
Multipath TCP in Smartphones Equipped with Millimeter Wave
Radios

Imran Khan1, Moinak Ghoshal1, Shivang Aggarwal1, Dimitrios Koutsonikolas1, Joerg Widmer2
1Northeastern University, USA, 2IMDEA Networks, Spain

ABSTRACT
The well-known susceptibility of millimeter wave links to human
blockage and client mobility has recently motivated researchers to
propose approaches that leverage both 802.11ad radios (operating
in the 60 GHz band) and legacy 802.11ac radios (operating in the
5 GHz band) in dual-band commercial off-the-shelf devices to si-
multaneously provide Gbps throughput and reliability. One such
approach is via Multipath TCP (MPTCP), a transport layer protocol
that is transparent to applications and requires no changes to the
underlying wireless drivers. However, MPTCP (as well as other
bundling approaches) have only been evaluated to date in 60 GHz
WLANs with laptop clients.

In this work, we port for first time the MPTCP source code to a
dual-band smartphone equipped with an 802.11ad and an 802.11ac
radio. We discuss the challenges we face and the system-level opti-
mizations required to enable the phone to support Gbps data rates
and yield optimal MPTCP throughput (i.e., the sum of the indi-
vidual throughputs of the two radios) under ideal conditions. We
also evaluate for first time the power consumption of MPTCP in a
dual-band 802.11ad/ac smartphone and provide recommendations
towards the design of an energy-aware MPTCP scheduler. We make
our source code publicly available to enable other researchers to
experiment with MPTCP in smartphones equipped with millimeter
wave radios.

CCS CONCEPTS
• Networks → Transport protocols; Wireless local area net-
works; • Human-centered computing→ Smartphones.
ACM Reference Format:
Imran Khan, Moinak Ghoshal, Shivang Aggarwal, Dimitrios Koutsoniko-
las, Joerg Widmer. 2022. Multipath TCP in Smartphones Equipped with
Millimeter Wave Radios. In The 15th ACM Workshop on Wireless Network
Testbeds, Experimental evaluation & CHaracterization (WiNTECH’21), Janu-
ary 31-February 4 2022, New Orleans, LA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3477086.3480839

1 INTRODUCTION
An emerging class of smartphone applications, such as mobile Aug-
mented/Virtual reality (AR/VR), Miracast, and UHD video stream-
ing, demand Gbps data rates from the underlying wireless network.
For example, 8K resolution VR demands 1.2 Gbps [29] in order to
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8703-3/22/01. . . $15.00
https://doi.org/10.1145/3477086.3480839

satisfy the 20ms photon-to-motion latency, while live 4K video
streaming at 30 FPS demands 1.8 Gbps [13] for good user QoE.
While such stringent wireless network performance demands could
not be supported in the past, the advent of mmWave technologies
in recent years has brought Gbps wireless data rates within reach
and holds the promise to enable these demanding applications. For
example, the IEEE 802.11ad WLAN standard [25] governs the use
of the unlicensed spectrum around 60 GHz and supports 2 GHz
wide channels to provide PHY data rates of up to 6.7 Gbps. Multiple
802.11ad-compliant commercial of-the-shelf (COTS) devices have
been released over the past few years including APs [6, 8], lap-
tops [1], and more recently smartphones [2, 7]. Similarly, a number
of smartphones equipped with 5G NR interfaces operating at 28
GHz and 39 GHz have been launched on the market over the past
year and recent studies [30–32] report speeds up to 3 Gbps over
commercial cellular networks.

Nonetheless, communication at mmWave frequencies faces fun-
damental challenges due to the high propagation and penetration
loss and the use of directional transmissions makes links suscep-
tible to disruption by human blockage and client mobility. Even
though a number of PHY and MAC layer enhancements have been
proposed (e.g., [22, 23, 47, 48]) to improve beam steering and re-
duce re-connection times, the data rate of mmWave links has been
shown to fluctuate widely and unpredictably [9, 10, 13, 40]. Hence,
it is unrealistic to expect ubiquitous mmWave coverage, similar to
that offered by sub-6 GHz technologies such as WiFi or LTE.

Consequently, researchers have recently proposed bundling
mmWave and legacy WiFi interfaces [13, 39] to simultaneously
offer both multi-Gbps data rates (by jointly using both interfaces
when they are available) and reliability (by falling back to the legacy
WiFi interface when mmWave connectivity becomes unavailable).
While such bundling can be implemented at different layers of the
protocol stack, in our previous work [39] we explored a generic
transport layer solution via Multipath TCP (MPTCP), a standard
transport layer protocol, which works with unmodified applications
that run over TCP. Compared to solutions that try to achieve a sim-
ilar functionality at the MAC layer, e.g., via 802.11ad’s Fast Session
Transfer (FST) [46] or the Linux bonding driver [13], MPTCP is
transparent to applications and already provides mechanisms to
re-order packets from different interfaces at the receiver in order to
provide an in-order data stream, similar to TCP. As such, it requires
no modifications to applications or to underlying wireless drivers.

