
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Super Spreader Identification Using
Geometric-Min Filter

Chaoyi Ma , Graduate Student Member, IEEE, Shigang Chen , Fellow, IEEE, Youlin Zhang ,
Qingjun Xiao, Member, IEEE, ACM, and Olufemi O. Odegbile

Abstract— Super spreader identification has a lot of applica-
tions in network management and security monitoring. It is a
more difficult problem than heavy hitter identification because
flow spread is harder to measure than flow size due to the require-
ment of duplicate removal. The prior work either incurs heavy
memory overhead or requires heavy computations. This paper
designs a new super-spreader monitor capable of identifying all
flows whose spreads are greater than a user-specified threshold
with a probability that can be arbitrarily set. It introduces a
generalized geometric hash function, a generalized geometric
counter, and a novel geometric-min filter that blocks out the vast
majority of small/medium flows from being tracked, allowing us
to focus on a small number of flows in which super spreaders
are identified. We provide an analytical way of properly set-
ting the system threshold to meet probabilistically guaranteed
identification of super spreaders, and implement it on both
hardware (FPGA) and software platforms. We perform extensive
experiments based on real Internet traffic traces from CAIDA.
The results show that with proper parameter settings, the new
monitor can identify more than 99% super spreaders with a low
memory requirement, better than the prior art.

Index Terms— Traffic measurement, super spreader
identification.

I. INTRODUCTION

TRAFFIC measurement provides critical information for
network management and security monitoring. While the

explosive growth in both router speed and traffic volume places
ever increasing strain on faster packet processing on the line
cards, the demand of sophisticated network management only
adds more to the stress, requiring traffic measurement tasks
to operate efficiently and compete less for the limited on-chip
resources such as SRAM on the data plane of routers and other
network devices [1].

A packet stream under monitoring is modeled as a set of
flows. Each flow consists of all packets carried the same flow
label, which is usually a combination of one or multiple fields
in the packet header. For individual flows, there are two basic

Manuscript received September 8, 2020; revised April 19, 2021; accepted
August 20, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor R. Lo Cigno. This work was supported by NSF under Grant
CNS-1719222. (Corresponding author: Chaoyi Ma.)

Chaoyi Ma, Shigang Chen, and Youlin Zhang are with the Department of
Computer and Information Science and Engineering, University of Florida,
Gainesville, FL 32611 USA (e-mail: ch.ma@ufl.edu; sgchen@cise.ufl.edu;
ylzh10@ufl.edu).

Qingjun Xiao is with the School of Cyber Science and Engineering,
Southeast University, Nanjing, Jiangsu 211189, China (e-mail: csqjxiao@
seu.edu.cn).

Olufemi O. Odegbile is with the Department of Computer Science, Clark
University, Worcester, MA 01610 USA (e-mail: oodegbile@ufl.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3108033, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3108033

types of measurements: size and spread. The size of a flow
is the number of elements carried in the packets of the flow,
where elements may refer to whole packets, bytes in payload,
or certain content. The spread of a flow is the number of
distinct elements in the flow, where elements may refer to
addresses, ports, other header fields, or payload content. The
difference between the two is that measuring a flow’s spread
requires us to remove duplicate elements, whereas measuring
a flow’s size does not. Consider an example where all packets
sent to the same destination constitutes a flow. For flow size,
suppose that the network admin wants to measure the number
of packets, where each packet is treated as an element. For
flow spread, suppose that the admin wants to measure the
number of distinct source addresses carried in the packets.
Let each measurement period be 1 minute. Consider the case
that a single source sends 1,000,000 packets to a server. This
flow’s size is clearly 1,000,000, while its spread is just 1. Now
consider a different case that 1,000,000 packets come from
100,000 different sources, then the size is still 1,000,000, but
the spread is 100,000. If the server normally receives requests
from 1,000 sources, the abnormal spread of 100,000 should
raise an alert (e.g., possible DDoS attack).

Of particular importance are heavy hitters with large flow
sizes and super spreaders with large flow spreads. Heavy hitter
identification has received intensive research [2]–[11], and it
has many applications in router/switch configuration [12], load
balancing [13], and routing optimization [14], [15], etc. The
focus of this paper is on super spreader identification, which
is a more challenging problem due to the difficulty of dupli-
cate removal. It has wide applications in anomaly detection
[16], [17], Internet search trend detection [18], DDoS attack
detection [19], user/content profiling [20], etc. For another
example, data analysis systems at Google such as PowerDrill
[21] and Dremel [22] measure number of distinct search over
a time period [23]. By measuring distinct searches (spread)
for each subnetwork and identifying those subnetworks with
high spreads (super spreaders), it may forward the requests
from them to powerful machines in its server farm to improve
performance, while forwarding requests from low-spread sub-
network to other machines.

Before we discuss the state of the art in super spreader
identification, we address a related problem: per-flow spread
estimation [23]–[32], which provides an estimated spread for
each flow. It may appear that a solution for per-flow spread
estimation can be used to identify super spreaders. This is
actually not true if one wants an efficient solution that operates
as a compact on-chip module to process packets at line rate.
To fit in small space, most (if not all) existing solutions for
per-flow spread estimation do not keep flow labels. Their query
overhead is too large to perform per-packet spread query.
These two factors prevent them from being used for super

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3572-0046
https://orcid.org/0000-0001-7867-7765
https://orcid.org/0000-0001-7055-1869


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

spreader identification. Existing solutions that are specifically
designed for super spreader identification include [33]–[38],
which will be explained in details shortly. Among them,
AROMA [35] and SpreadSketch [38] are the state of the art.
However, SpreadSketch still relies on a memory-heavy data
structure that supports per-flow spread estimation. AROMA
cannot deal well with flows of very large spreads.

In this paper, we design a new super spreader identifica-
tion solution that outputs a list of flows whose spreads are
greater than a user-specified threshold at the end of each
measurement period. It introduces a generalized geometric
hash function, a generalized geometric counter, and a novel
geometric-min filter that not only removes duplicates but also
blocks out the vast majority of small/medium flows. Only
a small number of flows that pass the filter will be tracked
with a hash table. After a measurement period, we measure
the spreads of these flows and identify the super spreaders
among them. We provide an analytical way of calculating the
optimal parameter settings to meet probabilistically guaranteed
identification of super spreaders. We generalize our solution
to network-wide measurement. We implement the proposed
solution on both hardware (FPGA) and software platforms.
We perform extensive experiments based on real Internet
traffic traces from CAIDA [39]. The results show that our
new solution outperforms the best prior art in efficiently and
accurately identifying super spreaders.

The rest of this paper is organized as follows. Section II
introduces the problem we explore in this paper. Section III
discusses the prior work and provides technical motivation.
Section IV gives a description of generalized geometric hash
and geometric counter. Section V uses geometric counters to
form a geometric-min filter for super spreader identification.
We evaluate the performance of our algorithm using both
software and hardware implementations in Section VI before
drawing the conclusion in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
A network traffic measurement system consists of an online

recording module and an offline processing module. The
online module is to monitor the network traffic and a router,
switch, gateway, intrusion detection system(IDS) or other
network device. To keep up with the line rate, we expect the
module to co-locate with other per-packet processing func-
tions such as forwarding, access Control List(ACL), packet
inspection, etc., which are often implemented on network
processing chip using on-chip cache memory for high speed.
It is highly desirable for the online module to be light-weight
in both memory footprint and processing overhead so as to
leave more resources to other network functions. The offline
module can be more time-consuming and space-consuming
because it is not under real-time constraints and can be left to
a powerful server. We divide time into measurement periods
whose length will be determined based on application need.
During each period, the online module (running on a network
device) will extract information of interest from the arrival
packets and update its data structures. At the end of the
period, the network device will offload its data to a server
and then reset its data structures to restart a new period. After
receiving the data, the server will perform traffic measurement
computation for a given purpose such as identifying super
spreaders.

TABLE I

EXPLANATION OF SOME NOTATIONS

B. Problem Statement

We abstract each arrival packet as a pair �f, e�, where f
is a flow label and e is an element identifier. Flows and
elements under monitoring can be arbitrarily defined based
on different application needs. Flow identifier may be chosen
based on packet-header fields or application-header fields such
as source address, destination address, protocol, and/or port
numbers. Elements may also be chosen from the packet header,
application header or even payload. The spread of a flow
f , denoted as nf , is the number of distinct elements in all
arrival packets whose flow identifier is f during a certain
measurement period.

