IEEE INFOCOM 2021 - IEEE Conference on Computer Communications | 978-1-6654-0325-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/INFOCOM42981.2021.9488425

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Self-Adaptive Sampling for Network Traffic
Measurement

Yang Duf, He Huang!, Yu-E Sun!, Shigang Chen®, Guoju Gao'
School of Computer Science and Technology, Soochow University, Suzhou, China
School of Rail Transportation, Soochow University, Suzhou, China
§Department of Computer and Information of Science and Engineering, University of Florida, US
E-mail: huangh@suda.edu.cn
*He Huang is the corresponding author.

Abstract—Per-flow traffic measurement in the high-speed net-
work plays an important role in many practical applications.
Due to the limited on-chip memory and the mismatch between
off-chip memory speed and line rate, sampling-based methods
select and forward a part of flow traffic to off-chip memory,
complementing sketch-based solutions in estimation accuracy
and online query support. However, most current work uses
the same sampling probability for all flows, overlooking that
the sampling rates different flows require to meet the same
accuracy constraint are different. It leads to a waste in storage
and communication resources. In this paper, we present self-
adaptive sampling, a framework to sample each flow with a
probability adapted to flow size/spread. Then we propose two
algorithms, SAS-LC and SAS-LOG, which are geared towards
per-flow spread estimation and per-flow size estimation by using
different compression functions. Experimental results based on
real Internet traces show that, when compared to NDS in per-
flow spread estimation, SAS-LC can save around 10% on-chip
space and reduce up to 40% communication cost for large flows.
Moreover, SAS-LOG can save 40% on-chip space and reduce up
to 96% communication cost for large flows than NDS in per-flow
size estimation.

Index Terms—Traffic measurement, self-adaptive sampling, size
estimation, spread estimation.

I. INTRODUCTION

Per-flow traffic measurement over network data provides
indispensable information for applications like resource allo-
cation, anomaly detection, and access profiling [1]-[16]. There
are primarily two types of measurements. One is per-flow
size measurement, which counts the number of elements in a
flow. The other is per-flow spread measurement that measures
the number of distinct elements. The definitions of flow and
element can be flexibly configured to meet the measurement
requirements of different applications. For instance, when
detecting scanners, we may define a per-source flow as the
packets sent from the same source address, and measure the
flow spread by counting the number of distinct destinations
(elements) that this source has contacted [13], [14], [17], [18].
For another example, we may treat each packet as an element
and measure the flow size as the number of packets, which
helps find heavy-hitters [19]-[22].

Due to space and processing speed constraints, it is chal-
lenging to implement per-flow traffic measurement at high-
speed network links (e.g., 40Gbps). For example, the one-hour

978-1-6654- 0325 2/21/$31.00 ©2021 |IEEE

Internet trace downloaded from CAIDA [23] contains millions
of per-source flows. It is almost impossible to maintain a
separated counter for each flow in the limited on-chip memory
like SRAM (usually less than 8.25MB) [24]. To solve this
problem, sketch-based methods use compact data structures,
i.e., sketches, to store flow traffic so that they fit in limited
on-chip memory [25]-[28]. However, recent work [11] has
pointed out that sketch-based methods only support offline
queries and show low accuracy for small flows. Unlike sketch-
based solutions, sampling-based methods maintain a separated
counter for each flow in the off-chip memory, improving
estimation accuracy for small flows and supporting online
traffic queries [1], [11], [29]-[33]. Notice that, due to the
mismatch between line speed and off-chip memory speed, they
require an on-chip sampling module to sample the flow traffic
and forward the sampled data to off-chip memory.

A major problem of sampling-based methods is that they
often use a same sampling rate for all flows, regardless of the
flow size/spread. As pointed out in [24], [34], [35], using a
same sampling rate will result in either low accuracy for small
flows or massive communication overhead. We must stress
that an accurate estimation for small flows is indispensable.
It can provide valuable information for detecting stealthy
scanner or stealthy DDoS attackers that operate in low-profile
manners [4], [36].

We aim to complement prior work by sampling each flow
with a probability adapted to its size/spread. This idea is moti-
vated by our observation that, when setting the same accuracy
constraint (e.g., the relative bias is below a certain threshold)
for all flows, the sampling rates that different flows require to
satisfy the constraint are correlated to their sizes/spreads. For
instance, if we expect the mean relative bias of estimated flow
size to be less than 0.1, the required sampling rates of two
flows (size are 100 and 1000) are 0.39 and 0.06, respectively.
Clearly, sampling flows with adaptive probabilities can save
on-chip memory and reduce communication costs.

It is, however, tricky to assign adaptive sampling proba-
bilities to different flows. Ideally, if we know each flow’s
size or spread, then for each flow, we can select a minimal
sampling probability and sample the flow elements with
selected probability. But in practice, we do not know the actual
flow size/spread when performing a measurement. Notice that

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

some recent work deals with this problem by predicting per-
flow size/spread and sampling different flows with uneven
probabilities [37], [38]. However, due to the dynamicity and
uncertainty of network traffic, prediction per-flow traffic is
itself a challenging problem. Hence there are no performance
guarantees for the measurement results of these methods.

In this paper, we present self-adaptive sampling, a novel
framework for per-flow traffic measurement, which samples
each flow with an adaptive probability when holding no
assumption for its actual size/spread. This framework adopts
an on-chip/off-chip design where a self-adaptive sampling
module is placed on the network processor chip to catch
up with the line rate, and an off-chip recording module
is designed to store flow traffic. The key to this design
is flow compression. It adaptively compresses the flows by
mapping flow elements to virtual elements. Then we employ
non-duplicate sampling [11] to remove the duplicated vir-
tual elements and sample each distinct virtual element with
a pre-defined probability. This allows us to customize the
self-adaptive sampling using different compression functions
and sampling rates, meeting the requirements of different
applications. We propose two algorithms, SAS-LC and SAS-
LOG, which are geared towards per-flow spread estimation
and per-flow size estimation by using different compression
functions. We also perform extensive experiments on real
Internet traffic traces downloaded from CAIDA [23]. The
experimental results show that our design is efficient and
highly configurable to meet different applications’ interests.

II. PRELIMINARY
A. Problem statement

We consider the packet stream P = {Py,Py,Ps,---}
during a measurement epoch, where each packet P € P
carries a flow label f (e.g., source/destination address) and
an element label e (e.g., packet or destination/source address).
The definitions of flow and element can be flexibly configured
according to the measurement requirements. We model the
packet stream as a set of flows F = {fi, fo, f5,--- }, where
each flow f; consists of all the packets carrying flow label f;.

