
Self-Adaptive Sampling for Network Traffic

Measurement

Yang Du†, He Huang†, Yu-E Sun‡, Shigang Chen§, Guoju Gao†

†School of Computer Science and Technology, Soochow University, Suzhou, China
‡School of Rail Transportation, Soochow University, Suzhou, China

§Department of Computer and Information of Science and Engineering, University of Florida, US

E-mail: huangh@suda.edu.cn

*He Huang is the corresponding author.

Abstract—Per-flow traffic measurement in the high-speed net-
work plays an important role in many practical applications.
Due to the limited on-chip memory and the mismatch between
off-chip memory speed and line rate, sampling-based methods
select and forward a part of flow traffic to off-chip memory,
complementing sketch-based solutions in estimation accuracy
and online query support. However, most current work uses
the same sampling probability for all flows, overlooking that
the sampling rates different flows require to meet the same
accuracy constraint are different. It leads to a waste in storage
and communication resources. In this paper, we present self-
adaptive sampling, a framework to sample each flow with a
probability adapted to flow size/spread. Then we propose two
algorithms, SAS-LC and SAS-LOG, which are geared towards
per-flow spread estimation and per-flow size estimation by using
different compression functions. Experimental results based on
real Internet traces show that, when compared to NDS in per-
flow spread estimation, SAS-LC can save around 10% on-chip
space and reduce up to 40% communication cost for large flows.
Moreover, SAS-LOG can save 40% on-chip space and reduce up
to 96% communication cost for large flows than NDS in per-flow
size estimation.

Index Terms—Traffic measurement, self-adaptive sampling, size
estimation, spread estimation.

I. INTRODUCTION

Per-flow traffic measurement over network data provides

indispensable information for applications like resource allo-

cation, anomaly detection, and access profiling [1]–[16]. There

are primarily two types of measurements. One is per-flow

size measurement, which counts the number of elements in a

flow. The other is per-flow spread measurement that measures

the number of distinct elements. The definitions of flow and

element can be flexibly configured to meet the measurement

requirements of different applications. For instance, when

detecting scanners, we may define a per-source flow as the

packets sent from the same source address, and measure the

flow spread by counting the number of distinct destinations

(elements) that this source has contacted [13], [14], [17], [18].

For another example, we may treat each packet as an element

and measure the flow size as the number of packets, which

helps find heavy-hitters [19]–[22].

Due to space and processing speed constraints, it is chal-

lenging to implement per-flow traffic measurement at high-

speed network links (e.g., 40Gbps). For example, the one-hour

Internet trace downloaded from CAIDA [23] contains millions

of per-source flows. It is almost impossible to maintain a

separated counter for each flow in the limited on-chip memory

like SRAM (usually less than 8.25MB) [24]. To solve this

problem, sketch-based methods use compact data structures,

i.e., sketches, to store flow traffic so that they fit in limited

on-chip memory [25]–[28]. However, recent work [11] has

pointed out that sketch-based methods only support offline

queries and show low accuracy for small flows. Unlike sketch-

based solutions, sampling-based methods maintain a separated

counter for each flow in the off-chip memory, improving

estimation accuracy for small flows and supporting online

traffic queries [1], [11], [29]–[33]. Notice that, due to the

mismatch between line speed and off-chip memory speed, they

require an on-chip sampling module to sample the flow traffic

and forward the sampled data to off-chip memory.

A major problem of sampling-based methods is that they

often use a same sampling rate for all flows, regardless of the

flow size/spread. As pointed out in [24], [34], [35], using a

same sampling rate will result in either low accuracy for small

flows or massive communication overhead. We must stress

that an accurate estimation for small flows is indispensable.

It can provide valuable information for detecting stealthy

scanner or stealthy DDoS attackers that operate in low-profile

manners [4], [36].

We aim to complement prior work by sampling each flow

with a probability adapted to its size/spread. This idea is moti-

vated by our observation that, when setting the same accuracy

constraint (e.g., the relative bias is below a certain threshold)

for all flows, the sampling rates that different flows require to

satisfy the constraint are correlated to their sizes/spreads. For

instance, if we expect the mean relative bias of estimated flow

size to be less than 0.1, the required sampling rates of two

flows (size are 100 and 1000) are 0.39 and 0.06, respectively.

Clearly, sampling flows with adaptive probabilities can save

on-chip memory and reduce communication costs.

It is, however, tricky to assign adaptive sampling proba-

bilities to different flows. Ideally, if we know each flow’s

size or spread, then for each flow, we can select a minimal

sampling probability and sample the flow elements with

selected probability. But in practice, we do not know the actual

flow size/spread when performing a measurement. Notice that

1

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

978-1-6654-0325-2/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-0
32

5-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
42

98
1.

20
21

.9
48

84
25

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

some recent work deals with this problem by predicting per-

flow size/spread and sampling different flows with uneven

probabilities [37], [38]. However, due to the dynamicity and

uncertainty of network traffic, prediction per-flow traffic is

itself a challenging problem. Hence there are no performance

guarantees for the measurement results of these methods.

In this paper, we present self-adaptive sampling, a novel

framework for per-flow traffic measurement, which samples

each flow with an adaptive probability when holding no

assumption for its actual size/spread. This framework adopts

an on-chip/off-chip design where a self-adaptive sampling

module is placed on the network processor chip to catch

up with the line rate, and an off-chip recording module

is designed to store flow traffic. The key to this design

is flow compression. It adaptively compresses the flows by

mapping flow elements to virtual elements. Then we employ

non-duplicate sampling [11] to remove the duplicated vir-

tual elements and sample each distinct virtual element with

a pre-defined probability. This allows us to customize the

self-adaptive sampling using different compression functions

and sampling rates, meeting the requirements of different

applications. We propose two algorithms, SAS-LC and SAS-

LOG, which are geared towards per-flow spread estimation

and per-flow size estimation by using different compression

functions. We also perform extensive experiments on real

Internet traffic traces downloaded from CAIDA [23]. The

experimental results show that our design is efficient and

highly configurable to meet different applications’ interests.

II. PRELIMINARY

A. Problem statement

We consider the packet stream P = {P1,P2,P3, · · · }
during a measurement epoch, where each packet P ∈ P
carries a flow label f (e.g., source/destination address) and

an element label e (e.g., packet or destination/source address).

The definitions of flow and element can be flexibly configured

according to the measurement requirements. We model the

packet stream as a set of flows F = {f1, f2, f3, · · · }, where

each flow fi consists of all the packets carrying flow label fi.

The objective of per-flow traffic measurement is to measure

each flow in terms of flow size (number of elements) or flow

spread (number of distinct elements). Given a set of flows F
and a packet stream P , let nf1 , nf2 , nf3 , · · · be the actual flow

sizes/spreads of flows f ∈ F . The outputs of per-flow traffic

measurement are the estimations for flow sizes/spreads, which

are n̂f1 , n̂f2 , n̂f3 , · · · .