The problem we investigate in this paper is called super
spreader identification, which is to report and measure the
flows whose spreads exceed a user-defined spread threshold
U . In other words, a flow f is a super spreader if nf ≥ U .
We want to ensure that the probability of reporting a flow
whose true spread is at least U will be no less than α, i.e.,

Prob{reportf |nf ≥ U} ≥ α, (1)

where α is a user-defined probability. Under the above require-
ment, our solution design will also need to control the false
positive rate (which happens when a flow with nf < U is
mistakenly reported) to a low level. Notations used in this
paper are given in Table I for quick reference.

III. PRIOR ART AND MOTIVATION

A. Per-Flow Measurement

Much prior work is to measure per-flow size [8], [29],
[40]–[50], which counts the number of elements in each
flow, where elements may be packets, bytes or occurrences
for certain events or content in packets. It takes a counter
to measure the size of each flow. With each arrival packet,
the counter is increased by an integer (such as one for
packet count). Measuring per-flow spread is more difficult
[26], [29], [30], [51]. With each arrival packet �f, e�, we have
to first determine whether e has appeared before. It requires

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: SUPER SPREADER IDENTIFICATION USING GEOMETRIC-MIN FILTER 3

a more sophisticated data structure such as bitmap [28], [52],
FM sketch [53] or HLL sketch [23], [54], [55], each taking
hundreds or thousands of bits to record the elements that have
been seen. Per-flow measurement cannot be used directly for
heavy hitter/super spreader identification since they never store
the information of flow labels.

B. Super Spreaders vs. Heavy Hitters
The problem of heavy-hitter identification is closely related

to our study, which is to find flows of large sizes. The most
prevalent approach is to keep track of a small set of flows,
trying to retain large flows in the set while replacing small
ones with new flows. Prior solutions include Frequent [6],
Lossy Counting [5], Space Saving [4], CSS [3], RHHH [56],
Heavy Keeper [2], SketchLearner [57], Elastic Sketch [8] and
Nitrosketch [58]. The data structures for keeping a small
set of flows include min-heap [59], stream summary [4],
TinyTable [60], and hash table [8]. Sampling also helps filter
small flows [58].

We explain two solutions as examples. Space Saving [4]
keeps a number of flows and their sizes in a stream summary,
which takes O(1) time to update the size of any flow or find
the smallest flow. When a packet of a flow in the summary
arrives, the flow’s counter is increased by one. When a packet
of a new flow arrives, we replace the smallest flow f in the
summary with the new one whose size is initialized to the
size of f plus one. Heavy Keeper [2] uses hash tables. Each
hash entry stores one flow’s ID and a counter. When a packet
of a flow in the table arrives, the flow’s counter is increased
by one. When a packet of a new flow arrives, if the flow is
hashed to an entry already having a flow, that flow’s counter
is decayed. When the counter is decayed to zero, a new flow
will replace it.

None of the solutions for heavy hitter identification can be
used for super spreader identification since they use counters.
A counter cannot keep track of a flow’s spread, i.e., the number
of distinct elements in the flow. As we explained earlier,
this requires a data structure [23], [28], [53], [55] that can
“remember” what elements have been seen.

One might argue to still use the heavy-hitter solutions but
replace their counters with some other data structures [23],
[28], [53], [55]. There are two problems. The first one is that
these data structures take a lot more space than counters. For
example, each HLL sketch [55] will need over a thousand bits
for good accuracy, compared to 32 bits of a counter. Such
space “inefficiency” means that we need to limit the number
of flows that are monitored. All heavy hitter (super spreader)
solutions track a subset of flows that include hopefully all
heavy hitters (super spreaders) and inevitably some other
flows. Given a certain space constraint, the more memory each
flow will use, the fewer the number of flows we can track.

The second problem is more serious. The heavy-hitter
solutions all require online queries of flow sizes, even on a
per-packet basis. For example, when receiving the packet of a
new flow (which is not tracked in the stream summary), Space
Saving [4] has to find the smallest flow size currently in the
summary for replacement operation. There are numerous small
flows in typical network traffic, and the arrival packet stream
may contain a long sequence of new-flow packets. While
accessing a counter for flow size is cheap, it is very expensive
to compute a flow’s spread from HLL or other sketches [28],
[53], [55] that encode a large number of distinct elements. Our
experiment shows that it is at least four orders of magnitude

slower to compute a flow’s spread online from HLL than to
find a flow’s size from a counter.

Therefore, for online efficiency, we decide that our solu-
tion for super spreader identification should not include any
per-packet operation that needs to compute any flow spread.
This requirement excludes the approaches in the heavy-hitter
solutions from being considered in this paper. We need a
different solution structure.

C. Existing Solutions
We discuss the existing solutions for super spreader identi-

fication and their problem here.
Venkataraman et al. [33] use sampling and a hash table

to store the flow identifiers (source addresses) and, for each
flow, uses a hash table (or a Bloom filter) to record the distinct
elements of the flow. DCS [34] uses multiple hash tables, each
with a different sampling probability, to store �f, e� pairs, from
which we can count the number of distinct sampled elements
from each flow in each table, produce an estimate adjusted by
sampling probability, select the most accurate estimate from
different hash tables, and identify super spreaders. By actually
storing the element identifiers (or encoding them in Bloom
filters), the memory overhead is very large.

FAST [37] maintains multiple arrays of HLL sketches [55].
For each arrival packet �f, e�, it splits f into two parts, hashes
one part to d HLL arrays, and in each array records e in
one HLL sketch for every bit in the second part of f whose
value is one. Without storing element identifiers, this method
uses less memory than [33], [55]. However, it has to record
element e many times in each of the d arrays. This still
causes significant memory overhead and inaccuracy as each
HLL sketch has to be shared by many flows. Moreover, it is
very computationally expensive to recover the flow identifiers.
We take a new approach that is different from the above
solutions. We rely on a light-weight filter to separate super
spreaders from the vast majority of small flows. Not only
does such an approach drastically reduce memory usage, but
it increases the accuracy in super spreader identification and
their spread measurements.

CMH [36] uses Count-Min and a min-heap whose counters
are replaced by a data structure such as bitmap that can
measure flow spread. As we explained earlier, this method
has significant memory overhead. For each arrival packet
�f, e�, while recording the element, it queries the spread
of flow f . If the estimated spread of f is larger than a
threshold, it will report f as a super spreader. However, spread
estimation is computationally expensive and not suitable for
online per-packet operation.

UnivMon [7] is designed to measure per-flow size and the
number of different flows (called the cardinality) in a packet
stream. Using the term of spread in this paper, UnivMon’s
cardinality measurement can be logically considered as mea-
suring the spread of a single flow if we treat the whole packet
stream as a flow. For instance, if we only measure the packets
to a single destination address X, UnivMon can be used to
measure the number of distinct source addresses that have sent
packets to X for DDoS attack detection [7]. However, if we
want to monitor many destination addresses simultaneously for
DDoS attacks, we would need one UnivMon data structure for
each destination or replace each counter in UnivMon with a
multi-resolution bitmap [61], which would be very costly in
memory consumption and hurt performance, as is observed
in [38].

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

SpreadSketch [38] can measure the spreads of many flows
simultaneously and identify the super spreaders among them.
Its data structure follows Count-Min [43] but replaces each
counter with a multi-resolution bitmap [61], a register and a
label field. Multi-resolution bitmap is designed to measure the
spread of one flow. Though it takes a considerable amount of
memory, it is more space-compact than UnivMon for spread
measurement. The label field is used to record one flow label.
The experiments in [38] show that if we replace each counter
in UnivMon with a multi-resolution bitmap, the performance
is much worse than SpreadSketch. While Count-Min [43] is
generally considered to be a very compact data structure,
that is not necessarily true for SpreadSketch after each 32-bit
counter is replaced with a multi-resolution bitmap of 438 bits,
a register of 3 bits, and a label field of 32 bits. Our observation
is that the design of SpreadSketch is overprovisioned: With
numerous multi-resolution bitmaps placed in a Count-Min
structure, it is able to, unnecessarily, provide a spread estimate
for any flow, even though the final task is only to identify super
spreaders. Its use of per-flow spread estimation carries the cost
of high memory overhead. Our idea is to avoid a heavy-duty
data structure of per-flow spread estimation, but to create a
light-weight filter that blocks out most small flows, so that
we only need to measure the spreads of a small number of
post-filter flows. This strategy will allow us to save memory
over SpreadSketch or, equivalently, improve accuracy under
the same memory allocation.