The objective of per-flow traffic measurement is to measure
each flow in terms of flow size (number of elements) or flow
spread (number of distinct elements). Given a set of flows F
and a packet stream P, let ny, ,nys,,ny,,- - - be the actual flow
sizes/spreads of flows f € F. The outputs of per-flow traffic
measurement are the estimations for flow sizes/spreads, which
are mf, , Mfy, Mfy, -

B. Prior art and limitations

There are primarily two types of solutions for per-flow
traffic measurement: sketch-based and sampling-based.

Sketch-based solutions [25]-[28] use compact data struc-
tures (i.e., sketches like CM, Bitmap, HLL) to store flow traffic
and reduce memory usage, which can fit in limited on-chip
memory. However, their model choice of placing the sketches
entirely in on-chip memory results in two limitations. First,
they require scanning hundreds or thousands of bits/registers

when estimating the flow size/spread, making it only support
offline queries. Second, they have to make sacrifices in esti-
mation accuracy to achieve high space efficiency, especially
when measuring small flows.

The second kind of solution is based on sampling, which
has been widely adopted for per-flow size/spread measurement
[1], [11], [29]-[33]. Unlike sketch-based solutions, sampling-
based solutions use off-chip memory to maintain a separated
counter for each flow, preventing the noises introduced by
bit/register sharing and supporting online queries. Due to the
gap between line speed and off-chip memory speed, an on-
chip sampling module is required to process packet stream at
line speed, which selects and forwards a part of flow traffic
to off-chip memory.

Most existing sampling-based solutions sample all flow
elements with the same probability, regardless of flow
size/spread. Since the sampling rates of different flows may
deviate from the preset probability, a pioneer work named
SketchFlow [16] integrates sketches with sampling to provide
the same sampling rate across all flows. In addition, as pointed
outin [24], [34], [35], using a same sampling rate will result in
either low accuracy for small flows or massive communication
overhead. Take the spread estimator in [11] as an example. As
shown in Fig. 1(a), when setting the same sampling probability
for all (distinct) elements, e.g., 0.2, 0.5, or 0.8, large flows’
mean relative errors (MRE) are significantly lower than small
flows. Fig. 1(b) shows the required sampling probabilities for
flows to bound the same MRE (e.g., 0.1, 0.2, and 0.3), which
decreases significantly as flow spread grows.

1.2 ——p=02 1: —— MRE=0.1

g | -2 p=05 0.84A™ -8 MRE=0.2

5} —4-p=0.8 Y Ay —A- MRE=0.3

20.8 E06] N\

B =) N

=0.6 g \

SR £0.4

%().4‘1 -8 s

5021 a3s 0-2

= 0 “ARig 2 0 - L
10 100 1000 10000 10 100 1000 10000

Spread Spread

(a) MRE w.r.t. p (b) minimum p w.r.t. MRE

Fig. 1: Relationship between mean relative error (MRE) and
sampling rate p.

This motivates us to explore self-adaptive sampling, which
samples each flow with a probability adapted to flow
size/spread. Notice that, some recent researches [37], [38]
sample different flows with adaptive probabilities based on
per-flow traffic prediction. However, predicting per-flow traffic
is challenging and lacks performance guarantees. In this
paper, we choose to implement self-adaptive sampling without
predicting per-flow traffic.

C. Our goal

Our goal is to design a self-adaptive sampling framework
for network traffic measurement, which works with small on-
chip memory and small communication overhead, providing
accurate estimations for per-flow sizes/spreads. Our design is
desired to have the following properties.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

(1) Self-adaptive sampling. Due to the dynamicity and the
uncertainty of network traffic, the actual flow sizes/spreads
are unknown until the measurement epoch ends. We want our
design to adaptively configure a sampling probability for each
flow when holding no assumption for the flow size/spread.

(2) Flexibility in measurement. We want our design can
flexibly configure the self-adaptive sampling module to meet
different measurement needs, e.g., measurement type, mea-
surement range, and measurement performance.

(3) Relative error bounds. We want to provide a proba-
bilistic guarantee for the relative errors of flows with a form
similar to [4], [11]: Given a positive integer [, a relative error
bound §, and a probability € (0 < € < 1), the relative error of
a flow, whose size or spread is larger than [, is bounded by ¢
with probability 1 — e.

III. DESIGN OF THE SELEF-ADAPTIVE SAMPLING
A. Main idea

The key idea of self-adaptive sampling is simple: sam-
ple each flow’s elements with a probability adapted to its
size/spread, saving resources while guaranteeing estimation
accuracy. However, it is tricky to determine appropriate sam-
pling probability for each flow during measurement, since the
flow size/spread is unknown a priori.

To meet this challenge, we disassemble the task of self-
adaptive sampling into two parts: flow compression and non-
duplicate sampling. Flow compression solves the problem
that all flows share the same sampling rates by adaptively
compressing flows (i.e., reducing flow sizes/spreads), which
is achieved by mapping flow elements to virtual elements.
Since virtual elements may contain duplicates, we employ
non-duplicate sampling [11] to sample each distinct virtual
element with the same, pre-defined probability. With this
design, we can measure per-flow traffic by counting the
number of sampled distinct virtual elements for each flow.

The overall sampling probability of an arbitrary flow will
be the ratio between the number of sampled distinct virtual
elements and actual flow size/spread. Thus, we can select
appropriate compression functions and sampling rates, tuning
each flow’s sampling probability to be adapted to its flow
size/spread, i.e., achieving self-adaptive sampling.

B. Architecture

self-adaptive sampling (on-chip)

packet identifiers statistics

stream

flow | _,| non-duplicate
compression sampling

off-chip
recording

Fig. 2: The system model of self-adaptive sampling

A descriptive architecture of self-adaptive sampling is pre-
sented in Fig. 2. We adopt an on-chip/off-chip model in [11],
which contains both on-chip part and off-chip part. We place a
self-adaptive sampling module on the network processor chip,

composed of two components, flow compression and non-
duplicate sampling. The off-chip part is a recording module
that maintains a separate counter for each flow.

The benefit of this on-chip/off-chip design is two-fold: First,
by using high-speed on-chip memory, we can process packet
stream at line rate. Second, we can maintain a separate counter
for each flow with large off-chip memory, reducing the noises
introduced by sharing bits/registers.

C. Basic Operations

Our design supports two operations to meet the requirement
of per-flow traffic measurement. One is Recording, which
processes packet stream and updates flow traffic statistics at
line speed. The other operation is Estimation, which answers
the online query for an arbitrary flow’s size or spread.