In [39], we showed that MPTCP with the default minRTT sched-
uler can achieve near optimal performance in dual-band 5/60 GHz
WLANs under static scenarios, but it fails to provide the sum-rate of
the two interfaces under dynamic scenarios involving interference,
mobility, or blockage. We then designed MuSher, an MPTCP sched-
uler that addresses the root-cause of the performance degradation
via throughput-ratio-based scheduling, and allows MPTCP to per-
form near optimally under a wide variety of use cases. Nonetheless,

https://doi.org/10.1145/3477086.3480839
https://doi.org/10.1145/3477086.3480839

WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA Imran Khan, Moinak Ghoshal, Shivang Aggarwal, Dimitrios Koutsonikolas, Joerg Widmer

the performance over MPTCP over mmWave links has only been
evaluated using laptops as clients.

Given the prevalence of smartphones in today’s WLANs and
the fact that most of the bandwidth demanding applications (AR,
VR, Miracast) target smartphone users, it is important to evalu-
ate the performance of MPTCP in smartphones equipped with
mmWave radios. In fact, the concerns about mmWave performance
in dynamic scenarios are more pronounced in the case of smart-
phones [9, 10] due to the small form factor, which increases the
probability of self-blockage and limits the number of phased array
elements, resulting in lower antenna gains and reduced transmis-
sion range. In addition, there have been concerns related to the
capability of resource-constrained mobile devices to handle Gbps
traffic rates [27]. Although in our previous work [9, 10] we showed
that modern smartphones equipped with 802.11ad radios can sup-
port up to 1.6 Gbps, the use of MPTCP will result in even higher
rates, as a result of jointly using two radios. In addition, power
consumption is a serious concern in the case of smartphones, as
the joint use of two radios can quickly deplete the device’s battery.
Consequently, bundling solutions designed for laptops [13, 39] that
only focus on throughput maximization may not be suitable for
smartphones.

In this work, we take a first step towards filling this gap by port-
ing for first time the MPTCP source code to a smartphone equipped
with an 802.11ad radio. We discuss the challenges we faced and the
steps we took to ensure that the phone yields optimal performance
(i.e., the sum of the individual throughputs of the two radios) under
ideal conditions. We make the MPTCP source code publicly avail-
able1 to enable other researchers to experiment with MPTCP in
mmWave WLANs. We also evaluate for first time the power con-
sumption of MPTCP in a dual-band 802.11ad/ac smartphone and
provide recommendations towards the design of an energy-aware
MPTCP scheduler.

2 DEVICES AND EXPERIMENTAL
METHODOLOGY

We ported MPTCP to an ASUS ROG Phone II [7]. This phone is the
successor of theASUS ROGPhone, whichwas the first commercially
available smartphone with an 802.11ad chipset. The ROG Phone
II is powered by a Snapdragon 855+ octa-core processor with a
12 GB RAM and a 6000 mAh battery. It supports all the 802.11ad
single-carrier (SC) MCSs (1-12), which correspond to PHY data rates
from 385 Mbps up to 4.6 Gbps. However, in practice, the maximum
TCP throughput is limited to about 1.6 Gbps [9, 10]. The phone
also has an 802.11ac chipset from Qualcomm, which supports all
the 802.11ac MCSs (0-9), channel widths of 20/40/80 MHz, and 2
spatial streams (SS), yielding PHY data rates from 6.5 Mbps up to
866 Mbps.

For our evaluation, we use a dual-band 802.11ad/ac Netgear
Nighthawk X10 Smart WiFi router [6] as access point. It is con-
nected through a 10G LAN SFP+ interface to a Dell Precision Tower
3620, which acts as the MPTCP server. We use iperf3 to generate
TCP traffic and log throughput every 100 ms. We measure power
by logging the voltage and current drawn by the phone from the
/sys/class/power supply/battery directory every 1 s. All the
1https://github.com/NUWiNS/ROGII_MPTCP/tree/master

power measurements are taken with the screen on and minimal
background activity. This ensures that the base power (defined as
the power consumed by the phone when the screen is on but all
radios are off) is low and stable over time. The power results are
relative to the base power. All experiments are performed at night
to avoid interference from other devices. They are done with a fully
charged battery and the battery does not drop by more than 5%
during the experiments.

3 PORTING MPTCP TO ROG PHONE II
In this section, we describe the implementation of MPTCP on an
ASUS ROG Phone II and the challenges we had to overcome to
achieve optimal performance.

3.1 Implementation
The ASUS ROG Phone II runs Android OS 10 based on Linux kernel
version 4.14.191. We ported MPTCP v0.94 [5] for Linux kernel
version 4.14.184 to the Android kernel on the ROG Phone II. We
used a publicly available version of the kernel source code [3] for
the ASUS ROG Phone II as our base. To successfully enable MPTCP
on this kernel, we needed to port two different parts of the code
from the MPTCP and generic Linux kernels to the Android kernel.

First, we added the main MPTCP tree to our base kernel (the
entire net/mptcp/ directory). However, apart from that, MPTCP
also requires changes in many of the existing TCP modules
that form the TCP networking stack for the Linux kernel (in
net/ipv4/, net/core/, etc.). Hence, we had to carefully go through
all the structures and functions modified/added for MPTCP and
make changes accordingly in our Android Linux kernel.

Second, due to the Linux kernel version mismatch between the
Android kernel and the MPTCP kernel, we had to make changes in
other non-TCP/MPTCP parts of the kernel as well. The challenge
here comes from the fact that there are some differences in the
Android version of the Linux kernel and the generic Linux kernel [4].
Hence, we had to again carefully check each file in the kernel
with differences between the two kernel versions and apply those
changes to our kernel while making sure we do not unintentionally
tamper with the Android related parts of the code.

