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Abstract—Per-flow spread measurement in high-speed net-
works has many practical applications. It is a more difficult
problem than the traditional per-flow size measurement. Most
prior work is based on sketches, focusing on reducing their
space requirements in order to fit in on-chip cache memory.
This design allows the measurement to be performed at the
line rate, but it suffers from expensive computation for spread
queries (unsuitable for online operations) and large errors in
spread estimation for small flows. This paper complements the
prior art with a new spread estimator design based on an
on-chip/off-chip model. By storing traffic statistics in off-chip
memory, our new design faces a key technical challenge to design
an efficient online module of non-duplicate sampling that cuts
down the off-chip memory access. We first propose a two-stage
solution for non-duplicate sampling, which is efficient but cannot
handle well a sampling probability that is either too small or
too big. We then address this limitation through a three-stage
solution that is more space-efficient. Our analysis shows that the
proposed spread estimator is highly configurable for a variety of
probabilistic performance guarantees. We implement our spread
estimator in hardware using FPGA. The experiment results based
on real Internet traffic traces show that our estimator produces
spread estimation with much better accuracy than the prior
art, reducing the mean relative (absolute) error by about one
order of magnitude. Moreover, it increases the query throughput
by around three orders of magnitude, making it suitable for
supporting online queries in real time.
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I. INTRODUCTION

ER-FLOW spread measurement on a packet stream in

high-speed networks is a fundamental problem with
many practical applications [2]-[5]. Different from counting
the number of packets (i.e., flow-size measurement) [6]-[9],
a spread measurement task estimates the number of distinct
elements in each flow, where flows can be TCP flows, P2P
flows, or any other types defined based on application-specific
interests, and elements may be destination/source addresses,
ports, other header fields, or payload content. For instance,
we may consider all of the packets sent from the same source
as a per-source flow, and elements can be distinct destination
addresses carried in the packets of the flow. As an application,
measuring the number of distinct destinations from each exter-
nal source at the gateway helps identify scanners. By defining
flows and elements differently, spread measurement can be
used in many other applications, including worm monitoring,
DDoS detection, and content access profiling [10], [11].

The function of traffic measurement can be implemented
either entirely on the network processor chip (where the
packet stream is forwarded) or using off-chip memory to
record traffic data. The former has the advantage of keeping
up with the line rate, while the latter has the advantage of
leaving precious on-chip resources to key network functions,
such as routing-table lookup, access control, and traffic engi-
neering. Most sketch-based prior work chooses the on-chip
approach [9], [12]-[17]. Their designs focus on how to reduce
their space requirements in order to fit in on-chip memory.
To do so, they have to make a tradeoff to sacrifice in other
regards. For example, their compact data structures make it
harder to query for a flow’s spread, which will require scanning
hundreds or thousands of bits or registers [12]-[14], [18]-[20].
Therefore, they are more suitable for offline queries instead
of online queries that are triggered by packet inspection
in live traffic. Moreover, their designs make sure that the
accuracy of spread estimation is good for large flows, but
not necessarily for small flows due to space-accuracy com-
promise. We want to stress that small-spread flows are
sometimes important to certain applications. For example,
some denial-of-service attackers may stay low-key by slow-
ing down its attack rate, avoiding detection that focuses on
large flows [20]. Thus, accurate estimations for the small
flows’ spreads are indispensable to detect those stealthy
attackers.
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This paper adopts an on-chip/off-chip design, which utilizes
both on-chip memory for speed and off-chip memory for
space. On the one hand, on-chip resources are often limited
due to speed, power, and price considerations [21]. On the
other hand, unlike per-flow size measurement, which needs
only a counter for each flow, per-flow spread measurement
requires much more resources because we have to remember
which elements are new and which are duplicates that have
already been carried in the previous packets — measuring the
spread of a flow only counts the new elements. Moreover,
modern network traffic is huge, which aggravates the resource
demand. For instance, we observe that one-hour traffic trace
downloaded from CAIDA [22] can easily include over multiple
millions of per-source flows, tens of millions of distinct
elements (e.g., destinations), and billions of packets where
duplicate elements are numerous. Therefore, it makes sense to
utilize both on-chip memory and off-chip memory in a design
that exploits the former’s speed and the latter’s space.

Our choice of using off-chip memory for traffic measure-
ment is typical in practice (NetFlow [23], [24]) and has been
studied for flow-size and heavy-hitter measurements [25]-[29].
But there is no prior work on per-flow spread measurement
under this model. To compensate the difference between
on-chip speed and off-chip access, a sampling module will
be needed on-chip to select a subset of packets for record-
ing randomly. Sampling is simple for flow-size measurement
because each packet is treated independently with the same
sampling probability. It is, however, tricky for flow-spread
measurement because duplicates should not be sampled and
on-chip operation must be efficient, which prevents us from
using conventional methods to search for duplicates.

In this paper, we formally define a new problem of
non-duplicate sampling, which requires that any element
should be sampled only once with a given probability, regard-
less of how many times that element shows up or where
it shows up in the packet stream. Our first solution to this
problem consists of two stages of processing, where one stage
is to check whether an arrival element appears for the first
time (with the help of a bitmap) and the other stage is to
control the sampling probability of each element to a fixed
value. This solution works well for a range of sampling
probabilities, but not when the sampling probability is too
small or too large. We then propose a more sophisticated
three-stage solution (with the help of a bloom filter) for
non-duplicate sampling, which is more space-efficient and
can work for all sampling probabilities. We mathematically
derive the optimal system parameters that minimize the space
overhead and achieve probabilistic performance guarantees,
including bounded spread-estimation error and probabilistic
assurance on threshold-based classification. We implement
the proposed non-duplicate sampling module and the on-
chip/off-chip spread estimator in both software and hardware.
We perform extensive experiments based on real Internet traces
from CAIDA [22]. The experimental results show that our
spread estimator increases query throughput by around three
orders of magnitude, reduces spread estimation error by about
an order of magnitude, and incurs a much smaller on-chip
footprint than the prior art.

The rest of the paper is organized as follows. We first formu-
late the problem we studied in this work, the limitations of the
prior art, and our design goals in Section II. Then, we propose
two solutions for spread estimation by non-duplicate sampling
in Section III and further analyze the performance of our
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estimator in Section VI. To evaluate the performance of the
proposed estimator, we use the real network traffic traces to
perform simulations in Section VII. Section VIII describes the
related work. At last, we conclude the paper in Section IX.

II. PRELIMINARIES
A. System Model

A flow under measurement in high-speed networks consists
of all packets that share the same values in a pre-defined
subset of the header fields, which together form the flow label.
Flow spread is defined as the number of distinct elements in
each flow, where elements are defined based on application
requirements. The problem is to estimate the spread of each
flow.

We adopt an on-chip/off-chip model. A sampling module is
placed on the network processor chip. We use a bit array,
denoted as B, in the sampling module to help select new
elements carried in the packet stream and filter out duplicates.
Time is divided into epochs. All bits in B are reset to zeros at
the beginning of each epoch. A recording/estimation module
is implemented in off-chip memory to record the sampled
elements and answer online queries in real-time.