B. Prior art and limitations

There are primarily two types of solutions for per-flow

traffic measurement: sketch-based and sampling-based.

Sketch-based solutions [25]–[28] use compact data struc-

tures (i.e., sketches like CM, Bitmap, HLL) to store flow traffic

and reduce memory usage, which can fit in limited on-chip

memory. However, their model choice of placing the sketches

entirely in on-chip memory results in two limitations. First,

they require scanning hundreds or thousands of bits/registers

when estimating the flow size/spread, making it only support

offline queries. Second, they have to make sacrifices in esti-

mation accuracy to achieve high space efficiency, especially

when measuring small flows.

The second kind of solution is based on sampling, which

has been widely adopted for per-flow size/spread measurement

[1], [11], [29]–[33]. Unlike sketch-based solutions, sampling-

based solutions use off-chip memory to maintain a separated

counter for each flow, preventing the noises introduced by

bit/register sharing and supporting online queries. Due to the

gap between line speed and off-chip memory speed, an on-

chip sampling module is required to process packet stream at

line speed, which selects and forwards a part of flow traffic

to off-chip memory.

Most existing sampling-based solutions sample all flow

elements with the same probability, regardless of flow

size/spread. Since the sampling rates of different flows may

deviate from the preset probability, a pioneer work named

SketchFlow [16] integrates sketches with sampling to provide

the same sampling rate across all flows. In addition, as pointed

out in [24], [34], [35], using a same sampling rate will result in

either low accuracy for small flows or massive communication

overhead. Take the spread estimator in [11] as an example. As

shown in Fig. 1(a), when setting the same sampling probability

for all (distinct) elements, e.g., 0.2, 0.5, or 0.8, large flows’

mean relative errors (MRE) are significantly lower than small

flows. Fig. 1(b) shows the required sampling probabilities for

flows to bound the same MRE (e.g., 0.1, 0.2, and 0.3), which

decreases significantly as flow spread grows.

0

0.2

0.4

0.6

0.8

1

1.2

10 100 1000 10000

M
ea

n
re

la
ti

v
e

er
ro

r

Spread

p = 0.2
p = 0.5
p = 0.8

(a) MRE w.r.t. p

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

M
in

im
u

m
p

Spread

MRE = 0.1
MRE = 0.2
MRE = 0.3

(b) minimum p w.r.t. MRE

Fig. 1: Relationship between mean relative error (MRE) and

sampling rate p.

This motivates us to explore self-adaptive sampling, which

samples each flow with a probability adapted to flow

size/spread. Notice that, some recent researches [37], [38]

sample different flows with adaptive probabilities based on

per-flow traffic prediction. However, predicting per-flow traffic

is challenging and lacks performance guarantees. In this

paper, we choose to implement self-adaptive sampling without

predicting per-flow traffic.

C. Our goal

Our goal is to design a self-adaptive sampling framework

for network traffic measurement, which works with small on-

chip memory and small communication overhead, providing

accurate estimations for per-flow sizes/spreads. Our design is

desired to have the following properties.

2

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

(1) Self-adaptive sampling. Due to the dynamicity and the

uncertainty of network traffic, the actual flow sizes/spreads

are unknown until the measurement epoch ends. We want our

design to adaptively configure a sampling probability for each

flow when holding no assumption for the flow size/spread.

(2) Flexibility in measurement. We want our design can

flexibly configure the self-adaptive sampling module to meet

different measurement needs, e.g., measurement type, mea-

surement range, and measurement performance.

(3) Relative error bounds. We want to provide a proba-

bilistic guarantee for the relative errors of flows with a form

similar to [4], [11]: Given a positive integer l, a relative error

bound δ, and a probability ǫ (0 < ǫ < 1), the relative error of

a flow, whose size or spread is larger than l, is bounded by δ

with probability 1− ǫ.

III. DESIGN OF THE SELF-ADAPTIVE SAMPLING

A. Main idea

The key idea of self-adaptive sampling is simple: sam-

ple each flow’s elements with a probability adapted to its

size/spread, saving resources while guaranteeing estimation

accuracy. However, it is tricky to determine appropriate sam-

pling probability for each flow during measurement, since the

flow size/spread is unknown a priori.

To meet this challenge, we disassemble the task of self-

adaptive sampling into two parts: flow compression and non-

duplicate sampling. Flow compression solves the problem

that all flows share the same sampling rates by adaptively

compressing flows (i.e., reducing flow sizes/spreads), which

is achieved by mapping flow elements to virtual elements.

Since virtual elements may contain duplicates, we employ

non-duplicate sampling [11] to sample each distinct virtual

element with the same, pre-defined probability. With this

design, we can measure per-flow traffic by counting the

number of sampled distinct virtual elements for each flow.

The overall sampling probability of an arbitrary flow will

be the ratio between the number of sampled distinct virtual

elements and actual flow size/spread. Thus, we can select

appropriate compression functions and sampling rates, tuning

each flow’s sampling probability to be adapted to its flow

size/spread, i.e., achieving self-adaptive sampling.

B. Architecture

flow
compression

non-duplicate
sampling

self-adaptive sampling (on-chip)

packet
stream

identifiers off-chip
recording

statistics

Fig. 2: The system model of self-adaptive sampling

A descriptive architecture of self-adaptive sampling is pre-

sented in Fig. 2. We adopt an on-chip/off-chip model in [11],

which contains both on-chip part and off-chip part. We place a

self-adaptive sampling module on the network processor chip,

composed of two components, flow compression and non-

duplicate sampling. The off-chip part is a recording module

that maintains a separate counter for each flow.

The benefit of this on-chip/off-chip design is two-fold: First,

by using high-speed on-chip memory, we can process packet

stream at line rate. Second, we can maintain a separate counter

for each flow with large off-chip memory, reducing the noises

introduced by sharing bits/registers.

C. Basic Operations

Our design supports two operations to meet the requirement

of per-flow traffic measurement. One is Recording, which

processes packet stream and updates flow traffic statistics at

line speed. The other operation is Estimation, which answers

the online query for an arbitrary flow’s size or spread.

1) Recording: For an incoming packet that carries flow

label f and element label e, the Recording operation is per-

formed as follows: First, flow compression transforms element

e to a virtual element e′. Then, non-duplicate sampling checks

if the virtual element has been seen before. If e′ is a new

virtual element, it samples e′ with a pre-defined probability.

When a virtual element is sampled, off-chip recording will be

triggered to update the flow statistics, e.g., sending flow label

f to off-chip module and increasing flow f ’s counter value

by one.

2) Estimation: When the measurement epoch ends, we can

estimate the sizes or spreads for all flows. Given an arbitrary

flow label, we will first lookup the record entry in off-chip

recording. If no record matches, we regard this flow as an

empty flow. Otherwise, we can estimate the actual size/spread

based on the compression function and sampling probability.