For a first evaluation, we implemented our FixedRatio MPTCP
scheduler from [39], which assigns packets to the two interfaces
based on a user-defined ratio. This choice allows us to (i) remove
the impact of the scheduling decisions on the MPTCP performance
and focus on smartphone-specific challenges that affect the perfor-
mance (Sections 3.3, 3.4) and (ii) to experiment with different packet
assignment ratios and evaluate the impact of the packet assignment
ratio on the energy consumption (Section 4.2). In summary, after
all the aforementioned changes, we imported around 15000+ lines
of code to the Android Linux kernel.

3.2 Baseline evaluation
We measure the uplink and downlink throughput with the phone
kept static 1 m away from the AP with the 802.11ad phased ar-
ray facing the AP. In the downlink direction (from the AP to
the smartphone), the throughput with single path TCP (SPTCP)
in this setting is 1600 Gbps over the 802.11ad interface and 600

https://github.com/NUWiNS/ROGII_MPTCP/tree/master

Multipath TCP in Smartphones Equipped with Millimeter Wave Radios WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA

Downlink Uplink0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

u
g

h
p

u
t

(G
b

p
s)

802.11ac 802.11ad MPTCP

Figure 1: MPTCP throughput comparison.

Mbps over the 802.11ac interface. In the uplink direction, the cor-
responding values are 1450 Gbps and 600 Mbps. Hence, we expect
a downlink MPTCP throughput of around 2200 Gbps and an up-
link throughput of around 2050 Gbps. In [39], we showed that
there exists an optimal packet assignment ratio to the two inter-
faces that maximizes the throughput, given by the ratio of the
individual throughputs over the two interfaces. For example, in
our set up for the downlink direction, where the ratio of the two
throughputs is 𝑇ℎ𝑝𝑢𝑡𝑎𝑑 : 𝑇ℎ𝑝𝑢𝑡𝑎𝑐 = 1600 : 600 ≈ 2.7, this ratio
is 𝑃𝑘𝑡𝑠𝑎𝑑 : 𝑃𝑘𝑡𝑠𝑎𝑐 = 73 : 27 = 2.7, i.e., for every 100 packets, 77
packets should be sent over the 802.11ad interface and the remain-
ing 23 packets should be sent over the 802.11ac interface. For the
uplink direction, the optimal ratio is 70:30, since the uplink 802.11ad
throughput is lower (1450 Gbps vs. 1600 Gbps). We set these two
ratios in our FixedRatio scheduler to evaluate the performance of
MPTCP.

Fig. 1 shows the average MPTCP throughput over 20 runs as
well as the average individual throughput over each interface in
the uplink and downlink direction. The error bars in this figure and
all the following figures show the standard deviations. We observe
that MPTCP can indeed achieve optimal performance in the uplink
direction. However, in the downlink, MPTCP only achieves an
average throughput of about 1810 Mbps (82% of the optimal). In
the following, we discuss two challenges we had to overcome for
MPTCP to achieve optimal downlink performance.

3.3 Generic Receive Offloading
We found that the reason for the suboptimal downlink performance
was the fact that MPTCP by default disables the Linux Generic
Receive Offloading (GRO) feature on the 802.11ac interface. In our
previous work [11], we showed that GRO is critical to enable Gbps
data rates in smartphones equipped with 802.11ad interfaces. While
rates up to 600 Mbps over the 802.11ac interface alone can be
supported without GRO using SPTCP, it is important to enable
GRO over both interfaces for optimal MPTCP performance. Be-
fore performing GRO for a new TCP flow (or MPTCP subflow),
the 802.11ac driver checks if the chipset supports GRO by calling
the function hdd_can_handle_receive_offload. This function
checks that the flow is a TCP flow, as GRO is not supported for
UDP flows. Strangely, on the ROG Phone II, this check (through
function QDF_NBUF_CB_RX_TCP_PROTO) fails and thus, GRO is not

1.8 1.9 2.0 2.1 2.2
Throughput (Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Setting SIRQs to big cores
LITTLE cores disabled
Default setting

Figure 2: CDF of MPTCP throughput for various CPU set-
tings.

used. Thus, we had to bypass this check to enable GRO for the
802.11ac interface for MPTCP subflows. With GRO enabled over
the 802.11ac interface, the average throughput is 2 Gbps, a 10%
improvement compared to the GRO off case.

3.4 SIRQ Processing
While enabling GRO on the 802.11ac interface improves the per-
formance, throughput remains suboptimal. Fig. 2 shows the CDF
of 20 downlink MPTCP throughput measurements with GRO ON
(Default setting). We observe a median throughput of 2.01 Gbps
(91% of the optimal); in addition, 7/20 runs results in throughput
values below 2 Gbps, with a min value of 1.8 Gbps.

To explore the root cause of the suboptimal performance, we
looked at the Soft IRQ (SIRQ) processing, which accounts for a
large part of the total CPU utilization under backlogged traffic at
Gbps rates [11]. The ASUS ROG Phone II has a customized version
of the Snapdragon 855 processor known as Kryo 485. The chipset
has 8 CPU cores in total. Among them, there is a prime core that
operates at 2.84 GHz and three performance cores that operate at
2.42 GHz. Together, we call them big cores. There are also four
efficiency cores that operate at 1.8 GHz, which we call LITTLE
cores. The msm_irqbalance process is responsible for scheduling
the interrupt requests (SIRQs) to CPUs.

