implication of the method, as the first step taken by
quasi-Newton methods can be of paramount importance.

In order to fully specify the S-LBFGS method, we need to describe how the steplength
is selected (Algorithm 2, Step 4). We consider two variants of the method: (1) constant
steplength selection, and (2) adaptive steplength selection. Our theory (Section 5, Theo-
rems 5.2 and 5.5), explicitly defines the manner in which the steplength should be selected
in order to ensure convergence. Of course, in practice, one can (potentially) use a larger
steplength, and as such in this approach the steplength (αk = α) is a tuneable parameter.
We also consider an adaptive Armijo backtracking mechanism for selecting the steplength
at every iteration. Given the current iterate wk, the steplength is chosen to satisfy the
following sufficient decrease condition

F(wk + αkpk) ≤ F(wk) − c1αk∇F(wk)
THk∇F(wk) (7)

where c1 ∈ (0, 1). The mechanism works as follows. Given an initial steplength (say
αk = 1), the function is evaluated at the trial pointwk + αkpk and condition (7) is checked.
If the trial point satisfies (7), then the step is accepted. If the trial point does not sat-
isfy (7), the steplength is reduced (e.g.αk = ταk for τ ∈ (0, 1)). This process is repeated

OPTIMIZATION METHODS & SOFTWARE 9

until a steplength that satisfies (7) is found.We should note that under reasonable assump-
tions on the function F (see [53]) this procedure is well defined since the search direction
uses the true gradient, Hk is a positive definite matrix, and the true function is used in
condition (7).

3.3. Sampled LSR1

At the kth iteration, the S-LSR1 method computes a new iterate via (4), where the Hessian
approximation in (5) is constructed using the curvature pairs sampled by Algorithm 1. The
S-LSR1 method is outlined in Algorithm 2.

Algorithm 3 Sampled LSR1 (S-LSR1)
Input:w0 (initial iterate),m (memory), r (sampling radius),�0 (initial trust region radius),
η1 ∈ (0, 1) (step acceptance parameter).
1: for k = 0, 1, 2, . . . do
2: Compute new (Sk,Yk) pairs via Algorithm 1
3: Compute pk by solving the subproblem (5)
4: Compute ρk = F(wk)−F(wk+pk)

mk(0)−mk(pk)
5: if ρk ≥ η1 then
6: Set wk+1 = wk + pk
7: else
8: Set wk+1 = wk
9: end if
10: �k+1 = adjustTR(�k, ρk) [see [4, Section A.3]]
11: end for

The S-LSR1 method has the same key features as S-LBFGS that differentiates it from
the classical SR1 methods. The subroutine adjustTR (Step 10, Algorithm 3) adjusts the
trust-region based on the progress made by the method. For brevity we omit the details of
this subroutine, and refer the reader to [4, Section A.5] for the details.

4. Distributed computing and computational cost

In this section, we show the scalability of the sampled quasi-Newtonmethods as compared
to the SG method, and compare the computational cost to the classical variants.

4.1. Distributed computing

Recently, there has been a huge effort to scale SG-type algorithms to solve Imagenet
using hundreds of GPUs; see e.g.[1,28,33,64]. In Figure 6 (left), we show how the batch size
affects the number of images processed per second to compute the function, gradient and
Hessian vector products on a NVIDIA Tesla P100 GPU for various deep neural networks1;
see Table 1.

As is clear, by using small batch sizes one is not able to fully utilize the power of GPUs.
On the other hand, using larger batches in conjunction with SG-type algorithms does

10 A. S. BERAHAS ET AL.

Figure 6. Performance (Images/second) as a function of batch size for different DNNmodels and oper-
ations on a single P100 GPU (left). Time (seconds) to complete 1 epoch of SG and to perform 1 iteration
of S-LSR1 on a dataset with 1M images using varying number of MPI processes (bar plots).

Table 1. Deep Neural Networks used in the experiments.

Model d Input # classes

LeNet 3.2M 28 × 28 × 3 10
alexnet v2 50.3M 224 × 224 × 3 1000
vgg a 132.8M 224 × 224 × 3 1000

not necessarily reduce training time [21,61]. Another observation that can be extracted
from Figure 6 is that the cost of computing function values, gradients and Hessian vector
products appears to be comparable for these networks.

In Figure 6 (bar plots), we compare the time to perform 1 epoch of the SG method
(assuming we have 1M images) with the time to perform 1 iteration of S-LSR1. For SG, we
show results for different batch sizes on each GPU2: (1) batch size 16 (SGD 16); and, (2)
batch size 32, 64 and 128 for vgg a, LeNet and alexnet v2, respectively (SGD Default). The
reason that there is no significant benefit when usingmore GPUs for the SGmethod is that
the cost is dominated by the communication. For S-LSR1, that is not the case; as we scale
up the number of MPI processes, we get good performance improvements since there is
much less communication involved. See [4, Section A.5] for more details.

4.2. Cost, storage and parallelization

The cost per iteration of the different quasi-Newton methods can be deconstructed as
follows:

Cost = Cost of gradient
computation + Cost of forming/

taking step. (8)

Note, motivated by the results in Figure 6, we assume that the cost computing a func-
tion value, gradient and Hessian vector product is comparable and is O(nd). The cost of
computing the gradient is common for each method, whereas the search directions are
computed differently for BFGS-type methods and SR1-type methods. More specifically,
for BFGS methods we employ a line search and for SR1 method we use a trust region and
solve the subproblem (5) using CG [53]. We denote the number of line search iterations
and CG iterations as κls and κtr, respectively. Table 2 summarizes the computational cost
and storage for the different quasi-Newton methods.

As is clear from Table 2, the proposed sampled quasi-Newton methods do not have
a significantly higher cost per iteration than the classical limited-memory variants of
the methods. In the regime where m � n, d, the computational cost of the methods are
O(nd). Moreover, the storage requirements for the sampled quasi-Newtonmethods are the
same as that of limited-memory quasi-Newton methods. We should also note, that several

OPTIMIZATION METHODS & SOFTWARE 11

Table 2. Summary of computational cost and
storage (per iteration) for different quasi-Newton
methods.

Method Computational cost Storage

BFGS nd + d2 + κlsnd d2

LBFGS nd + 4md + κlsnd 2md
S-LBFGS nd + mnd + 4md + κlsnd 2md
SR1 nd + d2 + nd + κtrd2 d2

LSR1 nd + nd + κtrmd 2md
S-LSR1 nd + mnd + nd + κtrmd 2md

computations that are required in our proposed methods are easily parallelizable. These
computations are the gradient evaluations, the function evaluations and the construction
of the gradient displacement curvature pairs y.

5. Convergence analysis

In this section, we present convergence analyses for the sampled quasi-Newton methods.

5.1. Sampled LBFGS

We derive convergence results for the sampled LBFGS method with fixed step sizes and
adaptive step sizes for strongly convex and nonconvex functions.

5.1.1. Strongly convex functions
Wemake the following standard assumptions.

Assumption 5.1: F is twice continuously differentiable.

Assumption 5.2: There exist positive constants μ and L such that

μI 	 ∇2F(w) 	 LI, for all w ∈ R
d.

First, we show that the inverse Hessian approximations Hk generated by the sampled
LBFGS method have eigenvalues that are uniformly bounded above and away from zero.
The proof technique is an adaptation of that in [3,15]; however, modifications are nec-
essary since in our approach the inverse Hessian approximations are constructed using
information only from the current iterate, and not constructed sequentially.

Lemma 5.1: If Assumptions 5.1 and 5.2 hold, there exist constants 0 < μ1 ≤ μ2 such that
the inverse Hessian approximations {Hk} generated by Algorithm 2 satisfy,

μ1I 	 Hk 	 μ2I, for k = 0, 1, 2, (9)

Proof: Instead of analysing the inverseHessian approximationHk, we study the directHes-
sian approximation Bk = H−1

k . In this case, the sampled LBFGS updating formula is given
as follows. At the kth iteration, given a set of curvature pairs (sk,j, yk,j), for j = 1, . . . ,m

12 A. S. BERAHAS ET AL.

(1) Set B(0)
k = yTk,lyk,l

sTk,lyk,l
I, where l is chosen uniformly at random from {1, . . . ,m}.

(2) For i = 1, . . . ,m compute

B(i)
k = B(i−1)

k − B(i−1)
k sk,isTk,iB

(i−1)
k

sTk,iB
(i−1)
k sk,i

+ yk,iyTk,i
yTk,isk,i

.

(3) Set Bk+1 = B(m)

k .

In our algorithm (Algorithm 1), there are two options for constructing the curvature
pairs sk,j and yk,j. At the current iterate wk we sample points w̄j for j = 1, . . . ,m and set

sk,j = wk − w̄j, yk,j = ∇F(wk) − ∇F(w̄j) Option I, (10)

sk,j = wk − w̄j, yk,j = ∇2F(wk)sk Option II. (11)

We now derive an upper and lower bound for ‖yk,j‖2
yTk,jsk,j

, for all j = 1, . . . ,m, for both options.

