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Abstract
1.	 Forest canopy structural complexity (CSC), an emergent ecosystem property, 

plays a critical role in controlling ecosystem productivity, resource acquisition 
and resource use-efficiency; yet is poorly characterized across broad geographic 
scales and is difficult to upscale from the plot to the landscape.

2.	 Here, we show that the relationship between canopy height and CSC can be ex-
plained using power laws by analysing lidar-derived CSC data from 17 temperate 
forest sites spanning over 17 degrees of latitude. Across three plant functional 
types (deciduous broadleaf, evergreen needleleaf and mixed forests), CSC in-
creases as an approximate power law of forest height. In evergreen needleleaf 
forests, increases in canopy height do not result in increases in complexity to the 
same magnitude as in other forest types.

3.	 We attribute differences in the slope of height:complexity relationships among forest 
types to: (a) the limited diversity of crown architectures among evergreen conifer trees 
relative to broadleaf species; (b) differences in how vertical forest layering develops 
with height; and (c) competitive exclusion by needleleaf species. We show support for 
these potential mechanisms with an analysis of 4,324 individual trees from across 18 
National Ecological Observatory Network sites showing that crown geometry-to-tree 
height relationships differ consistently between broadleaf and needleleaf species.

4.	 Power law relationships between forest height and CSC have broad implications 
for modelling, scaling and mapping forest structural attributes. Our results sug-
gest that forest research and management should consider the nonlinearity in 
scaling between forest height and CSC and that the nature of these relationships 
may differ by forest type.
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1  |  INTRODUC TION

Canopy structural complexity (CSC) is an emergent property of 
forests that integrates ecological characteristics across scales of in-
dividuals, species, communities and ecosystems (Aber et al., 1982; 
Ellsworth & Reich,  1993; Fahey et  al.,  2019; Fotis et  al.,  2018; 
Hardiman et al., 2013; Ishii et al., 2004; Parker et al., 1989). Canopy 
structural complexity arises from the arrangement of canopy photo-
synthetic and non-photosynthetic elements (Fotis & Curtis, 2017); 
however, the degree of complexity is bounded by forest height 
(Gough et  al.,  2020; West et  al.,  2009). Within the volume of the 
canopy, the structural configurations that manifest are a prod-
uct of both abiotic and biotic controls including: species composi-
tion (Gough et  al.,  2020), tree architecture (Saarinen et  al.,  2021; 
Schraik et al., 2021), edaphic factors (Hulshof & Spasojevic, 2020), 
resource availability (Ehbrecht et  al.,  2021), competition, climate 
(Ehbrecht et al., 2021; Ishii & Asano, 2010) and physiography (Fahey 
et al., 2019). Canopy structural complexity is also strongly linked with 
ecosystem functioning including resource acquisition (Atkins, Fahey, 
et  al.,  2018), use-efficiency, productivity (Hardiman et  al.,  2013), 
microclimate regulation (Frenne et al., 2019) and habitat provision-
ing (Davies et al., 2017). A mathematically universal representation 
of these phenomena would provide a seamless connection across 
scales of organization, allowing the inference of complexity—a dif-
ficult to measure structural attribute—from canopy height—a rela-
tively straightforward to measure structural attribute.

We propose that the relationship between canopy height and 
CSC can be described by a power law relationship, implying a scale 
invariant, universal relationship. There are numerous examples 
of power law relationships in ecology and environmental science 
(Seekell et al., 2013; Walter et al., 2020; West et al., 1997), and in 
forested ecosystems, power law relationships have been found 
among tree height–diameter relationships (i.e. allometric scal-
ing; Duncanson et  al.,  2015; West et  al.,  1999), tree size distribu-
tions (Enquist et  al.,  2009; Farrior et  al.,  2016), live to dead basal 
area (Ferguson & Archibald,  2002), patterns of forest fragmen-
tation (Taubert et  al.,  2018) and disturbance frequency (Kellner 
et al., 2011). One particular type of power law relationship, known in 
ecology as Taylor's law (Taylor, 1961), relates the variance of groups 
of samples to their means via a power law relationship. Taylor's law 
has been found to hold in a wide variety of empirical phenomena 
(Lagrue et al., 2015; Tippett & Cohen, 2016; Xu et al., 2015; Zhao 
et al., 2019) and is closely related to our forest canopy height:com-
plexity scaling problem because many CSC metrics are mathemati-
cally related to variance (Atkins, Bohrer, et al., 2018).