1) Recording: For an incoming packet that carries flow
label f and element label e, the Recording operation is per-
formed as follows: First, flow compression transforms element
e to a virtual element ¢’. Then, non-duplicate sampling checks
if the virtual element has been seen before. If ¢’ is a new
virtual element, it samples ¢’ with a pre-defined probability.
When a virtual element is sampled, off-chip recording will be
triggered to update the flow statistics, e.g., sending flow label
f to off-chip module and increasing flow f’s counter value
by one.

2) Estimation: When the measurement epoch ends, we can
estimate the sizes or spreads for all flows. Given an arbitrary
flow label, we will first lookup the record entry in off-chip
recording. If no record matches, we regard this flow as an
empty flow. Otherwise, we can estimate the actual size/spread
based on the compression function and sampling probability.

D. Flow compression

Flow compression aims to adaptively compress flows,
which reduces the flow sizes/spreads, solving the problem
that all flows share a same sampling rate. We want to stress
that, flow compression works for both per-flow size estimation
and per-flow spread estimation, but in different manners.
Particularly, when performing per-flow size estimation, each
flow element (e.g., packet) is treated as a distinct one, which
can be considered as a particular case of spread estimation.

Let FC denote the compression function. When compress-
ing a flow f with size/spread ny, it maps each element in
flow f to a virtual element, where the virtual elements that
FC outputs form a compressed flow f’. Notice that, different
elements may be mapped to a same virtual element. Thus,
FC transforms the ny (distinct) elements {e1,e2, -+, e, }
of flow f to a set of ng distinct virtual elements, which is
denoted by {e},¢eh, - ,e;lf/ }+. Formally:

?enf})_){e/lveéa"' 76'/n.f/}' (1)

We use virtual spread n 4, to represent the number of distinct
virtual elements in the compressed flow f’. Clearly, there
exists a one-to-one correspondence between virtual spread and
flow size/spread, with which we can estimate the actual flow
size/spread based on the virtual spread. Suppose that FC "

]:C({el,eg,-- .

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

is the inverse function of FC. In contrast to FC, FC! takes
virtual spread ny as input and returns an estimation for the
original flow size/spread n ;. Formally:

ny=FC (np).)

—_
[
S
—_

.8

80 5
'§ % 0.8
& 00 20.6
S 20 §O.4
0 0.2

100 200 300 400 500
Size/Spread

100 200 300 400 500
Size/Spread

(a) Virtual spread w.r.t. size/spread (b) Compression ratio w.r.t. size/spread

Fig. 3: Example of a flow compression function.

Consider a compression function FCjoo(-) which ran-
domly maps (distinct) elements to 100 virtual elements,
{1,2,---,100}, with a same probability, i.e., 15. Fig. 3(a)
shows the relationship between flow size/spread and the virtual
spread when applying FCi09. We observe that the expected
virtual spread increases when flow size grows, and there exists
a one-to-one correspondence, which means we can estimate
the actual flow size/spread based on the virtual spread. In Fig.
3(b), we show the curve of the compression ratio, which refers
to the ratio between virtual spread and actual size/spread.
We find out that the compression ratio decreases as flow
size/spread grows. This feature can help us adaptively assign
lower sampling rates to larger flows, achieving our design
goal.

Notice that the number of virtual elements is the same as
the number of flow elements. We cannot directly download
the virtual elements to off-chip memory since it is inefficient
and can waste storage and communication resources. Instead,
we employ non-duplicate sampling to filter the duplicates
and select a subset of distinct virtual elements for off-chip
recording.

E. Non-duplicate sampling

We implement non-duplicate sampling based on [11], which
uses a bit array B of M bits to sample each distinct virtual
element with a pre-defined probability p at its first appearance.
The inputs of this module are the virtual elements that flow
compression generates. The outputs are the sampled distinct
virtual elements along with flow labels.

Given a virtual element, non-duplicate sampling will first
check if the element has been seen before. In detail, it
initializes all the bits in B as zeros when measurement starts,
pseudo-randomly maps each virtual element (with flow label)
to a bit h in the bit array B, and regards a virtual element as a
new one only if B[h] = 0. Notice that, whenever seeing a new
virtual element, it will set the corresponding bit to 1, which
ensures all subsequent appearances of this virtual element will
be identified as duplicates. Due to hash collisions, multiple
virtual elements may be hashed onto the same bit, which may

incur false positives, i.e., misidentifying a new virtual element
as a duplicate. Therefore, when a virtual element is mapped to
a bit of 0, non-duplicate sampling samples it with a probability
p = V%’ where 1} is the fraction of zeros in B. This ensures
that, for each new virtual element, its probability of being
hashed onto a bit of zero and selected will be V x p’ = p,
i.e., the pre-defined sampling probability.

IV. ALGORITHM DESIGN

This section presents two algorithms for self-adaptive sam-
pling, which are: self-adaptive sampling with linear compres-
sion (SAS-LC) and self-adaptive sampling with logarithmic
compression (SAS-LOG).

A. Self-adaptive sampling with linear compression

We implement SAS-LC based on a linear compression
function FC, which maps flow elements to s virtual elements
with the same probability, i.e., %

flow f virtual element compressed
id (j) flow f'
o= —

_1
pj =73 1

- hash 5
function

S-1

Fig. 4: An example of linear compression

1) Flow Compression: As depicted in Fig. 4, when com-
pressing a flow with size/spread n¢, FCj first operates a hash
H(f@®e) on each element e and maps e to a virtual element e’
by e’ = H(f®e) mod s, where H is a hash function and @ is
the XOR operation. In this case, p;, the probability of mapping
an arbitrary element e to a virtual element ¢’ = j,j € [0, s—1]
is always % Formally, FC; is performed as follows:

FCs(f,e)=H(f®e) mod s. 3)

To demonstrate the execution of FCg, we use Fig. 4 as
an example, where a flow f contains ny (distinct) elements,
i.e., flow size or flow spread is ny. By operating FC, on
each element, we obtain three different outputs {0,2,s — 1},
denoting the IDs of virtual elements. In other words, FCj,
compresses a flow f with size/spread ny to a compressed
flow f’ with virtual spread 3, where f’ is composed of three
distinct elements {e}, e}, €4} with IDs {0,2,s — 1}.

Based on Linear Counting [39], we know the expected
virtual spread is correlated to the flow size/spread, which can
be obtained by ny = s—s- e~ Therefore, we can estimate
the flow size/spread ny by:
nf/

FC M np) = —sn(1 — ?).)

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

2) Data Structure: The on-chip data structure contains
a system parameter s controlling the compression function
FCs and a bit array B of M bits to serve for non-duplicate
sampling. Besides, we maintain a counter ¢ denoting the
number of 1 in B. In the off-chip memory, we maintain a
separated counter ¢y for each flow f, recording the number of
virtual elements this flow has been sampled. The bit array B,
on-chip counter ¢, and off-chip counters ¢y are all initialized
to zeros at the beginning of measurement epoch.