Option I:A consequence of Assumption 5.2 is that the eigenvalues of the Hessianmatrix
are bounded above and away from zero. Utilizing this fact, the convexity of the objective
function and the definitions (10), we have

yTk,jsk,j ≥ 1
L
‖yk,j‖2 ⇒ ‖yk,j‖2

yTk,jsk,j
≤ L. (12)

On the other hand, strong convexity of the functions, the consequence of Assumption 5.2
and definitions (10), provides a lower bound,

yTk,jsk,j ≤ 1
μ

‖yk,j‖2 ⇒ ‖yk,j‖2
yTk,jsk,j

≥ μ. (13)

Combining the upper and lower bounds (12) and (13)

μ ≤ ‖yk,j‖2
yTk,jsk,j

≤ L. (14)

Option II:Aconsequence ofAssumption 5.2 is that the eigenvalues of theHessianmatrix
are bounded above and away from zero. Utilizing this fact and the definitions (10), we have

μ‖sk,j‖2 ≤ yTk,jsk,j = sTk,j∇2F(wk)sk,j ≤ L‖sk,j‖2. (15)

We have that,

‖yk,j‖2
yTk,jsk,j

=
sTk,j∇2F(wk)

2sk,j
sTk,j∇2F(wk)sk,j

, (16)

and since ∇2F(wk) is symmetric and positive definite, it has a square root and so

μ ≤ ‖yk,j‖2
yTk,jsk,j

≤ L. (17)

OPTIMIZATION METHODS & SOFTWARE 13

The bounds on ‖yk,j‖2
yTk,jsk,j

prove that for any l chosen uniformly at random from {1, . . . ,m} the

eigenvalues of the matrices B(0)
k = yTk,lyk,l

sTk,lyk,l
I at the start of the sampled LBFGS update cycles

are bounded above and away from zero, for all k and l. We now use a Trace-Determinant
argument to show that the eigenvalues of Bk are bounded above and away from zero.

Let Tr(B) and det(B) denote the trace and determinant of matrix B, respectively. The
trace of the matrix Bk+1 can be expressed as,

Tr(Bk+1) = Tr(B(0)
k) − Tr

m∑
i=1

(
B(i−1)
k sk,isTk,iB

(i−1)
k

sTk,iB
(i−1)
k sk,i

)
+ Tr

m∑
i=1

yk,iyTk,i
yTk,isk,i

≤ Tr(B(0)
k) +

m∑
i=1

‖yk,i‖2
yTk,isk,i

≤ Tr(B(0)
k) + mL ≤ C1, (18)

for some positive constant C1, where the inequalities above are due to (14), and the fact
that the eigenvalues of the initial L-BFGS matrix B(0)

k are bounded above and away from
zero.

Using a result due to Powell [54], the determinant of the matrix Bk+1 generated by the
sampled LBFGS method can be expressed as,

det(Bk+1) = det(B(0)
k)

m∏
i=1

yTk,isk,i

sTk,iB
(i−1)
k sk,i

= det(B(0)
k)

m∏
i=1

yTk,isk,i
sTk,isk,i

sTk,isk,i

sTk,iB
(i−1)
k sk,i

≥ det(B(0)
k)

(
μ

C1

)m
≥ C2, (19)

for some positive constant C2, where the above inequalities are due to the fact that the
largest eigenvalue of B(i)

k is less than C1, Assumption 5.2, and the fact that μ
C1

< 1.
The trace (18) and determinant (19) inequalities derived above imply that the largest

eigenvalues of all matrices Bk are bounded above, uniformly, and that the smallest eigen-
values of all matrices Bk are bounded away from zero, uniformly. �

Constant step length. Utilizing Lemma 5.1, we show that the sampled LBFGS method with
a constant step length converges linearly.

Theorem 5.2: Suppose that Assumptions 5.1 and 5.2 hold, and let F	 = F(w), where w	 is
the minimizer of F. Let {wk} be the iterates generated by Algorithm 2, where 0 < αk = α ≤
μ1
μ2
2L
, and w0 is the starting point. Then, for all k ≥ 0,

F(wk) − F	 ≤ (1 − αμμ1)
k[F(w0) − F].

14 A. S. BERAHAS ET AL.

Proof: We have that

F(wk+1) = F(wk − αHk∇F(wk))

≤ F(wk) + ∇F(wk)
T(−αHk∇F(wk)) + L

2
‖αHk∇F(wk)‖2

≤ F(wk) − α∇F(wk)
THk∇F(wk) + α2μ2

2L
2

‖∇F(wk)‖2

≤ F(wk) − αμ1‖∇F(wk)‖2 + α2μ2
2L

2
‖∇F(wk)‖2

= F(wk) − α

(
μ1 − α

μ2
2L
2

)
‖∇F(wk)‖2 (20)

≤ F(wk) − α
μ1

2
‖∇F(wk)‖2, (21)

where the first inequality is due to Assumption 5.2, the second and third inequalities arise
as a consequence of Lemma 5.1 and the last inequality is due to the choice of the steplength.
By strong convexity, we have 2μ(F(w) − F) ≤ ‖∇F(w)‖2, and thus

F(wk+1) ≤ F(wk) − αμμ1(F(wk) − F).

Subtracting F	 from both sides,

F(wk+1) − F	 ≤ (1 − αμμ1)(F(wk) − F).

Recursive application of the above inequality yields the desired result. �

Theorem 5.2 shows that the S-LBFGS method converges to the optimal solution at a
linear rate. This result is similar in nature to the result for LBFGS [44]. We should also
mention that unlike first-order methods (e.g. Gradient Descent, Hk = I), the step length
range and the rate of convergence of the S-LBFGSmethod depend onμ1 andμ2, the small-
est and largest eigenvalues of the S-LBFGS Hessian approximation. In the worst-case, the
presence of thematrixHk canmake the results in Theorem 5.2 significantly worse than that
of the first-order variant if the update has been unfortunate and generates ill-conditioned
matrices. We should note, however, such worst-case behaviour is almost never observed in
practice for BFGS updating.
Adaptive step length. We now show a similar result for the case where the step length is
chosen by an Armijo backtracking line search (7).

Theorem 5.3: Suppose that Assumptions 5.1 and 5.2 hold. Let {wk} be the iterates generated
by Algorithm 2, where αk is the maximum value in {τ−j : j = 0, 1, . . .} satisfying (7) with
0 < c1 < 1, and w0 is the starting point. Then for all k ≥ 0,

F(wk) − F	 ≤
(
1 − 4μμ2

1c1(1 − c1)τ
μ2
2L

)k

[F(w0) − F].

OPTIMIZATION METHODS & SOFTWARE 15

Proof: Starting with (20) we have

F(wk − αkHk∇F(wk)) ≤ F(wk) − αk

(
μ1 − αk

μ2
2L
2

)
‖∇F(wk)‖2.

From the Armijo backtracking condition (7), we have

F(wk − αHk∇F(wk)) ≤ F(wk) − c1αk∇F(wk)
THk∇F(wk)

≤ F(wk) − c1μ1αk‖∇F(wk)‖2. (22)

Looking at (20) and (22), it is clear that the Armijo condition is satisfied when

αk ≤ 2μ1(1 − c1)
μ2
2L

. (23)

Thus, any αk that satisfies (23) is guaranteed to satisfy the Armijo condition (7). Since we
find αk using a constant backtracking factor of τ < 1, we have that

αk ≥ 2μ1(1 − c1)τ
μ2
2L

. (24)

Therefore, from (20) and by (23) and (24) we have

F(wk+1) ≤ F(wk) − αk

(
μ1 − αk

μ2
2L
2

)
‖∇F(wk)‖2

≤ F(wk) − αkc1μ1‖∇F(wk)‖2

≤ F(wk) − 2μ2
1c1(1 − c1)τ

μ2
2L

‖∇F(wk)‖2. (25)

By strong convexity, we have 2μ(F(w) − F) ≤ ‖∇F(w)‖2, and thus

F(wk+1) ≤ F(wk) − 4μμ2
1c1(1 − c1)τ

μ2
2L

(F(w) − F). (26)

Subtracting F	 from both sides, and applying (26) recursively yields the desired result. �

Theorem 5.3 shows that the sampled LBFGSmethod with an adaptive backtracking line
search converges to the optimal solution at a linear rate. We should note that this result is
worse than the constant step length result (Theorem 5.2), i.e.the rate constant is larger. This
is not surprising since this is a worst-case result; however, in practice, such an approach
performs significantly better and does not require tuning the steplength parameter.

5.2. Nonconvex functions

For nonconvex functions, the BFGS method is known fail [20,48]. Even for LBFGS, which
makes only a finite number of updates at each iteration, one cannot guarantee that the
(inverse) Hessian approximations have eigenvalues that are uniformly bounded above and

16 A. S. BERAHAS ET AL.

away from zero. To establish convergence of the BFGS method in the nonconvex setting
several techniques have been proposed including (i) cautious updating [43]; (ii) modified
updating [42]; and (iii) damping [55]. Here we employ a cautious strategy that is well
suited to our particular algorithm; at the kth iteration, we update the (inverse) Hessian
approximation using only the set of curvature pairs that satisfy

sTy > ε‖s‖2, (27)

where ε > 0 is a predetermined constant. If no curvature pairs satisfy (27), then the new
(inverse) Hessian approximation is set toHk = I. Using said mechanism we prove that the
eigenvalues of the (inverse) Hessian approximations generated by the S-LBFGSmethod are
bounded above and away from zero. For this analysis, we make the following assumptions
in addition to Assumption 5.1.