Taller forests can be more complex because greater canopy 
volume exists in which to build structure and therefore complexity 
(Gough et al., 2020). In a survey of 11 temperate forested sites of the 
National Ecological Observatory Network (NEON) and Long-Term 
Ecological Research Network (LTER), Atkins, Bohrer, et  al.  (2018) 
and Atkins, Fahey, et  al.  (2018) found the two tallest forests—
Smithsonian Environmental Research Center (SERC) in eastern 
MD and Great Smoky Mountains National Park (GRSM) in eastern 

TN—to be the most complex forests of the NEON sites surveyed in 
the eastern and mid-western United States. Both GRSM and SERC 
are older, taller forests primarily populated by deciduous broadleaf 
species. Gough et al.  (2020), showed that canopy height (i.e. maxi-
mum canopy height or HMax) was a strong predictor of complexity 
as estimated by the CSC metric, canopy rugosity (RC)—an aggregate 
measure of horizontal and vertical variance of canopy elements. 
While these results indicate potential for scaling, forest type was 
not considered as a modifier of complexity and RC is only one mea-
sure of complexity.

Various approaches have been used to estimate complexity since 
active remote sensing enabled measurement of 3D ecosystem struc-
ture in the late 1990s and early 2000s (Lefsky et al., 2002). Scores 
of lidar-derived structural metrics have been developed in that time, 
each providing insight into different facets of structure or complex-
ity. These metrics can be broadly grouped into five categories based 
on structural traits of the forest and canopy they describe: (a) area 
and density—the distribution of photosynthetic elements in the 
canopy, (b) height—mean, median and maximum measures of can-
opy height, (c) openness and cover—openness of the planar canopy 
surface, (d) arrangement—relative and absolute position of canopy 
elements and (e) heterogeneity—the variance of canopy elements 
(Fahey et al., 2019). Here we compare measures of canopy height—
HMax and mean outer canopy height (MOCH)—to measures of canopy 
heterogeneity—RC (Atkins, Bohrer, et al., 2018); foliar height diver-
sity (FHD; MacArthur & MacArthur, 1961); and the effective number 
of layers (ENL; Ehbrecht et al., 2017). This combination of metrics 
was chosen for this analysis because they are ecologically relevant 
(Fahey et al., 2019), well-established in the literature (Atkins, Bohrer, 
et al., 2018; Ehbrecht et al., 2021) and have the potential to be esti-
mated from different types of lidar platforms—terrestrial, UAV, aerial 
and spaceborne.

Here, we use a total of 1,052 terrestrial laser scanning acqui-
sitions from 17 sites in the conterminous United States (Figure 1), 
covering three major forest types to test two competing hypotheses 
explaining height:complexity scaling. First, we hypothesize that CSC 
as inferred by estimates of canopy heterogeneity increases nonlin-
early as a universal power law of height across forest types (H1). 
Tall forests will be more complex as evidenced by a shared power 
law relationship between measures of CSC and canopy height across 
all forest types. Our competing hypothesis, (H2), is that height:-
complexity scaling relationships will differ among forest types. 
Specifically, we define forest types based on plant functional types 
(PFTs), as described by Bonan et al. (2002). In this study, we specif-
ically focus on deciduous broadleaf (DBF), mixed forests (MF) and 
evergreen needleleaf forests (ENF). We test these hypotheses by 
first testing for the existence of power law relationships within and 
across all three PFTs. We then explore two mechanisms support-
ing height:complexity scaling relationships: first, at the stand level, 
canopy layering and in-filling as inferred using a lidar-derived CSC 
metric (i.e. ENL); and second, at the individual level, tree architecture 
from the relationship between tree crown area and tree height as 
inferred from NEON in situ observations.



    |  3Functional EcologyATKINS et al.