AROMA [35] adopts a sampling strategy. It allocates a
bucket array where each bucket stores a flow label and a
counter. It first hashes each packet �f, e� into a bucket in
the array and then produces another hash value of �f, e�.
If the hash value is smaller than the counter of the bucket,
the counter is set to this value and the flow label is set to f.
Because a flow of higher spread has more distinct elements,
they together are more likely to produce small hash values,
meaning that more of them will likely stay in the array. Hence,
we can identify super spreaders by finding the flow labels that
appear most in the array, and estimate their spreads based
on their counts in the array. Storing the same flow labels
many times in the array can cost significant memory overhead,
especially when the flow labels are long (such as 104 bits
for each TCP flow label). Moreover, when there exists a flow
of very large spread, it could push other super spreaders of
smaller spreads out of the array, causing either failure in
identifying some super spreaders or inaccuracy in their spread
estimations, as our experiments will demonstrate.

IV. GEOMETRIC COUNTER

In this section, we introduce a generalized geometric hash
function and a generalized geometric counter to lay the
foundation for our solution to the problem of super spreader
identification.

A. Generalized Geometric Hash Function

We define a generalized geometric hash function with base
b as follows: Given an input e, its value (denoted as Gb(e))
has the following distribution,

Prob{Gb(e) = k} = (
b − 1

b
)k 1

b
, (2)

where k is a non-negative integer. In this paper, we consider
the base values that are powers of 2, i.e., b = 2w with integer

w ≥ 1, because they can be efficiently implemented from
a uniform hash function H(.) that produces a pseudo-random
output given any input. Consider an arbitrary input e, we divide
H(e) into segments of w bits each, where the ith segment is
denoted as S[i] = H(e)[iw, . . . , ((i + 1)w − 1)], consisting
of w consecutive bits from the iwth bit in H(e) to the ((i +
1)w − 1)th bit, for i ≥ 0. The value of Gb(e) is determined
as follows:

Gb(e) =

⎧⎨
⎩

0, if S[0] = 0
k, if ∃k > 0, S[i] �= 0, 0 < i ≤ k,

and S[k] = 0
(3)

Gb(e) = k when the kth segment is zero and all previous
segments are non-zeros. A segment is zero when all its bits
are zeros.

We prove (2). When k = 0, the probability for S[i] = 0
is 1

2w = 1
b . When k > 0, the probability of S[i] �= 0, 0 <

i ≤ k, is ( b−1
b )k. The probability of S[k] = 0 is 1

b . Hence,
the probability of Gb(e) = k is ( b−1

b )k 1
b .

For geometric hash with b not a power of 2, we need
to re-define S[i] through two series, S[0] = H(e) mod b,
Q[0] = �H(e)

b 	, S[i] = Q[i−1] mod b, and Q[i] = �Q[i−1]
b 	,

for i > 0. The value of Gb(e) is still determined by (3). Let
t be largest output of Gb(e). We need 
log2 bt� = 
t log2 b�
bits in H(e). For example, if t = 32 and b = 2, then we need
32 bits from H(e). If t = 32 and b = 8, we need 96 bits
from H(e). In case that H(e) produces less than that, we can
perform an additional hash H(H(e)) with H(e) as input. The
pseudo code for generalized geometric hash is given in Alg.1.

Algorithm 1 Generalized Geometric Hash
Input: e, b, t
Output: geometric hash value Gb(e)

1: Gb(e) = 0
2: S[0] = H(e) mod b
3: Q[0] = �H(e)/b	
4: for i = 1..2t − 1 do
5: if S[i] = 0 then
6: break
7: else
8: Gb(e) = Gb(e) + 1
9: end if

10: S[i] = Q[i − 1] mod b
11: Q[i] = �Q[i − 1]/b	
12: end for
13: returnGb(e)

We briefly explain that Alg. 1 is equivalent to (3) when b is
power of two, e.g., b = 2w. The mod operations at lines 2
and 10 actually extract the lowest w bits of H(e) and Q[i−1],
while the divide operations at lines 3 and 11 keep the rest bits.
Under this definition, the value of S[i] is the iwth bit to the
((i + 1)w − 1)th bit in H(e). This is the same as what we
described before (3). Therefore, Alg. 1 is equivalent to (3)
when b is power of two. A geometric hash function can also
be applied to a pair �f, e�, denoted as Gb(f, e), which can be
implemented by replacing H(e) and H(f) ⊕ H(e).

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: SUPER SPREADER IDENTIFICATION USING GEOMETRIC-MIN FILTER 5

B. Generalized Geometric Counter

We define a generalized geometric counter gb of t bits
long with base b, where r > 1 and b > 1 are two integer
parameters chosen by the user. While it is called a counter
(specifically geometric counter), it is totally different from the
traditional counter that we refer to in Section III. The operation
of recording �f, e� in a counter gb is not a simple increment of
one, but first performs a geometric hash Gb[f, e] and then sets
gb to this value only if it is greater than the current counter
value. That is, gb = max{gb, Gb[f, e]}.

Thanks to the pseudo-random nature of geometric hashing,
a geometric counter automatically removes duplicate elements
(which refer to the same �f, e� pair that appears again in a
packet stream). That is because Gb[f, e] produces the same
value no matter how many times �f, e� appears. After the first
appearance, its duplicates will have no impact on the counter
value.

Again due to the pseudo-random nature of geometric hash-
ing, a geometric counter cannot provide an accurate count on
the number n of distinct elements recorded in the counter.
But it can serve as a probabilistic filter. Consider a geometric
counter that after recorded n distinct elements from a flow.
For any non-negative integer k, we have

Prob{Gb(f, e) ≥ k} = (
b − 1

b
)k, (4)

which happens when S[i] = 0, 0 ≤ i < k, each with a
probability b−1

b . Suppose the initial value of gb is zero. After
recording n elements, we have

Prob{gb ≥ k} = 1 − (1 − Prob{Gb(e) ≥ k})n

= 1 − (1 − (
b − 1

b
)k)n. (5)

We may use gb as a filter for a flow f such that the flow is
reported if gb ≥ T , where T is a geometric counter threshold.
We determine T from the requirement (1) as follows:

Prob{report f |nf ≥ U} ≥ α

Prob{gb ≥ T |nf ≥ U} ≥ α

1 − (1 − (
b − 1

b
)T )U ≥ α

T ≤ log b−1
b

(1 − (1 − α)
1
U )

The base b controls a space-accuracy tradeoff. On the one
hand, when we increase b, for instance, from 2 to 4 to 8,
the number of bits in gb has to be at least log2 T , which
increases as b decreases. On the other hand, a larger size of
gb can record flow spread at finer granularity, which affects
the filter performance.

One may find that when b = 2, our geometric counter is
actually a HLL register [55]. That is correct but the design
purpose of our geometric counter is different. HLL is designed
for accurate spread estimation, therefore, it requires tens or
hundreds of registers to work. In contrast, several geometric
counters are enough to serve the function of blocking the small
flows as we will show in Section V.

One problem is that a separate geometric counter for each
flow is per-flow information. While the number of super
spreaders is typically small, the number of small flows can
be huge in a modern high-speed network. It will cause signif-
icantly overhead for the online module of traffic measurement
to keep every flow’s identifier f and its geometric counter in

Fig. 1. Geometric-min filter.

a hash table. The problem will become serious if the online
module is implemented in on-chip cache memory to match
line rate [29]. Our idea in this paper is to use a fixed number
of geometric counters as a combined filter for all flows. This
combined filter will block out small flows.

V. GEOMETRIC-MIN FILTER

To identify super spreaders, our solution will rely on a
geometric-min filter (consisting of multiple geometric coun-
ters) that works on all flows to separate super spreaders from
others.

