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Abstract—Efficient utilization of the microgrid generation
resources (MGRs) is important especially during weather-related
events. Existing single-agent and cooperative multi-agent based
reinforcement learning (RL) approaches may be infeasible and
computationally expensive for scheduling MGRs effectively when
there are some probabilistic weather-related emergency events.
In this paper, we propose a Q-learning approach with multiple
local agents for a grid-connected microgrid application and
show that the proposed integration is capable of scheduling
MGRs efficiently for both normal and weather-related emergency
events. Specifically, we utilize different local Q-learning agents
to learn different microgrid events, and aggregate the learned
value functions to the global agent who handles the overall
microgrid energy scheduling in a probabilistic way. Numerical
simulations are performed to validate the effectiveness of the
proposed method. The influences of the effective utilization of
the MGRs and power outage duration are discussed. Two case
studies with different power outage probabilities are presented
to evaluate the performance of our proposed method.

Index Terms—Microgrid energy scheduling, extreme weather
events, energy optimization, reinforcement learning, and aggre-
gating knowledge.

I. INTRODUCTION

Increasing threats of weather-related incidents and natural
disasters in recent years have highlighted the urgency of
effectively improving power system resilience and attracted
worldwide attention. In the U.S., between the years 2003-
2012, more than 10 million, and after 2012-till now, higher
than 17 million customers experienced a power outage due
to weather-related events [1], [2], [3]. The annual impact of
weather-related blackouts costs between $20 to $75 billion
only in the U.S., and the cost keeps increasing every year [4],
[5]. Deployment of microgrids for improving power system re-
siliency is the widely accepted viable solution. With the ability
to operate in both grid-connected and isolated mode, micro-
grid enhances reliability and resiliency, increases efficiency,
and provides cleaner and cheaper energy through enabling a
diverse distributed energy mix [6], [7]. Therefore, efficient
pre-disaster preparation and proper utilization of microgrid
energy sources can significantly minimize the economic loss
and power interruptions.

As stated in [8], microgrid scheduling and dispatch research
with resiliency considerations have not been widely explored
in the literature. A probabilistic chance constraint is proposed
in order to meet the local microgrid demands considering
renewable generation (RG) and demand uncertainty in [9].
A new optimization model is presented for determining the
spinning reserve requirement in microgrids by analyzing the
characteristic of unit outage events in [10]. A microgrid
scheduling and dispatch model is proposed and evaluated con-

sidering the main grid supply interruption time and duration in
[11]. This work was later extended considering RG and load
uncertainties in [12]. However, in these works, the authors
have assumed the energy storage charging/discharging status
to be the same for both normal and isolated operations that
may output an extra-operating cost in practice. Some works
study the natural disaster impacts, trying to understand the
blackout causes and explore ways to prepare the grid [13],
[14].

In recent years, single- and multi-agent reinforcement learn-
ing (RL) approaches have been recognized for solving mi-
crogrid online decision-making and control problems [15]. In
[5], a multi-agent reinforcement learning (RL) technique is
proposed to improve the microgrid post-disaster resilience with
the goal to minimize outage duration. Though post-disaster
resilience can help to minimize the outage duration through
scheduling available spinning reserves, pre-disaster planning
and efficient utilization during a disaster can be a cost-
effective solution with significant enhancement of flexibility,
reliability, and resiliency. Multi-agent RL with cooperative
system is explored in the literature for solving microgrid online
energy management challenges [16]. In cooperative RL, the
agents cooperatively interact with the environment, and the
number of states increases significantly with the increment
of sub-environments so that this approach computationally
is sometimes expensive. Asynchronous and synchronous RL
approaches are proposed in the literature [17], [18]. In these
approaches, the local agents are employed in parallel to
explore different parts of the environment and update the
learned policy asynchronously or synchronously to the global
network to handle complex tasks.