B. Prior Art and Limitations

Most existing spread estimators [12], [13], [18]-[20] are
sketch-based under a different system model, where the whole
sketch data structure is placed in on-chip memory. This model
choice results in three limitations that the proposed work in
this paper will address. First, the whole data structure has to
be very compact. Consequently, such spread estimators do not
keep track of flow labels. Given a flow label, they can answer
the flow’s spread, but they have to rely on external means
to record the flow labels. Second, their estimation formulas
are expensive to compute. Hence, the periodically recorded
data structures will be sent to an offline server, which answers
queries on flow spread. This is ok for many applications based
on offline traffic analysis, but it is also restrictive for online
applications. Third, due to compactness in their data structures,
the accuracy in spread estimation has to give, particularly
for small flows. Recently, SketchVisor [30] tries to augment
sketch-based methods by using a fast path when traffic load is
high. However, it adopts the same on-chip model as existing
sketch-based methods and has the same limitations. Besides,
SketchVisor is more concerned about system implementation.
It does not provide a new solution either for non-duplicate
sampling or for spread measurement.

Take the spread estimator in [20] as an example. It shares a
single physical bitmap among all of the flows to record their
elements statistically under a novel concept of virtual bitmaps.
However, on-chip compactness requires aggressive space shar-
ing, which results in significant errors for small/medium flows.
We use one-minute traffic downloaded from CAIDA as our test
dataset, which contains 589740 per-source flows and 907463
distinct destinations (elements). By setting the packet sampling
rates at 1 and 0.1, respectively, the experimental results are
as shown in Fig. 1 in log scale, where each point represents
a flow with its x coordinate being the actual spread and its
y coordinate being the estimated spread. The more a point
deviates from the equality line y = x, the less accurate the
estimation is. Clearly, small flows suffer very large (relative)
errors. Moreover, estimating the spread of each flow requires
examining thousands of bits.
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Fig. 1. Spread estimation by the estimator (ESD) proposed in [20] with

0.11M B on-chip memory.

C. Our Goal

We aim to fill the gap left by the prior art by addressing
their limitations. Our goal is to design an efficient on-chip/off-
chip spread estimator, which works with a small on-chip
space and a larger off-chip memory to provide online accurate
per-flow spread estimation that records flow labels, incurs very
low query overhead, and achieves good performance for both
large and small flows. Our estimator design should have the
following performance guarantees.

Missed-Sampling

e Bound: Due to the probabilistic nature of sampling, some
small flows may not be sampled. We want to ensure
that the probability for a flow with spread greater than
n not to be sampled is bounded by ¢, where n and ¢ are
user-specified parameters.

e Relative and Absolute Error Bounds: We want to ensure
that the relative error of the flows with spreads greater
than n is bounded by § with probability 1 — ¢, and that
the absolute error of the flows with spreads smaller than
n is bounded by ¢’ with probability 1 — ¢, where n, 0,
¢’, and € € (0,1) are user-specified parameters.

o Probabilistic Guarantee in Flow Classification: We want
to identify the flows whose spreads are greater than a
threshold 7" with the following probabilistic guarantee as
defined in [31]: Given a lower bound / and an upper
bound h with [ < T" < h, the probability for a flow with
spread greater than h not to be identified is bounded by
1 — «, and probability for a flow with spread smaller
than [ to be mis-identified is bounded by 3, where T, [,
h, a and (3 are user-specified parameters.

III. SPREAD ESTIMATION BY NON-DUPLICATE SAMPLING
A. NetFlow and Packet Sampling

NetFlow [23], [24] and its non-Cisco equivalents enable
routers to measure per-flow statistics (such as the number
of packets and the number of bytes for every TCP flow
during each epoch). Modern routers process packets at high
speed through network processor chips and switching fabrics,
whereas per-flow statistics are typically stored in off-chip
memory. There is a mismatch between the rate at which
packets are forwarded on-chip and the rate at which per-flow
statistics are updated off-chip. Sampling is a common tech-
nique to compensate for such a mismatch. The sampling
probability p may be determined based on the ratio of off-chip
memory throughput and packet forwarding rate. Let r be the
highest line rate and ¢ be the achievable off-chip throughput
for traffic measurement considering both on-chip processing
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and off-chip memory access/processing. We can set p to a
constant % and perform per-packet sampling, where each
packet is selected independently with a probability of p for

updating the statistics of the flow that the packet belongs to.

B. Packet Sampling and Spread Measurement

Packet sampling is fine for per-flow size statistics in terms
of the number of packets or the number of bytes. For such
statistics, every packet (byte) worths the same as any other.
However, it is not suitable for per-flow spread statistics, where
each packet carries an element, which may be new or a
duplicate that has appeared in earlier packets and thus should
not be sampled or recorded.

We use an example to show the difference between size
measurement and spread measurement. Consider a flow of
1000 packets. Suppose we measure the flow size in the number
of packets and perform packet sampling with p = 0.1. We use
an off-chip counter r to record the number of sampled packets
in this flow and estimate the flow size to be £. Now consider
a flow of 1000 packets, each carrying an element. We want to
measure the flow spread, i.e., the number of distinct elements
in the flow. Per-packet sampling with p = 0.1 will select about
100 packets for off-chip recording. However, in case that all
1000 packets carry the same element, doing so is completely
unnecessary. We should instead sample at most one packet
of the flow and perform at most a single off-chip recording
because all other packets are duplicates. This will save off-chip
memory throughput for other tasks such as higher sampling
of other flows with more distinct elements.

For spread measurement, a flow of 1000 packets carrying
the same element is equivalent to a flow of 1 packet carrying
that element. The actual packet sampling rates of different
flows should be different, depending on their densities of dis-
tinct elements, which are, however, unknown when sampling
is performed on each individual packet.

C. Non-Duplicate Sampling

We introduce a new concept called non-duplicate sampling,
which is to select each distinct element in any flow with
a given probability p at its first appearance only, in con-
trast to traditional sampling that selects each packet with
probability p.

Consider the previous flow of 1000 packets carrying the
same element e. Still let p = 0.1. Traditional packet sampling
will select about 100 packets and record the same element
that many times, whereas non-duplicate sampling will select
e with probability 0.1 when it appears for the first time — if
it is selected, we record it; otherwise, we do not record it. All
subsequent 999 appearances will be ignored.

Clearly, the implementation of non-duplicate sampling over
a packet stream will still require sampling decision on a
per-packet basis, but the method of traditional sampling will
need to be replaced with something that will not only remem-
ber what we have seen so far (to avoid duplicates), but also
possess the precision of ensuring that each distinct element
has exactly a chance of p being selected, no matter how early
(or late) the element appears in the packet stream and how
many times it appears.

IV. SOLUTIONS FOR NON-DUPLICATE SAMPLING

Before we present our solution for non-duplicate sampling,
we give a list of desired properties for such a solution.
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TABLE I
NOTATIONS

Symbols | Meaning

B, m bit array and its length

N number of distinct elements during the measure-
ment epoch

c the counter recording the number of bits with value
1 in bit array B

P the probability of recording a new element at its
first appearance

Px first-stage sampling probability of the two-stage
solution

k number of hash functions for bloom filter in three-
stage solution

p’',p"”,p"| first-stage sampling probability, second-stage false
positive rate, and third-stage sampling probability
of the three-stage solution

First, because sampling operations are performed online on
a per-packet basis, we want them to be simple. The simpler,
the better. Second, existing sketch-based spread estimators
(such as Bitmap [5], [32], [33], FM [34], HLL [3], [35],
and virtual sketches [9], [36]) do not support efficient online
queries. We will not use them in this paper, but prefer a
solution that supports real-time access to the spread of any
flow. Third, while the online operations are kept simple, they
should still provide great flexibility in quantitatively control-
ling spread measurement in terms of missed-sampling bound,
absolute error bound, relative error bound, and probabilistic
guarantee in flow classification, as defined in Section II-C.
Also, we list the variables and parameters used in this paper
with Table I.