A. Main Design

The proposed online module consists of a geometric-min
filter, a hash table and an optional part for specific application
needs, i.e., a compact data structure that can do per-flow spread
measurement (abbreviated as CDS), which we will discuss
shortly in this subsection. Our geometric-min filter itself will
identify the super spreaders and the hash table is to store the
flow identifiers of all flows that pass the filter. With the filter,
the requirement (1) is rewritten as

Prob{f passing filter|nf ≥ U} ≥ α. (6)

For each arrival packet �f, e�, we hash f to the hash tale
and do one of the following:

1) If f is not in the hash table, we insert e into the
filter and check whether f can now pass the filter (The
certification for passing the filter will be given later).
If it does, we insert f into the hash table.

2) If f is in the hash table, the flow has already passed the
filter. We do nothing.

At the end of a measurement period, the network device
hosting the online module will offload the hash table to a
central server where the offline module is implemented. The
server will compute the spreads of the flows in the hash
table from the compact data structure; note that this is offline
operation that is not driven by packet arrival.

In the sequel, we elaborate the design of geometric-min
filter, determine its geometric counter threshold in order to
satisfy (6), analyze the performance of our solution, and
discuss network-wide measurement with geometric-min filter.

As shown in Fig. 1, a geometric-min filter consists of d
arrays of geometric counters, denoted as Fi, 0 ≤ i < d.
Let l be the number of counters in each array. To distinguish
from the traditional counters, we refer to geometric counters
as g-counters. We denote the jth g-counter in the ith array as
Fi[j], 0 ≤ j < l, 0 ≤ i < d. All g-counters are initialized
to zeros at the beginning of each measurement period. Along
with the arrays, we keep a hash table for recording labels of
the passed flows.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Consider an arbitrary packet �f, e�, if f has already passed
the filter and recorded by the hash table, we ignore it;
otherwise, we record it into the filter. First, we perform d
independent hashes, Hi(f), 0 ≤ i < d, locate d g-counters,
Fi[Hi(f)], 0 ≤ i < d, one in each array. We then use d
independent geometric hash functions of base b, Gb,i, 0 ≤ i ≤
d − 1, to record the element in the filter as follows:

Fi[Hi(f)] = max{Fi[Hi(f)], Gb,i(f, e)}, 0 ≤ i < d. (7)

We define the geometric-min value v(f) of flow f in the
filter as

v(f) = min{Fi[Hi(f)], 0 ≤ i < d}. (8)

If v(f) ≥ T , the flow passes the filter and we insert it to
the hash table, where T is a geometric counter threshold.

The algorithm for geometric-min filter update is given in
Alg. 2. We check the hash table before we update the filter
because when f is already in the hash table, we do not need
extra hash operations for updating filter. This improves the
throughput. We stress that if a flow is already in the hash
table, the filtering performance will not be affected whether
we keep recording its packets in the filter or not. The reason
is that all registers for any flow in the hash table must contain
a value larger at least T and updating on those registers will
not affect the filtering performance.

Algorithm 2 Geometric-Min Filter
Input: filter F , b, U , α, hash table HT
Action: Do filter

1: T = �log b−1
b

(1 − (1 − α
1
d )

1
U )	

2: for each arrival packet �f, e� do
3: if f /∈ HT then
4: v(f) = INT _MAX
5: for i = 0..d − 1 do
6: Fi[Hi(f)] = max{Fi[Hi(f)], Gi,b(f, e)}
7: v(f) = min{Fi[Hi(f)], v(f)}
8: end for
9: if v(f) ≥ T then

10: Insert f to HT
11: end if
12: end if
13: end for

The design of the filter seems similar to cSkt(HLL) [29],
which replaces the counters in Count-Min with HLL that can
produce flow spread estimation in order to measure per-flow
spreads. However, they are indeed different for two main
reasons.

First, the designing purposes and plug-ins are different.
cSkt(HLL) aims to provide accurate flow spread estimation
for all flows. Therefore, the plug-in, e.g., HLL [55], can pro-
vide accurate spread estimation with some complex querying
operations. It does not record any flow labels because it is
not its purpose and the querying operations are too complex
online. In comparison, our filter aims to provide labels of
those possible super spreaders using the geometric counters
as the plug-ins. It cannot provide accurate spread estimation
but only need simple read operations for querying. This make
it suitable for online querying and then track the labels for
possible super spreaders. Besides, a HLL takes 640 bits while

a g-counter only takes several bits, which means the filter is
not memory-expensive.

Second, the design of taking the minimum from d arrays are
common in many researches. cSkt(HLL) [29] and many other
works [2], [36], [38], [47], [58] records the same information
of a flow in d plug-ins, each in one array. They choose the
plug-in with minimum value as the estimate since it contains
least noise information. It is actually a noise reduction method.
However, the minimum operation in our filter is not only for
noise reduction. As (7) shows, when we update d g-counters
for a flow, we use d independent geometric hash functions
Gb,i, 0 ≤ i ≤ d − 1. This means the values each packet
recorded in its d g-counters are different. It reduces the
probability that a small flow passing through the filter because
it is hard for a small flow to make the values in all d g-counters
larger than the threshold.

We use an additional alongside compact data struc-
tures (CDS) for accurate spread estimation. Here are many
existing solutions doing per-flow spread estimation. The state-
of-the-art is vSkt(HLL), which is adopted in this paper. The
CDS itself, similar to cSketches that we discuss before, does
not record any flow labels. It can only provide a spread
estimate for a given flow labels and thus cannot do super
spread identification. At the end of an measurement period,
we query all labels in the hash table and output the super
spreaders based on the spread estimation from CDS.

B. Setting Threshold T

We determine the threshold T to meet the requirement for
geometric-min filter in (6). Due to space limitation, we do not
put proofs here. Readers can find the proofs in supplemental
materials or the appendix part of this paper’ full version [62].

Lemma 1: Consider a g-counter for flow f , F [Hi(f)], 0 ≤
i < d, its recorded distinct elements after recording the last
element of f (denoted as Ni) has the following properties:

Ni ≥ nf (9)

Prob{Ni ≥ nf +
n∗

lβ
} ≤ β (10)

with nf the spread of f , n∗ number of distinct elements in
all flows, l length of each g-counter array and 0 ≤ β < 1.

Theorem 1: If the geometric counter threshold T in our
geometric min filter satisfies

T ≤ log b−1
b

(1 − (1 − α
1
d )

1
U ) (11)

the filter meets the requirement

Prob{f passing filter| nf ≥ U} ≥ α (12)

with nf spread of flow f , b the base of g-counter and d the
number of arrays in the filter.

Theorem 2: If the geometric counter threshold is T in our
geometric-min filter, a flow f with spread less or equal to L
will be blocked with at least a probability

max{1 − (1 − (1 − (
b − 1

b
)T )L+ n∗

lβ (1 − β))d} (13)

with nf spread of flow f , n∗ number of distinct elements in
all flows, b the base of g-counter, l length of each g-counter
array, d the number of arrays in the filter and 0 < β < 1.

From Theorem 2, we know that a larger T will have a higher
probability of blocking a small flow (spread less than L).
Therefore, in practice, we set T = �log b−1

b
(1 − (1 − α

1
d )

1
U )	

as it is the largest T we can set according to Theorem 1.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: SUPER SPREADER IDENTIFICATION USING GEOMETRIC-MIN FILTER 7

C. Impact of Other Parameter Settings

In this section, we discuss the impact of parameter settings
including l, d and b under given U , α and n∗.

We present the following theorem to discuss how to setting
l and then give an corollary for the space complexity of our
filter. Readers can find the proofs in supplemental materials
or the appendix part of this paper’ full version [62].

Theorem 3: If the geometric counter threshold is set as T
in our geometric min filter and we want to guarantee that a
flow f with spread less or equal to L will be blocked with a
probability at least γ, then we have to set the length of filter
array as

l ≥ min{ n∗

β(−L + log1−( b−1
b )T

1−(1−γ)
1
d

1−β )
|β ∈ (0, 1)} (14)

with n∗ the number of distinct elements in all flows, b the
base of g-counter, l the length of each g-counter array and d
the number of arrays in the filter.