2  |  METHODS AND MATERIAL S

2.1  |  Datasets

We used lidar-derived CSC metrics from 484 plots, including 1,052 
laser scanning acquisitions from 17 temperate forest sites, spanning 
a 17° latitudinal gradient across North America. These data were 
filtered from version 1.0 of the pcl data package (Atkins, 2021) (see 
data availability) which contains processed, summary statistics from 
lidar data collected using a 2D portable canopy lidar (PCL) system 
(Parker et  al.,  2004). The PCL system includes an upward-facing 
LiDAR sensor (Riegl LD-90 3100VHSFLP; Riegl USA Winter Garden) 
attached to a user-mounted frame moved along linear transects 
within a forest plot underneath the canopy. Each unique transect 
represents one laser scanning acquisition.

For this analysis, we included only data from ‘unmanaged’ 
plots with no recent history of disturbance and a minimum of 25% 
canopy cover, based on the definition of a ‘forest’ from Hansen 
et al. (2010). Canopy structural complexity (RC, FNL and FHD) and 
canopy height (HMax and MOCH) estimates were calculated for 
each laser scanning acquisition, then averaged to the plot level for 

a total of 484 forestry plots included in our study. Total transect 
length per site ranged from 240 to 10,710 m, within the range es-
timated by Hardiman et al. (2018) as sufficient to characterize site 
complexity. Limiting our data to unmanaged, undisturbed, long-
term forest inventory plots insured that we were sampling contigu-
ous, homogenous, representative forests. Each plot was classified 
into one of three PFTs (Bonan et al., 2002). Plots with deciduous 
broadleaf species encompassing 70% or more of the total basal 
area were classified as deciduous broadleaf forests (DBF), while 
plots where evergreen needleleaf trees made up greater than 70% 
of total basal area were classified as ENF, and all other forests were 
classified as MF.

Data originated from forested plots across the eastern con-
terminous United States (between 71° and 89° longitude), in-
cluding National Ecological Observatory Network (NEON) sites, 
Arnot Experimental Forest, University of Michigan Biological 
Station (UMBS), University of Virginia Observatory Hill and 
Fernow Experimental Forest. Sites are described in Atkins, Fahey, 
et al. (2018). Other data used included another subset of data from 
UMBS described in Fahey et  al.  (2019) and data from the Huron 
Mountain Club described in Fahey et al. (2015b) (Table 1).

F I G U R E  1  Site map showing the distribution of eastern US forests surveyed (a); distribution of complexity as measured by canopy 
rugosity by plant functional type (PFT) for all sites where DBF is deciduous broadleaf, (b); distribution of maximum canopy height in metres 
by PFT for all sites
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2.2  |  Power law scaling

We chose three CSC metrics describing canopy heterogeneity as de-
fined by the framework established by Atkins, Bohrer, et al. (2018) 
and amended by Fahey et  al.  (2019): RC, an aggregate measure 
of horizontal and vertical variance of plant area density (Atkins, 
Bohrer, et al., 2018); FHD, an application of Shannon–Weiner diver-
sity to the vertical distribution of canopy leaf area (MacArthur & 
MacArthur, 1961); and the ENL, a measure of canopy layering based 
on the filling of defined 1 m canopy layers (Ehbrecht et al., 2017). 
FHD, ENL and RC may be partially correlated across forests, yet each 
describe different, though related, facets of canopy complexity.

To analyse scaling relationships between canopy height and each 
metric, we used two different measures of canopy height: HMax, the 
highest measured lidar return for each laser scanning acquisition 
within the plot; and MOCH, the mean of the highest measured lidar 
returns for each equally spaced, 1 m section of linear transect dis-
tance (Figure 1). This approach was taken to account for different 
methods defining a forest canopy. Using HMax to define the canopy 
includes all the ‘potential’ space for foliar elements but could be 
biased in plots where there are emergent individuals that are sig-
nificantly taller than their neighbours, while MOCH approximates 

the average canopy space, but could be biased lower in areas where 
there is dense understorey that increases occlusion—when laser 
pulses from terrestrial-based instrumentation fail to sufficiently 
reach the upper regions of the canopy. MOCH scales linearly with 
HMax (Figure S2).