D. Flow compression

Flow compression aims to adaptively compress flows,

which reduces the flow sizes/spreads, solving the problem

that all flows share a same sampling rate. We want to stress

that, flow compression works for both per-flow size estimation

and per-flow spread estimation, but in different manners.

Particularly, when performing per-flow size estimation, each

flow element (e.g., packet) is treated as a distinct one, which

can be considered as a particular case of spread estimation.

Let FC denote the compression function. When compress-

ing a flow f with size/spread nf , it maps each element in

flow f to a virtual element, where the virtual elements that

FC outputs form a compressed flow f ′. Notice that, different

elements may be mapped to a same virtual element. Thus,

FC transforms the nf (distinct) elements {e1, e2, · · · , enf
}

of flow f to a set of nf ′ distinct virtual elements, which is

denoted by {e′1, e
′
2, · · · , e

′
nf′

}. Formally:

FC({e1, e2, · · · , enf
}) → {e′1, e

′
2, · · · , e

′
nf′

}. (1)

We use virtual spread nf ′ to represent the number of distinct

virtual elements in the compressed flow f ′. Clearly, there

exists a one-to-one correspondence between virtual spread and

flow size/spread, with which we can estimate the actual flow

size/spread based on the virtual spread. Suppose that FC−1

3

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

is the inverse function of FC. In contrast to FC, FC−1 takes

virtual spread nf ′ as input and returns an estimation for the

original flow size/spread nf . Formally:

n̂f = FC−1(nf ′). (2)

0

20

40

60

80

100

0 100 200 300 400 500

V
ir

tu
al

S
p

re
ad

Size/Spread

(a) Virtual spread w.r.t. size/spread

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

C
o

m
p

re
ss

io
n

R
at

io

Size/Spread

(b) Compression ratio w.r.t. size/spread

Fig. 3: Example of a flow compression function.

Consider a compression function FC100(·) which ran-

domly maps (distinct) elements to 100 virtual elements,

{1, 2, · · · , 100}, with a same probability, i.e., 1
100 . Fig. 3(a)

shows the relationship between flow size/spread and the virtual

spread when applying FC100. We observe that the expected

virtual spread increases when flow size grows, and there exists

a one-to-one correspondence, which means we can estimate

the actual flow size/spread based on the virtual spread. In Fig.

3(b), we show the curve of the compression ratio, which refers

to the ratio between virtual spread and actual size/spread.

We find out that the compression ratio decreases as flow

size/spread grows. This feature can help us adaptively assign

lower sampling rates to larger flows, achieving our design

goal.

Notice that the number of virtual elements is the same as

the number of flow elements. We cannot directly download

the virtual elements to off-chip memory since it is inefficient

and can waste storage and communication resources. Instead,

we employ non-duplicate sampling to filter the duplicates

and select a subset of distinct virtual elements for off-chip

recording.

E. Non-duplicate sampling

We implement non-duplicate sampling based on [11], which

uses a bit array B of M bits to sample each distinct virtual

element with a pre-defined probability p at its first appearance.

The inputs of this module are the virtual elements that flow

compression generates. The outputs are the sampled distinct

virtual elements along with flow labels.

Given a virtual element, non-duplicate sampling will first

check if the element has been seen before. In detail, it

initializes all the bits in B as zeros when measurement starts,

pseudo-randomly maps each virtual element (with flow label)

to a bit h in the bit array B, and regards a virtual element as a

new one only if B[h] = 0. Notice that, whenever seeing a new

virtual element, it will set the corresponding bit to 1, which

ensures all subsequent appearances of this virtual element will

be identified as duplicates. Due to hash collisions, multiple

virtual elements may be hashed onto the same bit, which may

incur false positives, i.e., misidentifying a new virtual element

as a duplicate. Therefore, when a virtual element is mapped to

a bit of 0, non-duplicate sampling samples it with a probability

p′ = p
V0

, where V0 is the fraction of zeros in B. This ensures

that, for each new virtual element, its probability of being

hashed onto a bit of zero and selected will be V0 × p′ = p,

i.e., the pre-defined sampling probability.

IV. ALGORITHM DESIGN

This section presents two algorithms for self-adaptive sam-

pling, which are: self-adaptive sampling with linear compres-

sion (SAS-LC) and self-adaptive sampling with logarithmic

compression (SAS-LOG).

A. Self-adaptive sampling with linear compression

We implement SAS-LC based on a linear compression

function FCs, which maps flow elements to s virtual elements

with the same probability, i.e., 1
s

.

...

0

1

2

...

s-1

flow

hash
function

compressed
flow

virtual element
id (j)

=

Fig. 4: An example of linear compression

1) Flow Compression: As depicted in Fig. 4, when com-

pressing a flow with size/spread nf , FCs first operates a hash

H(f⊕e) on each element e and maps e to a virtual element e′

by e′ = H(f⊕e) mod s, where H is a hash function and ⊕ is

the XOR operation. In this case, pj , the probability of mapping

an arbitrary element e to a virtual element e′ = j, j ∈ [0, s−1]
is always 1

s
. Formally, FCs is performed as follows:

FCs(f, e) = H(f ⊕ e) mod s. (3)

To demonstrate the execution of FCs, we use Fig. 4 as

an example, where a flow f contains nf (distinct) elements,

i.e., flow size or flow spread is nf . By operating FCs on

each element, we obtain three different outputs {0, 2, s− 1},

denoting the IDs of virtual elements. In other words, FCs

compresses a flow f with size/spread nf to a compressed

flow f ′ with virtual spread 3, where f ′ is composed of three

distinct elements {e′1, e
′
2, e

′
3} with IDs {0, 2, s− 1}.

Based on Linear Counting [39], we know the expected

virtual spread is correlated to the flow size/spread, which can

be obtained by nf ′ = s−s ·e−
nf
s . Therefore, we can estimate

the flow size/spread nf by:

FC−1
s (nf ′) = −s ln (1 −

nf ′

s
). (4)

4

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

2) Data Structure: The on-chip data structure contains

a system parameter s controlling the compression function

FCs and a bit array B of M bits to serve for non-duplicate

sampling. Besides, we maintain a counter c denoting the

number of 1 in B. In the off-chip memory, we maintain a

separated counter cf for each flow f , recording the number of

virtual elements this flow has been sampled. The bit array B,

on-chip counter c, and off-chip counters cf are all initialized

to zeros at the beginning of measurement epoch.

3) Recording: The recording operation is performed on

each flow element. Given an element e of flow f , we first

perform FCs to obtain a virtual element e′ = FCs(f, e).
Based on [11], we assign virtual element e′ with flow label f

to a bit h in bit array B, which is computed by h = H ′(f⊕e′)
mod M . Here H ′ is an independent hash function.

Given the status of B[h], there are two cases to consider:

One is B[h] = 1, in which case we regard this element as a

duplicate and take no further action; the other is B[h] = 0,

which means < f, e′ > is a new virtual element that has

not been seen before. As discussed in Section III-E, when

B[h] = 0, we will sample this element with a probability p′,

ensuring the overall sampling probability for a new virtual

element is p. The value of p′ can be computed as follow,

p′ = p ·
M

M − c
, (5)

where M
M−c

is the inverse of V0, the fraction of zeros in the

bit array B.