3) Recording: The recording operation is performed on
each flow element. Given an element e of flow f, we first
perform FC, to obtain a virtual element ¢/ = FCy(f,e).
Based on [11], we assign virtual element ¢’ with flow label f
to a bit h in bit array B, which is computed by h = H'(f@®e’)
mod M. Here H' is an independent hash function.

Given the status of Bl[h], there are two cases to consider:
One is B[h] = 1, in which case we regard this element as a
duplicate and take no further action; the other is B[h] = 0,
which means < f e’ > is a new virtual element that has
not been seen before. As discussed in Section III-E, when
B[h] = 0, we will sample this element with a probability p’,
ensuring the overall sampling probability for a new virtual
element is p. The value of p’ can be computed as follow,

;o M
p_p M—C’

(&)

where % is the inverse of 1/, the fraction of zeros in the
bit array B.

When an element is selected, we will trigger the off-chip
recording and increase flow f’s separated counter c¢ by 1;
when an element is not selected, we will not download the
flow label. No matter whether this virtual element is selected,
we will set B[h] to 1 and increase the online counter ¢ by
1, which ensures all duplicates of this virtual element will be

ignored.

4) Estimation: When querying the size or spread of flow f,
we first hash f to find this table entry cs. If none table entry
matches, we regard this flow as an empty flow and return
an estimated size/spread 0. If there exists a table entry cy,
according to the property of non-duplicate sampling, we can
estimate the virtual spread ny by dividing c; with sampling
probability p, i.e., ny = £ Then, according to Equation 4,
the size/spread of flow f can be estimated as:

~ Cf
- = —sln(1 —).
ny sIn(sp) (6)

The problem of SAS-LC is that it has to set a large s to
provide accurate estimations for large flows. But setting a large
s will result in a high compression ratio for small flows (e.g.,
close to 1), downgrading the efficiency of SAS-LC. Thus, it
is more suitable for the scenarios where flow sizes/spreads
are small (e.g., scan detection) while not suitable for heavy-
hitter detection since the largest flow may contain millions of
packets (elements).

B. Self-adaptive sampling with logarithmic compression

Given SAS-LC’s limitation, we present SAS-LOG, which
utilizes a logarithmic compression function 7C4 ¢ to provide
a broad estimation range with high efficiency.

virtual element id (i, j) compressed

p; = 0.5min(t1a-1) o] Jooe]

|(d—1,u)|(d-1,1]|(d-1,2)
i hash @0 | ey e e | = |esn
functio

wLo) | @ |2 @3] = @ s

(0,0) | (0,1) | (0,2) | (0.3) | *** (0, 5-1)

n 1
_1
pj =7

Fig. 5: An example of logarithmic compression

1) Flow Compression: We design a compression function
FCq,s parameterized by two integers d and s. As shown in
Fig. 5, there are d x s possible virtual elements, whose IDs are
abstracted as a table with d rows and s columns. By using two
hash functions, FCgq,s maps each flow element e to a virtual
element e’ with id (¢, j), representing the j-th entry at the i-th
row in the ID table. The first hash H is to determine the value
of 4, i.e., row index, and the second hash H’ is to determine
the value of j, which is the column index.

Given an element e of flow f, we first determine the row
index for its corresponding virtual element. We perform a hash
2z = H(f ®e) mod 2% and transform z to a d bit binary
form, < zpz122 - - 2q—1 >2. The row index ¢ is calculated by
i = p(z). Here p(z) returns the order of leftmost 1 in the
binary form of z, which starts from 0 and returns d — 1 when
all bits are zeros. By this means, we map each element to
the i-th row with a probability p; = 0.5™n(H1.d=1) 5o that
Zf;ol p; = 1. For instance, the leftmost 1 in 01115 and 00102
are the second bit and the third bit, indicating p (01113) =1
and p (00102) = 2. Then we compute the column index j
for by using j = H'(f @ e) mod s. Combine above results,
we can transform an element e with flow label f to a virtual
element (7,) with a probability of p; ;:

pij = O'5m1n(z+l,d—l) N (7)
’ S

}—Cd,s(fv 6) = (i,j),
Notice that, when compressing a flow, the number of
distinct virtual elements at different rows are different. As
shown in Fig. 5, FCg4,c maps ny distinct elements to 6 virtual
elements, where the numbers of distinct elements at the first
three rows are {3,2,1}. We use {ns o, np 1, -+ ,np g1} to
represent the numbers of distinct virtual elements at d rows,
whose sum Zf;ol ny; is the virtual spread ny . Similar to
Equation 4, we can estimate ny;, the number of (distinct)
elements that have been mapped to the ¢-th row by:

npi=—sln(l — —"J;) ®)

Since the probabilities of mapping (distinct) elements onto
different rows are different, a large flow may fulfill the bottom

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

row but can still obtain an accurate estimation based on higher
rows. Thus, for a flow f with virtual spread n s, we will select
a starting row ~y(ns) and only use it and the higher rows to
estimate the flow size/spread. The selection of the starting row
will be illustrated in Section V-B.

Recall that, the probability of mapping an element to the
i-th row is p; = 0.5™0+1Ld=1) The number of elements

assigned to rows starting from ~(n) will be Z?;Vl(nf/) Tf i

which is 0.57("s") of the flow size/spread. Therefore, the flow
size/spread ny can be estimated by:

d—1
]:C;;(nf/) — _g.9v(ng) Z In(1 — %))
i:'y(nf/)

2) Data Structure: The on-chip data structure contains two
system parameters d, s controlling the compression function
FCq,s, a bit array B of M bits, and a counter c. In the off-
chip memory, we maintain a separated d-dimensional counter
array ¢y = {cfﬂ-}?:_ol for each flow f, where ¢y, denotes the
number of sampled virtual elements with row index <. The bit
array BB, on-chip counter ¢, and off-chip counter arrays cy are
all initialized to zeros at the beginning of each measurement
epoch.

3) Recording: Similar to SAS-LC, when given an element
e of flow f, we first perform FCg4, s on e and obtain a virtual
element ¢/ = (4, 7). Then assignitabith = H"(H" (f®i)dj)
mod M in bit array B, where H" is another independent
hash function. Only when B[h] is 0, we set this bit to 1 and
sample virtual element e’ with a probability p’ = p - ;2.
At last, when a virtual element e/ = (4,7) is selected, we
will download the flow label f and row index i to off-chip
memory, then increase counter cy; by one.