We took the base-10 logarithm of each metric to stabilize the 
variances and allow for the assessment of whether the relationship 
between each heterogeneity and height metric was best described 
by a power law. The power law relationship:

where Hj is a height metric, CSCi is a structural metric and a and b are 
the power law coefficients, and CSCi was linearized by taking the base-
10 logarithm of each side:

We then used ordinary least squares (OLS) regression to esti-
mate log10(a) and b, quantifying the relationship between each height 
and heterogeneity metric. We deemed OLS regression appropriate 
for this analysis over Model II regression (i.e. reduced major axis or 

(1)CSCi = aHb
j
,

(2)log10
(

CSCi

)

= log10(a) + blog10
(

Hj

)

.

TA B L E  1  Site metadata

Abbreviation Site Latitude Longitude
MAT 
(C°)

MAP 
(mm)

Plant functional 
types (PFTs)

Total transect 
length (m)

ARNO Arnot Experimental Forest, NY, USA 42.264 −76.627 9 990 DBF 2,420 (n = 11)

BEF Bartlett Experimental Forest, NH, USA 44.05 −71.29 6.6 1,270 DBF 1,800 (n = 15)

FEF Fernow Experimental Forest, WV, USA 39.054 −79.67 10 1,473 DBF 370 (n = 14)

GRSM Great Smoky Mountain National Park, 
TN, USA

35.68 −72.17 13.3 1,450 DBF 1,105 (n = 10)

HARV Harvard Forest, MA, USA 42.53 −72.17 8.2 1,100 DBF, ENF 3,475 (n = 22)

HMC Huron Mountain Club, MI, USA 46.87 −87.891 4.2 918 DBF, ENF,MF 3,600 (n = 75)

HBEF Hubbard Brook Experimental Forest, 
NH, USA

43.939 −71.756 5.2 1,400 DBF 3,980 (n = 13)

MLBS Mountain Lake Biological Station, VA, 
USA

37.37 −80.52 7.8 1,250 DBF 1,250 (n = 10)

OSBS Ordway-Swisher Biological Station, FL, 
USA

29.68 −81.99 20 1,300 ENF 2,660 (n = 24)

RICE Rice Rivers Center, VA, USA 37.325 −77.206 15.5 1,140 DBF 240 (n = 2)

SCBI Smithsonian Conservation Biological 
Institute, VA, USA

38.89 −78.14 12.5 1,050 DBF 840 (n = 6)

SERC Smithsonian Environmental Research 
Center, MD, USA

38.88 −76.54 15 1,200 DBF 1,595 (n = 13)

TALL Talladega National Forest, AL, USA 32.95 −87.39 17 1,400 MF 1,450 (n = 12)

TREE Treehaven, WI, USA 45.49 −89.58 5.4 800 MF 1,250 (n = 10)

UMBS University of Michigan Biological Station 45.55 −84.7 5.5 817 DBF, MF 10,710 
(n = 215)

UNDE University of Notre Dame 
Environmental Research Center, WI/
MI, USA

46.23 −86.54 4.5 800 DBF 1,255 (n = 9)

UVAX Observatory Hill, VA, USA 38.034 −78.524 13.15 1,143 DBF 800 (n = 9)
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RMA regression) for two reasons. First, the uncertainty associated 
with estimating canopy complexity is greater than that of estimating 
height. Model II regression methods assume symmetry in the un-
certainty in the relationship between x and y, but this is likely not 
the case. Second, there is no standard multiple regression method 
for Model II regression, thus preventing the appropriate diagnostics 
(see next paragraph) to determine whether these relationships are 
well-described by a power law. However, for comparison, we also 
computed relationships using RMA regression, and these generally 
were consistent with OLS estimates and are included in Table S1.

We tested whether the data were well-described by a power 
law by evaluating the linearity and homoscedasticity of each log-
transformed relationship, following Zhao et al. (2019). The linearity 
criterion was evaluated by comparing the fit of the linear model to 
that of a quadratic model [i.e. log10(CSCi) = log10(a) + b1log10(Hj) + b

2log10(Hj)
2] using a likelihood ratio test. The homoscedasticity crite-

rion was evaluated by testing for a statistically significant relation-
ship between log10(CSC) and the absolute-valued residuals from the 
linear model (Equation  2). Because we were interested in general 
empirical relationships and willing to accept the hypothesis that the 
canopy height–CSC relationship is approximately a power law unless 
there were considerable deviations, we used a type-1 error rate of 
α = 0.1 for both diagnostic criteria. If both diagnostic criteria were 
passed, we then used the 95% confidence interval on the estimate of 
b to assess whether it is different from 1 (Walter et al., 2020). Super-
linear slopes (b > 1) indicate that complexity increases more rapidly 
than height as height increases, while sublinear slopes indicate that 
height increases more rapidly than complexity as height increases.