We found that, whenever SIRQs are scheduled to LITTLE cores,
the throughput does not exceed 2 Gbps. To quickly test the hy-
pothesis that scheduling SIRQs to LITTLE cores results in lower
performance, we manually disabled the 4 LITTLE cores by setting
the /sys/devices/system/cpu/cpu*/online flag to 0, where ∗ =
0, 1, 2, 3 corresponds to the indexes of the LITTLE cores. The result
in Fig. 2 shows a substantial improvement; the median through-
put is now 2.13 Gbps (96.8% of the optimal) and the max value
is 2.2 Gbps. Further, only 3/20 values are below 2 Gbps and the
min throughput also increases to 1.92 Gbps, confirming that CPU
affinity is indeed the key to achieving optimal performance.

Instead of manually turning off 4 out of 8 cores, a more prac-
tical solution is to stop the msm_irqbalance process and control
the CPU affinity by setting /proc/ irq/X/smp_affinity to the
corresponding bit map "f0" indicating big cores. Here, "X" is the
SIRQ number we found by looking at the SIRQ database located at
/proc/interrupts. This approach also allows for other, less CPU

WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA Imran Khan, Moinak Ghoshal, Shivang Aggarwal, Dimitrios Koutsonikolas, Joerg Widmer

Default LITTLE Cores
 Disabled

Setting IRQs
to big Cores

Uplink
0

1000

2000

3000

4000

5000

P
ow

er
 (

m
W

)

Figure 3: MPTCP power consumption.

demanding tasks, to be processed by LITTLE cores, and results in
an additional performance improvement, as shown in Fig. 2. The
median throughput is now 2.15 Gbps (97.7% of the optimal) and the
min throughput is 1.98 Gbps (90% of the optimal).

4 ENERGY EFFICIENCY
In this section, we evaluate the power consumption and energy
efficiency of MPTCP and make recommendations for an energy-
aware MPTCP scheduler.

4.1 Overall power consumption
Fig. 3 shows the total power consumption in the uplink and down-
link direction. In the downlink direction, we consider 3 different
CPU configurations: default, with the LITTLE cores disabled, and
with all cores enabled but the SIRQ processing assigned to big
cores. The results are averaged over 5 runs. The downlink power
consumption is comparable in all three configurations. Interest-
ingly, distributing the SIRQs to the big CPU cores only causes only
a minor increase in power consumption when compared to the
default configuration. On the other hand, the uplink power con-
sumption is 56% higher than the downlink power consumption,
mainly due to the very high Tx power consumption of the 802.11ac
radio [10]. Under backlogged traffic, the 802.11ac radio in the ROG
Phone II consumes 2800 mW in Tx mode, while the 802.11ad ratio
consumes only 1600 mW, in spite of the much higher data rates. In
contrast, the power consumption in Rx mode is about 1100 mW for
the 802.11ac radio and 2200 mW for the 802.11ad radio.

4.2 Energy efficiency
In this section, we explore whether the packet scheduling ratio
that maximizes the throughput is also the most energy-efficient
ratio. We again use the FixedRatio scheduler to measure energy per
bit (in nJ/bit), defined as the ratio of the power consumption over
throughput, for different packet scheduling ratios.
Backlogged traffic. The results in Figs. 4a, 4b confirm that the
ratio that maximizes the throughput also results in the minimum
energy cost, among all the configurations that schedule packets
over both interfaces, in the downlink direction. Although using only
the 802.11ad interface (i.e., a ratio of 100:0) results in slightly lower
energy cost (Fig. 4b), this configuration results in only 1.6 Gbps

(Fig. 4a). Utilizing both interfaces with the right packet scheduling
ratio yields a 32% throughput increase with only a 1.4% increase in
the energy cost.

However, this finding is not true for the uplink direction, as
we observe in Figs. 4c, 4d. Here, the throughput-optimal ratio is
70:30, but the energy-optimal ratio is 90:10, due to the much lower
Tx power consumption of the 802.11ad radio, as we explained in
Section 4.1. Nonetheless, the difference in the energy cost between
the throughput-optimal and the energy-optimal ratio is small; the
throughput optimal ratio results in 25% higher throughput at only
12% higher energy cost. We conclude that under backlogged traffic,
the throughput optimal ratio should be selected even in an energy-
aware design, as it also results in near-optimal energy cost.
Non-backlogged traffic. The work in [39] focused on backlogged
traffic only. We now explore the case of non-backlogged traffic
using three representative source data rates in each direction:
1750/1500/500 Mbps in the downlink case; 1750/1400/500 Mbps
in the uplink case. The first data rate requires the use of both inter-
faces, the second one can be satisfied using the 802.11ad interface
alone, and the third one can be satisfied using 802.11ac alone. Figs. 5,
6, and 7 show the throughput and energy cost for varying packet
scheduling ratios for each of the three source data rates, respec-
tively.

Figs. 5a and 5c, 6a and 6c, 7a and 7c show that, for non-
backlogged traffic, there are more than one ratio that satisfy the
traffic demand. In particular, in the case of traffic demands lower
than the bandwidth of the slower of the two interfaces (Figs. 7a
and 7c), the traffic demand can be satisfied with any ratio. However,
the energy cost of each ratio is different, as shown in Figs. 5b and 5d,
6b and 6d, 7b and 7d.