4) Estimation: When querying the size or spread for a
flow f, we first hash f to find its table entry and return
its current counter value ¢y = {cf_’i}f:_&. Recall that we use
v(cy) to denote the starting row. The number of (distinct)
elements hashed onto it and higher rows is expected to be the
Tlcf) of the total size/spread. Therefore, we can estimate the
size/spread for flow f by:

d—1
= —s. 27 B ¥
ny=—s-2 _Z In(1 s). (10)
J=v(cy)

V. OPTIMAL SYSTEM PARAMETERS

In the following, we present the parameter selection for
SAS-LC and SAS-LOG, respectively. Our goal is to select op-
timal parameters by minimizing the on-chip space requirement
M when providing following performance guarantee: given a
positive integer /, a relative error bound ¢, and a probability
value € (0 < € < 1), for a flow with a size or spread larger
than [, its relative error is bounded by ¢ with probability 1 —e.
Notice that, when selecting parameters, we assume the largest
flow size/spread is h.

A. System parameters for SAS-LC

When bounding the relative errors for SAS-LC, there are
three system parameters M, s, and p to determine. M is
the size of the bit array, s is the parameter of compression
function, and p is the sampling rate of non-duplicate sampling.

Consider an arbitrary flow f whose size/spread is ny. We
want to bound the relative errors by § with a probability larger
than 1 — e, i.e., the estimated size/spread ﬁ} satisfies:

np(l—0) <ny <ng(l+9). (11)

As discussed in Section III.A, the overall sampling proba-
bility of flow f, denoted as py, is the product of compression
ratio and the sampling rate of non-duplicate sampling, which
is: 1 s

pr=(1-(1-2)"). (12)

Let c¢ be the counter value of f’s table entry. It is
the number of successes in ny Bernoulli trials when the
probability of success is py, ie., c; follows a Binomial
distribution parameterized by ny and py: ¢y ~ B(ng,py).
Let Pr{c; = k} denote the probability of c; = k for
k=0,1,---,ny, it can be computed by:

Pric; =k} = Cﬁfp]}(l —pp)ik, (13)

According to Equation 6, we can estimate the flow
size/spread based on counter value c¢y. When bounding the
mean relative error by ¢, the range of possible c¢ should be:

ny(1-3)

(I—e"

ny(145)

Jsp<ecp<(l—e =)sp. (14)

Let ps(s,p,n) denote the probability when the mean rela-
tive error of a flow, whose size/spread is n, is less than 4. It
is the sum of probabilities Pr{c; = k} when k is within the
feasible range as in Equation 14:

(e "5 yap)

p5(81p7n) = Z

n(1—35)
j=[(1—e” s)sp]

Notice that when the values of s, p, and § are fixed,
ps(s,p,n) becomes a function of n. It is a curve as illustrated
in Figure 6, where non-smooth appearance is due to [-]
and [-] operations in Equation. 15. Approximately, we can
say for all n € [l,h], ps(s,p,n) is always larger than

min{p5(sapal)ap5(sapa .

h)}
1
0.9 (\

0.8
<3
1500 3200 4500 6000
7

Ciph(L—ps)" 7. (15)

Y
0.7
0.6

0.5

Fig. 6: Curve of ps(-) when s = 2000, p = 0.5, § = 0.1

We formalize the parameter selection problem as below.
N’ refers to the sum of virtual spreads when applying FCs,

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

which can be obtained from historical data. The first constraint
ensures that for each virtual element, its sampling probability
p’ computed by Equation 5 will be within (0, 1]. The second
and third constraints bound the mean relative errors for flows
whose size/spread are within [I,h] by 6 with a probability
larger than 1 —e.

min M
N/
L (16)

s.t. p(g(S,p,l)Zl—E
p5(57p7 h) Z 1 — €

B. System parameters for SAS-LOG

For SAS-LOG, there are four system parameters M, d, s,
and p to determine, where M is the size of the bit array,
(d, s) are the parameters of compression function, and p is
the sampling rate of non-duplicate sampling.

When estimating per-flow size/spread, we should first
filter out the rows with inappropriate resolutions. Con-
sider an arbitrary flow f whose spread is ny. Let ¢y =
{¢r0,¢r1, "+, cra—1} be the counter values of flow f. Based
on Equation 10, we only use the rows starting from y(cy), i.e.,
v(er),v(cs) +1,---d — 1, to estimate the size/spread of f.

Let ry be the number of (distinct) elements that have
been hashed onto the rows starting from ~(cs). As proved
in [40], when ~y(cy) < d — 3, we can multiply the esti-
mation of r; with 27(¢s) for an unbiased estimation of n fs
where the estimation error is mainly contributed by 7. Let
ps(d, s,p,n = ry) denote the probability that n is distributed
in [ng(1 —9),ns(1 + 6)l. We can compute its value by
enumerating the combinations of ¢y ~(c;), Cf y(cs)+1, """ -

The curve of ps(d, s, p,n) when fixing d, s, p is similar to
Fig. 6, which is approximately a convex function of n. When
setting appropriate d, s, and p, we can find the smallest integer
I and the largest integer A’ for r; that makes ps(d,s,p,r¢)
larger than 1—e. Therefore, for a flow whose size/spread is n s,
if we can find a minimum starting row index y(cy) € [0, d—3]
that makes r; = % be within [I’, k'], we can say its mean
relative error is bounded by § with a probability of 1 — e.
Formally, v(cys) is the minimum integer within [0, d — 3] that
makes:

d—1
or
< — In(1 — L4y < p/, 17
< 8_2()11(2 < (17
i=vy(cy

Notice that, when selecting a staring row 7(cf), we can
ensure the estimation accuracy for flows whose sizes/spreads
are within [I - 27(¢s) h’ . 27(¢f)]. When increasing the start-
ing row by 1, the accurate measurement range will be
(I - 2v(e)+1 b/ o 27(er) 4] Apparently, these two intervals
overlap when 21" < h’, which extends the estimation range to
[1-27(es) /. 2v(en)+1],

At last, we formalize the parameter selection problem for
SAS-LOG as in Equation 18. N’ refers to the sum of virtual
spreads when applying FCg4, s, which can be obtained from
historical data. The first constraint ensures that for each virtual
element, its sampling probability p’ will be within (0, 1].

The 2-4 constraints ensure that flows whose sizes/spreads are
within [I’,2¢73h’] satisfy the accuracy constraints. The last
constraints ensure that the desired estimation range [I, h] is
within the estimation range.

min M

M>-N
np
21 < 1
s.L. pls(dasap7 l/) Z 1 — €
ps(d,s,p,h') >1—¢
I'<l<h<243p

(18)

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our algo-
rithms through extensive experiments using real Internet traffic
traces downloaded from CAIDA [23].