We fit linearized power law functions and performed diagnos-
tic tests with data pooled across all plots and separately by PFT: 
DBF, ENF and MF. Using the pooled data, we conducted a statis-
tical test for differences by PFT in the slopes and intercepts of 
height:complexity relationships using OLS linear models in r 4.03 (R 
Core Team,  2020) using type III errors from the car package (Fox 
et al., 2021). We tested for effects of height, forest type and height:-
forest type interaction on complexity. We interpreted a significant 
forest type effect as evidence that the coefficient a depends on 
forest type, and a significant height:forest type interaction term as 
evidence that the exponent (or slope on the log-log scale) b depends 
on forest type. Again, where forest type is the relevant plant func-
tional type or PFT (e.g. deciduous broadleaf, evergreen needleleaf). 
Statistical significance was assessed at α = 0.05. Post hoc Tukey's 
HSD tests were used to determine which forest types differed sta-
tistically. However, we used simple OLS fits of Equation (2) to data 
separated by forest type for parameter estimation and for plotting 
relationships.

2.3  |  Potential mechanism 1: Canopy layering and 
in-filling

We first explored differences in stand-scale canopy layering and 
in-filling as they relate to canopy height among forest types as a 

potential mechanism underlying height:complexity scaling relation-
ships. We used natural scale values of ENL as an analogue for canopy 
layering and in-filling. ENL approximates the number of 1-m thick 
vegetation layers within a canopy. We used linear regression analysis 
with natural scale values of ENL and HMax to explore differences in 
how canopy layering developed with height as measured by HMax 
among broadleaf, needleleaf and MF. The slope of the linear rela-
tionship approximates the rate at which canopy layers develop per 
1 m unit of height, providing a potential mechanism at the plot to 
stand level explaining scaling relationships among forest types. A 
relatively shallower slope for a given forest type will indicate that 
layering develops slowly with height, while a relatively steeper slope 
will indicate layering develops more rapidly.

2.4  |  Potential mechanism 2: Tree architecture

In addition to exploring mechanisms underlying height:complexity 
scaling relationships at the stand scale, we examined whether mean 
crown area of individual trees scales with tree height. We used lin-
ear regression analysis on log10-transformed crown area and log10-
transformed tree height data of 6,457 individual trees from 22 field 
sites in the NEON vegetation database to test for relationships 
at the individual tree level, specifically if crown area scales with 
tree height differently in broadleaf versus needleleaf tree species. 
Differences in the slope and intercepts of crown area to height re-
lationships were analysed using analysis of covariance (ANCOVA) 
in r 4.03 (R Core Team,  2020) using type III errors from the car 
package (Fox et al., 2021). More specifically, we tested for effects 
of log(height), forest type and log(height):forest type. Differences 
in the regression slopes between broadleaf and needleleaf species 
could provide a potential mechanism at the individual level ex-
plaining scaling relationships. Individual tree NEON tree data were 
acquired from the NEON data portal using vegetation survey data 
for years 2015–2019 (National Ecological Observatory Network 
(NEON), 2021). NEON sites used for this analysis include: ABBY—
Abby Road, Washington, USA; BLAN—Blandy Experimental Farm, 
Virginia, USA; DEAL—Dead Lake, Alabama, USA; DEJU—Delta 
Junction, Arkansas, USA; DSNY—Disney Wilderness Preserve, 
Florida; GUAN—Guanica Forest, Puerto Rico, USA; HARV—Harvard 
Forest, Massachusetts, USA; KONZ—Konza Prairie, Kansas, USA; 
LAJA—Lajas Experimental Station, Puerto Rico, USA; MLBS—
Mountain Lake Biological Station, Virginia, USA; MOAB—Moab, 
Utah, USA; NIWO—Niwot Ridge, Colorado, USA; ORNL—Oak Ridge 
National Laboratory, Tennessee, USA; RMNP—Rocky Mountains, 
Colorado, USA; SOAP—Soaproot Saddle, California, USA; SCBI—
Smithsonian Conservation Biological Institute, Virginia, USA; 
SERC—Smithsonian Environmental Research Center, Maryland, 
USA; SJER—San Joaquin Experimental Range, California, USA; 
TREE—Treehaven, Wisconsin, USA; UKFS—University of Kansas 
Field Station, Kansas, USA; WREF—Wind River Experimental 
Forest, Washington, USA; and YELL—Yellowstone National Park, 
Wyoming, USA.