In the downlink case, we found that, when the traffic demand
is higher than the bandwidth of the faster interface, the most en-
ergy efficient packet ratio is the one that fully utilizes the 802.11ac
interface. This is because the 802.11ac radio is less power hungry
than the 802.11ad radio in Rx mode [10]. For example, for a traffic
demand of 1750 Mbps (Figs. 5a, 5b), the most energy efficient ratio
is 66:34, which results in 600 Mbps downloaded via the 802.11ac
interface and the remaining 1750 - 600 = 1150 Mbps via the 802.11ad
interface. On the other hand, when the traffic demand can be satis-
fied by a single interface (Figs. 6a, 6b and 7a, 7b), the most energy
efficient option is to use a single interface, and let the other inter-
face remain in a low power (sleep) state via the Power Saving Mode
(PSM). With a source data rate of 1500 Mbps, only the 802.11ad
interface can satisfy the traffic demand alone and the most energy-
efficient ratio is 100:0 (Fig. 6b). In contrast, with a source data rate
of 500 Mbps, both interfaces can satisfy the traffic demand, but the
most energy efficient option is to use only 802.11ac (Ratio 0:100 in
Fig. 7b), which is less power hungry.

The situation is different in the uplink case, due to the much
lower Tx power consumption of the 802.11ad radio compared to
the 802.11ac radio. When the traffic demand is higher than the
bandwidth of the faster interface, the most energy efficient packet
ratio is the one that fully utilizes the 802.11ad interface. For example,
for a traffic demand of 1750 Mbps (Figs. 5c, 5d), the most energy
efficient ratio is 83:17, which results in 1450 Mbps downloaded via
the 802.11ad interface and the remaining 1750 - 1450 = 300 Mbps
via the 802.11ac interface. In contrast, when the traffic demand can

Multipath TCP in Smartphones Equipped with Millimeter Wave Radios WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA

0 10 20 30 40 50 60 70 73 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(a) Throughput, Downlink.
0 10 20 30 40 50 60 70 73 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(b) Energy cost, Downlink.

0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(c) Throughput, Uplink.
0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(d) Energy cost, Uplink.
Figure 4: MPTCP Throughput and Energy/bit with different ratios for backlogged traffic.

0 10 20 30 40 50 60 66 70 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(a) Throughput, Downlink.
0 10 20 30 40 50 60 66 70 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(b) Energy cost, Downlink.

0 10 20 30 40 50 60 66 70 80 83 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(c) Throughput, Uplink.
0 10 20 30 40 50 60 66 70 80 83 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(d) Energy cost, Uplink.
Figure 5:MPTCPThroughput and Energy/bit with different ratios for source data rate 1750Mbps. The source data rate requires
use of both interfaces.

0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(a) Throughput, Downlink.
0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(b) Energy cost, Downlink.

0 10 20 30 40 50 55 60 70 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(c) Throughput, Uplink.
0 10 20 30 40 50 55 60 70 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)
(d) Energy cost, Uplink.

Figure 6: MPTCP Throughput and Energy/bit with different ratios for source data rate 1500 Mbps (DL) and 1400 Mbps (UL).
The source data rate can be satisfied with 802.11ad alone.

0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(a) Throughput, Downlink.
0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(b) Energy cost, Downlink.

0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

500

1000

1500

2000

2500

Th
ro

u
g

h
p

u
t

(M
b

p
s)

(c) Throughput, Uplink.
0 10 20 30 40 50 60 70 80 90 100

Packets/100 (802.11ad)
0

1

2

3

4

5

6

7

En
er

g
y/

b
it

 (
n

J/
b

it
)

(d) Energy cost, Downlink.
Figure 7: MPTCP Throughput and Energy/bit with different ratios for source data rate 500 Mbps. The source data rate can be
satisfied with 802.11ac alone.
be satisfied by a single interface, the most energy efficient option is
to use only the 802.11ad radio (Figs. 6d and 7d).
MPTCP backup mode. When the traffic demand can be satisfied
by one interface, one can either use a ratio-based scheduler to assign
zero packets to the other interface, or use the MPTCP backup mode,
which uses only one interface and falls back to the other interface,
only if the connection over the first one breaks. Fig. 8 compares
the total Rx power consumption in case of backlogged traffic over
each of the two interfaces when the other interface is (i) assigned 0
packets and (ii) set to backup mode, for varying source data rates.
We observe that the power consumption is very similar with both

approaches, hence, either of them can be used in the design of an
energy-aware scheduler.
Recommendations. The flow charts in Fig. 9 show a set of guide-
lines for the design of an an energy-aware MPTCP scheduler for
smartphones combining 802.11ad and 802.11ac interfaces. The
scheduler needs to know the application traffic demand and the
maximum supported data rate over each interface. The application
traffic demand can be estimated online, e.g., by monitoring the
number of bytes sent over each interface, as in [39]. One potential
design could be to always start with the MuSher scheduler [39],

WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA Imran Khan, Moinak Ghoshal, Shivang Aggarwal, Dimitrios Koutsonikolas, Joerg Widmer

0 250 500 750 1000 1250 1500
Source Data Rate (Mbps)

500

750

1000

1250

1500

1750

2000

2250

Po
w

er
 (

m
W

)

11ac with ratio set to 0:100
11ac with 11ad as backup
11ad with ratio set to 100:0
11ad with 11ac as backup

Figure 8: Rx power consumption of an interface for varying
source data rates when the other interface is (i) assigned 0
packets or (ii) set to backup mode.