A. Experiment Setup

We conduct two sets of experiments to evaluate our al-
gorithms’ performance for per-flow spread estimation and
per-flow size estimation, respectively. When performing per-
flow spread estimation, we use five-minute data downloaded
from CAIDA as the dataset, which has 513889 per-destination
flows and 3150740 distinct elements. We use one-minute
data downloaded from CAIDA as the dataset for per-flow
size estimation, which contains 589740 per-source flows and
31259223 packets.

We run our evaluation on a server equipped with two six-
core Intel Xeon E5-2643 v4 3.40GHz CPU and 256GB RAM.
We have implemented our solutions SAS-LC and SAS-LOG
in C++. For comparison purposes, we also implemented NDS
[11] in C++. The hash functions used in our experiments are
MURMUR3 hash with different initial seeds.

B. Memory Requirements

We compare SAS-LC, SAS-LOG, and NDS in terms of
the on-chip memory they require to satisfy the constraints
given in Section II-C. Table I and Table II show the memory
requirements with respect to d, €, h, and [when applying three
algorithms to per-flow spread estimation and per-flow size
estimation. The required memory is computed according to
[11] and this work.

Table I shows the memory requirements for spread estima-
tion. For the setting of 6 = 0.2,¢ = 0.1 and § = 0.1,¢ = 0.05,
we find out that SAS-LC is space-efficient, since it reduces
around 10% the on-chip memory that NDS requires. Another
observation is, due to the benefit of logarithmic compression,
the memory that SAS-LOG requires is not sensitive to the
value of h, making it more suitable for the per-flow size
estimation where estimation range is large. As shown in Table
II, for the setting of 6 = 0.2,¢ = 0.1 and § = 0.1,¢ = 0.05,
SAS-LOG can save around 40% the on-chip memory that
NDS requires, and SAS-LC can save around 10% the on-chip
memory that NDS requires, depending on the values of h and
l.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

TABLE I: On-chip memory requirements of NDS, SAS-LC, and SAS-LOG for spread measurement (M B)

§=02,e=0.1 §=0.1,c=005
! h = 2000 = 10000 = 2000 h = 10000
NDS | SAS-LC | SAS-.LOG | NDS | SAS-LC | SAS-LOG | NDS | SAS-LC | SAS-LOG | NDS | SAS-LC | SAS-LOG
50 | 0628 | 0537 0.562 0.628 | 0592 0.565 2938 | 2.624 4391 2938 | 2,671 4.400
100 | 0410 | 0337 0371 0410 | 0354 0374 1683 | 1.449 1.943 1.683 | 1.466 1.951
150 | 0312 | 0276 0300 0312 | 0288 0303 1097 | 1.041 1.246 1.097 | 1.048 1.256
200 | 0271 | 0244 0.256 0271 | 0.244 0.258 0.872 | 0.866 0.963 0872 | 0.867 0.970
250 | 0233 | 0219 0231 0233 | 0222 0232 0.735 | 0729 0.806 0735 | 0738 0811
300 | 0226 | 0.201 0212 0226 | 0203 0213 0.668 | 0.624 0.693 0.668 | 0.626 0.696
TABLE II: On-chip memory requirements of NDS, SAS-LC, and SAS-LOG for size measurement (M B)
5§=02e=0.1 §=0.1,¢c=005
l = 50000 h = 200000 h = 50000 h = 200000
NDS | SAS-LC | SAS-LOG | NDS | SAS-LC | SAS-LOG | NDS | SAS-LC | SAS-LOG | NDS | SAS-LC | SAS-LOG
100 | 4067 | 3.087 2236 4067 | 3.510 2237 16700 | 12.660 11918 | 16700 | 14.130 11.919
200 | 2.688 | 2.113 1.644 2688 | 2.386 1.644 8650 | 7368 6.438 8650 | 8.048 6.491
300 | 2244 | 1732 1.430 2244 | 1.969 1.430 6.629 | 5279 4.947 6629 | 5.833 4.949
400 | 1.895 | 1559 1.309 1895 | 1.746 1310 5376 | 4437 4.102 5376 | 4852 4.105
500 | 1.688 | 1437 1233 1683 | 1598 1233 4539 | 3.7% 3.601 4539 | 4120 3.604
1000 | 1325 | 1.138 1.047 1325 | 1253 1.047 2927 | 2501 2502 2927 | 2725 2.508
3 3 3 —— NDS
310 310 e @3 -5 SAS-LC
= = = < |l=2- SAS-LOG =
@102 210? @102 &2 SR a4
ks ks ks © P
= g = g “g
K T0L0 . d = I K010 S : gl y
mﬁ) iiﬂ% ﬁ CR R ﬁ . :+H+HM+ (3
LU —o 0710 10960707 10° LU —o 0710 0 4 8 1216 20

Actual Spread Actual Spread
(a) NDS, M = 0.410MB (b) SAS-LC, M = 0.337MB
Fig. 7: Spread estimation accuracy of NDS, SAS-LC,

Actual Spread Actual Spread (x107)
(c) SAS-LOG, M = 0.371MB (d) Communication costs w.r.t. spread

and SAS-LOG when 6 = 0.2,¢ = 0.1, h = 2000, = 100

4 4 4
o o 10 m32 3
= = 2 2,,1l-8 SAS-LC
o — 8
102 3102 102 C16 Lom T
< < < E a°
£ £ £ e
210! 210! 210! £8 N |
e ez e i e i o A -
0 0 0 0]
07 or 102 10° _10* 10100 or 10z 10° 10 10100 Tor 1027 108 10¢ 2

Actual Spread
(a) NDS, M = 1.683MB

Actual Spread
(b) SAS-LC, M = 1.466MB

4 6 8 10
Actual Spread Actual Spread (x10°)

(¢) SAS-LOG, M = 1.951MB (d) Communication costs w.r.t. spread

Fig. 8: Spread estimation accuracy of NDS, SAS-LC, and SAS-LOG when 6 = 0.1, ¢ = 0.05, h = 10000, = 100

C. Estimation accuracy

1) Experiments on per-flow spread estimation: We evaluate
the estimation accuracy of NDS, SAS-LC, and SAS-LOG un-
der two sets of constraints, respectively 6 = 0.2,¢ =0.1,h =
2000,7 =100 and 6 = 0.1, € = 0.05, h = 10000, [= 100. For
each algorithm, its on-chip memory size is set to the minimum
value satisfying the given constraints. The other parameters
are set to the optimal parameters according to [11] and this
work. Fig. 7(a) - 7(c) show the estimation results of three
algorithms under the first set of constraints, where the on-chip
memory sizes of NDS, SAS-LC, and SAS-LOG are 0.410MB,
0.337MB, and 0.371MB. In three plots, the x-axis denotes the
actual spread, the y-axis represents the estimated spread, and
each point refers to a flow. The more close a point is to the
line y = z, the more accurate this estimation is.

