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Abstract

As miniaturization of electrical and mechanical components used in modern technology progresses, there is an
increasing need for high-throughput and low-cost micro-scale assembly techniques. Many current micro-assembly
methods are serial in nature, resulting in unfeasibly low throughput. Additionally, the need for increasingly smaller
tools to pick and place individual microparts makes these methods cost prohibitive. Alternatively, parallel self-
assembly or directed-assembly techniques can be employed by utilizing forces dominant at the micro and nano
scales such as electro-kinetic, thermal, and capillary forces. However, these forces are governed by complex
equations and often act on microparts simultaneously and competitively, making modeling and simulation difficult.
The research in this paper presents a novel phenomenological approach to directed micro-assembly through the
use of artificial intelligence to correlate micro-particle movement via dielectrophoretic and electro-osmotic forces in
response to varying frequency of an applied non-uniform electric field. This research serves as a proof of concept
of the application of artificial intelligence to create high yield low-cost micro-assembly techniques, which will prove
useful in a variety of fields including micro-electrical-mechanical systems (MEMS), biotechnology, and tissue

engineering.
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1. Introduction

Miniaturization of electrical and mechanical
systems has fuelled a dramatic increase in the reliance
of modern technology on integrated circuits and micro-
electro-mechanical systems (MEMS). As such,
research into manufacturing and assembly at the
micro and nano scale is of increasing interest and
necessity. The goal of micro-assembly is to create
multi-part micro-scale devices of high complexity with
high yield and low cost [1].

Many current micro-assembly methods are serial
processes, in which micro parts are assembled one at
a time. A common method for serial micro-assembly is
the use of micro-grippers to pick and place individual
microparts. This method of assembly suffers from
being too slow to achieve industrially feasible
throughput. Additionally, the tools required to perform
serial micro-assembly must become increasing
smaller to obtain better assembly resolution, an
expensive and slow proposition.

An alternative method for micro-assembly is
guided, or directed, assembly in which many
microparts can be assembled in parallel. One example
of such techniques is the assembly of inorganic
microparts via polymer-guided assembly [2].
Commonly, methods for directed assembly utilize
forces dominant on the micro scale such as
electrostatics, surface and capillary forces, and
thermal forces. The present study relies primarily on
Dielectrophoretic (DEP) and Electro-osmotic (EO)
forces. DEP describes a force acting on the induced

dipole moment of a particle suspended in dielectric
fluid resulting from an applied non-uniform electric field
[3]. EO refers to the movement of fluid resulting from
ion build-up at a charged surface within an applied
electric field [4].

A major issue with directed micro-assembly is the
complexity of the forces acting in the micro-domain.
Many of these forces such as DEP and electro-
osmosis act simultaneously on the microparts and thus
successful prediction of the behaviour of microparts is
often difficult to achieve. In the absence of sufficient
isolation of a single force or comprehensive model of
the various forces acting on the microparts, artificial
intelligence (Al) can be used to evaluate the response
of microparts to the applied signals (frequency and
voltage for DEP) and to guide the manipulation of
these parts.

Specifically, present study is looking at the
utilization of algorithmic Al, where the behaviour of
microparticles is first captured via digital camera and
then evaluated mathematically, by comparison of the
position of particles in individual frames. The
mathematical algorithms are programmed into the
software to quantify the output (determination if
particles are moving towards or away from the
electrodes) and then correlate this behavior of the
particles to the given input variables such as the
frequency of the applied electric field.

In this study, a novel phenomenological approach
to micro-assembly utilizing Al is presented. A closed-
loop cyber-physical system was developed to
characterize the response of polystyrene micro-beads
to changes in input of an applied electric field



(including voltage and the applied frequency). Digital
camera captures a sequence of images that are
digitized. Image processing is used to recognize
microparts and determine their pattern of movement —
towards the electrodes or away from the electrodes.
Having determined the type of the bead movement
under the specific input conditions (for example, given
frequency), the program changes the input conditions,
and the new sequence of images is analysed.
Therefore, the system is capable of determining
frequency ranges in which the beads are attracted to
or are repelled from the electrodes as well as ranges
in which the beads are unaffected by the electric field.

The phenomenological approach to directed
micro-assembly presented in this paper will find
application across a variety of fields including
microsystems and electronics, biotechnology, drug
delivery, and tissue engineering [5].