(a) Downlink traffic.

(b) Uplink traffic.
Figure 9: Design guidelines for an energy-aware MPTCP
scheduler. 𝑅802.11𝑎𝑑 , 𝑅802.11𝑎𝑐 is the max supported rate for
802.11ad and 802.11ac, respectively.
which searches online for the packet assignment ratio that maxi-
mizes the throughput, and compare the throughput achieved with
MuSher in the steady state (after the search discovers the optimal
ratio) with the max data rate supported by each interface, in order
to select the most energy efficient configuration. The max data rate
over each interface can either be hard-coded (all COTS 60 GHz
devices support a maximum data rate of 1.6 Gbps and the majority
of 802.11ac smartphones support 2x2 MIMO and 80 MHz chan-
nel width resulting in a maximum data rate of 600 Mbps, similar
to the ROG Phone II) or estimated via a probing-based technique
(e.g., [28]).

5 RELATEDWORK
A number of works have evaluated different aspects of MPTCP
performance under various scenarios, e.g., [14, 18, 20, 37, 38, 44].
In addition, researchers have proposed a large number of MPTCP
schedulers, e.g., [12, 19, 24, 26, 34, 35, 42, 45]. All these works use
simulation/emulation or experiments on desktops/laptops in their
evaluation and they do not deal with the challenges that arise when
implementing MPTCP on resource-constrained mobile devices. For
example, all these works (with the exception of [18]) focus on
performance benefits of MPTCP and ignore energy consumption.

A smaller set of works have studiedMPTCP on smartphones [15–
18, 21, 36, 41, 43]. All these works focus on bundling aWiFi interface
and a cellular interface (3G or LTE), a scenario very different from
the one we consider in this work (bundling legacy WiFi with 60
GHz). Cellular and WiFi radios have very heterogeneous character-
istics in terms of RTT and power consumption (e.g., the existence of
a tail state in 3G/LTE), which affect the design of both performance-
and energy-aware MPTCP schedulers. Such heterogeneity is not
present in 802.11ac and 802.11ad interfaces, making the design of
energy-aware schedulers in this case much simpler (see Section 4.2).
On the other hand, the combined data rates of older 802.11 stan-
dards (802.11b/a/g/n) and 3G/LTE standards are low enough to be
handled even by older generations of mobile phones. In contrast,
the Gbps data rates introduced by 802.11ad pose a challenge even
for modern smartphones and require OS optimizations (Sections 3.3,
3.4) for MPTCP to yield optimal performance.

Very little work has been done towards leveraging MPTCP in
networks involving mmWave links. A few works [33, 46] briefly
explored the use of MPTCP in dual band 5/60 GHz WLANs and
showed that it often results in lower performance than using the
802.11ad interface alone. In contrast, our previous work [39] as well
as the work in [13] showed that 5 GHz and 60 GHz radios can be
effectively bundled together to yield optimal performance under
intelligent scheduling at the transport [39] or the link layer [13].
All these works were evaluated using dual-band laptops. To our
first knowledge, this is the first work to explore the use of MPTCP
in dual band 5/60 GHz smartphones.

6 CONCLUSION
In this paper, we ported for first time MPTCP to a smartphone
equipped with an 802.11ad radio and performed a preliminary
performance evaluation using a FixedRatio MPTCP scheduler. We
identified two system level optimizations required for optimal per-
formance in a resource-constrained mobile device, that are not
needed in more powerful laptops: enabling GRO on the 802.11ac
interface and scheduling SIRQ processing to big CPU cores. We
also evaluated for first time the power consumption of MPTCP in a
dual-band 802.11ad/ac smartphone and provided a set of guidelines
towards the design of an energy-aware MPTCP scheduler.

As part of our future work, we plan to perform an exten-
sive evaluation of the MPTCP performance and energy consump-
tion on the ROG Phone II using different MPTCP schedulers, in-
cluding the default minRTT scheduler and our throughput-ratio-
based MuSher scheduler [39], which was designed specifically for

Multipath TCP in Smartphones Equipped with Millimeter Wave Radios WiNTECH’21, January 31-February 4 2022, New Orleans, LA, USA

bundling 802.11ad and 802.11ac radios, in a variety of dynamic sce-
narios involving interference, human blockage, and realistic smart-
phone user mobility patterns. We also plan to evaluate MPTCP with
mobile applications that require Gbps throughput, such as AR, VR,
Miracast, and HD video streaming.

ACKNOWLEDGMENTS
This research work was sponsored in part by the NSF grant CNS-
1553447, the Spanish Ministry of Science and Innovation (MI-
CIU) grant RTI2018-094313-B-I00 (PinPoint5G+), and the Region of
Madrid through TAPIR-CM (S2018/TCS-4496).