When an element is selected, we will trigger the off-chip

recording and increase flow f ’s separated counter cf by 1;

when an element is not selected, we will not download the

flow label. No matter whether this virtual element is selected,

we will set B[h] to 1 and increase the online counter c by

1, which ensures all duplicates of this virtual element will be

ignored.

4) Estimation: When querying the size or spread of flow f ,

we first hash f to find this table entry cf . If none table entry

matches, we regard this flow as an empty flow and return

an estimated size/spread 0. If there exists a table entry cf ,

according to the property of non-duplicate sampling, we can

estimate the virtual spread nf ′ by dividing cf with sampling

probability p, i.e., nf ′ =
cf
p

. Then, according to Equation 4,

the size/spread of flow f can be estimated as:

n̂f = −s ln(1 −
cf

sp
). (6)

The problem of SAS-LC is that it has to set a large s to

provide accurate estimations for large flows. But setting a large

s will result in a high compression ratio for small flows (e.g.,

close to 1), downgrading the efficiency of SAS-LC. Thus, it

is more suitable for the scenarios where flow sizes/spreads

are small (e.g., scan detection) while not suitable for heavy-

hitter detection since the largest flow may contain millions of

packets (elements).

B. Self-adaptive sampling with logarithmic compression

Given SAS-LC’s limitation, we present SAS-LOG, which

utilizes a logarithmic compression function FCd,s to provide

a broad estimation range with high efficiency.

...

flow compressed
flow

virtual element id (i, j)

...

...

...

=

= 0.5
(,)

hash
function 1

hash function 2

(0,0) (0,1) (0,2) (0,3) (0, s-1)

...

(1, 0) (1, 1) (1, 2) (1, 3) (1, s-1)

...

(2,0) (2,1) (2,2) (2,3) (2, s-1)

...

(d-1,0) (d-1,1) (d-1,2) (d-1,3) (d-1, s-1)

(0,0) (0,2) (0,s-1)

(2,3)

(1, 1) (1, 3)

Fig. 5: An example of logarithmic compression

1) Flow Compression: We design a compression function

FCd,s parameterized by two integers d and s. As shown in

Fig. 5, there are d×s possible virtual elements, whose IDs are

abstracted as a table with d rows and s columns. By using two

hash functions, FCd,s maps each flow element e to a virtual

element e′ with id (i, j), representing the j-th entry at the i-th

row in the ID table. The first hash H is to determine the value

of i, i.e., row index, and the second hash H ′ is to determine

the value of j, which is the column index.

Given an element e of flow f , we first determine the row

index for its corresponding virtual element. We perform a hash

z = H(f ⊕ e) mod 2d and transform z to a d bit binary

form, < z0z1z2 · · · zd−1 >2. The row index i is calculated by

i = ρ (z). Here ρ (z) returns the order of leftmost 1 in the

binary form of z, which starts from 0 and returns d− 1 when

all bits are zeros. By this means, we map each element to

the i-th row with a probability pi = 0.5min(i+1,d−1) so that∑d−1
i=0 pi = 1. For instance, the leftmost 1 in 01112 and 00102

are the second bit and the third bit, indicating ρ (01112) = 1
and ρ (00102) = 2. Then we compute the column index j

for by using j = H ′(f ⊕ e) mod s. Combine above results,

we can transform an element e with flow label f to a virtual

element (i, j) with a probability of pi,j :

FCd,s(f, e) = (i, j), pi,j = 0.5min(i+1,d−1) ×
1

s
. (7)

Notice that, when compressing a flow, the number of

distinct virtual elements at different rows are different. As

shown in Fig. 5, FCd,s maps nf distinct elements to 6 virtual

elements, where the numbers of distinct elements at the first

three rows are {3, 2, 1}. We use {nf ′,0, nf ′,1, · · · , nf ′,d−1} to

represent the numbers of distinct virtual elements at d rows,

whose sum
∑d−1

i=0 nf ′,i is the virtual spread nf ′ . Similar to

Equation 4, we can estimate nf,i, the number of (distinct)

elements that have been mapped to the i-th row by:

nf,i = −s ln(1 −
nf ′,i

s
). (8)

Since the probabilities of mapping (distinct) elements onto

different rows are different, a large flow may fulfill the bottom

5

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

row but can still obtain an accurate estimation based on higher

rows. Thus, for a flow f with virtual spread nf ′ , we will select

a starting row γ(nf ′) and only use it and the higher rows to

estimate the flow size/spread. The selection of the starting row

will be illustrated in Section V-B.

Recall that, the probability of mapping an element to the

i-th row is pi = 0.5min(i+1,d−1). The number of elements

assigned to rows starting from γ(nf ′) will be
∑d−1

i=γ(nf′) nf,i,

which is 0.5γ(nf′) of the flow size/spread. Therefore, the flow

size/spread nf can be estimated by:

FC−1
d,s(nf ′) = −s · 2γ(nf′)

d−1∑

i=γ(nf′)

ln(1 −
nf ′,i

s
). (9)

2) Data Structure: The on-chip data structure contains two

system parameters d, s controlling the compression function

FCd,s, a bit array B of M bits, and a counter c. In the off-

chip memory, we maintain a separated d-dimensional counter

array cf = {cf,i}
d−1
i=0 for each flow f , where cf,i denotes the

number of sampled virtual elements with row index i. The bit

array B, on-chip counter c, and off-chip counter arrays cf are

all initialized to zeros at the beginning of each measurement

epoch.

3) Recording: Similar to SAS-LC, when given an element

e of flow f , we first perform FCd,s on e and obtain a virtual

element e′ = (i, j). Then assign it a bit h = H ′′(H ′′(f⊕i)⊕j)
mod M in bit array B, where H ′′ is another independent

hash function. Only when B[h] is 0, we set this bit to 1 and

sample virtual element e′ with a probability p′ = p · M
M−c

.

At last, when a virtual element e′ = (i, j) is selected, we

will download the flow label f and row index i to off-chip

memory, then increase counter cf,i by one.

4) Estimation: When querying the size or spread for a

flow f , we first hash f to find its table entry and return

its current counter value cf = {cf,i}
d−1
i=0 . Recall that we use

γ(cf) to denote the starting row. The number of (distinct)

elements hashed onto it and higher rows is expected to be the
1

2γ(cf) of the total size/spread. Therefore, we can estimate the

size/spread for flow f by:

n̂f = −s · 2γ(cf)
d−1∑

j=γ(cf)

ln(1−
cf,j

sp
). (10)

V. OPTIMAL SYSTEM PARAMETERS

In the following, we present the parameter selection for

SAS-LC and SAS-LOG, respectively. Our goal is to select op-

timal parameters by minimizing the on-chip space requirement

M when providing following performance guarantee: given a

positive integer l, a relative error bound δ, and a probability

value ǫ (0 < ǫ < 1), for a flow with a size or spread larger

than l, its relative error is bounded by δ with probability 1−ǫ.