Assumption 5.3: The function F(w) is bounded below by a scalar F̂.

Assumption 5.4: The gradients of F are L-Lipschitz continuous for all w ∈ R
d.

Lemma 5.4: Suppose that Assumptions 5.1 and 5.4 hold. Let {Hk} be the inverse Hessian
approximations generated by Algorithm 2, with the modification that the inverse approxima-
tion update is performed using only curvature pairs that satisfy (27), for some ε > 0, and
Hk = I if no curvature pairs satisfy (27). Then, there exist constants 0 < μ1 ≤ μ2 such that

μ1I 	 Hk 	 μ2I, for k = 0, 1, 2, (28)

Proof: Note, that in the nonconvex setting, there is a chance that no curvature pairs are
selected inAlgorithm 1. In this case, the inverseHessian approximation isHk = I, and thus
μ1 = μ2 = 1 and condition (28) is satisfied.

Similar to the proof of Lemma 5.1, we study the direct Hessian approximation Bk =
H−1
k . In our algorithm, there are two options for updating the curvature pairs sk,j and yk,j:

sk,j = wk − w̄j, yk,j = ∇F(w) − ∇F(w̄j) Option I, (29)

sk,j = wk − w̄j, yk,j = ∇2F(wk)sk Option II, (30)

for j = 1, . . . ,m. Let m̃k ∈ {1, . . . ,m} denote the number of curvature pairs that satisfy (27)
at the kth iteration, where m is the memory. At the kth iteration, given a set of curvature
pairs (sk,j, yk,j), for j = 1, . . . , m̃k we update the Hessian approximation recursively (using
the procedure described in the proof of Lemma 5.1, and set Bk+1 = Bm̃k

k .
In this setting, the skipping mechanism (27) provides both an upper and lower bound

on the quantity ‖yk,j‖2
yTk,jsk,j

, for both Options, which in turn ensures that the initial sampled

LBFGS Hessian approximation is bounded above and away from zero.

OPTIMIZATION METHODS & SOFTWARE 17

The lower bound is attained by repeated application of Cauchy’s inequality to condition
(27). We have from (27) that

ε‖sk,j‖2 < yTk,jsk,j ≤ ‖yk,j‖‖sk,j‖ ⇒ ‖sk,j‖ <
1
ε
‖yk,j‖.

It follows that

sTk,jyk,j ≤ ‖sk,j‖‖yk,j‖ <
1
ε
‖yk,j‖2 ⇒ ‖yk,j‖2

sTk,jyk,j
> ε. (31)

The upper bound is attained by the Lipschitz continuity of gradients,

yTk,jsk,j > ε‖sk,j‖2

≥ ε
‖yk,j‖2

L
⇒ ‖yk,j‖2

sTk,jyk,j
<

L2

ε
. (32)

Combining (31) and (32), we have

ε <
‖yk,j‖2
yTk,jsk,j

<
L2

ε
.

The bounds on ‖yk,j‖2
yTk,jsk,j

prove that for any l chosen uniformly at random from {1, . . . , m̃k} the

eigenvalues of the matrices B(0)
k = yTk,lyk,l

sTk,lyk,l
I at the start of the sampled LBFGS update cycles

are bounded above and away from zero, for all k and l. The rest of the proof follows the
same trace-determinant argument as in the proof of Lemma 5.1, the only difference being
that the last inequality in (19) comes as a result of the cautious update strategy. �

Constant step length. Utilizing Lemma5.4, we show that the sampled LBFGSwith a cautious
updating strategy and a constant step length converges.

Theorem 5.5: Suppose that Assumptions 5.1, 5.3 and 5.4 hold. Let {wk} be the iterates gen-
erated by Algorithm 2, with the modification that the inverse Hessian approximation update
is performed using only curvature pairs that satisfy (27), for some ε > 0, and Hk = I if no
curvature pairs satisfy (27), where 0 < αk = α ≤ μ1

μ2
2L
, and w0 is the starting point. Then,

lim
k→∞

‖∇F(wk)‖ = 0, (33)

and, moreover, for any T>1,

1
T

T−1∑
k=0

‖∇F(wk)‖2 ≤ 2[F(w0) − F̂]
αμ1T

T→∞−−−→ 0.

18 A. S. BERAHAS ET AL.

Proof: We start with (21)

F(wk+1) ≤ F(wk) − α
μ1

2
‖∇F(wk)‖2.

Summing both sides of the above inequality from k = 0 to T−1,

T−1∑
k=0

(F(wk+1) − F(wk)) ≤ −
T−1∑
k=0

α
μ1

2
‖∇F(wk)‖2.

The left-hand side of the above inequality is a telescopic sum and thus,

T−1∑
k=0

[F(wk+1) − F(wk)] = F(wT) − F(w0) ≥ F̂ − F(w0),

where the inequality is due to F̂ ≤ F(wT) (Assumption 5.3). Using the above, we have

T−1∑
k=0

‖∇F(wk)‖2 ≤ 2[F(w0) − F̂]
αμ1

. (34)

Taking limits we obtain,

lim
T→∞

T−1∑
k=0

‖∇F(wk)‖2 < ∞,

which implies (33). Dividing (34) by T we conclude

1
T

T−1∑
k=0

‖∇F(wk)‖2 ≤ 2[F(w0) − F̂]
αμ1T

.

�

Theorem 5.5 shows that, if a small enough step length is chosen, the S-LBFGS method
converges to a stationary point.
Adaptive step length. We now show a similar result for the case where the step length is
chosen by an Armijo backtracking line search (7).

Theorem5.6: Suppose that Assumptions 5.1, 5.3 and 5.4 hold. Let {wk} be the iterates gener-
ated by Algorithm 2, with the modification that the inverse Hessian approximation update is
performed using only curvature pairs that satisfy (27), for some ε > 0, and Hk = I if no cur-
vature pairs satisfy (27), where αk is the maximum value in {τ−j : j = 0, 1, . . .} satisfying (7)
with 0 < c1 < 1, and where w0 is the starting point. Then,

lim
k→∞

‖∇F(wk)‖ = 0, (35)

and, moreover, for any T>1,

1
T

T−1∑
k=0

‖∇F(wk)‖2 ≤ μ2
2L[F(w0) − F̂]

2μ2
1c1(1 − c1)τT

τ→∞−−−→ 0.

OPTIMIZATION METHODS & SOFTWARE 19

Proof: We start with (25)

F(wk+1) ≤ F(wk) − 2μ2
1c1(1 − c1)τ

μ2
2L

‖∇F(wk)‖2.

Summing both sides of the above inequality from k = 0 to T−1,

T−1∑
k=0

(F(wk+1) − F(wk)) ≤ −
T−1∑
k=0

2μ2
1c1(1 − c1)τ

μ2
2L

‖∇F(wk)‖2.

The left-hand side of the above inequality is a telescopic sum and thus,

T−1∑
k=0

[F(wk+1) − F(wk)] = F(wT) − F(w0) ≥ F̂ − F(w0),

where the inequality is due to F̂ ≤ F(wT) (Assumption 5.3). Using the above, we have

T−1∑
k=0

‖∇F(wk)‖2 ≤ μ2
2L[F(w0) − F̂]

2μ2
1c1(1 − c1)τ

. (36)

Taking limits we obtain,

lim
τ→∞

τ−1∑
k=0

‖∇F(wk)‖2 < ∞,

which implies (37). Dividing (38) by T we conclude

1
T

T−1∑
k=0

‖∇F(wk)‖2 ≤ μ2
2L[F(w0) − F̂]

2μ2
1c1(1 − c1)τT

.

�

Theorem 5.7 shows that, the S-LBFGS method that employs an Armijo backtracking
linesearch (7) converges to a stationary point.
Adaptive step length. We now show a similar result for the case where the step length is
chosen by an Armijo backtracking line search (7).

Theorem5.7: Suppose that Assumptions 5.1, 5.3 and 5.4 hold. Let {wk} be the iterates gener-
ated by Algorithm 2, with the modification that the inverse Hessian approximation update is
performed using only curvature pairs that satisfy (27), for some ε > 0, and Hk = I if no cur-
vature pairs satisfy (27), where αk is the maximum value in {τ−j : j = 0, 1, . . .} satisfying (7)
with 0 < c1 < 1, and where w0 is the starting point. Then,

lim
k→∞

‖∇F(wk)‖ = 0, (37)

and, moreover, for any T>1,

1
T

T−1∑
k=0

‖∇F(wk)‖2 ≤ μ2
2L[F(w0) − F̂]

2μ2
1c1(1 − c1)τT

τ→∞−−−→ 0.

20 A. S. BERAHAS ET AL.

Proof: We start with (25)

F(wk+1) ≤ F(wk) − 2μ2
1c1(1 − c1)τ

μ2
2L

‖∇F(wk)‖2.