Under the light of the new artificial intelligence trend, in this
paper, we propose a Q-learning approach with multiple agents
to capture different microgrid operating conditions when the
grid is suffering from extreme weather. For developing our
proposed approach, we utilize the parallel learning nature so
that the proposed approach is capable of solving both single
(single task) and multiple (multi-task) microgrid environment
problems efficiently. We apply the proposed approach for
a grid-connected microgrid application with a probabilistic
Q-value updating strategy. In the proposed design, local Q-
learning agents are used to learn the optimization policy for
normal and weather-related emergency events, respectively.
The global Q-learning agent updates the Q-value function
probabilistically based on each local agent’s learned policy,
and thus takes the proper microgrid dispatch decision based on
the corresponding events. The energy scheduling performance
of the proposed algorithm is evaluated through numerical
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case studies and compared with the existing techniques (e.g.,
cooperative Q learning) to provide the improvement.

The rest of this paper is organized as follows. The model de-
scription and problem formulation are presented in Section II.
In Section III, the integration of the proposed Q-learning
approach in microgrid application is demonstrated. Simulation
results and analysis are carried out in Section IV. Finally, the
conclusions and future works are presented in Section V.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

A microgrid can be defined as a small distribution system
consisting of distributed energy resources (DERs), including
distributed RGs, dispatchable distributed generators, and bat-
tery energy storage system (BESS) with the interconnection of
controllable and uncontrollable loads [19], [20]. In this paper,
we consider a grid-connected microgrid with four types of
units from the standpoint of energy generation and demand:
intermittent RGs, such as wind turbines and photovoltaics; a
diesel generator (DG) as a dispatchable distributed generator;
a BESS; and local microgrid loads. The connection with the
main grid gives the flexibility to the microgrid to export/import
power to/from the utility network, and maintain the reference
voltage and frequency of the system in accordance with
the predetermined operation strategy. In this problem, our
goal is to schedule the generation units efficiently based on
the defined probabilistic weather conditions so that the total
operational cost of the microgrid can be minimized. We solve
the optimization problem for a day with an hour interval. The
problem is formulated as a Markov decision process, where
the state variables represent the microgrid input information,
and the action set represents the microgrid scheduling decision
variables. The microgrid state is defined as

St = (Bt, Rt, Gt, Dt). (1)

where t is the time step, Bt is the available energy in the
BESS, Rt is the available RG output, Gt is the grid price,
and Dt is the microgrid load demand. The action policy set is

at = (aB,c
t , aB,d

t , aDG
t , am,G

t , aG,m
t , adlt ), at ∈ χt. (2)

where aB,c
t and aB,d

t represent charging and discharging power
of the BESS, respectively. aDG

t is the DG power output. am,G
t

and aG,m
t represent the export and import powers to and from

the main grid, respectively. adlt is the dumped or unserved
load.

The microgrid instant cost function is defined as the sum-
mation of the cost of energy buying from and selling to the
grid and the fuel cost of the dispatchable DG unit as

C(St, at) = (aG,m
t −am,G

t )Gt+kDG,t(x(a
DG
t )2+yaDG

t +z).
(3)

where x, y and z are the DG fuel cost-curve coefficients. kDG,t

is a binary variable acting the ON/OFF status of the DG.
The microgrid operational constraints are as follows

aDG
t + aG,m

t + aB,d
t − aB,c

t − am,G
t + adlt +Rt = Dt, (4)

0 ≤ aB,c
t ≤ (1− bt)ψC , (5)

0 ≤ aB,d
t ≤ btψD, (6)

SOCmin ≤ SOCt ≤ SOCmax, (7)

kgenPratedkDG,t ≤ aDG
t ≤ PratedkDG,t. (8)

where, the constraint (4) is the microgrid generation-demand
balance constraint. The constraints (5) and (6) are the BESS
charging and discharging power output constraints where ψC

and ψD represent the maximum charging and discharging
battery power output, respectively. The BESS state of charge
(SOC) constraint is presented in (7) to keep the SOC within a
certain range for the healthy operation of the BESS. The DG
power output should be in a certain range, and it is constrained
using (8) where kgen is defined as a percentage of the DG rated
power Prated.