A. A Two-Stage Solution for Non-Duplicate Sampling

We first propose a two-stage solution for non-duplicate
sampling. Its on-chip data structures include a bit array B
of m bits and a counter ¢, which are all initialized to zeros
at the beginning of each measurement epoch. The purpose of
the bit array is two-fold: One is to filter out duplicates, and
the other is to serve for the second-stage sampling.

The first stage is element sampling with a variable prob-
ability p. whose value increases over time. Shortly, we will
discuss how to adjust the value of p, dynamically. Element
sampling is performed as follows: From each arrival packet,
the router extracts the flow label f and the element ID e.
It performs a hash h = H(e® f), where H is a hash function
whose range is [0, X), and @ is the XOR operator. If and
only if h < p.X, the element is selected (sampled) by the
first stage. Regardless of whether an element is selected or
not, it needs to be processed by the second stage.

The second stage is element filtering. The router hashes the
element pseudo-randomly to a bit in B by computing h, =
H.(e ® f) mod m, where H, is another independent hash
function. There are two cases to consider: (1) If B[h.] = 0,
it means that the router never sees this element before. In this
case, it sets Blh,] to 1, increases ¢ by 1, and sends the flow
label f to off-chip memory for recording if e is selected by
the first stage. (2) If B[h.] = 1, it means that the router
has seen an element hashed to the bit. The element may
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be e from f or another one setting the same bit due to hash
collision. We nonetheless filter out e of f and thus take no
further action. Note that our goal is not to record each element
at its first appearance, but to record it with a pre-set probability,
which we will show the details below.

Consider an arbitrary element e from an arbitrary flow f.
When it first appears in the packet stream, element sampling
(first stage) has a probability of p, to select the element, and
element filtering (second stage) has a probability of *—< to
hash into a bit of zero, which will trigger off-chip recording
if e is selected at the first stage. Combining the above two
stages, the probability of recording a new element at its first
appearance is p."—=. We want to set it to a constant value
p = *, which is pre-determined based on the line rate r and the
achievable off-chip throughput ¢ as explained in Section III-B.
Hence,

m —c¢
D =D
m
mp
Dy = . (1)
m —c

The sampling probability p. at the first stage increases as
the number of recorded elements (i.e., ¢) increases. That is
the reason for all elements to be processed by the second
stage regardless of whether they are selected by the first
stage. Otherwise, an element that was not selected for its first
appearance will have chance to be selected (sampled) in its
subsequent appearances as p, increases, which is against the
requirement of non-duplicate sampling that an element can
only be sampled at its first appearance.

The maximum value of ¢ should be limited to m(1 — p)
when p,. becomes 1. The current measurement epoch will ter-
minate after ¢ reaches its maximum value. To avoid persistent
premature epoch termination, we may double the bit array
size m in the subsequent epoches until it is large enough to
prevent ¢ from reaching its maximum.

Note that all subsequent appearances of the same element e
in flow f will be hashed to the same bit in B (which is already
set to 1) and thus automatically be filtered out.

Consider the first appearance of a new element again. The
probability for it to not be selected at the first stage is 1 — p..
The probability for it to be selected at the first stage but hashed
to a bit of 1 is p,< pon . Combining these two cases with (1),
the probability for the element to not be recorded is
)

C
(1=ps)+pe—=1-p,
m

which matches the expectation of non-duplicate sampling.

In the worst case, when packets arrive at the highest rate r
and they all carry different elements, each having a probability
of p being recorded off-chip (under the two-stage solution),
the off-chip throughput will be rp = ¢, which is achievable.

B. An Extended Three-Stage Solution for Non-Duplicate
Sampling

The proposed two-stage solution has two limitations. First,
it needs to record all the elements in the packet stream since
we want to ensure that elements can only be sampled at their
first appearance. Actually, most elements will not be sampled
when p is very small. If some elements can be removed
from the packet stream before the element filtering stage,
we will be more space-efficient by recording fewer in the
bit array B. Second, recording each element by a single bit

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:35:19 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: SPREAD ESTIMATION WITH NON-DUPLICATE SAMPLING IN HIGH-SPEED NETWORKS

in B is not the best way to separate new elements from
duplicates, particularly when p is large. Bloom filter is
a space-efficient probabilistic data structure for checking
whether an element has been seen before or not. It is
more suitable for filtering out the duplicates. To address the
above limitations, we propose a new three-stage solution for
non-duplicate sampling in the following.

The first stage is element pre-sampling with probability p/,
where p’ is a pre-set stable value that will not be changed
over time. We will discuss how to determine the value of p’
shortly. Element pre-sampling is performed as follows: For
each arrival packet, the router performs a hash i’ = H'(e® f)
where H' is a hash function whose range is [0, X) and @ is
the XOR operator. If and only if A’ < p’X, the element is
selected (sampled) and enters into the second stage.

The second stage is duplicate filtering, which is used to find
out the first appearance of the elements selected by the first
stage. We use bloom filter to record the passing elements and
filter out the duplicates in the three-stage solution. Suppose
there are k independent hash functions H;, 1 < j < k, whose
range is [0,m — 1). We perform the duplicate filtering as
follows: For each element selected by the first stage, the router
hashes this element pseudo-randomly to k bits from B through
Hj(e® f), 1 < j < k. There are two cases to consider:
(1) If at least one of these k bits is zero, it means that the
router never sees this element before. In this case, the router
sets all the k bits to one and transfers this element to the third
stage. (2) If all the k bits are ones, the router regards this
element as one that has been already recorded in the bloom
filter. In this case, router regards this element as a duplicate
and drops it. However, bloom filter can make false positive
claims. It is always true if it says an element has not been
recorded, but it can be wrong if it says an element has been
recorded. We use p”’ to denote the false positive ratio of bloom
filter B, which is the probability for an element to be falsely
reported as a duplicate on its first arrival. We also use a
counter ¢ to record the number of ones in the bloom filter.
When a bit of B is set from zero to one, we increase ¢ by 1.

The third stage is element sampling with a variable probabil-
ity p’”, which is used to control the overall element sampling
probability to a pre-set value p. For each element selected by
the second stage, the router performs a hash b/ = H" (e ® f),
where H" is a hash function whose range is [0, X]. If and only
if b/ < p" X, the element is selected (sampled) by the third
stage, and the router sends the flow label f to the off-chip
memory.

Consider an arbitrary element e from an arbitrary flow f.
It has a probability of p’ to be selected in the first stage, further
has a probability of (1 —p") to be selected in the second stage
at its first appearance, and finally has a probability of p”’ to
be sampled and trigger off-chip recording at the third stage.
Combining the above three stages, the probability of recording
an element at off-chip memory is p'(1 — p”)p"”’. Our goal is
to ensure that each element has a pre-set probability to be
sampled at its first appearance. Hence, we have

p/(l _p//)p/l! — p. (3)

The space efficiency of the three-stage solution is controlled
by two parameters, i.e., p’ and k. In the following, we will
show how to get the optimal value of p’ and k for different p.