Summing both sides of the above inequality from k = 0 to T−1,

T−1∑
k=0

(F(wk+1) − F(wk)) ≤ −
T−1∑
k=0

2μ2
1c1(1 − c1)τ

μ2
2L

‖∇F(wk)‖2.

The left-hand side of the above inequality is a telescopic sum and thus,

T−1∑
k=0

[F(wk+1) − F(wk)] = F(wT) − F(w0) ≥ F̂ − F(w0),

where the inequality is due to F̂ ≤ F(wT) (Assumption 5.3). Using the above, we have

T−1∑
k=0

‖∇F(wk)‖2 ≤ μ2
2L[F(w0) − F̂]

2μ2
1c1(1 − c1)τ

. (38)

Taking limits we obtain,

lim
τ→∞

τ−1∑
k=0

‖∇F(wk)‖2 < ∞,

which implies (37). Dividing (38) by T we conclude

1
T

T−1∑
k=0

‖∇F(wk)‖2 ≤ μ2
2L[F(w0) − F̂]

2μ2
1c1(1 − c1)τT

.

�

Theorem 5.7 shows that, the S-LBFGS method that employs an Armijo backtracking
linesearch (7) converges to a stationary point.

6. Sampled LSR1

We derive convergence results for the sampled SR1 method for general nonconvex objec-
tive functions.

In order to establish convergence results one needs to ensure that the SR1 Hessian
update equation (6) is well defined. To this end, we employ a cautious updating mecha-
nism that is well suited to our particular algorithm. At the kth iteration, we update the
Hessian approximation using only the set of curvature pairs that satisfy

|sT(y − Bs)| > ε‖s‖2, (39)

where ε > 0 is a predetermined constant. If no curvature pairs satisfy (39), then the new
Hessian approximation is set to Bk = I. It is not trivial to test this condition in practice

OPTIMIZATION METHODS & SOFTWARE 21

without explicitly constructing d × d matrices. We discuss this in detail in Section 8; see
[4, Section A.4] for more details.

For the analysis in this section, wemake the following assumption in addition to 5.1, 5.3
and 5.4.

Assumption 6.1: For all k,

mk(0) − mk(pk) ≥ ξ‖∇F(wk)‖min
{‖∇F(wk)‖

βk
,�k

}
,

where ξ ∈ (0, 1) and βk = 1 + ‖Bk‖.

Assumption 6.1 ensures that at every iteration we solve the trust-region subproblem
sufficiently accurately.

We prove that the Hessian approximations Bk generated by the S-LSR1 method are
uniformly bounded from above. The proof technique is an adaptation of that in [46]; how-
ever, modifications are necessary since the Hessian approximations are constructed using
information only from the current iterate, and not constructed sequentially.

Lemma6.1: Suppose that Assumptions 5.1, 5.4 and 6.1 hold. Let {Bk} be theHessian approx-
imations generated by Algorithm 3, with the modification that the approximation update
is performed using only curvature pairs that satisfy (39), for some ε > 0, and Bk = I if no
curvature pairs satisfy (39). Then, there exists a constant ν2 > 0 such that

‖Bk‖ ≤ ν2, for k = 0, 1, 2, (40)

Proof: As in the proof of Lemma 5.4, note that there is a chance that no curvature pairs are
selected in Algorithm 1. In this case, the Hessian approximation is Bk = I, and thus ν2 = 1
and condition (40) is satisfied.

We now consider the case where at least one curvature pair is selected by Algorithm 1.
In this case, the sampled LSR1 updating formula is given as follows. Let m̃k ∈ {1, . . . ,m}
denote the number of curvature pairs that satisfy (39) at the kth iteration, where m is the
memory. At the kth iteration, given a set of curvature pairs (sk,j, yk,j), for j = 1, . . . , m̃k

(1) Set B(0)
k = γkI, where 0 ≤ γk < γ .

(2) For i = 1, . . . , m̃k compute

B(i)
k = B(i−1)

k + (yk,i − B(i−1)
k sk,i)(yk,i − B(i−1)

k sk,i)T

(yk,i − B(i−1)
k sk,i)Tsk,i

.

(3) Set Bk+1 = B(m̃k)
k .

In our algorithm (Algorithm 1), there are two options for constructing the curvature
pairs sk,j and yk,j. At the current iterate wk we sample points w̄j for j = 1, . . . ,m and set

sk,j = wk − w̄j, yk,j = ∇F(wk) − ∇F(w̄j) Option I, (41)

sk,j = wk − w̄j, yk,j = ∇2F(wk)sk Option II. (42)

22 A. S. BERAHAS ET AL.

Given a set of m̃k curvature pairs that satisfy (39), we now prove an upper bound for
‖Bk‖. We first prove the bound for a given iteration k and for all updates to the Hessian
approximation i = 0, 1, . . . , m̃k (‖Bik‖), and then get an upper bound for all k (‖Bk‖).

For a given iteration k, we prove a bound on ‖Bik‖ via induction, and show

‖B(i)
k ‖ ≤

(
1 + 1

ε

)i
γk +

[(
1 + 1

ε

)i
− 1

]
γ̄k, (43)

where γ̄k is such that ‖∇2F(wk)‖ ≤ γ̄k, and whose existence follows from Assumption 5.4
(γ̄k ≤ L < ∞). For i = 0, the bound holds trivially since B(0)

k = γkI. Now assume that (43)
holds true for some i ≥ 0. Note that all the curvature pairs that are used in the update of
the Hessian approximation satisfy (39). By the definition of the SR1 updates, we have for
some index i+ 1 that

B(i+1)
k = B(i)

k + (yk,i+1 − B(i)
k sk,i+1)(yk,i+1 − B(i)

k sk,i+1)
T

(yk,i+1 − B(i)
k sk,i+1)Tsk,i+1

,

and thus

‖B(i+1)
k ‖ ≤ ‖B(i)

k ‖ +
∥∥∥∥∥ (yk,i+1 − B(i)

k sk,i+1)(yk,i+1 − B(i)
k sk,i+1)

T

(yk,i+1 − B(i)
k sk,i+1)Tsk,i+1

∥∥∥∥∥ ,
≤ ‖B(i)

k ‖ + ‖(yk,i+1 − B(i)
k sk,i+1)(yk,i+1 − B(i)

k sk,i+1)
T‖

ε‖yk,i+1 − B(i)
k sk,i+1‖‖sk,i+1‖

≤ ‖B(i)
k ‖ + ‖yk,i+1 − B(i)

k sk,i+1‖
ε‖sk,i+1‖

≤ ‖B(i)
k ‖ + ‖yk,i+1‖

ε‖sk,i+1‖
+ ‖B(i)

k sk,i+1‖
ε‖sk,i+1‖

≤ ‖B(i)
k ‖ + ‖yk,i+1‖

ε‖sk,i+1‖
+ ‖B(i)

k ‖
ε

=
(
1 + 1

ε

)
‖B(i)

k ‖ + γ̄k

ε

where the first inequality is due to the application of the triangle inequality, the second
inequality is due to condition (39), the fourth inequality is due to the application of the
triangle inequality, and the fifth inequality is due to the application of Cauchy’s inequality
and in the last inequality we used that γ̄k ≥ γ̄k,i+1 = ‖yk,i+1‖

‖sk,i+1‖ > 0. Substituting (43),

‖B(i+1)
k ‖ ≤

(
1 + 1

ε

)[(
1 + 1

ε

)i
γk +

[(
1 + 1

ε

)i
− 1

]
γ̄k

]
+ γ̄k

ε

=
(
1 + 1

ε

)i+1
γk +

[(
1 + 1

ε

)i+1
− 1

]
γ̄k

OPTIMIZATION METHODS & SOFTWARE 23

which completes the inductive proof. Thus, for any k we have an upper bound on the
Hessian approximation. Therefore, since Bk+1 = B(m̃k)

k , the sampled SR1 Hessian approx-
imation constructed at the kth iteration satisfies

‖Bk+1‖ ≤
(
1 + 1

ε

)m̃k

γk +
[(

1 + 1
ε

)m̃k

− 1

]
γ̄k.

Now we generalize the result for all iterations k. For k = 0, the bound holds trivially, since
the first step of the sampled LSR1 method is a gradient method (B0 = I). For k ≥ 1, we
assume that γk ≤ γ < ∞ and γ̄k ≤ γ̄ ≤ L < ∞ for all k, and thus

‖Bk+1‖ ≤
(
1 + 1

ε

)m̃k

γk +
[(

1 + 1
ε

)m̃k

− 1

]
γ̄k

≤
(
1 + 1

ε

)m̃k

γ +
[(

1 + 1
ε

)m̃k

− 1

]
γ̄ ≤ ν2,

for some ν2 > 0. This completes the proof. �

Utilizing Lemma 6.1, we show that the S-LSR1 with a cautious updating strategy con-
verges. In order to prove the following result, we make use of well-known results for
Trust-Region methods; see [18]. As such, the proof is identical to [18, Theorem 6.4.5];
to keep the paper self contained and due to the notation differences we include the proof.