We find out that NDS’s estimation accuracy grows as flow
spread increases, even though such high estimation accuracy
for large flows is beyond the requirement. In Table III, we
show the actual relative error bounds for different flows.
For flows whose spreads are within [100,2000], the actual
relative error bounds (with probability 90%) are all under the
constraint 6 = 0.2. In other words, by using self-adaptive
sampling and configuring lower sampling rates for large flows,
SAS-LC and SAS-LOG show slightly worse accuracy on
large flows than NDS does, but still manage to satisfy the
given constraints. Moreover, self-adaptive sampling can help
in reducing both on-chip memory usage and communication
cost. Compared to NDS, SAS-LC and SAS-LOG save 17.8%
and 9.5% of the on-chip memory usage and reduce up to
25.8% and 35.5% communication cost for large flows (when

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

50
—— NDS
o10* o10% ol0% €a0l/-= SAS-LC
5 N 2 =7|[-a- SAS-LOG
E103 8103 310* 530
— = =1 - B
£10 £10? 2102 £20 .a-
= 2 = £ &
10! | 4t Q10! | ot @101} L1 glo .l
+ + + (A A DDA A A A—A
0 0 0 0
00— 10m 107_10° 10 010 10" 107 _10° 10° 010" 10T _107__10° 107 2 3 4 5
Actual Size Actual Size Actual Size Actual Size (x10%)

(a) NDS, M = 2.688MB (b) SAS-LC, M = 2.113MB

Fig. 9: Size estimation

(¢) SAS-LOG, M = 1.644MB
accuracy of NDS, SAS-LC, and SAS-LOG when § = 0.2,¢ = 0.1, h = 50000, [= 200

(d) Communication costs w.r.t. size

10° 105 10° m500 —— NDS
S10* Si0¢ S10* 240012 $ASToo 1
;‘%103 Elos §103 3300 ~a-e -
,§102 ,5102 ,§102 §200) sl
10! 10! 10! S100
10§ 7 TS TR TR T | z T T T T Tt T e T T T A—A'*-A_ﬁ)—ﬁfl??z)
Actual Size Actual Size Actual Size Actual Size (x10%)

(a) NDS, M = 8.650MB (b) SAS-LC, M = 8.048MB

(¢) SAS-LOG, M = 6.491MB (d) Communication costs w.r.t. size

Fig. 10: Size estimation accuracy of NDS, SAS-LC, and SAS-LOG when 6 = 0.1, ¢ = 0.05, h = 200000, [= 200

flow spread is 2000). We can observe similar results from the
experimental results under the second set of constraints (as
shown in Fig. 8 and Table IV).

TABLE III: Actual relative error bound for spread estimation
(6 =0.2,e =0.1,h = 2000, = 100)

TABLE V: Actual relative error bound for size estimation

(6 =0.2,e = 0.1, h = 50000, = 200)

< S7€ 1 all flows | 1 ~ 200 | 200 ~ 1000 | 1000 ~ 10000 | 10000 ~ 50000
algorithi
NDS 1020 | 1.020 0.155 0.064 0.023
SASLC | 1054 | 1054 0.158 0.075 0.062
SASLOG | 1207 | 1312 0.176 0.176 0.171

Spread | fows | 1~ 100 | 100 ~ 500 | 500 ~ 1000 | 1000 ~ 2000
algorithi
NDS 1500 | 1.500 0.153 0.077 0.062
SASLC | 1503 | 1.503 0.172 0.114 0.096
SAS-LOG | 1203 | 1.203 0.168 0.124 0.140

TABLE VI: Actual relative error bound for size estimation
(0 =0.1,e = 0.05, h = 200000, I = 200)

TABLE IV: Actual relative error bound for spread estimation

< S7€ 1 all flows | 1 ~ 200 | 200 ~ 1000 | 1000 ~ 50000 | 50000 ~ 200000
algorithi
NDS 1.000 | 1.000 0.078 0.034 0.005
SASLLC | 1.000 | 1.000 0.077 0.033 0.016
SASLOG | 1.000 | 1.000 0.082 0.079 0.099

(6 = 0.1,€ = 0.05, h = 10000, = 100)

spread | fows | 1~ 100 | 100 ~ 1000 | 1000 ~ 5000 | 5000 ~ 10000
algorithi
NDS 1.000 | 1.000 0.075 0.028 0.013
SASLC | 1.000 | 1.000 0.079 0.038 0.043
SAS.LOG | 1.000 | 1.000 0.088 0.098 0.097

2) Experiments on per-flow size estimation: We use two
sets of constraints, respectively 9 = 0.2,¢ = 0.1,h =
50000,7 = 200 and 6 = 0.1,¢ = 0.05, ~ = 200000, ! = 200,
to evaluate the estimation accuracy for per-flow size estima-
tion. Fig. 9 and Table V show the results under the first
set of constraints. Fig. 10 and Table VI show the results
under the second set of constraints. Recall that, SAS-LOG
uses a logarithmic compression function to meet the need
of measuring large flows, which can achieve high efficiency
in per-flow size measurement. For example, under the first
set of constraints, SAS-LC and SAS-LOG reduce the on-
chip memory usage of NDS by 11.8% and 38.8%. Besides,
they reduce the communication cost of NDS up to 51.4%
and 92.2% when the flow size is 50000. Clearly, our solution
SAS-LOG is the winner for per-flow size measurement.

VII. CONCLUSION

This paper proposes an efficient self-adaptive sampling
framework for network traffic measurement, which works
for both per-flow size estimation and per-flow spread esti-
mation. Based on two different compression functions, we
present two algorithms, SAS-LC and SAS-LOG, to sample
each flow’s (distinct) elements with a probability adapted
to flow size/spread, which save on-chip space and reduce
communication cost while ensuring estimation accuracy. The
experimental results based on real Internet traffic traces
demonstrate that our solutions can be flexibly configured
to meet the measurement interests of different applications
and work efficiently with small on-chip memory and small
communication overhead.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science

Foundation of China (NSFC) (Grant No. 62072322, 61873177,

U20A20182), and Natural Science Foundation (Grant No. CNS-
1719222).

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

REFERENCES

N. Duffield, C. Lund, and M. Thorup, “Learn more, sample less: control
of volume and variance in network measurement,” IEEE Transactions
on Information Theory, vol. 51, no. 5, pp. 1756-1775, 2005.

J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in Proc. of IEEE International
Conference on Network Protocols (ICNP 2015), 2015, pp. 1-10.