Consider an arbitrary element e from an arbitrary flow f,
where e is selected from the first stage. When it first appears
in the packet stream, each hash function H; has a probability
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of = to hash it to a bit of one. The probability for all the
k hash functions hash e to the bits of one is (). If an
element is not mis-reported as a duplicate, it will be selected
by the second stage. Then, we have the probability for each
element to be selected by the second stage when it appears at
the first time is

L=y =1 ()" @

Since c¢ increases over time, the value of (1 —p’’) decreases
over time. By applying (4) to (1), we have

(1 — £ kN 11 ) 3
P = ()" =p )
The sampling probability in the third stage p’”’ can be
most 1, i.e., 0 < p’” < 1. Therefore, we have
(1= (L)k) >
H- (S 2
C g D
1—(—=)F> =, 6
(Sr=1 ©

Suppose there are NV distinct elements in the packet stream.
After the first stage, the number of remaining distinct elements
is Np'. When the number of recorded elements grows, ¢ and
p’ = (%)k will also increase. Hence, the value of p” is
maximized after all Np’' elements are recorded. Consider an
arbitrary bit B[] in B, each recorded element has a probability

of (1 = £)¥ not set Bli] to one. Thus, the probability for
Bli] = 0 after recording Np’ elements is (1 — %)kNpl, and

the probability that B[i] = 1 after recording Np’ elements is

(I1-(1- —il)kNpl). Then, we have the false positive ratio p”
" € \k L kNp'\k

= <(1-(1- PF, 7

=) s (== =) 0

Note that p and p’ are pre-set values. Thus, we have
the following inequality should hold through combining (6)
and (7).

1

D 1 L \ENp'\E
Lo 2 (= (1= ) E, ®)

. ' . kN
Since (1—L)*N?" approximates to e —m

" , we further have

p —kNp’
1—}72(1—6 m )k, )
The smaller the %, the more space-efficient of the proposed
mechanism. Our goal is to optimize the system parameters
(p" and k) such that % is minimized under constraints. The
problem is formally defined as follows.

Minimize —
N

p —kNp’

I
. p
Subject to p<p <1, (10)

E={1,2,...,m}.

The parameter p is determined by the performance objec-
tive. In Section VI, we will show how to get the optimal
value of p based on different performance requirements. For
any given value of p, we can get the optimal value of k£ and
p’ by solving the constrained optimization problem (10). The
relationship between p and the optimal value of k and p’ are
shown in Fig. 2.
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Fig. 2. The relationship between p and the optimal value of k and p’.

From Fig. 2, we found that the optimal value of % is equal
to one when p is not large enough. In this case, the bloom
filter in the second stage is a typical bitmap. By substituting
k=1 to (9), we have

p —Np’

SSe (11)

We further take logarithm on both sides of (11) and have
(k) < =2,

% > ]%(Mp'—lnp). (12)

Through taking the first-order derivative on variable p/,
we find the minimum result of 3 is obtained when p’ = pe,
where e is the natural logarithm with the value of 2.718.
Then, the optimal value of p’ = min{1,pe} when k& = 1.
Moreover, the optimal value of p’ = 1 when k > 1 (as shown
in Fig. 2(b)). Thus, we have

1

e, if p < —;

p/ _JPp p= o
1, otherwise.

13)

Next, we discuss the optimal value of k. According to the
optimal theory of bloom filter, the optimal number of hash
functions k£ (ignoring integrality) is

In p//
In2"

Notice that k& should be an integer that no less than 1.
Then, we have the optimal value of k¥ = 1 when p” < 0.5
based on (14). Combine with p” < p, we can easily get that
the optimal value of £ = 1 when p < 0.5. When p > 0.5,
the optimal value of p’ = 1 and the maximum value of p” is
limited to 1 — p when p””’ becomes 1. Thus, the problem of
finding the optimal value of k is equal to the problem of
finding the value of k that minimizes %; for a given p” = 1—p.
Then, we have

(14)

In(1 — p)
k=——-+-=-. 15
In2 as)
Substituting p’ = 1 to (9), we have
1p>(1—e7 )k, (16)
and further have
m k
. A (17)
N Tmi-(1-ph)
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Let Ay =——F  whenk = (—ML and Ay =
In(1—(1-p)*) In2
——F whenk = L—%J. Actually, the minimum

In(1—(1—p)*) . o
value of % that our estimator can achieve is min{A;, As}.
Denote the optimal value of k£ by k*, which can be computed

by

1 if p < 0.5;
In(1 — .
- (__%Eﬁﬁ,ﬁp>o5mmA1<Am (18)
In(1 —
L_%J, if p> 0.5 and Ay < A;.
n

Let (2)" be the optimal value of 2. With the optimal value
of k and p’, we have

1
ep, if p<—;
1 1 ©
my* - if = <0.5;
(N) Inp’ Iy Be <p=05 (9
. if p > 0.5.

_ln(l —(1-p))
As p"" can be most 1, p'(1 — (£)*) > p should always

m
stands. Thus, the maximum value of ¢ should be limited to

m- {/(1 — L) when p”’ becomes 1. The current measurement

epoch has to terminate after ¢ reaches its maximum value.
To avoid premature epoch termination, we may double the bit
array size m until it is large enough to prevent ¢ from reaching
its maximum.

Consider the first appearance of a new element again.
The probability for it to not be selected at the first stage is
1 — p’. The probability for it to be selected at the first stage
but misreported as a duplicate at the second stage is p'p”. The
probability for it to be selected both at the first and the second
stages but not selected at the third stage is p’(1—p”)(1—p"").
Combining these three cases with (1), the probability for the
element to not be recorded is

(1 _pl) +p/pl/ +pl(1 _pl/)(l _pl/l) — 1 _p,

which matches the expectation of non-duplicate sampling.

(20)

V. OUR DESIGN WITH NON-DUPLICATE SAMPLING

With the solutions for non-duplicate sampling, we propose
two spread estimators that can answer the online query in real
time. The details of our design are as shown in Algorithm 1.

We want to stress that our bit-array filter B serves a different
purpose from the bitmaps in [2], [5]. Our filter is used to assist
sampling, whereas those bitmaps are used as per-flow data
structures in spread estimation.

In fact, they could be complementary to each other, with
ours for on-chip duplicate removal and theirs as off-chip data
structures for recording flow elements. However, bitmaps have
limited estimation ranges. More sophisticated sketches, such
as FM [34], HLL [3], [35], and their virtualized versions [9],
[36], have very large ranges. But all these sketches (including
bitmaps) do not support online queries because they are
expensive to compute, having to synthesize data from hundreds
or thousands of bits or registers.

In order to support efficient online queries, we opt not to use
these sketches as our off-chip data structures. We observe that,
after non-duplicate sampling, each time an element from f is
recorded, it must be a new one that is not seen before, which
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Algorithm 1 Non-Duplicate Sampling

for each arrival packet in packet stream do
Extract flow label f and element label e;
Using two-stage or three-stage solution to sample
each element < f,e > at its first appearance;
if an element < f,e > is sampled then
Send flow label f to off-chip recording;
if label f is downloaded for the first time then
| Initialize flow f’s table entry ¢ to 0;
end
Set cy =cy +1;
end
end
for each flow f do
| Estimate its flow spread by ny = <5
end

is why we only send the flow label f off-chip for recording.
Our off-chip data structures include a hash table to store the
flow labels, each with a counter. When we record f for the
first time, it is inserted into the hash table with its counter
value cy set to 1. After that, when f is recorded again (because
its other elements are sampled), we find its entry in the hash
table and increase the counter by 1.

For an online query on the spread of flow f, we only need
to hash f to find its table entry and return its current counter
value ¢y divided by the sampling probability p.

The simple operations of non-duplicate sampling have an
immediate benefit of online efficiency, both in spread mea-
surement and real-time queries. Nevertheless, simplicity does
not necessarily limit functionality. We show in the next section
that the proposed spread estimator can be flexibly configured
for various probabilistic performance guarantees.

VI. PERFORMANCE ANALYSIS

In this section, we show how to configure the system
parameters of the proposed estimator for different probabilis-
tic performance guarantees, such as the flow miss-sampling
bound, relative and absolute error bound, and probabilistic
guarantee in flow classification.