Theorem 6.2: Suppose that Assumptions 5.1, 5.3, 5.4 and 6.1 hold. Let {wk} be the iter-
ates generated by Algorithm 3, with the modification that the Hessian approximation update
is performed using only curvature pairs that satisfy (39), for some ε > 0, and Bk = I if no
curvature pairs satisfy (39). Then,

lim
k→∞

‖∇F(wk)‖ = 0.

Proof: Assume, for the purpose of establishing a contradiction, that there is a subsequence
of successful iterations (where ρk > η1, Line 6, Algorithm 3), indexed by ti ⊆ S where
S = {k ≥ 0|ρk ≥ η1}, such that

‖∇F(wti)‖ ≥ 2δ > 0 (44)

for some ε > 0 and for all i. Theorem 6.4.5 from [18] then ensures the existence for each
ti of a first successful iteration �(ti) > ti such that

‖∇F(w�(ti))‖ < δ > 0.

Let �i = �(ti), we thus obtain that there is another subsequence of S indexed by {�i} such
that

‖∇F(wk)‖ ≥ δ, for ti ≤ k < �i and ‖∇F(w�i)‖ < δ. (45)

We now restrict our attention to the subsequence of successful iterations whose indices are
in the set

K = {k ∈ S|ti ≤ k < �i},
where ti and �i belong to the subsequences S andK, respectively.

24 A. S. BERAHAS ET AL.

Using Assumption 6.1, the fact thatK ⊆ S and (45), we deduce that for k ∈ K

F(wk) − F(wk) ≥ η1[mk(0) − mk(pk)] ≥ ξδη1 min
[

δ

ν2 + 1
,�k

]
(46)

where we used the result of Lemma 6.1. Since the sequence {F(wk)} is monotonically
decreasing and bounded below (Assumption 5.3), it is convergent, and the left-hand side
of (46) must tend to zero as k → ∞. Thus,

lim
k→∞, k∈K

�k = 0. (47)

As a consequence, the term containing �k is the dominant term in the min (46) and we
have, for k ∈ K sufficiently large,

�k ≤ F(wk) − F(wk+1)

(ν2 + 1)δη1
. (48)

From this bound, we deduce that, for i sufficiently large

‖wti − w�i‖ ≤
�i−1∑

j=ti, j∈K
‖wj − wj+1‖ ≤

�i−1∑
j=ti, j∈K

�j ≤ F(wti) − F(w�i)

(ν2 + 1)δη1
. (49)

As a consequence of Assumption 5.3 and the monotonicity of the sequence {F(wk)}, we
have that the right-hand side of (49) must converge to zero, and thus ‖wti − w�i‖ → 0 as
i → ∞.

By continuity of the gradient (Assumption 5.1), we thus deduce that ‖∇F(wti) −
∇F(w�i)‖ → 0.However, this is impossible because of the definitions of {ti} and {�i}, which
imply that ‖∇F(wti) − ∇F(w�i)‖ ≥ δ. Hence, no subsequence satisfying (44) can exist, and
the theorem is proved. �

Theorem 6.2 shows that the sampled SR1 method converges to a stationary point. This
result is similar in nature to that of the LSR1 method; see [46].

7. Probabilistic bounds on sampled quasi-Newtonmethods

Since our proposed methods randomly select m curvature pairs ({s, y}) at every iteration
and we require the pairs satisfy certain conditions ((27) and (39) for S-LBFGS and S-LSR1,
respectively), a fair question to ask is how many pairs are accepted and used to construct
Hessian approximations at every iteration. Alternatively, the question can be posed as what
is the probability that a given random {s, y} pair satisfies the required conditions and is used
in the quasi-Newton Hessian approximations.

In this section, we present probabilistic bounds that illustrate the probability of accept-
ing a given {s, y} pair. To do this, we leverage the form of Option II for computing the
y vectors (given a vector s) and the fact that s can be any random vector. We will assume
throughout this section that s is uniformly sampled on a unit sphere, i.e. s ∼ U(S(0, 1)).We
also illustrate the probabilities of accepting pairs empirically for synthetic problems with
different dimensions and acceptance tolerances, and on two toy classification problem.

OPTIMIZATION METHODS & SOFTWARE 25

7.1. Probabilistic bounds for S-LBFGS

In this section, we present results that illustrate the probability that the pairs generated
within the S-LBFGS method satisfy (27). We first derive an expression for the probability
of accepting a pair {s, y}, and then provide some empirical evidence to show the probability
of accepting pairs for different problems.

By Option II, (27) can be expressed as

sTy
‖s‖2 = sT∇2F(w)s

‖s‖2 > ε,

for any w ∈ R
d. Notice that the middle term above is the Raleigh quotient of a random

vector s with respect to the Hessian matrix. Thus, for any w ∈ R
d and any given random

vector s, we are interested in the following probability,

P

[
sT∇2F(w)s

‖s‖2 > ε

]
= 1 − P

[
sT∇2F(w)s

‖s‖2 ≤ ε

]
.

The following theorem gives an expression for the probability of accepting the pair {s, y}.

Theorem 7.1: Let λ = (λ1, λ2, . . . , λd) be the eigenvalues of the true Hessian at some point
w ∈ R

d (∇2F(w)), s ∈ R
d be a random vector uniformly distributed on a sphere, and ε > 0

be a prescribed tolerance. Then,

P

[
sT∇2F(w)s

‖s‖2 > ε

]
= 1

2
+ 1

π

∫ ∞

0

sin
(
1
2
∑d

l=1 tan
−1 ((λl − ε)u)

)
u
∏d

l=1
(
1 + (λl − ε)2u2

) 1
4

du. (50)

Proof: We refer interested readers to [7, Theorem 9] for the proof of this theorem. �

Although the result of Theorem7.1 is interesting, a reasonable criticism is that it requires
knowledge of the eigenvalues of the Hessianmatrix, something that is prohibitively expen-
sive to compute for many deep learning training problems. However, we show numerically
that for certain neural network problems, the probability of accepting pairs is relatively
high. Specifically, we present empirical results that illustrate the probability that a given
pair {s, y} is accepted for different problems and different ε. The problems considered are
summarized in Table 3, and the results are given in Figure 7.

Table 3. Problem details for empirical evaluation of proba-
bilities.

Problem Figure

λ = (−1, . . . ,−1︸ ︷︷ ︸
d/2−1′s

, 1, . . . , 1︸ ︷︷ ︸
d/21′s

) Figures 7(a) and 8(a)

λ = 10−4(−1, . . . ,−1︸ ︷︷ ︸
d/2−1′s

, 1, . . . , 1︸ ︷︷ ︸
d/21′s

) Figures 7(b) and 8(b)

Toy Problem: (small network) Figures 7(c) and 8(c)
Toy Problem: (medium network) Figures 7(d) and 8(d)

26 A. S. BERAHAS ET AL.

Figure 7. Empirical investigation of accepting curvature pairs for different problems (S-LBFGS).

Figure 8. Empirical investigation of accepting curvature pairs for different problems (S-LSR1).

The first two problems (Table 3) have synthetic eigenvalue distributions. The goal of
these problems is to investigate the effect of n and ε on the probability. As is clear, for
the first problem, the probability of accepting a random {s, y} pair is around 50% and the
probability decreases last as ε → 1, which is not surprising due to the eigenvalue struc-
ture. For the second problem, where the eigenvalues are smaller, the probability becomes
almost zero for ε ≤ 10−4. For the last two problems, we considered the structures of the toy
classification problems (small and medium) for different points in parameter space. Note,
points A, B and C are the same as those used in Figures 2 and 3. As is clear from Figures 7(c
,d), the probability of accepting a random curvature pair is very high as long as ε is not too
large. The main takeaway from these numerical results is that the probability of accepting
curvature pairs is relatively large as long as the tolerance is not chosen to be too large (in
practice ε ≈ 10−4 − 10−8).

7.2. Probabilistic bounds on S-LSR1

In this section, we present results that illustrate the probability that the pairs generated
within the S-LSR1 method satisfy (39). We first derive an expression for the probability of
accepting a pair {s, y}, and then provide some empirical evidence to show the probability
of accepting pairs for different problems.

By Option II, (39) can be expressed as

|sT(y − Bs)|
‖s‖2 = |sT(∇2F(w) − B)s|

‖s‖2 > ε, (51)

for anyw ∈ R
d, where thematrixB is some SR1Hessian approximation. Clearly, the accep-

tance of a new pair {s, y} depends on the matrix B. To be more precise, for some w ∈ R
d,

OPTIMIZATION METHODS & SOFTWARE 27

given a new pair {sj, yj} for j = 1, . . . ,m, (51) can be expressed as

|sTj (∇2F(w) − B(j−1))sj|
‖sj‖2 > ε, (52)

where B(j) is an SR1 Hessian approximation constructed using all the pairs {si, yi}i<j, and
B(0) is the initial SR1 Hessian approximation (potentially B(0) = 0). As is clear, the accep-
tance of the new pair {sj, yj} depends recursively on all previously accepted curvature pairs.
Similar to the S-LBFGS case, the left-hand side of (52) is a Rayleigh quotient of a random
vector sj with respect to the Hessian matrix and the matrix B(j−1).