A transition function is used to update the SOC of the BESS
as

SOCt+1 =
1

Bcap
(BcapSOCt + φCaB,c

t − aB,d
t

φD
). (9)

where φC and φD are the BESS charging and discharging
efficiency. Bcap is the energy capacity of the BESS.

The objective is to minimize the total operational cost of
the microgrid over a finite horizon of time T ,

min
at

E
[ T∑

t=0

C(St, at)

]
. (10)

where E[.] is the expectation operator. The objective function
subjects to the microgrid operational constraints presented in
(4)-(8).

III. PROPOSED Q-LEARNING APPROACH WITH MULTIPLE
LOCAL AGENTS FOR THE MICROGRID APPLICATION

In RL research, the RL agent interacts with the environment
(system model) through taking actions/decisions online and
learning the policy from the local observation [15], [21]. Q-
learning is an RL algorithm, and in Q-learning, a Q-value
function Q(s, a) is used to map the relationship between state
s and action a. The Q-value function is calculated by Bellman
equation as

Q(St, at) = (1−α)Q(St, at)+α[C(St, at)+γmin
at+1

Q(St+1, at+1)]

(11)
where α is the learning rate, and St+1 is the resulting state
after taking action at in state St. In state St, the action at
is usually determined using the ε-greedy strategy. According
to the strategy, at any state St, the at is determined either
selecting a random action from the feasible actions or using
the greedy technique min

at

Q(St, at). γ is the discount factor.
In this paper, we propose a Q-learning approach with mul-

tiple local agents to solve the microgrid scheduling problem
under the resiliency considerations. Specifically, we employ
two local Q-learning agents to learn the optimization policies
parallelly for both normal and weather-related emergency
operations of the grid-connected microgrid. Both agents are
probabilistically connected to the global Q-agent so that the
global microgrid policy can be updated, and the microgrid
dispatch decisions can be taken based on event probability.

The integration of the proposed Q-learning approach in the
microgrid application is illustrated in Fig. 1. According to the
algorithm design, Q-table and other microgrid parameters are
initialized at the beginning of the algorithm. The local agents
interact with the sub-environments (normal and emergency) of
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Fig. 1. Integration of the proposed Q-learning approach in the grid-connected
microgrid application.

the micorgrid environment and learn the output of the decision
taken by updating the Q-table of the corresponding state-action
pair. The actions of the local agents are taken using the ε-
greedy strategy where the greedy decisions of the local agents
for the normal and emergency operations are defined as

anrt = argmin
anr
t

Qnr(Snr
t , anrt ). (12)

aemg
t = arg min

aemg
t

Qemg(Semg
t , aemg

t ). (13)

where Qnr and Qemg are the Q-value value functions for
the normal operation and emergency operation agents, re-
spectively. Snr

t and Semg
t represent the states obtained from

the normal and emergency sub-environments of the microgrid
model. Basically, these states represent the available microgrid
resource information under different microgrid event condi-
tions.

At every iteration, the Q-value functions of the global Q-
learning agent at time t is updated probabilistically as

QG(st, at) = (1− p)Qnr(st, at) + pQemg(st, at). (14)

where QG is the Q-value function for the global agent. p
represents the event probability for the emergency operation.
st represents the set of states at time t, and at is the set of
actions per state. This equation provides the global agent the
capacity to aggregate the knowledge learned from both the
normal and the emergency operation conditions. Thus, the
global agent is able to handle the extreme weather events
online adaptively.

At the end of N iterations, the proposed approach outputs
the global Q-value functions that can be used to determine
the microgrid power dispatch decisions as the greedy policy
argmin

at

QG(St, at) for the corresponding probabilistic events.
Besides, the microgrid operator can also access the trained
local Qnr and Qemg value functions that give flexibility to the
operator to decide the microgrid operational strategy based on
real-time events.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we conduct different case studies to exam-
ine the performance of the proposed approach in terms of
microgrid operational cost and final action policy. We also
present the performance comparison to justify the performance
improvement.
A. Simulation Setup

The parameters of the microgrid DERs are provided in Table
I. The time horizon of of the optimization problem is set
to be T = 24 hours with one hour interval. The microgrid
input profiles including a small residential community load-
demand, RG output, and electricity price are plotted in Fig. 2.
The RG outputs are taken from the system advisory model
by National Renewable Energy Laboratory for the city of
Phoenix, AZ [22]. For the load-demand, a small residential
community load-demand data is collected from [23].