A. Miss-Sampling Bound

A flow will miss if none of its elements are sampled. Define
the miss-sampling probability as the probability for a flow
miss. Given two values n and ¢, our design can ensure that
the miss-sampling probability for a flow with spread greater
than n is bounded by e through proper system parameter
configuration.

Consider an arbitrary flow f with spread ny. Each element
of f has a probability of p to be sampled, and then the
probability for none of f’s elements to be sampled is (1—p)™+.
Since (1 — p)™ > (1 — p)™ when ny > n, our design can
bound the miss-sampling probability within ¢ for flows with
spread greater than n if (1 — p)” <, i.e.,

p>1—¢/m (21)

We want to stress that our solutions ensure that all the dis-
tinct elements are sampled with the same probability, no matter
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how early (or late) the element appears in the packet stream
and how many times it appears. Thus, the miss-sampling ratio
of a flow has no relationship with the arriving time of the flow
(or burst). It will diminish exponentially as ny increases.

Let N be the total number of distinct elements in the current
epoch. For our two-stage solution, all of them will have set
their hashed bits in the filter at the end of the epoch, and
from Section IV-A we know that the number c of bits that are
ones in the filter reaches its maximum value of m(1 —p). The
percentage of bits in the filter that are zeros is thus =< = p.
According to [12], [32], N can be approximated as —m In p.
From (21), we should set m as

N N

mn Inp 2 In(1 — et/n)’ (22)
The value of IV can be estimated based on the measurements
in prior epoches, for example, as the moving average of the
prior measurements, each being the total number of sampled
elements in an epoch divided by p. Let NV be such an estimate.
Substituting N with its estimate, we can practically set m as
follows:

< N
= In(1 —€e'/m)’

For our three-stage solution, we can get the minimum value
of m by substituting N with its estimate to (19),

(23)

. 1
Nep, ifp<—;
R e
N if ! <p<0.5
- —— if - .5;
m= Inp” e SP=E (24)
NE* )
—, if p> 0.5,

CIn(l—(1—p)i)

where p = 1 — e/m k* is the optimal value of k£ obtained
by (18).

B. Relative and Absolute Error Bounds

We now show how to configure the system parameters
to bound the relative and absolute errors of the proposed
estimator.

Consider an arbitrary flow f. Let c; be the counter value
of f’s table entry and Pr{c; = k} be the probability for
cy = k. We further consider an arbitrary subset Sy of &k
elements of flow f; there are C*  ways to form such a subset.
Denote the complement of the subset as Sy, _j,, which consists
of all elements of flow f that are not included in Sy j. The
probability for all of the elements in S, to be sampled is ",
and the probability for no element in Sy _; to be sampled
is (1 — p)™/—*. Then, we have the probability for all of the
elements in Sy, to be sampled and all of elements in Sy _
that are not to be sampled, namely p*(1 — p)"/~*. Note that
there are C,’jf ways to form a subset Sy ;. Thus, we have

Pric; =k} =Cy p*(1—p)™ " (25)

Suppose we want to ensure the relative (absolute) error of
flows whose spreads are greater (smaller) than n is bounded
by ¢ (') with probability 1 — e.

Since each sampled element will be estimated as % ele-
ments, [(ny — §)p] < ¢y < [(ny + ¢')p] should stand if
we want to bound the absolute error of flow f within ¢’.
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Based on (25), the probability for the estimated spread of
flow f not distributed in [n; — ¢’,ny +d'] is

[(ns+6")p]

>

i=[(ng—=5")p]

pr=1- Ch (1 —=p)r 7. (26)

Therefore, the absolute error of flow f is bounded by ¢’
with probability 1 — ¢ if the following inequality stands:

Lng+8p) _
o GpPA-pT <e

j=[(ng—0¢")pl

1— 27)

Note that p» is increased with increasing ny, which means
the flow with large spread has a high probability to have a
greater absolute error than the flow with small spreads. Thus,
we can obtain the optimal value of p by solving (28), which
ensures that the absolute error of the flows whose spreads are
smaller than n is bounded by §’ with probability 1 — e:

L(n+6")p]

>

i=[(n=6")p]

1— Cip(1—p)" 7 = (28)

Similar to the analysis for the absolute error bound, we can
obtain the optimal value of p by solving (29), which ensures
the relative error of the flows whose spreads are greater than
n is bounded by § with probability 1 — e:

[(1438)np]

D

j=[(1=38)np]

1- Cip/(1—p)" i =e (29)

C. Upper Bounds of Relative and Absolute Errors

Next, we analyze the upper bounds of the relative and
absolute errors.

Let E/ be the absolute error of the proposed estimator for
flow f. Let A; be the event that all of the elements of f
are sampled, and Ao be the event that none element of f is
sampled. Then, we have that the upper bound of E; is equal to
maX{EiAl,EiAz}, where Eaf,A1(Et{,A2) is the value of E7
when event A;(A3) happens. The probability for A; happens
is

PAl,f =p"s. (30)

When A; happens, the absolute error of each element of
flow f that will bring is % — 1. Then, we have

1

B, = ny( = 1. 31)

For a given flow f, the probability that A, happens is
PAzyf = (1 _p)nf'

When A, happens, the spread of f will be estimated as
zero. Thus, we have EiAz =ny.

Combined with the analysis above, we have the upper bound
of the absolute error of the proposed estimator for flow f,

(32)

1
maX{Eg,Alszj:,Az} = max{nf(}—j —1),nys}, (33)
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and, further, we have the upper bound of the relative error of
the proposed estimator for flow f,

! !

E E 1
max{a—’Al, a—’Az} =max{— —1,1}.
ny ny b

(34)

Note that the upper bound of the absolute and relative errors
for flow f are, respectively, equal to ny and 1 when p > 0.5.

D. Probabilistic Guarantee in Flow Classification

In some applications, such as DDoS detection and scanner
detection, we must monitor the flows with abnormal spreads,
i.e., identify all of the flows whose spreads exceed a certain
threshold in each measurement period, where the threshold is
a system parameter. In other words, we want to classify flows
into two types based on whether their spreads are abnormally
large or not. Since the limited SRAM only allows us to
record part of the information of each flow, a precise flow
classification is not feasible [5], [31], [33]. Thus, we adopt
the probabilistic performance objective from [31].

Let h and [ be two positive integers, and 7 s be the estimated
value of ny. The objective is to identify the flows whose
spreads are greater than a threshold 7" with the following
probabilistic guarantees: identify any flow whose spread is h
or larger with a probability no less than « and identify any flow
whose spread is [ or smaller with a probability no more than «,
where | < T < h. There are two kinds of false identification.
The first one identifies flow f if ny < [, which is defined
as a false positive. The second one is non-identification when
ny > h, which is treated as a false negative. Then, the objec-
tive can be expressed in terms of conditional probabilities:

Pr{identifyf as an abnormal flow |n; <[} < j,
Pr{mis-identifyf as an abnormal flow |ny > h} > a, (35)

where 3 is the false positive probability and 1 — « is the false
negative probability. The above objective is to bound the false
positive ratio by  and the false negative ratio by 1 — . In the
following, we show that the proposed estimator can achieve
the above objective by proper parameter settings.