REFERENCES
[1] [n.d.]. Acer TravelMate P446-M. https://www.acer.com/ac/en/US/content/

professional-series/travelmatep4.
[2] [n.d.]. ASUS Republic of Gamers (ROG) Phone. https://www.asus.com/us/Phone/

ROG-Phone/
[3] [n.d.]. ASUS ROG Phone II Kirisakura Kernel. https://github.com/freak07/

Kirisakura_Yoda/tree/master_q_exp_14
[4] [n.d.]. Linux Kernel Source. https://github.com/torvalds/linux
[5] [n.d.]. MPTCP v0.94. https://github.com/multipath-tcp/mptcp/tree/mptcp_v0.94
[6] [n.d.]. Netgear Nighthawk® X10. https://www.netgear.com/landings/ad7200
[7] Online. ASUS Republic of Gamers (ROG) Phone II. https://www.asus.com/us/

Phone/ROG-Phone-II/
[8] [Online]. TP-Link Talon AD7200 Multi-Band Wi-Fi Router. http://www.tp-

link.com/us/products/details/cat-5506_AD7200.html.
[9] Shivang Aggarwal, Moinak Ghoshal, Piyali Banerjee, and Dimitrios Koutsoniko-

las. 2021. An Experimental Study of the Performance of IEEE 802.11ad in Smart-
phones. Elsevier Computer Communications 169 (2021), 220–231.

[10] Shivang Aggarwal, Moinak Ghoshal, Piyali Banerjee, Dimitrios Koutsonikolas,
and Joerg Widmer. 2021. 802.11ad in Smartphones: Energy Efficiency, Spatial
Reuse, and Impact on Applications. In Proc. of IEEE INFOCOM.

[11] Shivang Aggarwal, Swetank Kumar Saha, Pranab Dash, Jiayi Meng, Arvind
Thirumurugan, Dimitrios Koutsonikolas, and Y. Charlie Hu. 2019. Poster: Can
Mobile Hardware Keep Up with Today’s Gigabit Wireless Technologies?. In Proc.
of ACM MobiCom.

[12] Sabur Hassan Baidya and Ravi Prakash. 2014. Improving the performance of
Multipath TCP over Heterogeneous Paths using Slow Path Adaptation. In Proc.
of IEEE ICC.

[13] Ghufran Baig, Jian He, Mubashir Adnan Qureshi, Lili Qiu, Guohai Chen, Peng
Chen, and Yinliang Hu. 2019. Jigsaw: Robust Live 4K Video Streaming. In Proc.
of ACM MobiCom.

[14] Yung-Chih Chen, Yeon sup Lim, Richard J. Gibbens, Erich M. Nahum, Ramin
Khalili, and Don Towsley. 2013. A Measurement-based Study of MultiPath TCP
Performance over Wireless Networks. In Proc. of ACM IMC.

[15] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaven-
ture. 2015. Poster: Evaluating Android Applications with Multipath TCP. In Proc.
of ACM MobiCom.

[16] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaven-
ture. 2016. A First Analysis of Multipath TCP on Smartphones. In Proc. of PAM.

[17] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaven-
ture. 2016. Observing Real Smartphone Applications over Multipath TCP. IEEE
Communications Magazine, Network Testing Series, 54, 3 (March 2016), 88–93.

[18] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. 2014.
WiFi, LTE, or Both? Measuring Multi-Homed Wireless Internet Performance. In
Proc. of ACM IMC.

[19] Simone Ferlin, Ozgu Alay, Olivier Mehani, and Roksana Boreli. 2016. BLEST:
Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks. In
Proc. of IFIP Networking.

[20] Simone Ferlin, Thomas Dreibholz, and Özgu Alay. 2014. Multi-Path Transport
Over Heterogeneous Wireless Networks: Does It Really Pay Off?. In Proc. of IEEE
GLOBECOM.

[21] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and Subhabrata
Sen. 2017. Accelerating Multipath Transport Through Balanced Subflow Com-
pletion. In Proc. of ACM MobiCom.

[22] Muhammad Kumail Haider, Yasaman Ghasempour, Dimitrios Koutsonikolas, and
Edward Knightly. 2018. LiSteer: mmWave Beam Acquisition and Steering by
Tracking Indicator LEDs on Wireless APs. In Proc. of ACM MobiCom.

[23] Muhammad Kumail Haider and Edward W. Knightly. 2016. Mobility Resilience
and Overhead Constrained Adaptation in Directional 60 GHz WLANs: Protocol
Design and System Implementation. In Proc. of ACM MobiHoc.

[24] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-DASH:
Adaptive Video Streaming Over Preference-Aware Multipath. In Proc. of ACM

CoNEXT.
[25] IEEE 802.11 Working Group. 2012. IEEE 802.11ad, Amendment 3: Enhancements

for Very High Throughput in the 60 GHz Band. (2012).
[26] Nicolas Kuhn, Emmanuel Lochin, AhlemMifdaoui, Golam Sarwar, OlivierMehani,

and Roksana Boreli. 2014. DAPS: Intelligent Delay-Aware Packet Scheduling For
Multipath Transport. In Proc. of IEEE ICC.

[27] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:
Engineering High-Quality Immersive Virtual Reality on Today’s Mobile Devices.
In Proc. of ACM MobiCom.

[28] Mingzhe Li, Mark Claypool, and Robert Kinicki. 2008. WBest: a Bandwidth
Estimation Tool for IEEE 802.11 Wireless Networks. In Proc. of IEEE LCN.

[29] Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju Ran, and
Marco Dias Silva. 2017. VR is on the Edge: How to Deliver 360°Videos in Mobile
Networks. In Proc. of VR/AR Network.

[30] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proc. of ACM WWW.

[31] Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu,
Rostand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao
Li, Feng Qian, and Zhi-Li Zhang. 2020. Lumos5G: Mapping and Predicting
Commercial MmWave 5G Throughput. In Proc. of ACM IMC.