2. Methods and Materials
2.1. Fabrication of Electrodes

The interdigitated gold electrodes (IDEs) were
fabricated via photolithography and e-beam
evaporation process. Initially, a thin layer of positive
photoresist (Shipley) was spin-coated onto a 4-inch
silicon wafer covered with a 1 uym thick thermal oxide
layer (University Wafer, South Boston, MA, USA)
using a Laurell photoresist spinner (Laurell
Technologies, North Wales, PA, USA) at an initial
speed of 3000 rpm for 30s. Then, the resist was soft-

Fig. 1. Fabricated gold IDEs in 6” silicon wafer.

baked at 90 °C for 30 minutes on a hot plate
(Dataplate, Pmc, 732 Series, Dubuque, IA, USA).
Next, the resist layer was exposed through a
photomask (CadArt, Bandon, OR, USA) to a UV light
source at an energy intensity of 10mW /cm? for 35s
using the Karl Suss MA56 Mask Aligner ( Karl Suss,
Garching, Germany). The portions of the resist layer
exposed to the UV light were washed away using
deionized water.

A 300 A layer of chromium was deposited onto the
wafer using a Temescal CV-8 e-beam evaporator
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(AIRCO.INC, Berkeley, CA, USA), followed by the
deposition of a second layer (300 nm thick) — that of
gold. The remaining photoresist was washed away by
acetone to leave the set of gold IDEs (see Fig. 1). Each
IDE consisted of 12 individual fingers 70 ym in width,

Fig. 2. Electrode fingers of the IDEs. Each electrode
finger is 70 microns wide. The interdigitated electrodes
are located on the top of each IT shaped electrode set
seen on Figure 1.

separated by a gap of 70 uym (see Fig. 2).
2.2 Experimental Setup

34-gauge buss wires (Guasti Wire and Cable,
Ontario, Canada) were soldered to both contact pads
of the IDEs using indium solder. The chip containing
the IDEs was then placed under an optical microscope
(Nikon Eclipse, Minato, Japan) connected to a cMOS
digital camera (SPOT Imaging, Sterling Heights, MI,
USA). Each buss wire was then connected to a Siglent
2082X function generator (Siglent Technologies,
Solon, OH, USA) to induce an electric field across the
fingers of the IDE. 5 pyL of polystyrene bead
suspension, containing 3 pm diameter beads, were
pipetted onto the IDEs and a slide cover was laid on
top to reduce evaporation.

2.3 Hardware/Software Integration

The camera and function generator were
integrated into the software program to create the
closed loop system. The live images of the beads were
captured using the PyAutoGUI Python package and
was processed using OpenCV. The function generator
was connected via USB to the computer and the
frequency of the applied electric field was controlled
via SCPl commands using the PyVISA Python
package.

2.4 Software Architecture
The closed-loop system analyses and directs the

movement of the polystyrene beads using information
from the cMOS camera enabled optical microscope to
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monitor the gaps between the IDE fingers (see Fig. 3).
Designed as a real-time embedded system, this
system constantly monitors the testbed and makes
decisions on adjusting the frequency of the electric
field applied across the testbed which in turn changes
the magnitude and direction of the DEP force
experienced by the polystyrene beads.

2.4.1 Particle Detection

For each frame I, € I, the system utilizes Hough
Circle Detector (HCD) to detect particles [6]. The HCD
leverages the Hough Gradient Method implementation
in OpenCV [7] that detects the circle-shaped objects
on images [6] (see Fig. 4). For ensuring the detecting
performance across various experimental setups, the
system has four parameters for tuning HCD’s
performance: param_1, param_2, min_radius,
max_radius. Specifically, param_1 is related to the
internal Canny detector threshold and param 2 is
related to the center detection threshold. For each I,
the detection result is denoted as a container of
particles B, . Such process is abstracted as a
converting function F. Thus, the relation between a
new frame I, and a container B, can be described as:
F(I;) = B = {P1, P,, ... Py} where N is the number of
detected particles and each particle is represented
with the center 2-D coordinates (i.e. B, = {x,, ¥n}).

Fig. 4. Particle Detection via HCD. Green lines indicate
visual recognition of electrodes’ edges and constitute the
observation window.

2.4.2 Feature Extraction

Once detected, the system then transforms B;
into a corresponding feature vector, denoted as X;.
Two assumptions are made. The first one is that the
particle movement can be represented by the values
derived from formulaic methods. Second, the direction
of DEP force is assumed to be perpendicular to the
electrodes of the testbed. Therefore, the system
considers a particle’s movement along the x-axis. The
process of acquiring X, is abstracted as another
converting function G, realized by calculating the
average absolute distance to the reference line where
the reference line refers to a vertical line that stays in
between and in the middle of two electrodes. The
relationship between a new frame I, to the extracted
feature X; is formulated as:

N
[x, — 1l
Xe = G(FUD) = 6(B) = )
n=1
where r denotes the x-coordinate of the reference line.

2.4.3 Movement Determination

To capture the macroscopic motion of particles at
each timestamp t, the system performs a linear trend
analysis by considering a subset of features between
current frame and few frames prior. This subset is
defined as W = {X;_, X;_x+1, .- X¢} Where k denotes
the length of W. Our system first post-processes the
features in W with Missing-Value Sampling and Data
Smoothing. As HCD might end up not detecting any
particle for I, the function in Missing-Value Sampling
finds an alternative value of X;, thus minimizing the
negative influence of missing values in the linear trend
analysis. Besides, the system runs Data Smoothing on
W so that the influence of noise or random errors could
be minimized. Specifically, a linear convolution with an
unweighted filter is applied on W, allowing the system
to acquire a cleaner trend during the analysis.