Thus, for any w ∈ R
d, B(j−1) ∈ R

d×d and any given random vector sj ∈ R
d, we are

interested in the following probability,

P

[|sTj (∇2F(w) − B(j−1))sj|
‖sj‖2 > ε

]
= 1 − P

[|sTj (∇2F(w) − B(j−1))sj|
‖sj‖2 ≤ ε

]

= 1 − P

[
−ε ≤

sTj (∇2F(w) − B(j−1))sj
‖sj‖2 ≤ ε

]

= 1 −
(

P

[
sTj (∇2F(w) − B(j−1))sj

‖sj‖2 ≤ ε

]

− P

[
sTj (∇2F(w) − B(j−1))sj

‖sj‖2 ≤ −ε

])
.

The following theorem gives an expression for the probability of accepting the pair {sj, yj}.

Theorem 7.2: Let λ̃j−1 = (λ̃
j−1
1 , λ̃j−1

2 , . . . , λ̃j−1
d) be the eigenvalues of the matrix∇2F(w) −

B(j−1), sj ∈ R
d be a random vector uniformly distributed on a sphere, and ε > 0 be a

prescribed tolerance. Then, for all j ∈ {1, . . . ,m},

P

[|sTj (∇2F(w) − B(j−1))sj|
‖sj‖2 > ε

]
= 1 + 1

π

∫ ∞

0

sin(12
∑d

l=1 tan
−1((λ̃

j−1
l − ε)u))

u
∏d

l=1(1 + (λ̃
j−1
l − ε)2u2)

1
4

du

− 1
π

∫ ∞

0

sin(12
∑d

l=1 tan
−1((λ̃

j−1
l + ε)u))

u
∏d

l=1(1 + (λ̃
j−1
l + ε)2u2)

1
4

du.

Proof: The proof of this theorem is an adaptation of [7, Theorem 9]. Note that P[|X|
≤ η] = P[−η ≤ X ≤ η] = P[X ≤ η] − P[X ≤ −η], and P[|X| > η] = 1 − P[|X| ≤ η].

�

As in the case for S-LBFGS, we now illustrate the probability of accepting pairs empir-
ically. We conducted the same set of experiments as in Section 7.1; see Table 3 for details.
The probability of accepting pairs for the synthetic problems is larger for S-LSR1 than
S-LBFGS. This is due to the fact that negative values of the Rayleigh quotient are also

28 A. S. BERAHAS ET AL.

Table 4. Toy classification problem:
neural network details.

Network Structure d

small 2-2-2-2-2-2 36
medium 2-4-8-8-4-2 176
large 2-10-20-20-10-2 908

accepted, as long as they are large enough in magnitude. That being said, the relative per-
formance when the eigenvalues are chosen to be smaller is similar to the S-LBFGSmethod.
For the toy classification problems, as for the S-LBFGSmethod, the probability of accepting
curvature pairs is close to 100% as long as ε is chosen to be small.

8. Numerical experiments

In this section, we present numerical experiments on a toy classification problem as well as
on popular benchmarking binary classification and neural network training tasks in order
to illustrate the performance of our proposed sampled quasi-Newton methods.

8.1. Method specifications and details

Before we present the numerical results,3 we discuss the implementation details for all
the methods. For ADAM [38], we tuned the steplength and batch size for each prob-
lem independently. For GD and BFGS-type methods, we computed the steplength using a
backtracking Armijo line search [53]. For SR1-type methods, we solved the subproblems
(5) using CG-Steihaug [53]. For BFGS and SR1, we constructed the full (inverse) Hessian
approximations explicitly, whereas for the limited-memory we never constructed the full
matrices. For limited-memory BFGS methods, we used the two-loop recursion to get the
search direction [53]. Implementing the limited-memory SR1 methods is not trivial; we
made use of the compact representations of the SR1 matrices [12] and computed the steps
dynamically; see [4] for details.

8.2. Toy classification problem

Consider the following simple classification problem, illustrated in Figure 9, consisting of
two classes (red and blue) each with 50 data points. The goal of this classification task
is to find a nonlinear decision boundary that separates the two classes. We trained three
fully connected neural networks–small, medium and large–with sigmoid activation
functions and 4 hidden layers. The details of the three networks are summarized in Table 4.

For this problem, we ran each method 100 times starting from different initial points
and show the results for different budget levels. The results are summarized in Figure 10. In
order to better visualize the relative performance of our proposed sampled quasi-Newton
methods compared to the classical variants, we show accuracy vs. epochs plots in Figure 11.
As is clear from the figures, the proposed methods outperform their classical variants as
well as the first-order methods. See [4, Section A.6] for more results.

For this problem, we ran each method 100 times starting from different initial points
and show the results for different budget levels. The results are summarized in Figure 10. In

OPTIMIZATION METHODS & SOFTWARE 29

Figure 9. Toy classification problem.

Figure 10. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classification
problems. Networks: small (left); medium (center); large (right).

Figure 11. Performance of: BFGS, LBFGS, S-LBFGS (top); SR1, LSR1 and S-LSR1 (bottom), on toy classifi-
cation problems. Networks: small (left); medium (center); large (right).

30 A. S. BERAHAS ET AL.

order to better visualize the relative performance of our proposed sampled quasi-Newton
methods compared to the classical variants, we show accuracy vs. epochs plots in Figure
11. As is clear from the figures, the proposed methods outperform their classical variants
as well as the first-order methods. See [4, Section A.6] for more results.

The toy classification problem is inherently complex. As is clear from the results, first-
order methods (GD and ADAM) are not competitive with other reportedmethods, as they
require a significant computational budget in order to achieve low classification error. It is
worth noting that as we increase the size of the neural networks (over-parameterization),
the performance of thesemethods becomes better.On the other hand, quasi-Newtonmeth-
ods have better performance in this complex, albeit small, problem, primarily due to the
use of curvature information. Amongst the reported results, our sampled quasi-Newton
methods significantly outperform the classical methods. We posit that this is the case due
to the use of more recent and local curvature information in the updates.

8.3. Logistic regression

Next we consider �2-regularized logistic regression problems of the form

F(w) = 1
n

n∑
i=1

log(1 + e−yixTi w) + λ

2
‖w‖2,

where (xi, yi)ni=1 denotes the training examples and λ > 0 is the regularization parameter.
We present results on two popular machine learning datasets (rcv1 and w8a; [16]); see
[4, Section A.7.1] for dataset details and more results. We compared the performance of
the proposed sampled quasi-Newton methods with gradient descent (GD) and classical
quasi-Newton methods (LSR1 and LBFGS). Figures 12 illustrates the performance of the
methods in terms of optimality gap (training loss), training accuracy and testing accuracy.
As is clear from Figure 12, the sample quasi-Newton methods are competitive with the
classical variants in terms of all threemetrics. One can also observe that in the initial stages
of the optimization, it appears that the sampled quasi-Newton methods outperform their
classical counterparts.

8.4. Nonlinear least squares

In this section, we consider nonlinear least squares problems [63] of the form

F(w) = 1
n

n∑
i=1

(
yi − 1

1 + e−xTi w

)2
,

where (xi, yi)ni=1 denote the training examples.We present results on the same datasets and
compare against the samemethods and using the samemetrics as in Section 8.3. As is clear
from Figure 13, the sampled quasi-Newton methods outperform their classical counter-
parts across the board. This is consistent with the results on other datasets; see [4, Section
A.7.2]. We posit that this is due to the fact that sampling curvature pairs at every iterations
allow for the method to incorporate more recent, local and reliable curvature information,
a feature that can be indispensable in the nonconvex setting.

OPTIMIZATION METHODS & SOFTWARE 31

Figure 12. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Logistic Regression problems;
rcv1 dataset (first row) and w8a dataset (second row).

Figure 13. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Nonlinear Least Squares problems;
rcv1 dataset (first row) and w8a dataset (second row).

32 A. S. BERAHAS ET AL.

Figure 14. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST prob-
lems on Net1 (first row) and Net2 (second row).

Figure 15. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on CIFAR10
problems on Net3 (first row) and Net4 (second row).

8.5. Neural network training: MNIST and CIFAR10

We illustrate the performance of the sampled quasi-Newton methods on standard bench-
marking neural network training tasks: MNIST [41] and CIFAR10 [39]. The details of
the problems are given in Table 5. For these problems, we used sigmoid and softplus acti-
vation functions and softmax cross-entropy loss. For the memory-variant algorithms, we
considered the memory from the setm ∈ {4, 16, 64, 256}, and report the best performance
with respect to the different memory sizes. The results of these experiments are given in
Figures 14 and 15.

Overall, the sampled quasi-Newton methods outperform their classical variants. We
should note that the goal of these experiments is not to perform better than ADAM,
rather the performance of ADAM can be viewed as a benchmark. The reasons for this
are two-fold. First, ADAM is a stochastic algorithm while the other reported methods are

OPTIMIZATION METHODS & SOFTWARE 33

Table 5. Details for MNIST and CIFAR10 problems.