Let Pr{c; < k} (Pr{c; > k}) be the probability for
cy <k (cy > k). Based on (25), we have:

k
Pric; <k} = C) p/(1—p)" 7,
§=0

ng
Pric; >k} =Y C) p/(1—p)" . (36)
j=k

Given a threshold 7T, the flow with an estimated spread no
less than T" will be identified as an abnormal one. Since the
spread of a flow will be estimated as no less than 7" when
¢y > [T'p], the probability for a flow f to be identified as an
abnormal one is:

ng
Pric; > [Tpl}= Y CLp/(1—p 9. (37
J=[Tp]
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TABLE 11
Miss-SAMPLING RATIO OF OUR DESIGN

m (MB) solution spread

1~3[4~6[7~10][11~20]21 ~50]51~100] 101 ~

01 | twosstage (p = 0.02) | 0.9714 | 0.8952 | 0.8259 [ 0.7149 | 0.5064 | 02184 [0.0241

" [ three-stage (p = 0.10) | 0.8822 | 0.6213 | 0.4415 | 0.2428 | 0.0554 | 0.0024 | 0.0000
05 | twostage (p = 0.47) | 04758 | 0.0585 | 0.0065 | 0.0005 | 0.0000 | 0.0000 | 0.0000

" | three-stage (p = 0.47) | 0.4752 | 0.0571 | 0.0073 | 0.0004 | 0.0000 | 0.0000 | 0.0000

5 two-stage (p = 0.82) | 0.1434 | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
three-stage (p = 0.92) | 0.0642 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

To achieve the above objectives, the following should be 2 10!

satisfied: §
R ny—j ER
> Gl pPA—p)T < B, Yy <1 &
j=[Tp] 2 10!
nyg (38) 5 10
J I (1 — p\r—J =
Y CLp(1—p)T >a, Vng>h =2
j=[Tp] §>‘

By solving (38), we can obtain the minimum value of p that o 103 ]
satisfies the above constraints. Note that the upper bound of ESD KPSE Ours
absolute error for a flow with a spread less than [ is [( —1) if
the spread of this flow is overestimated. Then, the probability ~ Fig- 3. Query throughput.

for f to be identified as an abnormal flow is zero if we set
T > % i.e., Pr{identify f as an abnormal flow |ny <1} =0
when h > %.

VII. EXPERIMENTAL RESULTS

We use five minutes of data downloaded from CAIDA [22]
as our dataset. This dataset has 1689780 distinct per-source
flows, 3150740 distinct elements, and 152163629 packets. Our
goal is to estimate the spread of per-source flows in this
dataset. In the experiments, we use ESD [20] and KPSE [13]
as baselines, both of which are sketch-based methods. Their
core idea is to allocate each flow a virtual bitmap and let
different flows’ virtual bitmaps share their bits uniformly.

A. Implementation

We implement the proposed two-stage solution and
three-stage solution on an XLINX ZYBO-7020 SOC devel-
opment board, with 53200 logic units, 5040 Kbits Block
RAM, and a clock rate of 100MHz. The Arm part of this
board contains a 667MHz dual-core Cortex-A9 processor.
We use the FPGA part as the hardware and the Arm part
as the software. The hardware processing speed is 100Mpps,
and the communication speed among these two parts is
about 1.6Mpps.

In our implementation, the throughput threshold of the
on-chip sampling module and the off-chip memory are sep-
arately 100MHz and 1.6MHz. The distinct element arriving
rate of our implementation is 2.86MHz. To keep up with the
line speed, the element offloading speed should be no more
than the threshold of the off-chip throughput, i.e., multiplying
2.86MHz with p should be no more than 1.6MHz. Then,
we have p < 0.55.

Further, we test the query throughput of our solutions, ESD,
and KPSE, where query throughput refers to the number of
queries an estimator can answer within one second. The eval-
uations are executed by running the off-chip spread estimation

of these estimators on a machine with an Intel(R) Core(TM)
15-4590 @3.3GHz CPU and 16 GB memory. Notice that the
off-chip recording and estimation process of our solutions are
the same. Thus, our two-stage solution and three-stage solution
have the same query throughput. The experimental results are
presented in Fig. 3, which shows that our solutions increase the
query throughput by around three orders of magnitude greater
than the existing ones. Actually, our solutions can answer the
query for the spreads of all 9090784 flows in 3 seconds (less
than 14 s per-flow), which is efficient enough for any online
queries.

B. Miss-Sampling Ratio

TABLE II shows the performance of our solutions on
miss-sampling ratio for the flows with different spreads when
m is equal to 0.1MB, 0.5MB, and 2MB. As p or the spread
of flow increases, the miss-sampling ratio decreases quickly,
which verifies our theoretical analysis. Consider a case in
which we want to bound the miss-sampling probability for
flows with spread larger than 50 within 0.01. Based on (21),
we have that p should be no less than 0.09. The actual
miss-sampling rate of our two-stage solution and three-stage
solution are 0.0012 and 0.0024 respectively when p = 0.09,
which is much smaller than the theoretical bound.

C. Estimation Accuracy

In this part of the experiments, we evaluate the performance
of our solutions and compare them with ESD and KPSE under
different sizes of on-chip memory.

Fig. 4 - Fig. 6, TABLE IV and TABLE V compare our
solutions, ESD, and KPSE on spread estimation accuracy.
In this set of experiments, we set the parameter p of our
solutions to the optimal value under the given m, and the
size of the virtual bitmap of ESD and KPSE to the minimum
value that can supply a large enough estimation range for all
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Fig. 4. Spread estimation accuracy of ESD, KPSE and our estimator when m = 2MB.
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Fig. 6. Spread estimation accuracy of ESD, KPSE and our estimator when m = 0.25MB.
TABLE III
MEMORY REQUIREMENTS OF TWO-STAGE ESTIMATOR AND THREE-STAGE ESTIMATOR (M B)
P 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99
two-stage 0.09 0.13 0.17 0.24 0.32 0.41 0.55 0.74 1.06 1.69 3.57 37.38
three-stage 0.02 0.06 0.11 0.21 0.31 0.41 0.55 0.74 0.95 1.27 1.81 3.61

of the flows. The experimental results show that our solutions
work much better than the existing ones. In detail, when
flow spread is less than 100 or larger than 1000, our methods
show significant advantages in estimation accuracy compared
to ESD and KPSE. We want to stress that, due to the properties
of probabilistic counting algorithm, ESD and KPSE show
better performance on the flows whose spreads are within
[100, 1000]. Even for those flows, our algorithm can still out-
perform the baselines in estimation accuracy. This is because
the existing studies use on-chip memory to store the traffic
data for estimation, which requires aggressive space sharing
and further results in significant errors for small/medium flows.
However, our solutions only use on-chip memory to filter out
the duplicates and help sample the passing element, but stores
the traffic data in off-chip memory. Thus, our solutions can
work in a much smaller on-chip memory while achieving
higher estimation accuracy than the existing studies.