6  |   Functional Ecology ATKINS et al.

3  |  RESULTS

The interpretation of our results relies upon an understanding of 
power law scaling relationships. Power laws can either be 1:1, where 
the slope (b) is approximately 1; sublinear, where the slope is less 
than 1; or super-linear, where the slope is >1. A sublinear power law 
indicates that complexity scales at less than a rate of 1 to 1 with 
canopy height, while a super-linear relationship indicates complexity 
scales greater than 1 to 1 with height. A 1:1 power law relationship 
indicates that complexity and canopy height scale in tandem (see 
Table S1).

3.1  |  Power law scaling—Canopy rugosity (RC)

Among all forest types, neither the relationship between RC and 
HMax, or RC and MOCH was best described by a power law de-
spite statistical significance as indicated by OLS regression results 
(Table  S1). Within forest types, we found evidence for power law 
relationships within some combinations of RC and either/or HMax 
and MOCH. For broadleaf forests, the RC to HMax relationship was a 

super-linear power law (a = 2.30 ± 0.19; b = 2.50 ± 0.13; where a is 
the intercept and b is the slope of the relationship and ± error is the 
95% confidence interval); for needleleaf forests both the RC to HMax 
(a = −3.69 ± 0.58; b = 3.37 ± 0.43) and RC to MOCH relationships 
(a = −1.57 ± 0.40; b = 2.26 ± 0.36) were super-linear power laws; and 
for MF, both the RC to HMax (a = −3.66 ± 0.55; b = 3.40 ± 0.39) and RC 
to MOCH relationships (a = −1.28 ± 0.35; b = 2.030 ± 0.193)) were 
super-linear power laws.

The slopes of the HMax to RC relationships (Figure 2a) were signifi-
cantly different by forest type based on ANCOVA results (Table 2) 
with pairwise comparisons showing differences among all forest 
types (p = <0.001). No differences were found among forest types 
when comparing the RC to MOCH relationships (Table 2).

3.2  |  Power law scaling—ENL

Among all forest types, no relationships between ENL and either 
HMax or MOCH were best described by a power law (Table  S1). 
Within forest types, the ENL to HMax relationships for broadleaf for-
ests (a = 0.02 ± 0.11; b = 0.88 ± 0.08) and MF (a = −0.20 ± 0.25; 

F I G U R E  2  Log10–log10 relationships between maximum canopy height (HMax) and mean outer canopy height (MOCH) and (a, d) canopy 
rugosity (RC), (b, e) the effective number of layers (ENL) and (c, f) foliar height diversity (FHD). Data are coloured by plant functional type 
(i.e. forest type) as defined by Bonan et al. (2002): deciduous broadleaf forests (DBF); mixed forests (MF); and evergreen needleleaf forests 
(ENF). Regression lines indicate power law relationships (Table S1), whereas the absence of regression lines and the semi-transparence of 
data values represent relationships not well-described by a power law
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b = 1.02 ± 0.17) were best described as sublinear and 1:1 power laws 
respectively. The ENL to MOCH relationships in broadleaf forests 
(a = 0.17 ± 0.13; b = 0.89 ± 0.04) were best described as a sublinear 
power law.

We observed significant differences among the slopes and inter-
cept of the relationship between ENL and HMax based on ANCOVA 
results, with pairwise comparisons showing differences among for-
est types. We also observed differences among the ENL to MOCH 
relationship among forest, though pairwise comparisons showed 
only that needleleaf forests differed from broadleaf forests and MF 
(Figure 2c; Table 2).