Problem Network Structure d

MNIST Net1 784 − C5,3 − C5,5 − 10 − 10 1378
MNIST Net2 784 − C5,6 − C5,16 − C4,120 − 82 − 10 44,164
CIFAR10 Net3 1024, 3 − C5,3 − C5,4 − 10 − 10 1652
CIFAR10 Net4 1024, 3 − C5,3 − C5,5 − 16 − 32 − 10 2312

Ck,ch : convolution with kernel k and ch output channels.Net2 is equivalent to
LeNet structure with 1-channel input.

deterministic. Second, we report results for the best hyper-parameter settings for ADAM
(well-tuned; see [4, Section A.8]), while the other methods do not require tuning or they
are insensitive to the choice of hyper-parameters.

For the MNIST problems, the S-LSR1 method is able to achieve comparable accuracy
to that of well-tuned ADAM, after a lot more epochs. That being said, in a distributed
setting, the time to perform one iteration (one epoch) of S-LSR1 is significantly smaller
than the time to perform one epoch of ADAM, and as such in terms of Wall Clock Time,
the proposedmethod could bemore efficient.With regards to theCIFAR10 problems, one
can observe that our proposed sampledmethods perform on par if not better than classical
quasi-Newtonmethods. We posit that the reason that S-LSR1 has better performance than
S-LBFGS is due to the possible utilization of negative curvature in the updates.

9. Final remarks and future work

This paper describes two novel quasi-Newton methods; S-LBFGS and S-LSR1. Contrary
to classical quasi-Newton methods, these methods forget past curvature information and
samplenew curvature information at every iteration.Numerical results show that themeth-
ods are efficient in practice, and the convergence guarantees of the methods match those
of the classical variants.

Our algorithms can be extended to the stochastic setting where gradients and/or Hes-
sians are computed inexactly. Moreover, the algorithms could be made adaptive following
the ideas from [30,50]. Furthermore, stronger theoretical (e.g. superlinear convergence)
results could be proven for some variants of the sampled quasi-Newton methods. Finally,
a large-scale numerical investigation of the method would test the limits of these methods.

Notes

1. The structure of the deep neural network is taken from: https://github.com/tensorflow/models/
tree/master/research/slim

2. Each GPU has 1 MPI process that is used for communicating updates. Note, we are running 4
MPI processes for each physical node, i.e. each node has 4 P100 GPUs.

3. All codes to reproduce results presented in this section are available at: https://github.com/Opt
MLGroup/SQN.

Disclosure statement

No potential conflict of interest was reported by the author(s).

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/OptMLGroup/SQN

34 A. S. BERAHAS ET AL.

Funding

This work was partially supported by the U.S. National Science Foundation, under award numbers
NSF:CCF:1618717 and NSF:CCF:1740796, Defense Advanced Research Projects Agency (DARPA)
Lagrange award PHR-001117S0039, and XSEDE Startup grant IRI180020.

Notes on contributors

A. S. Berahas is an Assistant Professor in the Industrial and Operations Engineering department
at the University of Michigan. Prior to this appointment, he was a Postdoctoral Research Fellow in
the Industrial and Systems Engineering department at Lehigh University. Berahas’ research broadly
focuses on designing, developing and analyzing algorithms for solving large scale nonlinear opti-
mization problems. Berahas serves as the Vice-Chair for the Nonlinear Optimization cluster in the
INFORMS Optimization Society.

M. Jahani works for Target as a Senior AI – Optimization Scientist. Jahani completed his PhD stud-
ies in the Industrial and Systems Engineering (ISE) department at Lehigh University, PA, USA in
2021, advised by Professor Martin Takac. He earned his B.Sc. (2011) in Applied Mathematics at
Shahid Beheshti University, Tehran, Iran, and hisM.Sc. (2013) in AppliedMathematics at Amirkabir
University of Technology – Tehran Polytechnic, Tehran, Iran.

P. Richtárik is a professor of Computer Science at the King Abdullah University of Science and
Technology (KAUST), Saudi Arabia, where he leads the Optimization and Machine Learning Lab.
Through his works on randomized and distributed optimization algorithms, he has contributed to
the foundations of machine learning, optimization and randomized numerical linear algebra. He
is one of the original developers of Federated Learning. His papers attracted international awards,
including the 2020 COAP Best Paper Award (with N. Loizou), a 2020 NeurIPS Workshop Best
Paper Award (with S. Horváth), and the 2016 SIAM SIGEST Best Paper Award (with O. Fer-
coq). Peter Richtarik serves as an Area Chair for leading machine learning conferences, including
NeurIPS, ICML and ICLR, and is an Area Editor of Journal of Optimization Theory and Applica-
tions, Associate Editor of OptimizationMethods and Software, and a Handling Editor of the Journal
of Nonsmooth Analysis and Optimization.

M. Takáč is an Associate Professor at Mohamed bin Zayed University of Artificial Intelligence
(MBZUAI), UAE. Before joining MBZUAI, he was an Associate Professor in the Department of
Industrial and Systems Engineering at Lehigh University. His current research interests include the
design and analysis of algorithms for machine learning, applications of ML, optimization, HPC.
He currently serves as an Associate Editor for Mathematical Programming Computation, Journal
of Optimization Theory and Applications, and Optimization Methods and Software and is an area
chair at machine learning conferences like ICML, NeurIPS, ICLR, and AISTATS.

ORCID

A. S. Berahas http://orcid.org/0000-0002-2371-9398
M. Jahani http://orcid.org/0000-0002-7048-0981
P. Richtárik http://orcid.org/0000-0003-4380-5848
M. Takáč http://orcid.org/0000-0001-7455-2025

References

[1] T. Akiba, S. Suzuki, and K. Fukuda, Extremely large minibatch SGD: Training ResNet-50 on
ImageNet in 15 min, preprint (2017). Available at arXiv:1711.04325.

[2] A.S. Berahas and M. Takáč, A robust multi-batch L-BFGS method for machine learning, Optim.
Methods Softw. 35 (2020), pp. 191–219.

http://orcid.org/0000-0002-2371-9398
http://orcid.org/0000-0002-7048-0981
http://orcid.org/0000-0003-4380-5848
http://orcid.org/0000-0001-7455-2025

OPTIMIZATION METHODS & SOFTWARE 35

[3] A.S. Berahas, J. Nocedal, and M. Takáč, Amulti-batch L-BFGS method for machine learning, in
Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon
and R. Garnett, eds., Curran Associates, Inc., Barcelona, Spain, 2016, pp. 1055–1063.

[4] A.S. Berahas, M. Jahani, P. Richtárik, and M. Takáč, Quasi-Newton methods for machine
learning: Forget the past, just sample. Supplementary Materials (available with submission),
2019.

[5] A.S. Berahas, R. Bollapragada, and J. Nocedal, An investigation of Newton-Sketch and subsam-
pled Newton methods, Optim. Methods Softw. 35 (2020), pp. 661–680.

[6] R. Bollapragada, R.H. Byrd, and J. Nocedal, Exact and inexact subsampled Newton methods for
optimization, IMA J. Numer. Anal. 39 (2016), pp. 545–578.

[7] E.G. Boman, Infeasibility and Negative Curvature in Optimization, Stanford University, Stan-
ford, CA, 1999.

[8] L. Bottou and Y.L. Cun, Large scale online learning, in Advances in Neural Information Process-
ing Systems, S. Thrun, L. Saul and B. Schölkopf, eds., Montreal, Canada, MIT Press, 2004, pp.
217–224.

[9] L. Bottou, F.E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning,
SIAM Rev. 60 (2018), pp. 223–311.

[10] C.G. Broyden, Quasi-Newton methods and their application to function minimisation, Math.
Comput. 21 (1967), pp. 368–381.

[11] J. Brust, J.B. Erway, and R.F. Marcia, On solving L-SR1 trust-region subproblems, Comput.
Optim. Appl. 66 (2017), pp. 245–266.

[12] R.H. Byrd, J. Nocedal, and R.B. Schnabel, Representations of quasi-Newton matrices and their
use in limited memory methods, Math. Program. 63 (1994), pp. 129–156.

[13] R.H. Byrd, H.F. Khalfan, and R.B. Schnabel, Analysis of a symmetric rank-one trust region
method, SIAM J. Optim. 6 (1996), pp. 1025–1039.

[14] R.H. Byrd, G.M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic hessian information
in optimization methods for machine learning, SIAM J. Optim. 21 (2011), pp. 977–995.

[15] R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-
scale optimization, SIAM J. Optim. 26 (2016), pp. 1008–1031.

[16] C.C. Chang and C.J. Lin, lIBSVM: A library for support vector machines, ACM Trans. Intell.
Syst. Technol. 2 (2011), pp. 1–27.

[17] A.R. Conn, N.I. Gould, and P.L. Toint, Convergence of quasi-Newton matrices generated by the
symmetric rank one update, Math. Program. 50 (1991), pp. 177–195.

[18] A.R. Conn, N.I. Gould, and P.L. Toint, Trust Region Methods, Vol. 1, SIAM, Philadelphia,
Pennsylvania, 2000.