From the experimental results, we also found that ESD and
KPSE fail to obtain an accurate estimation for flows with
spreads less than 100 when the allocated on-chip memory
is 5.32 bit per element (m = 2MB), for flows with spreads
less than 200 when the allocated on-chip memory is 1.33 bit
per element (m = 0.5MB), and for flows with spreads less
than 1000 when the allocated on-chip memory is 0.67 bit per
element (m = 0.25MB). Our solutions are clearly the winner,
especially for the flows with small or middle spread. Moreover,
the experimental results also show that the three-stage solution
performs better than the two-stage solution. When p is large
or small enough, our three-stage solution needs less on-chip
memory than our two-stage solution (as shown in TABLE III).
That is because bloom filter is more efficient than bitmap when
p is large enough, i.e., the threshold of the false positive ratio
is small, and the first stage of our three-stage solution can
reduce the on-chip recorded elements, which can help us to
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TABLE IV
MEAN ABSOLUTE ESTIMATION ERROR
spread all flows 1~ 100 101 ~ 1000 1001 ~
» Lgorithm ESD | KPSE | two-stage | three-stage | ESD | KPSE | two-stage | three-stage | ESD | KPSE | two-stage | three-stage ESD KPSE two-stage | three-stage
0.05 2332 | 22.86 274 2.30 23.17 | 2271 272 229 78.11 78.37 51.25 32.89 13024.15 | 13025.24 339.00 214.26
0.1 2040 | 19.97 241 2.13 2026 | 19.83 240 2.12 57.12 | 5132 33.57 2577 12845.67 | 12846.50 215.12 162.02
0.3 11.17 | 10.90 1.62 1.62 11.05 | 10.77 1.61 1.61 3125 | 31.28 17.94 18.08 1162236 | 11622.68 153.03 87.44
0.5 751 742 1.09 1.09 745 7.30 1.09 1.09 2141 | 2139 12712 12.08 11538.05 | 11538.25 65.71 65.24
0.7 522 5.14 0.68 0.64 5.10 5.02 0.68 0.64 1586 | 15.86 787 6.65 11479.76 | 11479.90 40.94 59.85
0.9 3.64 3.61 0.26 0.02 3.53 3.51 0.26 0.02 9.78 9.78 3.98 1.23 10328.59 | 10328.65 23.84 8.46
TABLE V
MEAN RELATIVE ESTIMATION ERROR
spread all flows 1~ 100 101 ~ 1000 1001 ~
» dgorithm ESD | KPSE | two-stage | three-stage | ESD | KPSE | two-stage | three-stage | ESD | KPSE | two-stage | three-stage | ESD | KPSE | two-stage | three-stage
0.05 19.60 | 19.20 1.85 1.66 19.60 | 19.20 1.85 1.66 0.34 0.34 0.25 0.16 0.88 0.88 0.05 0.03
0.1 17.12 | 16.75 1.71 1.57 17.13 | 16.76 1.71 1.57 0.27 0.27 0.17 0.13 0.82 0.82 0.03 0.03
0.3 9.28 9.04 1.25 1.25 9.28 9.04 1.25 1.26 0.15 0.15 0.09 0.09 0.55 0.55 0.02 0.01
0.5 6.22 6.09 0.87 0.87 6.22 6.09 0.87 0.87 0.10 0.10 0.06 0.06 0.54 0.54 0.01 0.01
0.7 423 4.16 0.53 0.50 423 4.16 0.53 0.50 0.07 0.07 0.04 0.03 0.54 0.54 0.01 0.01
0.9 291 2.89 0.18 0.01 291 2.89 0.18 0.01 0.05 0.05 0.02 0.01 0.39 0.39 0.01 0.00
10000 10000 10000 10000
3 3 ak 3
8 8000 8 8000 8 8000 8 8000
S =% =% =%
@ 6000 . “2 6000 @2 6000 + @2 6000 .
=] = =] =]
3 2 3 3
< 4000 < 4000 < 4000 1 ++ + < 4000
£ g £ £ £ 7
E 2000 * % 2000 E 2000 fumasr+ 4+ E 2000
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Actual Spread Actual Spread Actual Spread Actual Spread
(a) two-stage, m=0.1MB, (b) three-stage, m=0.1MB, (c) two-stage, m=0.05MB, (d) three-stage, m=0.05MB,
Fig. 7. Spread estimation accuracy two-stage estimator and three-stage estimator when m = 0.1MB or 0.05MB.

get a more space-efficient spread estimator when p’ < 1. The
experimental results as shown in Fig. 7 shows that, the estima-
tion error of our three-stage solution is much smaller than our
two-stage solution when p is small enough, which also verifies
our theoretical analysis. Specially, the element sampling rates
of our two-stage solution and three-stage solution are 0.0005
and 0.05 respectively when m = 0.05MB. In such a small
on-chip memory, our two-stage solution cannot estimate the
spreads of flows accurately. However, our three-stage solution
still works well in this case (see Fig. 7(d)), which further verify
the space-efficiency of our three-stage solution.

The mean absolute estimation error and the mean relative
estimation error for the flows under different distribution when
p = 0.05,0.1,0.3,0.5,0.7, and 0.9 are separately shown
in Table. IV and Table. V. Both of our solutions perform
much better than ESD and KPSE. In this set of experiments,
we set m to the optimal value of our two-stage solution for
all the comparison estimators. They reduce the mean absolute
error and relative error of all flows by around one order of
magnitude compared to the prior art. It is worth pointing
out that they reduce the mean absolute error of flows with
spread no less than 1000 by around two orders of magnitude
compared to the prior art.

We then show the performance of our solutions on bounding
the absolute and relative errors. Given a set of bounds,
we can obtain the optimal value of p based on (27) and (29).
TABLE VI shows the optimal values of p under different
settings. The second to sixth columns present the optimal

Authorized licensed use limited to: University of Florida. Downloaded on

value of p that can ensure that the absolute errors of the
flows with a spread smaller than n are bounded by ¢’ with
probability 99%, and from the seventh to eleventh columns
present the optimal value of p that can ensure that the relative
errors of the flows with spreads greater than n are bounded
by § with probability 99%. From this table, we found that
our solutions can bound the relative error (absolute error) in
25% (250) for the flows with spreads greater (smaller) than
1000 with probability 99% when p = 0.1. However, the mean
relative error of ESD is 82% as shown in TABLE V, which
indicates that our solutions not only has a higher accuracy than
the existing ones in the small/medium flow spread estimation,
but also in large flow spread estimation.

D. Flow Mis-Classification Probability

Finally, we compare the flow mis-classification probability
of our solutions and ESD, which are what ESD was designed
for. The first set of experiments compares our solutions and
ESD for the amount of memory that they need to satisfy the
constraints given in (38). We set 7' = (h + [)/2. TABLE VII
shows the memory requirements of our solutions and
ESD with respect to «, (3, h, and [, which were computed
according to the methods proposed in [20] and this work.
However, ESD has a limited estimation accuracy for the flows
with small spreads. We cannot obtain the required memory
space of ESD when h is too small or the gap between h and
l is too small. Hence, we use a short bar to indicate the required
memory space of ESD in this case.
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TABLE VI
OPTIMAL VALUE OF p UNDER DIFFERENT SETTINGS (e = 0.01)