Notice that, when selecting parameters, we assume the largest

flow size/spread is h.

A. System parameters for SAS-LC

When bounding the relative errors for SAS-LC, there are

three system parameters M , s, and p to determine. M is

the size of the bit array, s is the parameter of compression

function, and p is the sampling rate of non-duplicate sampling.

Consider an arbitrary flow f whose size/spread is nf . We

want to bound the relative errors by δ with a probability larger

than 1− ǫ, i.e., the estimated size/spread n̂f satisfies:

nf (1− δ) ≤ n̂f ≤ nf(1 + δ). (11)

As discussed in Section III.A, the overall sampling proba-

bility of flow f , denoted as pf , is the product of compression

ratio and the sampling rate of non-duplicate sampling, which

is:

pf = (1− (1 −
1

s
)nf)

sp

nf

. (12)

Let cf be the counter value of f ’s table entry. It is

the number of successes in nf Bernoulli trials when the

probability of success is pf , i.e., cf follows a Binomial

distribution parameterized by nf and pf : cf ∼ B(nf , pf).
Let Pr{cf = k} denote the probability of cf = k for

k = 0, 1, · · · , nf , it can be computed by:

Pr{cf = k} = Ck
nf
pkf (1− pf)

nf−k. (13)

According to Equation 6, we can estimate the flow

size/spread based on counter value cf . When bounding the

mean relative error by δ, the range of possible cf should be:

(1− e−
nf (1−δ)

s)sp ≤ cf ≤ (1− e−
nf (1+δ)

s)sp. (14)

Let pδ(s, p, n) denote the probability when the mean rela-

tive error of a flow, whose size/spread is n, is less than δ. It

is the sum of probabilities Pr{cf = k} when k is within the

feasible range as in Equation 14:

pδ(s, p, n) =

⌊(1−e
−

n(1+δ)
s)sp⌋∑

j=⌈(1−e
−

n(1−δ)
s)sp⌉

Cj
np

j
f (1− pf)

n−j . (15)

Notice that when the values of s, p, and δ are fixed,

pδ(s, p, n) becomes a function of n. It is a curve as illustrated

in Figure 6, where non-smooth appearance is due to ⌈·⌉
and ⌊·⌋ operations in Equation. 15. Approximately, we can

say for all n ∈ [l, h], pδ(s, p, n) is always larger than

min{pδ(s, p, l), pδ(s, p, h)}.

0.5

0.6

0.7

0.8

0.9

1

0 1500 3000 4500 6000

p
δ

n f

Fig. 6: Curve of pδ(·) when s = 2000, p = 0.5, δ = 0.1

We formalize the parameter selection problem as below.

N ′ refers to the sum of virtual spreads when applying FCs,

6

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

which can be obtained from historical data. The first constraint

ensures that for each virtual element, its sampling probability

p′ computed by Equation 5 will be within (0, 1]. The second

and third constraints bound the mean relative errors for flows

whose size/spread are within [l, h] by δ with a probability

larger than 1− ǫ.

minM

s.t.





M ≥ − N ′

ln p

pδ(s, p, l) ≥ 1− ǫ

pδ(s, p, h) ≥ 1− ǫ

(16)

B. System parameters for SAS-LOG

For SAS-LOG, there are four system parameters M , d, s,

and p to determine, where M is the size of the bit array,

(d, s) are the parameters of compression function, and p is

the sampling rate of non-duplicate sampling.

When estimating per-flow size/spread, we should first

filter out the rows with inappropriate resolutions. Con-

sider an arbitrary flow f whose spread is nf . Let cf =
{cf,0, cf,1, · · · , cf,d−1} be the counter values of flow f . Based

on Equation 10, we only use the rows starting from γ(cf), i.e.,

γ(cf), γ(cf) + 1, · · · d− 1, to estimate the size/spread of f .

Let rf be the number of (distinct) elements that have

been hashed onto the rows starting from γ(cf). As proved

in [40], when γ(cf) ≤ d − 3, we can multiply the esti-

mation of rf with 2γ(cf) for an unbiased estimation of nf ,

where the estimation error is mainly contributed by r̂f . Let

pδ(d, s, p, n = rf) denote the probability that n̂f is distributed

in [nf(1 − δ), nf (1 + δ)]. We can compute its value by

enumerating the combinations of cf,γ(cf), cf,γ(cf)+1, · · · .

The curve of pδ(d, s, p, n) when fixing d, s, p is similar to

Fig. 6, which is approximately a convex function of n. When

setting appropriate d, s, and p, we can find the smallest integer

l′ and the largest integer h′ for rf that makes pδ(d, s, p, rf)
larger than 1−ǫ. Therefore, for a flow whose size/spread is nf ,

if we can find a minimum starting row index γ(cf) ∈ [0, d−3]
that makes rf =

nf

2γ(cf) be within [l′, h′], we can say its mean

relative error is bounded by δ with a probability of 1 − ǫ.

Formally, γ(cf) is the minimum integer within [0, d− 3] that

makes:

l′ ≤ −s

d−1∑

i=γ(cf)

ln(1−
cf,i

sp
) ≤ h′. (17)

Notice that, when selecting a staring row γ(cf), we can

ensure the estimation accuracy for flows whose sizes/spreads

are within [l′ · 2γ(cf), h′ · 2γ(cf)]. When increasing the start-

ing row by 1, the accurate measurement range will be

[l′ · 2γ(cf)+1, h′ · 2γ(cf)+1]. Apparently, these two intervals

overlap when 2l′ ≤ h′, which extends the estimation range to

[l′ · 2γ(cf), h′ · 2γ(cf)+1].
At last, we formalize the parameter selection problem for

SAS-LOG as in Equation 18. N ′ refers to the sum of virtual

spreads when applying FCd,s, which can be obtained from

historical data. The first constraint ensures that for each virtual

element, its sampling probability p′ will be within (0, 1].

The 2-4 constraints ensure that flows whose sizes/spreads are

within [l′, 2d−3h′] satisfy the accuracy constraints. The last

constraints ensure that the desired estimation range [l, h] is

within the estimation range.

minM

s.t.





M ≥ − N ′

ln p

2l′ ≤ h′

pδ(d, s, p, l
′) ≥ 1− ǫ

pδ(d, s, p, h
′) ≥ 1− ǫ

l′ ≤ l < h ≤ 2d−3h′

(18)

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our algo-

rithms through extensive experiments using real Internet traffic

traces downloaded from CAIDA [23].

A. Experiment Setup

We conduct two sets of experiments to evaluate our al-

gorithms’ performance for per-flow spread estimation and

per-flow size estimation, respectively. When performing per-

flow spread estimation, we use five-minute data downloaded

from CAIDA as the dataset, which has 513889 per-destination

flows and 3150740 distinct elements. We use one-minute

data downloaded from CAIDA as the dataset for per-flow

size estimation, which contains 589740 per-source flows and

31259223 packets.