[32] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Dustin Zhang, Denis Rybkin, Michael Yang, Z. Morley Mao, Feng Qian,
and Zhi-Li Zhang. 2021. A Variegated Look at 5G in the Wild: Performance,
Power, and QoE Implications. In Proc. of ACM SIGCOM.

[33] Kien Nguyen, Mirza Golam Kibria, Kentaro Ishizu, and Fumihide Kojima.
2017. Feasibility Study of Providing Backward Compatibility with MPTCP to
WiGig/IEEE 802.11ad. In Proc. of VTC-Fall.

[34] Dan Ni, Kaiping Xue, Peilin Hong, and Sean Shen. 2014. Fine-grained Forward
Prediction based Dynamic Packet Scheduling Mechanism for multipath TCP in
lossy networks. In Proc. of ICCCN.

[35] Dan Ni, Kaiping Xue, Peilin Hong, Hong Zhang, and Hao Lu. 2015. OCPS: Offset
Compensation based Packet Scheduling mechanism for multipath TCP. In Proc.
of IEEE ICC.

[36] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley Mao, and Subhabrata Sen.
2016. An In-depth Understanding of Multipath TCP on Mobile Devices: Measure-
ment and System Design. In Proc. of ACM MobiCom.

[37] Christoph Paasch, Ramin Khalili, and Olivier Bonaventure. 2013. On the Benefits
of Applying Experimental Design to Improve Multipath TCP. In Proc. of ACM
CoNEXT.

[38] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How Hard Can
It Be? Designing and Implementing a Deployable Multipath TCP. In Proc. of
USENIX NSDI.

[39] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak, Dimitrios Koutsonikolas,
and Joerg Widmer. 2019. MuSher: An Agile Multipath-TCP Scheduler for Dual-
Band 802.11ad/ac Wireless LANs. In Proc. of ACM MobiCom.

[40] S. K. Saha, H. Assasa, A. Loch, N. M. Prakash, R. Shyamsunder, S. Aggarwal,
D. Steinmetzer, D. Koutsonikolas, J. Widmer, and M. Hollick. 2018. Fast and
Infuriating: Performance and Pitfalls of 60 GHz WLANs Based on Consumer-
Grade Hardware. In Proc. of IEEE SECON.

[41] Swetank Kumar Saha, Abhishek Kannan, Geunhyung Lee, Nishant Ravichan-
dran, Parag Kamalakar Medhe, Naved Merchant, and Dimitrios Koutsonikolas.
2017. Multipath TCP in Smartphones: Impact on Performance, Energy, and CPU
Utilization. In Proc. of ACM MobiWac.

[42] Tanya Shreedhar, Nitinder Mohan, Sanji K. Kaul, and Jussi Kangasharju. 2018.
QAware: A Cross-Layer Approach to MPTCP Scheduling. In Proc. of IFIP Net-
working.

[43] Yeon sup Lim, Yung-Chih Chen, Erich M. Nahum, Don Towsley, Richard J.
Gibbens, and Emmanuel Cecchet. 2015. Design, Implementation and Evaluation
of Energy-Aware Multi-Path TCP. In Proc. of ACM CoNEXT.

[44] Yeon sup Lim, Yung-Chih Chen, Erich M. Nahum, Donald F. Towsley, and Kang-
Won Lee. 2014. Cross-layer path management in multi-path transport protocol
for mobile devices. In Proc. of IEEE INFOCOM.

[45] Yeon sup Lim, Erich M. Nahum, Don Towsley, and Richard J. Gibbens. 2017. ECF:
An MPTCP Path Scheduler to Manage Heterogeneous Paths. In Proc. of ACM
CoNEXT.

[46] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. 2017. WiFi-
Assisted 60 GHz Wireless Networks. In Proc. of ACM MobiCom.

[47] Sanjib Sur, Xinyu Zhang, Parameswaran Ramanathan, and Ranveer Chandra.
2016. BeamSpy: Enabling Robust 60 GHz Links Under Blockage. In Proc. of
USENIX NSDI.

[48] Teng Wei and Xinyu Zhang. 2017. Pose Information Assisted 60 GHz Networks:
Towards Seamless Coverage and Mobility Support. In Proc. of ACM MobiCom.

https://www.acer.com/ac/en/US/content/professional-series/travelmatep4
https://www.acer.com/ac/en/US/content/professional-series/travelmatep4
https://www.asus.com/us/Phone/ROG-Phone/
https://www.asus.com/us/Phone/ROG-Phone/
https://github.com/freak07/Kirisakura_Yoda/tree/master_q_exp_14
https://github.com/freak07/Kirisakura_Yoda/tree/master_q_exp_14
https://github.com/torvalds/linux
https://github.com/multipath-tcp/mptcp/tree/mptcp_v0.94
https://www.netgear.com/landings/ad7200
https://www.asus.com/us/Phone/ROG-Phone-II/
https://www.asus.com/us/Phone/ROG-Phone-II/
http://www.tp-link.com/us/products/details/cat-5506_AD7200.html
http://www.tp-link.com/us/products/details/cat-5506_AD7200.html

	Abstract
	1 Introduction
	2 Devices and experimental methodology
	3 Porting MPTCP to ROG Phone II
	3.1 Implementation
	3.2 Baseline evaluation
	3.3 Generic Receive Offloading
	3.4 SIRQ Processing

	4 Energy Efficiency
	4.1 Overall power consumption
	4.2 Energy efficiency

	5 Related work
	6 Conclusion
	Acknowledgments
	References