Corollary 1: The space complexity of our geometric min

filter is O(
2n∗d(log2(1+log b−1

b

(1−(1−α
1
d )

1
U ))+1)

−L+log
1− b

b−1 (1−(1−α
1
d )

1
U )

2(1−(1−γ)
1
d )

), if we want

to guarantee

Prob{f passing filter| nf ≥ U} ≥ α

Prob{f blocked by filter| nf ≤ L} ≥ γ (15)

where n∗ is the number of distinct elements in all flows.
From Theorems 2 and 3, the g-counter array length l affects

the probability for blocking small flows. Under given U , α and
n∗, Theorem 1 guarantees the upper bound of T which has
no relationship with l. A larger l make the probability for
blocking small flows larger. However, a larger l also means
larger memory requirement.

The base b of geometric hash is an integer that is greater
than or equal to 2. It controls a three-way tradeoff: First, from
equation (11), T increases as b increases. Each g-counter in
the filter takes at least t = 
log2(T + 1)� bits, which also
increases. Hence, a larger value of b means greater memory
overhead. Second, according to Section IV, the number of
uniform hash operations increases as b increases in order to
produce a geometric hash output.

Let α = 0.99, d = 4, l = 4096 and lhash = 64. Tables II-IV
demonstrate the three-way tradeoff when b = 2, 4, and 8,
respectively. The first column shows the range of U values
that produces the same g-counter threshold T in the second
column. The third column shows the minimum number of
bits each g-counter must have. The fourth column shows the
number of uniform hashes that need to be performed in order
to produce one geometric hash output.

For example, according to Table II, when b = 2, U ∈
[381, 763] will all have the same g-counter threshold T = 7.
That means even if U = 763, a flow of smaller thread
nf = 381 will still have a 99% chance to pass the filter.
When U is set sufficiently high, this is not a serious problem
in practice since the vast majority of flows have much smaller
spread values (as we have observed from the CAIDA traffic
and our campus network traffic), which means a majority of
small flows will be blocked as our experiments based on real
traffic traces will show. According to Table III, when b = 4,
if U = 763, T = 16; if U = 381, T = 14. They have different
threshold values at the cost of higher geometric counter size,

TABLE II

RESOURCE NEEDED FOR A G-COUNTER WHEN b = 2

TABLE III

RESOURCE NEEDED FOR A G-COUNTER WHEN b = 4

5 or 4 bits v.s. 3 bits when b = 2. According to Table IV,
when b = 8, if U = 763, T = 36; if U = 381, T = 31.
They are further apart at the cost of higher g-counter size,
6 or 5 bits, and more hash bits, 108 or 93 v.s. 32 or 28 hash
bits when b = 4.

We now present the following theorem to show the number
of uniform hash operations needed to process a packet. Due
to space limitation, we do not put proofs here. Readers can
find the proofs in supplemental materials or the appendix part
of this paper’ full version [62].

Theorem 4: In our geometric min filter, if the length of the
output of the hash operation we use is lhash, then the number
of hash operations needed for processing one packet is

nhash =
d(
T log2 b� + 
log2 l�)

lhash
+ 1 (16)

with T the geometric threshold, b the base of g-counter, l the
length of each g-counter array and d the number of arrays in
the filter.

Corollary 2: The time complexity of our filter is

O(2(d + 1)TM + (
d(
T log2 b� + 
log2 l�)

lhash
+ 1)TH). (17)

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE IV

RESOURCE NEEDED FOR A G-COUNTER WHEN b = 8

Here, T is the geometric threshold that can be obtained
from Theorem 1; l is the length of a filter array that can be
obtained from Theorem 3; b is the base of g-counters in the
filter; d is the number of arrays in the filter; lhash is the length
of the output of a hash operation; O(TM ) and O(TH) are the
time complexity of a memory access and a hash operation,
respectively.

We also give the hash bits needed by vSkt(HLL) here.
According to the paper [29], with the suggested setting,
vSkt(HLL) requires 32 + 
log2 lvskt� hash bits for recording
an incoming packet, where lvskt is the number of registers in
vSkt(HLL).

D. Network-Wide Measurement

We are not only considering TCP flows whose packets
generally follow the same paths. In our generalized model,
the packets of a flow may follow different paths. For example,
consider a network with two gateways to the Internet. Suppose
we monitor all outbound packets that carry URL requests.
If we use URL (in the application header) as flow identifier,
all URL requests for the same web page form a flow. The
packets of any flow may pass two gateways. If we use source
address as element identifier, the spread of a flow is the number
of different hosts that access the same web page. If we set
the threshold for super spreaders to be U , we will need to
combine the measurements from both gateways in order to
identify super spreaders. This is an example of network-wide
measurement.

Let q be the number of network devices that jointly monitor
super spreaders. One observation is that, for any super spreader
f , at least one device will receive at least U � = U

q of
its elements. Based on this observation, we set U � as the
spread threshold at each device and collect all potential super
spreaders in its hash table. After all devices send their filters,
hash tables and CDS to the server. The server will merge

the filters as follows: Denote the filter from the kth device
as F k and denote the jth g-counter of the i array in F k as
F k

i [j], 0 ≤ k < q, 0 ≤ i < d, 0 ≤ j < l. Note that we require
all filters to have the same dimensions of d and l. Denote the
resulting filter after merging as F ∗. The merge operation is

F ∗
i [j] = max{F k

i [j], 0 ≤ k < q, 0 ≤ i < d, 0 ≤ j < l}. (18)

In order to support the merging operation, we have to keep
updating the filter after a flow passes it. See the revised
algorithm in Alg. 3 below, where the hash table and the CDS
at the kth device are denoted as HT k and CDSk, respectively.
Even after a flow is inserted into HT k, we have to record its
elements in F k.

Algorithm 3 Geometric-Min Filter at Device k

Input: filter F k, b, U , α, q
Action: hash table HT k

1: T = �log b−1
b

(1 − (1 − α
1
d )

1
U/q )	

2: for each arrival packet �f, e� do
3: v(f) = INT _MAX
4: for i = 0..d − 1 do
5: F k

i [Hi(f)] = max{F k
i [Hi(f)], Gi,b(f, e)}

6: v(f) = min{F k
i [Hi(f)], v(f)}

7: end for
8: if v(f) ≥ T then
9: Insert f to HT k

10: end if
11: end for
12: returnHT k

After we compute F∗, we iterate through all flow identifiers
f in HT k, 0 ≤ k < q, and insert those with v∗(f) ≥ T ∗ into
a new table HT ∗, where

v∗(f) = min{F ∗
i [Hi(f)], 0 ≤ i < d}

T ∗ = �log b−1
b

(1 − (1 − (1 − γ)
1
d )

1
U )	. (19)

We claim that CDSk, 0 ≤ k < q should also support
merging operation if users want to use it to get an estimation
of super spreaders here. Actually, vSkt(HLL) [29] can support
that. Let the merged CDS be CDS∗. For each flow in HT ∗,
we estimate the flow spread from CDS∗.

VI. EVALUATION

We evaluate the performance of geometric-min filter using
both software and hardware implementation.

Software Implementation: All the solutions are implemented
in java on a desktop with Intel Core i7-8700 3. 2GHz CPU
and 16GB memory.

Hardware Implementation: We implement the geometric-
min filter on a XILINX Nexys4 A7-100T development board,
with 15850 logic slices, 4860Kbits Block RAM, and a clock
rate of 100MHz. More specifically, we implement the filter
part on the FPGA board using Vivado [63]. The block ram is
used for the filter array. The recording operation of each array
is implemented as a module that takes �f, e� as the input,
updates the array and outputs the register value. We use FIFO
modules to connect d modules for d arrays. Another module
is placed at the end which calculates the minimum register
value and outputs the flow label if it exceeds the threshold.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: SUPER SPREADER IDENTIFICATION USING GEOMETRIC-MIN FILTER 9

The hash table is supposed to be implemented on the software
platform since implementing a hash table on FPGA is a waste
of resources. The checking of hash table before updating the
filter is omitted here. As we have discussed in Section V-A,
this operation will not affect the filtering performance. We also
implement vSkt(HLL) [29], the detail can be found in the
original paper.

Since the only difference between hardware and software
implementation will be the throughput, when we do other
comparisons, we only focus on the software platform. The
codes can be found at [64].