We run our evaluation on a server equipped with two six-

core Intel Xeon E5-2643 v4 3.40GHz CPU and 256GB RAM.

We have implemented our solutions SAS-LC and SAS-LOG

in C++. For comparison purposes, we also implemented NDS

[11] in C++. The hash functions used in our experiments are

MURMUR3 hash with different initial seeds.

B. Memory Requirements

We compare SAS-LC, SAS-LOG, and NDS in terms of

the on-chip memory they require to satisfy the constraints

given in Section II-C. Table I and Table II show the memory

requirements with respect to δ, ǫ, h, and l when applying three

algorithms to per-flow spread estimation and per-flow size

estimation. The required memory is computed according to

[11] and this work.

Table I shows the memory requirements for spread estima-

tion. For the setting of δ = 0.2, ǫ = 0.1 and δ = 0.1, ǫ = 0.05,

we find out that SAS-LC is space-efficient, since it reduces

around 10% the on-chip memory that NDS requires. Another

observation is, due to the benefit of logarithmic compression,

the memory that SAS-LOG requires is not sensitive to the

value of h, making it more suitable for the per-flow size

estimation where estimation range is large. As shown in Table

II, for the setting of δ = 0.2, ǫ = 0.1 and δ = 0.1, ǫ = 0.05,

SAS-LOG can save around 40% the on-chip memory that

NDS requires, and SAS-LC can save around 10% the on-chip

memory that NDS requires, depending on the values of h and

l.

7

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I: On-chip memory requirements of NDS, SAS-LC, and SAS-LOG for spread measurement (MB)

l

δ = 0.2, ǫ = 0.1 δ = 0.1, ǫ = 0.05

h = 2000 h = 10000 h = 2000 h = 10000

NDS SAS-LC SAS-LOG NDS SAS-LC SAS-LOG NDS SAS-LC SAS-LOG NDS SAS-LC SAS-LOG

50 0.628 0.537 0.562 0.628 0.592 0.565 2.938 2.624 4.391 2.938 2.671 4.400

100 0.410 0.337 0.371 0.410 0.354 0.374 1.683 1.449 1.943 1.683 1.466 1.951

150 0.312 0.276 0.300 0.312 0.288 0.303 1.097 1.041 1.246 1.097 1.048 1.256

200 0.271 0.244 0.256 0.271 0.244 0.258 0.872 0.866 0.963 0.872 0.867 0.970

250 0.233 0.219 0.231 0.233 0.222 0.232 0.735 0.729 0.806 0.735 0.738 0.811

300 0.226 0.201 0.212 0.226 0.203 0.213 0.668 0.624 0.693 0.668 0.626 0.696

TABLE II: On-chip memory requirements of NDS, SAS-LC, and SAS-LOG for size measurement (MB)

l

δ = 0.2, ǫ = 0.1 δ = 0.1, ǫ = 0.05

h = 50000 h = 200000 h = 50000 h = 200000

NDS SAS-LC SAS-LOG NDS SAS-LC SAS-LOG NDS SAS-LC SAS-LOG NDS SAS-LC SAS-LOG

100 4.067 3.087 2.236 4.067 3.510 2.237 16.700 12.660 11.918 16.700 14.130 11.919

200 2.688 2.113 1.644 2.688 2.386 1.644 8.650 7.368 6.488 8.650 8.048 6.491

300 2.244 1.752 1.430 2.244 1.969 1.430 6.629 5.279 4.947 6.629 5.833 4.949

400 1.895 1.559 1.309 1.895 1.746 1.310 5.376 4.437 4.102 5.376 4.852 4.105

500 1.688 1.437 1.233 1.688 1.598 1.233 4.539 3.794 3.601 4.539 4.120 3.604

1000 1.325 1.138 1.047 1.325 1.253 1.047 2.927 2.501 2.502 2.927 2.725 2.508

100

101

102

103

100 101 102 103

E
st

im
at

ed
S

p
re

ad

Actual Spread

(a) NDS, M = 0.410MB

100

101

102

103

100 101 102 103

E
st

im
at

ed
S

p
re

ad

Actual Spread

(b) SAS-LC, M = 0.337MB

100

101

102

103

100 101 102 103

E
st

im
at

ed
S

p
re

ad

Actual Spread

(c) SAS-LOG, M = 0.371MB

0

1

2

3

0 4 8 12 16 20

C
o

m
m

.
C

o
st

/K
B

Actual Spread (×102)

NDS
SAS-LC
SAS-LOG

(d) Communication costs w.r.t. spread

Fig. 7: Spread estimation accuracy of NDS, SAS-LC, and SAS-LOG when δ = 0.2, ǫ = 0.1, h = 2000, l = 100

100

101

102

103

104

100 101 102 103 104

E
st

im
at

ed
S

p
re

ad

Actual Spread

(a) NDS, M = 1.683MB

100

101

102

103

104

100 101 102 103 104

E
st

im
at

ed
S

p
re

ad

Actual Spread

(b) SAS-LC, M = 1.466MB

100

101

102

103

104

100 101 102 103 104

E
st

im
at

ed
S

p
re

ad

Actual Spread

(c) SAS-LOG, M = 1.951MB

0

8

16

24

32

0 2 4 6 8 10

C
o

m
m

.
C

o
st

/K
B

Actual Spread (×103)

NDS
SAS-LC
SAS-LOG

(d) Communication costs w.r.t. spread

Fig. 8: Spread estimation accuracy of NDS, SAS-LC, and SAS-LOG when δ = 0.1, ǫ = 0.05, h = 10000, l = 100

C. Estimation accuracy

1) Experiments on per-flow spread estimation: We evaluate

the estimation accuracy of NDS, SAS-LC, and SAS-LOG un-

der two sets of constraints, respectively δ = 0.2, ǫ = 0.1, h =
2000, l = 100 and δ = 0.1, ǫ = 0.05, h = 10000, l = 100. For

each algorithm, its on-chip memory size is set to the minimum

value satisfying the given constraints. The other parameters

are set to the optimal parameters according to [11] and this

work. Fig. 7(a) - 7(c) show the estimation results of three

algorithms under the first set of constraints, where the on-chip

memory sizes of NDS, SAS-LC, and SAS-LOG are 0.410MB,

0.337MB, and 0.371MB. In three plots, the x-axis denotes the

actual spread, the y-axis represents the estimated spread, and

each point refers to a flow. The more close a point is to the

line y = x, the more accurate this estimation is.

We find out that NDS’s estimation accuracy grows as flow

spread increases, even though such high estimation accuracy

for large flows is beyond the requirement. In Table III, we

show the actual relative error bounds for different flows.