H. Xu, Z. Yu, C. Qian, X. Li, Z. Liu, and L. Huang, “Minimizing
flow statistics collection cost using wildcard-based requests in SDNs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3587-3601,
2017.

T. Li, S. Chen, W. Luo, and M. Zhang, “Scan detection in high-speed
networks based on optimal dynamic bit sharing,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2011), 2011, pp.
3200-3208.

Y. Li, H. Wu, T. Pan, H. Dai, J. Lu, and B. Liu, “CASE: cache-assisted
stretchable estimator for high speed per-flow measurement,” in Proc. of
the IEEE Conference on Computer Communications (INFOCOM 2016),
2016, pp. 1-9.

H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar,
D. NYANG, and D. Mohaisen, “Soteria: Detecting adversarial examples
in control flow graph-based malware classifiers,” in Proc. of the IEEE
International Conference on Distributed Computing Systems (ICDCS
2020), 2020, pp. 1296-1305.

A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen,
“Dfd: Adversarial learning-based approach to defend against website
fingerprinting,” in Proc. of the IEEE Conference on Computer Commu-
nications (INFOCOM 2020), 2020, pp. 2459-2468.

A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 12, pp. 2327-2339, 2006.

C. Hu, B. Liu, S. Wang, J. Tian, Y. Cheng, and Y. Chen, “ANLS: adap-
tive non-linear sampling method for accurate flow size measurement,”
IEEE Transactions on Communications, vol. 60, no. 3, pp. 789-798,
2012.

F. Hao, M. Kodialam, and T. Lakshman, “ACCEL-RATE: a faster
mechanism for memory efficient per-flow traffic estimation,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, 2004, pp.
155-166.

Y. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao, “Online
spread estimation with non-duplicate sampling,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2020), 2020, pp.
2440-2448.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Discrete
Mathematics and Theoretical Computer Science, 2007, pp. 137-156.
S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: algorith-
mic engineering of a state of the art cardinality estimation algorithm,”
in Proc. of the 16th International Conference on Extending Database
Technology (EDBT 2013), 2013, pp. 683-692.

C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270-313,
2003.

R. Jang, S. Moon, Y. Noh, A. Mohaisen, and D. Nyang, “Instameasure:
Instant per-flow detection using large in-dram working set of active
flows,” in Proc. of the IEEE International Conference on Distributed
Computing Systems (ICDCS 2019), 2019, pp. 2047-2056.

R. Jang, D. Min, S. Moon, D. Mohaisen, and D. Nyang, “Sketchflow:
Per-flow systematic sampling using sketch saturation event,” in /[EEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. 1EEE,
2020, pp. 1339-1348.

P. Lieven and B. Scheuermann, “High-speed per-flow traffic measure-
ment with probabilistic multiplicity counting,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2010), 2010,
pp. 1-9.

M. Yoon, T. Li, S. Chen, and J. kwon Peir, “Fit a spread estimator
in small memory,” in Proc. of the IEEE Conference on Computer
Communications (INFOCOM 2009), 2009, pp. 504-512.

Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp.
121-132, 2008.

10

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

Y. Zhou, Y. Zhou, M. Chen, Q. Xiao, and S. Chen, “Highly compact vir-
tual counters for per-flow traffic measurement through register sharing,”
in Proc. of the IEEE GLOBECOM 2016, 2016, pp. 1-6.

Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Per-flow counting for big
network data stream over sliding windows,” in Proc. of the IEEE/ACM
IWQoS 2017, 2017, pp. 1-10.

, “Highly compact virtual active counters for per-flow traffic
measurement,” in Proc. of the IEEE Conference on Computer Com-
munications (INFOCOM 2018), 2018.

CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2016,” http:
/lwww.caida.org/data/passive/passive_2016_dataset.xml, accessed July
28, 2019.

T. Yang, J. Xu, X. Liu, P. Liu, L. Wang, J. Bi, and X. Li, “A generic
technique for sketches to adapt to different counting ranges,” in Proc. of
the IEEE Conference on Computer Communications (INFOCOM 2019),
2019, pp. 2017-2025.

M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a compact spread estimator
in small high-speed memory,” IEEE/ACM Transactions on Networking
(TON), vol. 19, no. 5, pp. 1253-1264, 2011.

H. Huang, Y. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang,
“You can drop but you can’t hide:k-persistent spread estimation in
high-speed networks,” in Proc. of the IEEE Conference on Computer
Communications (INFOCOM 2018), 2018, pp. 1889-1897.

Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Highly compact virtual
active counters for per-flow traffic measurement,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2018), 2018, pp.
1-9.

Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread measure-
ment for big network data based on register intersection,” in Proc. of
the ACM on Measurement and Analysis of Computing Systems, vol. 1,
no. 1. ACM, 2017, p. 15.

N. Duffield, C. Lund, M. Thorup, and M. Thorup, “Flow sampling
under hard resource constraints,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 32, no. 1, 2004, pp. 85-96.

S. L. Feibish, Y. Afek, A. Bremler-Barr, E. Cohen, and M. Shagam,
“Mitigating DNS random subdomain DDoS attacks by distinct heavy
hitters sketches,” in Proc. of the fifth ACM/IEEE Workshop on Hot
Topics in Web Systems and Technologies, 2017, p. 8.

V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou,
“Nearly optimal distinct elements and heavy hitters on sliding windows,”
in APPROX-RANDOM 2018, 2018, pp. 1-22.

X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy counting:
An efficient algorithm for finding heavy hitters,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1, pp. 7-16, 2008.

Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online
identification of hierarchical heavy hitters: Algorithms, evaluation, and
application,” Proc. of ACM SIGCOMM IMC, pp. 101-114, October
2004.

Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proc. of the ACM on
Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp.
1-34, 2019.

C. Hu, B. Liu, H. Zhao, K. Chen, Y. Chen, Y. Cheng, and H. Wu,
“Discount counting for fast flow statistics on flow size and flow volume,”
IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 970-981,
2014.

H. Dai, M. Shahzad, A. X. Liu, M. Li, Y. Zhong, and G. Chen,
“Identifying and estimating persistent items in data streams,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2429-2442, 2018.

Y. Zhang, “An adaptive flow counting method for anomaly detection in
SDN,” in Proc. of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies. New York, NY, USA: Association for
Computing Machinery, 2013, pp. 25-30.

G. Cheng and J. Yu, “Adaptive sampling for openflow network mea-
surement methods,” in Proc. of the 12th International Conference on
Future Internet Technologies. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 1-7.

K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-
time probabilistic counting algorithm for database applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208-229, 1990.
C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proc. of the 3rd ACM SIGCOMM
conference on Internet measurement, 2003, pp. 153-166.

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

		2021-07-22T14:00:46-0400
	Preflight Ticket Signature