In the evaluation, we first evaluate the performance of
our filter under different parameter settings and then use the
best setting to compare the performance with the state of art
including SpreadSketch [38] and AROMA [35].

A. Traffic Summary
We download traffic traces from CAIDA15, CAIDA18 and

CAIDA19 on CAIDA [39] for experiments. For each data set
(CAIDA15, CAIDA18 or CAIDA19), we download 10 traffic
traces of 1-minute long. The result for each data set is the
average result of the 10 traffic traces. We use destination IP
address as flow identifier and source IP address as element
identifier. Two packets are identical only when both the
source and destination IP addresses are the same. Under this
definition, each trace from CAIDA15 contains around 18M
packets, 120K flows and 430K distinct packets; each trace
from CAIDA18 contains around 27M packets, 270K flows
and 900K distinct packets; each trace from CAIDA19 contains
around 36M packets, 750K flows and 1800K distinct packets.
We also create 10 traffic traces to form another data set called
CAIDA15+ by adding a large flow with spread of 2M into
each trace in CAIDA15.

B. Performance Metrics
We first define four terms to facilitate the understanding of

the performance metrics.
True Positive (TP): The number of super spreaders passing

the filter.
False Positive (FP): The number of non super spreaders

passing the filter.
True Negative (TN): The number of non super spreaders not

passing the filter.
False Negative (FN): The number of super spreaders not

passing the filter.
We use the following metrics to evaluate the performance

of our whole solution.
Throughput: The number of packets the system can process

in one second during online encoding. The unit is packets
per second which is denoted as pps.

False Negative Ratio(FNR): FN
FN+TP . It means the

probability of a super spreader not passing the filter.
False Positive Ratio(FPR): FP

FP+TN . It represents the prob-
ability of a non super spreader reported as a super spreader.

Precision: TP
TP+FP . It is the probability that a reported

super spreader is a real super spreader.
Recall: TP

FN+TP . It is the probability of a real super spreader
being reported.

F1 Score: 2
recall−1+precision−1 . It is the harmonic mean of

precision and recall.
Since the parameter setting of our filter is related to FNR,

we first use FNR and FPR as the metrics for the experiments

Fig. 2. Throughput w.r.t. d and b. Throughput will decrease when b and d
increase.

Fig. 3. Throughput comparison between FPGA implementation and CPU
implementation. Throughput will decrease as d increases. FPGA implemen-
tation is 14.5-19.56 times faster than CPU implementation.

over different parameter settings for our filter. After that,
when comparing our solution with existing solutions, we use
Precision, Recall and F1 Score as the metrics because they are
the metrics adopted by the authors of existing solutions.

C. Throughput Comparison Under Different
Parameter Settings

We compare the throughput of our geometric-min filter
under different parameter settings on hardware/software plat-
forms.

Fig. 2 shows, on CPU implementation, the throughput of our
solution decreases as d increasing. This is predictable because
we have to encode the filter d times for a packet of flow f
before it passes the filter. Besides, with geometric counters of
a larger base b in the filter, we will have a smaller throughput.
The reason is that with a larger b, we need to compute more
hash functions to get the required geometric hash values as
we describe in Section IV.

Since on FPGA we can use FIFO module to pipeline the
processing operations, we obtain a throughput that equals
to 1

d packet per clock cycle while b will not affect the
throughput. The clock rate of the board we use is 100MHz,
so the throughput will be 50, 25, 16.67, 12.5 Mpps, which is
consistent with our experiment result. As Fig. 3 shows, it is
much faster than the Software Implementation on CPU.

D. FNR/FPR Comparison Under Different
Parameter Settings

In this section, we evaluate the impact of parameter settings
for our geometric-min filter over FNR/FPR.

1) Comparison Under Different T Values: First, we set
d = 4, l = 5120, b = 2, 4 and change T to compare the
influences of T over FPR/FNR under different counter base b.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. FNR/FPR w.r.t. T when b = 2.

Fig. 5. FNR/FPR w.r.t. T when b = 4.

Fig. 6. FNR/FPR w.r.t. d when b = 2.

Fig. 7. FNR/FPR w.r.t. d when b = 4.

From Fig. 4 and 5, we observe that the average FNR of our
solution will decrease when U becomes larger and with a
larger T , we can get a lower FNR for a same U . This is
consistent to equation (11), if we want to guarantee a same
FNR, we need to choose a larger T for a larger U . For FPR,
we can see from Fig.4 and 5 that a larger T will always bring
a smaller FPR. This means we have to choose a larger T as

Fig. 8. FNR/FPR w.r.t. l when b = 2.

Fig. 9. FNR/FPR w.r.t. l when b = 4.

Fig. 10. FNR/FPR w.r.t. b and T.

Fig. 11. FNR/FPR for network-wide measurement.

long as we can guarantee the FNR just as what we get in
equation (11). This can be confirmed by comparing the lines
in Fig. 4 and 5 with the values in Table II and Table III, which
shows that our computed best T actually guarantee the FNR
bound α = 0.99 while keeping a smallest possible FPR.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: SUPER SPREADER IDENTIFICATION USING GEOMETRIC-MIN FILTER 11

Fig. 12. Comparisons with different memory allocations over CAIDA15 data sets.

Fig. 13. Comparisons with different memory allocations over CAIDA18 data sets.

2) Comparison Under Different d Values: To compare the
performance of the filter on FPR/FNR between d, we keep
l = 5120, b = 2, T = 7 or l = 5120, b = 4, T = 17 and
change d = 2, 4, 6, 8. Fig. 6 and 7 show that with a larger d,
we can have a smaller FPR which means the filter can filter
out more non super spreaders. For b = 2, changing d from
2 to 8 can reduce the FPR from 0.01 to 0.0012 and for b = 2,
changing d from 2 to 8 can reduce the FPR from 0.009 to
0.001. The reason is that with a large d, the probability of
flow passing the filter will be smaller. Since we can choose
suitable T for different U and d to guarantee the FNR bound,
setting a larger d is always better.

3) Comparison Under Different l Values: We keep d =
4, b = 2, T = 7 and d = 4, b = 4, T = 17 and change
l = 1280, 2560, 5120 to learn the impact of l on FPR/FNR
of the filter. According to Fig. 8 and 9, we know that with
a smaller l, we will obtain a much larger FPR and a slight
smaller FNR for a certain U . We claim that we should choose
l as large as possible since that the threshold calculated from
equation(11) can always guarantee the FPR bound for any l
and a larger l will always give a smaller FPR. The reason
that a larger l will give a smaller FPR is that with a larger
l, the probability of a small flow sharing a same geometric
counter with a large flow will be lower and thus the probability
of small flows passing the filter will be lower. In this situation,
a larger l can let fewer non super spreaders be misidentified as
super spreaders. However, a larger l will take larger memory.

4) Comparison Under Different b Values: As we discuss
in Section V-C, using geometric counter with b > 2 have
advantages in choosing suitable T for different user-defined
spread threshold U . The optimal T can be calculated
from equation (11). Some results are already shown in
Table II and III when we want to guarantee the bound of
FNR as α = 0.99. From Table II we know that when
U ∈ [381, 763], b = 2, the best choice of T are all 7. From

Fig. 10, we know that when b = 2, T = 6, the average FNR
when U ≤ 381 is actually lower than α = 0.99 while keeping
an average FPR close to 0.06. From Table III, we know that
when b = 4 and U = 500, 600, we should choose T = 15, 16
respectively. According to Fig. 10, the average FNR all meet
the bound α = 0.99. Meanwhile, the average FPR is at most
around 0.007, 0.004 which are significantly less than choosing
T = 6 when b = 2. With a similar FNR, a smaller FPR can
certainly reduce the memory for storing super spreader labels
in the hash table. Besides, from Fig. 10b, we can see that the
influence of FNR by adding 1 to T when b = 2 is much larger
than that when b = 4. This implies that a larger b can divide
the range of U more delicately for user to choose suitable T
just as what we can see from Table II, Table III and Table IV.