" absolute error relative error
6" =50 6" =100 6" =150 6" = 200 6" = 250 6 =0.05 6=0.1 6 =0.15 6=0.2 6 =0.25
200 0.34 0.11 0.06 0.03 0.02 0.92 0.76 0.58 0.45 0.34
500 0.57 0.25 0.13 0.08 0.05 0.84 0.57 0.37 0.25 0.17
1000 0.73 0.40 0.23 0.14 0.10 0.73 0.40 0.23 0.14 0.10
1500 0.80 0.50 0.31 0.20 0.14 0.64 0.31 0.17 0.10 0.07
2000 0.84 0.57 0.37 0.25 0.18 0.57 0.25 0.13 0.08 0.05
TABLE VII
MEMORY REQUIREMENTS OF OUR ESTIMATOR AND ESD (M B)
h l =0.5h 1 =0.7Th 1 =0.8h
ESD two-stage three-stage ESD two-stage three-stage ESD two-stage three-stage
- 20 - 0.60 0.60 - 1.94 1.37 - 6.58 2.26
S 50 1.11 0.31 0.30 - 0.78 0.78 - 1.49 1.18
Il 100 0.45 0.21 0.16 3.76 0.40 0.40 - 0.76 0.76
Q 200 0.23 0.15 0.09 0.78 0.26 0.24 10.87 0.44 0.44
2 300 0.16 0.14 0.06 0.48 0.21 0.18 1.89 0.34 0.34
I 500 0.10 0.11 0.04 0.29 0.17 0.11 0.77 0.25 0.23
3 1000 0.05 0.09 0.02 0.15 0.13 0.06 0.38 0.18 0.13
2000 0.03 0.08 0.01 0.08 0.11 0.03 0.19 0.14 0.07
0 20 - 0.93 0.87 - 3.00 1.67 - 6.58 2.26
=) 50 4.14 0.42 0.42 - 1.12 0.98 - 2.22 1.46
Il 100 0.82 0.27 0.25 - 0.55 0.55 - 1.10 0.97
Q 200 0.37 0.19 0.14 2.04 0.35 0.34 - 0.63 0.63
2 300 0.25 0.16 0.10 0.90 0.28 0.26 - 0.47 0.47
S 500 0.15 0.13 0.06 0.48 0.21 0.17 2.80 0.34 0.33
I 1000 0.08 0.11 0.03 0.24 0.16 0.10 0.99 0.23 0.20
3 2000 0.04 0.09 0.02 0.12 0.12 0.05 0.49 0.17 0.11
TABLE VIII
FPR AND FNR OF OUR ESTIMATOR AND ESD WHEN m = 0.2M B
h l =0.5h 1 =0.7Th 1 =0.8h
ESD two-stage three-stage ESD two-stage three-stage ESD two-stage three-stage
20 3.53e-01 2.54¢-03 4.49¢-03 3.54¢-01 3.63e-03 1.70e-03 3.54e-01 4.05e-03 2.02¢-03
50 1.81e-01 2.90e-04 9.91e-05 1.48e-01 3.34e-04 2.02e-04 1.48e-01 4.34e-04 3.02e-04
& 100 3.12¢-02 2.19¢-05 8.29¢-06 2.26e-02 5.33e-05 2.72e-05 1.61e-02 4.68e-05 2.66e-05
=1 200 3.34e-04 5.92e-07 1.18e-06 6.93e-05 4.14e-06 3.55e-06 4.56e-05 4.74e-06 2.96e-06
300 4.74e-06 0.00e+00 0.00e+00 4.14e-06 2.37e-06 1.18e-06 3.55e-06 2.37e-06 2.37e-06
500 | 0.00e+00 0.00e+00 0.00e+00 5.92e-07 0.00e+00 0.00e+00 1.18e-06 1.78e-06 0.00e+00
20 3.11e-01 1.64¢-01 7.82e-02 3.11e-01 1.64e-01 1.75¢-01 3.11e-01 1.64e-01 1.75¢-01
50 1.51e-01 5.00e-02 4.29¢-02 1.82e-01 8.21e-02 8.07e-02 1.82e-01 8.21e-02 8.07e-02
% 100 6.85¢-02 1.44¢-02 9.01e-03 7.39¢-02 2.70e-02 2.34¢-02 8.29¢-02 4.50e-02 3.96e-02
= | 200 5.57e-02 0.00e+00 3.48e-03 1.11e-01 1.39e-02 1.39¢-02 1.50e-01 2.79e-02 2.44¢-02
300 2.73e-02 0.00e+00 9.09e-03 1.18e-01 0.00e+00 1.82¢-02 1.82¢-01 9.09e-03 2.73e-02
500 4.76e-02 0.00e+00 0.00e+00 1.90e-01 0.00e+00 2.38e-02 3.33e-01 0.00e+00 2.38e-02
For the setting of « = 0.9, § = 0.1, and @« = 0.95, mis-identified (are not identified) by ESD, which is too many

£ = 0.05, we found that ESD requires more on-chip memory
than our solutions require when h is small, which indicates
the space-efficiency of our solutions for classifying flows with
small spreads. Then, we define the false positive ratio (FPR)
as the fraction of all of the flows with a spread smaller than [
that are mistakenly identified. The false negative ratio (FNR) is
defined as the fraction of all of the flows with a spread greater
than h that are mis-identified. The second set of experiments
compares our solutions and ESD for FPR and FNR. We set
m = 0.2M B. The values of p of two-stage estimator and
three-stage estimator are set to 0.15 and 0.19, respectively.
The experimental results are shown in TABLE VIII. The
values of FPR and FNR decrease quickly as h increases, and
our solutions always work much better than ESD. For example,
when h = 200, [ = 160 (I = 0.8h), the FPR and FNR of ESD
are 4.56 x 10~° and 0.150, respectively. There are 1689428
flows with spreads less than 160 and 287 flows with spreads
larger than 200 in our database. This means 77 (43) flows are

for the applications like scanner detection. However, only 8
(8) flows are mis-identified (are not identified) by two-stage
estimator, and only 5 (7) flows are mis-identified by three-stage
estimator in the same setting.

VIII. RELATED WORK

To the best of our knowledge, there is no prior work
on non-duplicate sampling. However, a large body of stud-
ies has been devoted to per-flow spread measurement and
packet sampling for per-flow size measurement in high-speed
networks. Next, we will briefly summarize the prior work
on per-flow traffic measurement in high-speed networks and
packet sampling.

Per-flow size measurement is to count the number of packets
in each flow, which can be easily solved by using counters.
However, there are numerous flows in the packet stream
in high-speed networks. It will incur tremendous memory
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overhead if we allocate a separate counter to each flow.
Therefore, many space-efficient mechanisms were proposed,
such as counting Bloom filter [10], Count-Min [15], Counter
Braids [6], [37] and Virtual sketch [7], [9], [36], which
let flows share counters or registers to reduce the memory
overhead.

Per-flow spread measurement is a more difficult problem
than flow size measurement since we need to record all the
elements for removing duplicates. To reduce the memory
overhead, most existing spread estimators are sketch-based
and let elements from different flows share a common
bits pool. For example, [21] divides bits pool into bitmaps
and assigns sources to bitmaps through hash functions.
References [12], [13], [19], [20], [38] use virtual bitmaps to
share bits uniformly and store the contact information, where
the uniform noise introduced by bit sharing can be measured
and removed during spread estimation. VI-HLL [18] proposed
a virtual HyperLogLog sketch by sharing a common bits pool
and achieved better memory efficiency than the virtual bitmap
methods. However, these solutions are efficient for the spread
estimation of large flows and off-line queries, but have a low
estimation accuracy for small or middle flows and incur a
heavy on-chip memory consumption since the whole sketch
data structure is placed in on-chip memory. Moreover, their
compact data structures make it harder to answer online spread
queries for flows, which needs thousands of hash operations.
Packet sampling can be used to match the rate at which
packets are forwarded on-chip and the rate at which per-flow
statistics are updated off-chip, reduce on-chip operation and
memory consumption. For example, Sampled Netflow [39]
uses packet sampling to keep up with the line speed, [2], [7],
[9], [36] use packet sampling to filter out most of the small
flows, which can reduce the on-chip operation and memory.
However, the existing studies can only sample the packets
with a pre-set probability, which can be easily achieved.
To design a spread estimator based on sampling needs to sam-
ple each distinct element with a pre-set probability, which is a
much harder problem since the duplicates need to be filtered
out. Therefore, we study the non-duplicate element sampling
problem in this paper, which can return an efficient spread
estimator.

IX. CONCLUSION

This paper proposes an efficient spread estimator that can
answer online spread queries for any flow. Based on a new
concept of non-duplicate element sampling, our estimator
can achieve both space-efficiency and accuracy-efficiency.
The experimental results based on real Internet traffic traces
demonstrate that our new estimator provides great flexibility
in quantitatively controlling spread measurement, and can
work efficiently in a very small on-chip memory space, such
as 0.43 bit per element, while the best existing work will
fail.

Our future work is to extend research on other network-wide
spread estimation functions, such as persistent spread estima-
tion and per-flow spread estimation over multiple periods.
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