TABLE I
MICROGRID INFORMATION.

RG Photovoltaic Capacity 50 kW
Wind Turbine Capacity 50 kW

BESS
Capacity 150 kWh

charging and discharging eff. 90%
Maximum Power 30 kW

DG
Rated Power 100 kW

Minimum Dispatch Percentage 0.3
Cost Coefficients x, y, and z 0.0009 ($/(kW )2),

0.0213 ($/kW ) and 1.1 ($)

For the implementation of the Q-learning approach, we
use the lookup tables for the agents QG, Qnr and Qemg .
We set the lookup tables as a matrix of states and time
steps, where discretized battery SOC and DG ON/OFF status
(kDG,t) are used for defining the state. We use the discretized
states to avoid the computational burden of solving problems
with continuous states. The exploration rate ε is set as 0.6.
For investigating the impact of power supply interruption on
microgrid operation, we assume during the extreme weather-
related event, the utility grid goes down for a certain time
frame, and the microgrid operates in isolated mode on that
certain time frame. According to the U.S. Energy Information
Administration (EIA) [24], U.S. customers experienced an
average of around 6 hours of power interruptions in 2018
including major and non-major events, where around 4 hours
of power interruptions only for the major events. In our case
study, we use 4 hours of power interruptions of the utility grid
on the microgrid operation.

All the simulations are conducted in MATLAB R2019b
environment on a 8th generation Intel Core i7 8650U quad-
core processor, 4.2GHz Windows based PC with 16GB RAM.
For the performance comparison, all the approaches are im-
plemented in the same environment.
B. Simulation Results

In this section, we conduct two case studies with different
probability rates of weather-related events and also consider
the impact of utility power interruptions on microgrid opera-
tion for a certain time frame.

1) Case Study 1 - High Probability of Outage: In this case
study, we assume the extreme weather-related event proba-
bility as 70%, and utility power interruptions are considered
at hours 4 − 7. Our proposed Q-learning approach interacts
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Fig. 2. Microgrid exogenous information, load, RG output, and electricity
price from the utility grid.

with the microgrid environments online considering the given
assumptions and outputs the microgrid optimization policy or
scheduling decisions. We also apply the similar assumptions
for other existing approaches, and the performance comparison
is presented in Table II.

TABLE II
COMPARATIVE STUDY IN TERMS OF EXPECTED MICROGRID TOTAL

OPERATIONAL COST FOR CASE STUDY 1.

Approach DP (Offline) Proposed Cooperative
Q-learning Q-learning

Expected Total 20.4 21.2 23.3
Operation Cost ($)

We obtain the optimal solution using the dynamic program-
ming (DP) approach. Note, the DP approach is an offline
optimization technique, and this technique can not be used
online for determining microgrid scheduling decisions. We
use 4000 iterations for the Q-learning approaches, and the
average results are presented after 50 runs of simulations.
In Table II, the results show that the proposed Q-learning
approach can obtain the expected total microgrid operational
cost as $21.2 that is very close to the reference value with
only a $0.8 gap. Note, this gap reduces with the increment of
the iteration number. The multi-agent cooperative Q-learning
approach obtains the expected total operational cost as $23.3
with a $2.9 gap. It indicates that this approach requires
more intensive training with additional computation costs.
The comparative study shows that our proposed approach
outperforms the existing cooperative Q-learning approach.