E. Network-Wide Measurement
In this section, we measure the FNR/FPR performance of

geometric-min filter for network-wide super spreader iden-
tification as we describe in Section V-D. The number of
devices in this experiment is 3. We tried two settings that
T � = 15, T = 19 and T � = 16, T = 20 where T � is the
threshold in each network device and T is the threshold for the
merged filter. Actually these two settings is for U = 1500 and
U = 2100. Fig. 11 shows that our method can still guarantee
the FNR as α = 0.99 and keep a FPR up to 0.009, 0.005
respectively which are all acceptable.

F. Comparison With Existing Solutions
1) Comparisons Under Different Traffic Traces: We com-

pare our algorithms with the state of the art, i.e., SpreadSketch
[38] and AROMA [35] under different data sets from
CAIDA [39]. By the years when the data sets are generated,
they are denoted as CAIDA15, CAIDA18 and CAIDA19,
respectively. We use 10 different traces of 1 minute long in

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 14. Comparisons with different memory allocations over CAIDA19 data sets.

Fig. 15. Comparisons with different memory allocations over CAIDA15+ data sets.

Fig. 16. Comparisons with different memory allocations for network-wide measurement.

each year for experiments and show the average results. For
each trace, we tune the value of threshold U that guarantees
the number of super spreaders is around 50. For our solution,
we use α = 0.95 to calculate the filter threshold T according to
Theorem 1 and then calculate l according to Theorem 3 using
γ = 0.95 and L = lower bound of 1% top flows. After
that, we assign the rest memory for vSkt(HLL) [29]. We vary
the memory allocation for all solutions and apply them on
different traces. Since the number of packets and flows are
different for CAIDA15, CAIDA18, CAIDA19, the range of
memory allocation are also different. Traces in CAIDA19 con-
tains the most packets and flows, the memory range is widest,
i.e., [12,40] Mb; traces in CAIDA15 contains the least packets
and flows, the memory range is narrowest, i.e., [3,10] Mb.

The results in Figs. 12, 13 and 14 show that for all
data sets, all solutions will have a larger F1 score for a
larger memory allocation. All solutions can have a F1 score
larger than 0.9 when memory is large enough (5Mbits for
CAIDA15, 8Mbits for CAIDA18 and 24Mbits for CAIDA19).

Our solution will have a highest F1 score when memory is
larger than a certain value (4Mbits for CAIDA15, 8Mbits for
CAIDA18 and 10Mbits for CAIDA19) while SpreadSketch
always have a lowest F1 score. For small memory, AROMA
and our solution have close F1 score. For all traces, our
solution has highest recalls while AROMA has the lowest
recalls. As for precision, our solution is similar to AROMA
while SpreadSketch has low precisions when memory is small.

We also compare the above algorithms on CAIDA15+ data
sets to show the limitation of AROMA. We create the data
sets by adding a fake flow with spread of 2M into each traces
in CAIDA15. We run all three algorithms on those traces.
Comparing Fig. 15 with Fig. 12, the F1 score of AROMA
drops significantly for these special traces while the F1 scores
of SpreadSketch and our solution have little changes, which
is predictable. The extremely large flow will occupy a high
percentage of buckets in AROMA. Therefore, the estimation
for other super spreaders will be inaccurate. In the meanwhile,
a flow will only occupy one or several units (registers) for

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: SUPER SPREADER IDENTIFICATION USING GEOMETRIC-MIN FILTER 13

SpreadSketch and our solution. This means even an extremely
large flow will have little influence on the performance.

2) Comparisons for Network-Wide Measurement: We com-
pare our algorithms with SpreadSketch [38] and AROMA [35]
for network-wide measurement. The number of devices in
this experiment is 3. We combined 3 1-minute traffic traces
and randomly assign the packets in the combined trace to
three devices to simulate the situation. The results we show
are for traces in CAIDA15, the results for CAIDA18 and
CAIDA19 are similar to the first one and are thus omitted
here. The parameter setting is similar to Section VI-F1. Fig. 16
shows that all solutions will have a F1 score larger than
0.9 when memory is larger than 5Mbits. When memory is
larger than 3Mbits, our solution will have the highest F1 score.
For precision, our solution and AROMA are better than
SpreadSketch, while for recall, our solution and SpreadSketch
are better than AROMA.

VII. CONCLUSION

In this paper, we propose a geometric-min filter solution for
the problem of super spreader identification based on two tech-
nical innovations, generalized geometric hash and generalized
geometric counter. The solution has a better super spreader
identification performance when comparing with the state-
of-the-art work SpreadSketch [38] and AROMA [35] under
different memory allocations and traffic traces. We implement
the solution in both hardware and software.

REFERENCES

[1] S. Chen and Y. Tang, “Slowing down internet worms,” in Proc. 24th
Int. Conf. Distrib. Comput. Syst., Mar. 2004, pp. 312–319.

[2] J. Gong et al., “HeavyKeeper: An accurate algorithm for finding top-k
elephant flows,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC).
Boston, MA, USA: USENIX Association, 2018, pp. 909–921. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/gong

[3] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (IEEE INFOCOM), Apr. 2016, pp. 1–9.

[4] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. 10th Int. Conf.
Database Theory (ICDT), Jan. 2005, pp. 398–412.

[5] G. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proc. VLDB, Aug. 2002, pp. 346–357.

[6] E. Demaine, A. Lopez-Ortiz, and J. Munro, “Frequency estimation of
internet packet streams with limited space,” in Proc. 10th Annu. Eur.
Symp. Algorithms (ESA), Sep. 2002, pp. 348–360.

[7] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 101–114.

[8] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 561–575.

[9] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in Proc. Conf.
Internet Meas., Oct. 2004, pp. 115–120.

[10] N. Kamiyama and T. Mori, “Simple and accurate identification of high-
rate flows by packet sampling,” in Proc. IEEE INFOCOM, Apr. 2006,
pp. 1–13.

[11] Y. Yao, S. Xiong, J. Liao, M. Berry, H. Qi, and Q. Cao, “Identifying
frequent flows in large datasets through probabilistic bloom filters,” in
Proc. 23rd Int. Symp. Qual. Service, Jun. 2015, pp. 279–288.

[12] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True, “Deriving traffic demands for operational IP networks:
Methodology and experience,” IEEE/ACM Trans. Netw., vol. 9, no. 3,
pp. 265–279, Jun. 2001.

[13] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
EXperiments Technol. (CoNEXT), 2011, pp. 1–12.

[14] J. Rasley et al., “Planck: Millisecond-scale monitoring and control
for commodity networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 407–418, 2015.

[15] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,” in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., Jun. 2014,
pp. 228–237.

[16] J. A. Copeland, “Flow-based detection of network intrusions,”
U.S. Patent 7 185 368, Feb. 27, 2007.

[17] G. A. Ajaeiya, N. Adalian, I. H. Elhajj, A. Kayssi, and A. Chehab,
“Flow-based intrusion detection system for SDN,” in Proc. IEEE Symp.
Comput. Commun. (ISCC), Jul. 2017, pp. 787–793.

[18] R. Chandra, “Network traffic monitoring for search popularity analysis,”
U.S. Patent 7 594 011, Sep. 22, 2009.

[19] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDos defense,” in Proc. 24th USENIX Secur. Symp. (USENIX
Secur.), 2015, pp. 817–832.

[20] M. Wischenbart et al., “User profile integration made easy: Model-
driven extraction and transformation of social network schemas,” in
Proc. 21st Int. Conf. Companion World Wide Web (WWW Companion),
2012, pp. 939–948.

[21] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and M. Nunkesser,
“Processing a trillion cells per mouse click,” 2012, arXiv:1208.0225.
[Online]. Available: http://arxiv.org/abs/1208.0225

[22] S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,”
Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 330–339, Sep. 2010.

[23] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proc. 16th Int. Conf. Extending Database Technol. (EDBT), 2013,
pp. 683–692.

[24] P. Lieven and B. Scheuermann, “High-speed per-flow traffic mea-
surement with probabilistic multiplicity counting,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1–9.

[25] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in small
memory,” in Proc. 28th Conf. Comput. Commun. (IEEE INFOCOM),
Apr. 2009, pp. 504–512.

[26] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual
estimators for big network data based on register sharing,” in Proc. Int.
Conf. Meas. Modeling Comput. Syst. (ACM SIGMETRICS), Jun. 2015,
pp. 417–428.