For flows whose spreads are within [100, 2000], the actual

relative error bounds (with probability 90%) are all under the

constraint δ = 0.2. In other words, by using self-adaptive

sampling and configuring lower sampling rates for large flows,

SAS-LC and SAS-LOG show slightly worse accuracy on

large flows than NDS does, but still manage to satisfy the

given constraints. Moreover, self-adaptive sampling can help

in reducing both on-chip memory usage and communication

cost. Compared to NDS, SAS-LC and SAS-LOG save 17.8%

and 9.5% of the on-chip memory usage and reduce up to

25.8% and 35.5% communication cost for large flows (when

8

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

100

101

102

103

104

100 101 102 103 104

E
st

im
at

ed
S

iz
e

Actual Size

(a) NDS, M = 2.688MB

100

101

102

103

104

100 101 102 103 104

E
st

im
at

ed
S

iz
e

Actual Size

(b) SAS-LC, M = 2.113MB

100

101

102

103

104

100 101 102 103 104

E
st

im
at

ed
S

iz
e

Actual Size

(c) SAS-LOG, M = 1.644MB

0

10

20

30

40

50

0 1 2 3 4 5

C
o

m
m

.
C

o
st

/K
B

Actual Size (×104)

NDS
SAS-LC
SAS-LOG

(d) Communication costs w.r.t. size

Fig. 9: Size estimation accuracy of NDS, SAS-LC, and SAS-LOG when δ = 0.2, ǫ = 0.1, h = 50000, l = 200

100

101

102

103

104

105

100 101 102 103 104 105

E
st

im
at

ed
S

iz
e

Actual Size

(a) NDS, M = 8.650MB

100

101

102

103

104

105

100 101 102 103 104 105

E
st

im
at

ed
S

iz
e

Actual Size

(b) SAS-LC, M = 8.048MB

100

101

102

103

104

105

100 101 102 103 104 105

E
st

im
at

ed
S

iz
e

Actual Size

(c) SAS-LOG, M = 6.491MB

0

100

200

300

400

500

0 5 10 15 20

C
o

m
m

.
C

o
st

/K
B

Actual Size (×104)

NDS
SAS-LC
SAS-LOG

(d) Communication costs w.r.t. size

Fig. 10: Size estimation accuracy of NDS, SAS-LC, and SAS-LOG when δ = 0.1, ǫ = 0.05, h = 200000, l = 200

flow spread is 2000). We can observe similar results from the

experimental results under the second set of constraints (as

shown in Fig. 8 and Table IV).

TABLE III: Actual relative error bound for spread estimation

(δ = 0.2, ǫ = 0.1, h = 2000, l = 100)

algorithm

spread
all flows 1 ∼ 100 100 ∼ 500 500 ∼ 1000 1000 ∼ 2000

NDS 1.500 1.500 0.153 0.077 0.062

SAS-LC 1.503 1.503 0.172 0.114 0.096

SAS-LOG 1.203 1.203 0.168 0.124 0.140

TABLE IV: Actual relative error bound for spread estimation

(δ = 0.1, ǫ = 0.05, h = 10000, l = 100)

algorithm

spread
all flows 1 ∼ 100 100 ∼ 1000 1000 ∼ 5000 5000 ∼ 10000

NDS 1.000 1.000 0.075 0.028 0.013

SAS-LC 1.000 1.000 0.079 0.038 0.043

SAS-LOG 1.000 1.000 0.088 0.098 0.097

2) Experiments on per-flow size estimation: We use two

sets of constraints, respectively δ = 0.2, ǫ = 0.1, h =
50000, l = 200 and δ = 0.1, ǫ = 0.05, h = 200000, l = 200,

to evaluate the estimation accuracy for per-flow size estima-

tion. Fig. 9 and Table V show the results under the first

set of constraints. Fig. 10 and Table VI show the results

under the second set of constraints. Recall that, SAS-LOG

uses a logarithmic compression function to meet the need

of measuring large flows, which can achieve high efficiency

in per-flow size measurement. For example, under the first

set of constraints, SAS-LC and SAS-LOG reduce the on-

chip memory usage of NDS by 11.8% and 38.8%. Besides,

they reduce the communication cost of NDS up to 51.4%

and 92.2% when the flow size is 50000. Clearly, our solution

SAS-LOG is the winner for per-flow size measurement.

TABLE V: Actual relative error bound for size estimation

(δ = 0.2, ǫ = 0.1, h = 50000, l = 200)

algorithm

size
all flows 1 ∼ 200 200 ∼ 1000 1000 ∼ 10000 10000 ∼ 50000

NDS 1.020 1.020 0.155 0.064 0.023

SAS-LC 1.054 1.054 0.158 0.075 0.062

SAS-LOG 1.207 1.312 0.176 0.176 0.171

TABLE VI: Actual relative error bound for size estimation

(δ = 0.1, ǫ = 0.05, h = 200000, l = 200)

algorithm

size
all flows 1 ∼ 200 200 ∼ 1000 1000 ∼ 50000 50000 ∼ 200000

NDS 1.000 1.000 0.078 0.034 0.005

SAS-LC 1.000 1.000 0.077 0.033 0.016

SAS-LOG 1.000 1.000 0.082 0.079 0.099

VII. CONCLUSION

This paper proposes an efficient self-adaptive sampling

framework for network traffic measurement, which works

for both per-flow size estimation and per-flow spread esti-

mation. Based on two different compression functions, we

present two algorithms, SAS-LC and SAS-LOG, to sample

each flow’s (distinct) elements with a probability adapted

to flow size/spread, which save on-chip space and reduce

communication cost while ensuring estimation accuracy. The

experimental results based on real Internet traffic traces

demonstrate that our solutions can be flexibly configured

to meet the measurement interests of different applications

and work efficiently with small on-chip memory and small

communication overhead.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science
Foundation of China (NSFC) (Grant No. 62072322, 61873177,
U20A20182), and Natural Science Foundation (Grant No. CNS-
1719222).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Duffield, C. Lund, and M. Thorup, “Learn more, sample less: control
of volume and variance in network measurement,” IEEE Transactions

on Information Theory, vol. 51, no. 5, pp. 1756–1775, 2005.

[2] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in Proc. of IEEE International

Conference on Network Protocols (ICNP 2015), 2015, pp. 1–10.

[3] H. Xu, Z. Yu, C. Qian, X. Li, Z. Liu, and L. Huang, “Minimizing
flow statistics collection cost using wildcard-based requests in SDNs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3587–3601,
2017.

[4] T. Li, S. Chen, W. Luo, and M. Zhang, “Scan detection in high-speed
networks based on optimal dynamic bit sharing,” in Proc. of the IEEE

Conference on Computer Communications (INFOCOM 2011), 2011, pp.
3200–3208.

[5] Y. Li, H. Wu, T. Pan, H. Dai, J. Lu, and B. Liu, “CASE: cache-assisted
stretchable estimator for high speed per-flow measurement,” in Proc. of

the IEEE Conference on Computer Communications (INFOCOM 2016),
2016, pp. 1–9.