The convergence curves in terms of microgrid average total
operational cost are plotted in Fig. 3(a). These cost curves
are representing the expected total cost over the number of
iterations. The results show that the cost curve of the proposed
Q-learning approach drops faster than the cooperative Q-
learning approach and converges close to the optimal solution
with a lower number of iterations. The power outputs of the
microgrid resources obtained from the proposed approach are
also plotted in Fig. 3(b). During the utility power interruption
time-period, the proposed approach efficiently utilizes the DG
and BESS units to keep microgrid operation uninterrupted.
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Fig. 3. Microgrid average total cost curve convergence study and the power
outputs of the microgrid resources for case study 1. At any time t, the BESS
output is defined as aB,c

t −aB,d
t , so the positive value represents the charging

power, and the negative value represents the discharging power.

According to the result analysis, the proposed Q-learning
approach can efficiently schedule microgrid energy resources
during weather-related emergency events and minimize the
operation cost.

2) Case Study 2 - Low Probability of Outage: In this case
study, we assume that the extreme weather-related event hits
during the time frame 4−7, and the probability of utility power
interruptions is 30%. The expected microgrid operation costs
obtained from different approaches are presented in Table III.

TABLE III
COMPARATIVE STUDY IN TERMS OF EXPECTED MICROGRID TOTAL

OPERATIONAL COST FOR CASE STUDY 2.

Approach DP (Offline) Proposed Cooperative
Q-learning Q-learning

Expected Total 19.4 20.1 22.3
Operation Cost ($)

The results show that the expected average total cost of
the microgrid obtained from the proposed online Q-learning
approach is $20.1. With a similar simulation setup, the co-
operative Q-learning outputs the expected cost as 22.3. The
comparative study in terms of expected cost curve convergence
is illustrated in Fig. 4(a). In the figure, we can observe that the
cost curve of the proposed Q-learning approach rapidly drops
over the iteration and converges close to the reference value
with a $0.7 gap. On the other hand, the existing cooperative Q-
learning approach gradually drops towards the optimal value
and converges at $22.3 with a $2.9 gap from the reference
DP approach. The global optimization policy of the proposed
Q-learning approach for the corresponding expected cost is
illustrated in Fig. 4(b). Since the outage probability is 30%,
the obtained microgrid optimization policy is highly influenced
by the microgrid normal operation. The microgrid schedules
power from the grid to charge the battery and fulfill the surplus
load-demands during the time frame 4− 7 hours considering
the future outcome of the current taken actions.

The proposed Q-learning approach has a unique advantage
over the existing Q-learning approaches. In the proposed inte-
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Fig. 4. Microgrid expected average total cost curve convergence study and
the power outputs of the microgrid resources for case study 2. Here, the plot
(b) presents the power outputs obtained from the global agent, and the plot
(c) presents the power outputs obtained from the Qemg agent.

gration, the microgrid operator can also obtain the optimization
policy for a specific event using the greedy policy of the local
Q-value functions. Even with low outage probability, the mi-
crogrid can obtain the emergency microgrid dispatch decisions
and schedule the resources based on its operation strategy. The
microgrid scheduling decisions for the emergency operation
obtained using the local Qemg-value functions are presented
in Fig. 4(c). The results show that the obtained microgrid
decisions are similar to the decisions presented in Fig. 3(b). It
indicates that the proposed integration provides flexibility to
the microgrid operators to generate the emergency microgrid
scheduling decisions even with low outage probability. There-
fore, the proposed Q-learning approach can be a promising
tool for solving microgrid scheduling problems with resiliency
considerations.

V. CONCLUSION

In this paper, we propose a Q-learning approach with
multiple local learning agents to handle the weather-related
emergency events in a grid-connected microgrid. In our pro-
posed algorithm design, different local agents are used to learn
different microgrid events. The learned value functions are
aggregated to update the global agent’s policy in a probabilistic
way. Numerical simulations are performed to validate the
effectiveness of the proposed method for a certain power
outage duration. The results show that the proposed Q-learning
approach can efficiently schedule the microgrid DERs, consid-
ering the probabilistic emergency operation, and minimize the
operational cost. An interesting future work would be making
the proposed approach capable of handling the randomness of
the RGs and apply the proposed algorithm for solving real-
time decision-making problems with uncertainty.
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