Next, the proposed system uses Linear Trend Model
(LTM) for determining the macroscopic motion of the
detected particles. To be more specific, the system
performs the linear regression to derive a trend with all
the features maintained in W . For all features in
Xtk Xe—ga1, - X}, the least-squares regression line
generates a unique trend line represented by equation
y = bx + ¢ that minimizes the vertical distance from
each X, to the regression line, and the coefficient, b, is
calculated as:p = 2E~20—%)

X(x-x)

where the coefficient b represents the collective
velocity of all particles. The system uses b and a
decision threshold § to classify the macroscopic
motion of particles with a categorical label Y. If |b| <
6§, the system classifies the motion as NO_DEP
because as b is too little to be considered as a DEP
polarity. In the case where |b| > &, the system
classifies the DEP’s polarity as either Positive-DEP or
Negative-DEP.

2.4.4 Feedback Control Design

The proposed system implements Al-guidance
using cyber-physical feedback control system. With a
predefined sampling rate m, the system repeatedly
collects and analyses the new frame from the camera
to acquire a feature X, as described in Sec. 2.4.1 ~
2.4.3. Inruntime, each new feature X, is inserted to the
end of the watching window W which is realized as
FIFO (First-In First Out) Queue with k as the size in the
system. Next, in Non-SETTLE state, the system
computes Y; that indicates the current testbed state
from the watching window W = {X;_, X;_41, .- X¢}- In
SETTLE state, the system keeps obtaining inputs from
the camera and extracting X:.

According to Y; and b, the system adjusts the
frequency or voltage applied by the function generator
to the electrodes. The adjustments are encapsulated
as a command packet and sent to the function
generator. Once the applied signal is adjusted, the
system switches its state to SETTLE. In SETTLE, the
system detects the change of the microscopic motion
for particles induced by the function generator. The
system monitors two changes: particle response time
and system response time. The particle response time
refers to the time required for particles to manifest the
effect of function generator's manipulation. The
system response time refers to the time needed by the
system’s analysing components to capture the



macroscopic movement of particles.
3. Results and Discussion

The cyber-physical system detailed in section 2
above is allowed to run for a total of 4 cycles (applied
signal via function generator, image acquisition, image
analysis, data processing/algorithmic guidance,
change is signal implemented by the function
generator). The system demonstrated capability to
accurately detect the polystyrene beads, determine
their movement resulting from DEP and EO forces,
and adjust the frequency of the electric field
accordingly. On average, the Hough Circle Detector
was capable of identifying 20-25% of the beads in
each frame, a suitable sample size to estimate the
overall movement of the beads.

During the execution of the program, 4 distinct
frequencies were tested and the average absolute
distance of the detected particles from the center of the
testbed was plotted as a function of frame number, and
by extension, time (see Fig. 5). The plot shows a clear
increase in average absolute distance when frequency

4. Conclusions

The cyber-physical system detailed in this study
successfully demonstrated the capability to identify
micro particles, algorithmically determine their
movement resulting from DEP and/or EO forces and
correlate this movement to changes in the frequency
of the applied electric field.

These results serve as a proof of concept that
artificial intelligence can be applied to establish a
phenomenological approach to directed micro-
assembly. By utilizing micro-domain forces such as
DEP and EO a parallel assembly is achieved which
could offer significantly higher throughput compared to
existing serial assembly techniques. Additionally,
because the magnitude of DEP force is dependent on
the size of the particles [8], the system and
experimental setup presented in this research offers
potential for studying selectivity in heterogeneous
systems with particles of varying sizes and within
various media. This initial research design will serve
as a building block for further research into application
of artificial intelligence for micro and nano assembly.
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Fig. 5. Plot of average absolute distance from testbed center as a function of frame number

was set to 10 kHz and 20 kHz, correctly identifying the
positive DEP and EO force attracting the beads to the
surface of the electrodes at low frequencies.
Conversely when frequency was set to 4MHz and
2MHz, the plot shows a decrease in average absolute
distance, indicating the negative DEP force expected
at high frequency.

Figures 6a and 6b contain images of single frames
taken by the program at various points during testing.
Frame number 300 (see Fig. 6a) was taken while the
frequency was set to 4 MHz and the frame illustrates
the beads being attracted to the surface of the
electrodes via positive DEP and EO. Frame number
414 (see Fig. 6b) was taken while the frequency was
set to 20 kHz and illustrates the beads being repelled
from the electrodes towards the center of the testbed.

Fig. 6 (a) Frame 300 at 4 MHz (b) Frame 414 at 20 kHz
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