[6] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar,
D. NYANG, and D. Mohaisen, “Soteria: Detecting adversarial examples
in control flow graph-based malware classifiers,” in Proc. of the IEEE
International Conference on Distributed Computing Systems (ICDCS

2020), 2020, pp. 1296–1305.

[7] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen,
“Dfd: Adversarial learning-based approach to defend against website
fingerprinting,” in Proc. of the IEEE Conference on Computer Commu-

nications (INFOCOM 2020), 2020, pp. 2459–2468.

[8] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 12, pp. 2327–2339, 2006.

[9] C. Hu, B. Liu, S. Wang, J. Tian, Y. Cheng, and Y. Chen, “ANLS: adap-
tive non-linear sampling method for accurate flow size measurement,”
IEEE Transactions on Communications, vol. 60, no. 3, pp. 789–798,
2012.

[10] F. Hao, M. Kodialam, and T. Lakshman, “ACCEL-RATE: a faster
mechanism for memory efficient per-flow traffic estimation,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, 2004, pp.
155–166.

[11] Y. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao, “Online
spread estimation with non-duplicate sampling,” in Proc. of the IEEE

Conference on Computer Communications (INFOCOM 2020), 2020, pp.
2440–2448.

[12] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Discrete
Mathematics and Theoretical Computer Science, 2007, pp. 137–156.

[13] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: algorith-
mic engineering of a state of the art cardinality estimation algorithm,”
in Proc. of the 16th International Conference on Extending Database
Technology (EDBT 2013), 2013, pp. 683–692.

[14] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–313,
2003.

[15] R. Jang, S. Moon, Y. Noh, A. Mohaisen, and D. Nyang, “Instameasure:
Instant per-flow detection using large in-dram working set of active
flows,” in Proc. of the IEEE International Conference on Distributed

Computing Systems (ICDCS 2019), 2019, pp. 2047–2056.

[16] R. Jang, D. Min, S. Moon, D. Mohaisen, and D. Nyang, “Sketchflow:
Per-flow systematic sampling using sketch saturation event,” in IEEE IN-

FOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 1339–1348.

[17] P. Lieven and B. Scheuermann, “High-speed per-flow traffic measure-
ment with probabilistic multiplicity counting,” in Proc. of the IEEE

Conference on Computer Communications (INFOCOM 2010), 2010,
pp. 1–9.

[18] M. Yoon, T. Li, S. Chen, and J. kwon Peir, “Fit a spread estimator
in small memory,” in Proc. of the IEEE Conference on Computer

Communications (INFOCOM 2009), 2009, pp. 504–512.

[19] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp.
121–132, 2008.

[20] Y. Zhou, Y. Zhou, M. Chen, Q. Xiao, and S. Chen, “Highly compact vir-
tual counters for per-flow traffic measurement through register sharing,”
in Proc. of the IEEE GLOBECOM 2016, 2016, pp. 1–6.

[21] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Per-flow counting for big
network data stream over sliding windows,” in Proc. of the IEEE/ACM

IWQoS 2017, 2017, pp. 1–10.
[22] ——, “Highly compact virtual active counters for per-flow traffic

measurement,” in Proc. of the IEEE Conference on Computer Com-

munications (INFOCOM 2018), 2018.
[23] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2016,” http:

//www.caida.org/data/passive/passive 2016 dataset.xml, accessed July
28, 2019.

[24] T. Yang, J. Xu, X. Liu, P. Liu, L. Wang, J. Bi, and X. Li, “A generic
technique for sketches to adapt to different counting ranges,” in Proc. of

the IEEE Conference on Computer Communications (INFOCOM 2019),
2019, pp. 2017–2025.

[25] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a compact spread estimator
in small high-speed memory,” IEEE/ACM Transactions on Networking

(TON), vol. 19, no. 5, pp. 1253–1264, 2011.
[26] H. Huang, Y. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang,

“You can drop but you can’t hide:k-persistent spread estimation in
high-speed networks,” in Proc. of the IEEE Conference on Computer

Communications (INFOCOM 2018), 2018, pp. 1889–1897.
[27] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Highly compact virtual

active counters for per-flow traffic measurement,” in Proc. of the IEEE

Conference on Computer Communications (INFOCOM 2018), 2018, pp.
1–9.

[28] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread measure-
ment for big network data based on register intersection,” in Proc. of

the ACM on Measurement and Analysis of Computing Systems, vol. 1,
no. 1. ACM, 2017, p. 15.

[29] N. Duffield, C. Lund, M. Thorup, and M. Thorup, “Flow sampling
under hard resource constraints,” in ACM SIGMETRICS Performance

Evaluation Review, vol. 32, no. 1, 2004, pp. 85–96.
[30] S. L. Feibish, Y. Afek, A. Bremler-Barr, E. Cohen, and M. Shagam,

“Mitigating DNS random subdomain DDoS attacks by distinct heavy
hitters sketches,” in Proc. of the fifth ACM/IEEE Workshop on Hot

Topics in Web Systems and Technologies, 2017, p. 8.
[31] V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou,

“Nearly optimal distinct elements and heavy hitters on sliding windows,”
in APPROX-RANDOM 2018, 2018, pp. 1–22.

[32] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy counting:
An efficient algorithm for finding heavy hitters,” ACM SIGCOMM

Computer Communication Review, vol. 38, no. 1, pp. 7–16, 2008.
[33] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online

identification of hierarchical heavy hitters: Algorithms, evaluation, and
application,” Proc. of ACM SIGCOMM IMC, pp. 101–114, October
2004.

[34] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proc. of the ACM on

Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp.
1–34, 2019.

[35] C. Hu, B. Liu, H. Zhao, K. Chen, Y. Chen, Y. Cheng, and H. Wu,
“Discount counting for fast flow statistics on flow size and flow volume,”
IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 970–981,
2014.

[36] H. Dai, M. Shahzad, A. X. Liu, M. Li, Y. Zhong, and G. Chen,
“Identifying and estimating persistent items in data streams,” IEEE/ACM

Transactions on Networking, vol. 26, no. 6, pp. 2429–2442, 2018.
[37] Y. Zhang, “An adaptive flow counting method for anomaly detection in

SDN,” in Proc. of the Ninth ACM Conference on Emerging Networking

Experiments and Technologies. New York, NY, USA: Association for
Computing Machinery, 2013, pp. 25–30.

[38] G. Cheng and J. Yu, “Adaptive sampling for openflow network mea-
surement methods,” in Proc. of the 12th International Conference on

Future Internet Technologies. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 1–7.

[39] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-
time probabilistic counting algorithm for database applications,” ACM

Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, 1990.
[40] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting

active flows on high speed links,” in Proc. of the 3rd ACM SIGCOMM

conference on Internet measurement, 2003, pp. 153–166.

10

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University of Florida. Downloaded on January 18,2022 at 03:51:52 UTC from IEEE Xplore. Restrictions apply.

		2021-07-22T14:00:46-0400
	Preflight Ticket Signature