[19] F. Curtis,A self-correcting variable-metric algorithm for stochastic optimization, in International
Conference on Machine Learning, Balcan, Maria Florina and Weinberger, Kilian Q. eds., New
York, PMLR, 2016, pp. 632–641.

[20] Y.H.Dai,Convergence properties of the BFGS algorithm, SIAM J. Optim. 13 (2002), pp. 693–701.
[21] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B. Kaul, and P.

Dubey,Distributed deep learning using synchronous stochastic gradient descent, preprint (2016).
Available at arXiv:1602.06709.

[22] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives, in Advances in Neural Information Pro-
cessing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,
eds., Montreal, Canada, Curran Associates, Inc., 2014, pp. 1646–1654.

[23] J.Duchi, E.Hazan, andY. Singer,Adaptive subgradientmethods for online learning and stochastic
optimization, J. Mach. Learn. Res. 12 (2011), pp. 2121–2159.

[24] R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970), pp. 317–322.
[25] W. Gao and D. Goldfarb, Block BFGS methods, SIAM J. Optim. 28 (2018), pp. 1205–1231.
[26] D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput.

24 (1970), pp. 23–26.

36 A. S. BERAHAS ET AL.

[27] R. Gower, D. Goldfarb, and P. Richtárik, Stochastic block BFGS: Squeezing more curvature out of
data, in International Conference on Machine Learning, Balcan, Maria Florina andWeinberger,
Kilian Q., eds., New York, PMLR. 2016, pp. 1869–1878.

[28] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He,Accurate large minibatch SGD: Training imagenet in 1 hour, preprint (2017). Available at
arXiv:1706.02677.

[29] M. Hardt, B. Recht, and Y. Singer, Train faster, generalize better: Stability of stochastic gradi-
ent descent, in Proceedings of the 33rd International Conference on International Conference on
Machine Learning, Vol. 48, JMLR. org, 2016, pp. 1225–1234.

[30] M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere, A. Ribeiro, and M. Takác, Efficient dis-
tributed hessian free algorithm for large-scale empirical risk minimization via accumulating
sample strategy, in International Conference on Artificial Intelligence and Statistics, PMLR, 2020,
pp. 2634–2644.

[31] M. Jahani, M. Nazari, S. Rusakov, A.S. Berahas, and M. Takáč, Scaling up quasi-Newton
algorithms: Communication efficient distributed SR1, in International Conference on Machine
Learning, Optimization, and Data Science, Springer, 2020, pp. 41–54.

[32] M. Jahani, M. Nazari, R. Tappenden, A.S. Berahas, and M. Takac, SONIA: A symmetric block-
wise truncated optimization algorithm, in International Conference on Artificial Intelligence and
Statistics, PMLR, 2021, pp. 487–495.

[33] X. Jia, S. Song,W.He, Y.Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, and L. Yu, et al.,Highly
scalable deep learning training system with mixed-precision: Training ImageNet in 4 minutes,
preprint (2018). Available at arXiv:1807.11205

[34] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, in Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M.
Welling, Z. Ghahramani, and K. Q.Weinberger, Lake Tahoe, Nevada, USA, Curran Associates,
Inc. 2013, pp. 315–323.

[35] N.S. Keskar and A.S. Berahas, adaQN: An adaptive quasi-Newton algorithm for training RNNs,
in Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2016, pp. 1–16.

[36] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P.T.P. Tang On large-batch train-
ing for deep learning: Generalization gap and sharp minima, preprint (2016). Available at
arXiv:1609.04836.

[37] H.F. Khalfan, R.H. Byrd, and R.B. Schnabel, A theoretical and experimental study of the
symmetric rank-one update, SIAM J. Optim. 3 (1993), pp. 1–24.

[38] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint (2014). Available
at arXiv:1412.6980.

[39] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, Tech. Rep.,
2009.

[40] S.B. Kylasa, F. Roosta-Khorasani, M.W.Mahoney, and A. Grama,GPU accelerated sub-sampled
Newtons method, preprint (2018). Available at arXiv:1802.09113.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86 (1998), pp. 2278–2324.

[42] D.H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex
minimization, J. Comput. Appl. Math. 129 (2001), pp. 15–35.

[43] D.H. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex
unconstrained optimization problems, SIAM J. Optim. 11 (2001), pp. 1054–1064.

[44] D.C. Liu and J. Nocedal,On the limitedmemory BFGSmethod for large scale optimization,Math.
Program. 45 (1989), pp. 503–528.

[45] J. Liu, Y. Rong, M. Takáč, and J. Huang, On the acceleration of L-BFGS with second-order
information and stochastic batches, preprint (2018). Available at arXiv:1807.05328.

[46] X. Lu, A Study of the Limited Memory SR1 Method in Practice, Boulder, CO, University of
Colorado at Boulder, 1996.

OPTIMIZATION METHODS & SOFTWARE 37

[47] J. Martens,Deep learning via Hessian-free optimization, in Proceedings of the 27th international
conference on international conference on machine learning, J. Furnkranz and T. Joachims, eds.,
Madison, WI, Omnipress, Vol. 27, 2010, pp. 735–742.

[48] W.F. Mascarenhas, The BFGS method with exact line searches fails for non-convex objective
functions, Math. Program. 99 (2004), pp. 49–61.

[49] A.Mokhtari and A. Ribeiro,Global convergence of online limitedmemory BFGS, J. Mach. Learn.
Res. 16 (2015), pp. 3151–3181.

[50] A. Mokhtari, H. Daneshmand, A. Lucchi, T. Hofmann, and A. Ribeiro, Adaptive Newton
method for empirical riskminimization to statistical accuracy, inAdvances inNeural Information
Processing Systems, D. Lee,M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds., Barcelona,
Spain, Curran Associates, Inc. 2016, pp. 4062–4070.

[51] L.M.Nguyen, J. Liu, K. Scheinberg, andM. Takáč, SARAH:A novelmethod formachine learning
problems using stochastic recursive gradient, in International Conference on Machine Learning,
Precup, Doina and Teh, Yee Whye, eds., Sydney, Australia, PMLR. 2017, pp. 2613–2621.

[52] J. Nocedal,Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980), pp.
773–782.

[53] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operations Research,
2nd ed., Springer, 2006.

[54] M.J. Powell, Some global convergence properties of a variable metric algorithm for minimization
without exact line searches, Nonlinear Program. 9 (1976), pp. 53–72.

[55] M.J. Powell, Algorithms for nonlinear constraints that use lagrangian functions, Math. Program.
14 (1978), pp. 224–248.

[56] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Stat. 22 (1951), pp.
400–407.

[57] F. Roosta-Khorasani and M.W. Mahoney, Sub-sampled Newton methods, Math. Program. 174
(2018), pp. 293–326.

[58] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average
gradient, Math. Program. 162 (2017), pp. 83–112.

[59] N.N. Schraudolph, J. Yu, and S. Günter, A stochastic quasi-Newton method for online convex
optimization, in Artificial Intelligence and Statistics, Meila, Marina and Shen, Xiaotong, eds.,
San Juan, Puerto Rico, PMLR. 2007, pp. 436–443.

[60] D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput.
24 (1970), pp. 647–656.

[61] M. Takáč, A.S. Bijral, P. Richtárik, andN. Srebro,Mini-batch primal and dualmethods for SVMs,
in International Conference on Machine Learning, Dasgupta, Sanjoy and McAllester, David,
eds., Atlanta, Georgia, PMLR, 2013, pp. 1022–1030.

[62] P. Xu, F. Roosta, and M.W. Mahoney, Newton-type methods for non-convex optimization under
inexact hessian information, Math. Program. 184 (2019), pp. 1–36.

[63] P. Xu, F. Roosta, and M.W. Mahoney, Second-order optimization for non-convex machine learn-
ing: An empirical study, in Proceedings of the 2020 SIAM International Conference on Data
Mining, SIAM, 2020, pp. 199–207.

[64] Y. You, Z. Zhang, C.J. Hsieh, J. Demmel, and K. Keutzer, Imagenet training in minutes, in
Proceedings of the 47th International Conference on Parallel Processing, ACM, 2018, p. 1.

	1. Introduction
	2. Quasi-Newton methods
	2.1. BFGS and LBFGS
	2.2. SR1 and LSR1

	3. Sampled quasi-Newton methods
	3.1. Sampling curvature pairs
	3.2. Sampled LBFGS (S-LBFGS)
	3.3. Sampled LSR1

	4. Distributed computing and computational cost
	4.1. Distributed computing
	4.2. Cost, storage and parallelization

	5. Convergence analysis
	5.1. Sampled LBFGS
	5.1.1. Strongly convex functions

	5.2. Nonconvex functions

	6. Sampled LSR1
	7. Probabilistic bounds on sampled quasi-Newton methods
	7.1. Probabilistic bounds for S-LBFGS
	7.2. Probabilistic bounds on S-LSR1

	8. Numerical experiments
	8.1. Method specifications and details
	8.2. Toy classification problem
	8.3. Logistic regression
	8.4. Nonlinear least squares
	8.5. Neural network training: MNIST and CIFAR10

	9. Final remarks and future work
	Notes
	Funding
	ORCID
	References