[27] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the persistent
spreads in high-speed networks,” in Proc. IEEE 22nd Int. Conf. Netw.
Protocols, Oct. 2014, pp. 131–142.

[28] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925–937, Oct. 2006.

[29] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Gener-
alized sketch families for network traffic measurement,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 3, pp. 1–34, Dec. 2019, doi:
10.1145/3366699.

[30] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
OpenSketch,” in Proc. Symp. Netw. Syst. Design Implement. (USENIX),
2013, pp. 29–42.

[31] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proc.
VLDB Endowment, vol. 14, no. 6, pp. 1040–1052, Feb. 2021.

[32] C. Ma, H. Wang, O. Odegbile, and S. Chen, “Virtual filter for non-
duplicate sampling,” in Proc. IEEE Int. Conf. Netw. Protocols (ICNP),
Nov. 2021, pp. 1–11.

[33] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New streaming
algorithms for fast detection of superspreaders,” in Proc. NDSS, 2005,
pp. 1–18.

[34] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming
algorithms for robust, real-time detection of DDoS attacks,” in Proc.
27th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2007, p. 4.

[35] R. B. Basat, X. Chen, G. Einziger, S. L. Feibish, D. Raz, and M. Yu,
“Routing oblivious measurement analytics,” in Proc. IFIP Netw. Conf.
(Netw.), 2020, pp. 449–457.

[36] G. Cormode and S. Muthukrishnan, “Space efficient mining of multi-
graph streams,” in Proc. ACM PODS, 2005, pp. 271–282.

[37] Y. Liu, W. Chen, and Y. Guan, “Identifying high-cardinality hosts from
network-wide traffic measurements,” IEEE Trans. Dependable Secure
Comput., vol. 13, no. 5, pp. 547–558, Sep. 2016.

[38] L. Tang, Q. Huang, and P. P. C. Lee, “SpreadSketch: Toward invertible
and network-wide detection of superspreaders,” in Proc. IEEE Conf.
Comput. Commun. (IEEE INFOCOM), Jul. 2020, pp. 1608–1617.

[39] CAIDA. Accessed: 2021. [Online]. Available: https://www.caida.org/data
[40] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter

architecture with optimal space and time efficiency,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 34, no. 1, pp. 323–334, 2006.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1145/3366699


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[41] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: A novel counter architecture for per-flow measure-
ment,” in Proc. ACM SIGMETRICS, Jun. 2008, pp. 121–132.

[42] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for
data centers,” in Proc. USENIX NSDI, 2016, pp. 311–324.

[43] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” in Proc. LATIN, 2004,
pp. 58–75.

[44] Y. Lu and B. Prabhakar, “Robust counting via counter braids: An error-
resilient network measurement architecture,” in Proc. 28th Conf. Com-
put. Commun. (IEEE INFOCOM), Apr. 2009, pp. 522–530.

[45] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Highly compact virtual
active counters for per-flow traffic measurement,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2018, pp. 1–9.

[46] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1622–1634, Oct. 2012.

[47] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. 1st ACM SIGCOMM Workshop Internet Meas.
(IMW), 2001, pp. 323–336.

[48] M. Chen and S. Chen, “Counter tree: A scalable counter architecture
for per-flow traffic measurement,” in Proc. IEEE 23rd Int. Conf. Netw.
Protocols (ICNP), Nov. 2015, pp. 1249–1262.

[49] Cisco. (2019). Cisco IOS NetFlow. [Online]. Available: http://www.
cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

[50] C. Ma, H. Wang, O. Odegbile, and S. Chen, “Noise measurement and
removal for data streaming algorithms with network applications,” in
Proc. IFIP Netw. Conf. (IFIP Netw.), Jun. 2021, pp. 1–9.

[51] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread measure-
ment for big network data based on register intersection,” in Proc. ACM
SIGMETRICS, Jun. 2017, pp. 1–29.

[52] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[53] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” J. Comput. Syst. Sci., vol. 31, pp. 182–209,
Sep. 1985.

[54] M. Durand and P. Flajolet, “LogLog counting of large cardinalities,” in
Proc. Eur. Symposia Algorithms (ESA), 2003, pp. 605–617.

[55] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
The analysis of a near-optimal cardinality estimation algorithm,” in Proc.
AOFA, 2007, pp. 127–146.

[56] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proc. Conf.
ACM Special Interest Group Data Commun., Aug. 2017, pp. 127–140.

[57] Q. Huang, P. P. C. Lee, and Y. Bao, “SketchLearn: Relieving user bur-
dens in approximate measurement with automated statistical inference,”
in Proc. SIGCOMM, Aug. 2018, pp. 576–590.

[58] Z. Liu et al., “NitroSketch: Robust and general sketch-based monitoring
in software switches,” in Proc. ACM Special Interest Group Data
Commun., Aug. 2019, pp. 334–350.

[59] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[60] G. Einziger and R. Friedman, “Counting with TinyTable: Every bit
counts!” IEEE Access, vol. 7, pp. 166292–166309, 2019.

[61] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proc. ACM SIGCOMM Conf.
Internet Meas. (IMC), 2003, pp. 153–166.

[62] Full Version. Accessed: 2021. [Online]. Available: https://www.dropbox.
com/s/lokjzo5w8dea3s8/paper.pdf?dl=0

[63] VIVADO. Accessed: 2021. [Online]. Available: https://www.xilinx.com/
products/design-tools/vivado.html

[64] Source Code for Geometric-Min Filter. Accessed: 2021. [Online].
Available: https://github.com/mcynever/GeometricMinFilter

Chaoyi Ma (Graduate Student Member, IEEE)
received the B.S. degree in computer information
security from the University of Science and Tech-
nology of China in 2018. He is currently pursuing
the Ph.D. degree in computer and information sci-
ence and engineering with the University of Florida,
under the supervision of Prof. S. Chen. His research
interests include big data, network traffic measure-
ment, computer network security, and data privacy
in machine learning.

Shigang Chen (Fellow, IEEE) received the B.S.
degree in computer science from the University of
Science and Technology of China in 1993, and
the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana–Champaign
in 1996 and 1999, respectively. After graduation,
he had worked with Cisco Systems for three years
before joining the University of Florida in 2002.
He is currently a Professor with the Department of
Computer and Information Science and Engineer-
ing, University of Florida. He has published over

200 peer-reviewed journal articles/conference papers. He holds 13 U.S. patents
and many of them were used in software products. His research interests
include big data, the Internet of Things, cybersecurity, RFID technologies,
and intelligent cyber-transportation systems. He received the NSF CAREER
Award and several best paper awards. He served as an Associate Editor for
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE/ACM TRANSAC-
TIONS ON NETWORKING, and a number of other journals. He served in
various chair positions or as a committee member for numerous conferences.
He is an ACM Distinguished Scientist.

Youlin Zhang received the B.S. degree in elec-
tronic information engineering from the University
of Science and Technology of China, Hefei, China,
in 2014, and the Ph.D. degree in computer and
information science and engineering from the Uni-
versity of Florida, Gainesville, FL, USA, in 2019.
His research interests include big network data and
the Internet of Things.

Qingjun Xiao (Member, IEEE) received the B.Sc.
degree from the Department of Computer Science,
Nanjing University of Posts and Telecommunica-
tions, China, in 2003, the M.Sc. degree from the
Department of Computer Science, Shanghai Jiao
Tong University, China, in 2007, and the Ph.D.
degree from the Department of Computer Science,
The Hong Kong Polytechnic University, in 2011.
After receiving the Ph.D. degree, he joined the
Department of Computer Science, Georgia State
University and the University of Florida, and held a

postdoctoral position for three years combined. He is currently an Associate
Professor with Southeast University, China. His research interests include
network traffic measurement, data stream processing, and cybersecurity. He is
a member of ACM and China Computer Federation (CCF).

Olufemi O. Odegbile received the B.S. degree
in mathematics from the University of Ibadan,
Nigeria, the master’s degree in computer science
from Boston University, USA, and the Ph.D. degree
in computer science from the University of Florida.
He is currently an Assistant Professor with the
Department of Computer Science, Clark University,
Worcester, USA. His research interests include com-
puter networks, network security, network traffic
measurement, and RFID technology.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:33:45 UTC from IEEE Xplore.  Restrictions apply. 