3.3  |  Foliar height diversity

Among all forest types, we found significant relationships between 
FHD and both HMax and MOCH, yet only the FHD to MOCH re-
lationship was best described by a power law (a  =  0.097  ±  0.01; 
b  =  0.29  ±  0.02). Within forest types, we found evidence for 
power law relationships within some combinations of FHD to 
HMax. Needleleaf forests (a = 0.08 ± 0.05; b = 0.35 ± 0.08) and MF 
(a = −0.12 ± 0.07; b = 0.40 ± 0.04) were both best described as sub-
linear power laws. In MF, the FHD to MOCH relationship was also a 
sublinear power law (a = 0.13 ± 0.03; b = 0.26 ± 0.03).

There were significant differences in the slopes of the relation-
ship between FHD and HMax by forest type with pairwise compar-
isons showing these differences arose from significant differences 
between needleleaf and broadleaf forests, and needleleaf forests 

and MF (Figure 2b; Table 2). Broadleaf forests and MF were not sta-
tistically different.

3.4  |  Mechanism 1: Canopy layering and in-filling

While not every relationship between our measures of canopy 
height and measures of CSC was best described by power laws, we 
did find that the slopes of the relationships between all combina-
tions of variables (except for RC and MOCH) significantly differed 
among forest types based on ANCOVA results (Table 2). Pairwise 
comparisons of these results showed that for every combination 
of forest type (e.g. broadleaf to needleleaf and mixed to broad-
leaf), that the slope of the relationships between HMax to both RC 
and the ENL was significantly different. These findings provide 
evidence supporting our first proposed mechanism underlying 
height:complexity relationships, that forest types differ in the rate 
or amount of canopy layering and in-filling that occurs with height. 
We can use ENL—which estimates the number of distinct 1-m thick 
layers within the canopy—as an estimate of canopy layering. When 
analysed using natural scale values, ENL (Ehbrecht et al., 2017) in-
creased at a rate of 0.42 layers per metre of height for needleleaf 
forests (ENL = 0.42HMax + 3.33; R2 = 0.36) as compared to greater 
rates of increase in broadleaf forests (ENL  =  0.63HMax  +  2.27; 
R2 = 0.56) and MF (ENL = 0.72HMax − 1.27; R2 = 0.63). This shows 
us that needleleaf forests created canopy layers at approximately 
two thirds the rate of either mixed or broadleaf forests based on 
the slopes of these linear relationships (Figure 3).

TA B L E  2  ANCOVA results for differences among regression slopes by forest type (PFT) where SS is sum of squares, MS is mean squares, 
F is the F statistic and p is the p-value where significance is based on an alpha of 0.05

Model SS MS F p

log10(ENL) ∼ log10
(

HMax

)

× PFT log10
(

HMax

)

3.75 3.75 609.89 «0.001

PFT 0.64 0.32 52.52 «0.001

log10
(

HMax

)

: PFT 0.04 0.02 3.04 0.048

log10(FHD) ∼ log10
(

HMax

)

× PFT log10
(

HMax

)

0.55 0.55 777.35 «0.001

PFT 0.08 0.04 57.86 «0.001

log10
(

HMax

)

: PFT < 0.01 <0.01 3.68 0.025

log10
(

RC

)

∼ log10
(

HMax

)

× PFT log10
(

HMax

)

37.39 37.39 1,907.48 «0.001

PFT 2.49 1.25 63.53 «0.001

log10
(

HMax

)

: PFT 0.8 0.40 20.47 «0.001

log10(ENL) ∼ log10(MOCH) × PFT log10 (MOCH) 5.578 5.578 1,703.81 «0.001

PFT 0.106 0.053 16.20 «0.001

log10 (MOCH) : PFT 0.128 0.064 19.59 «0.001

log10(FHD) ∼ log10(MOCH) × PFT log10 (MOCH) 0.72 0.72 1,445.77 «0.001

PFT 0.016 0.008 16.39 «0.001

log10 (MOCH) : PFT 0.002 0.001 2.58 0.07

log10
(

RC

)

∼ log10(MOCH) × PFT log10 (MOCH) 30.95 30.95 801.21 «0.001

PFT 0.177 0.089 5.72 0.10

log10 (MOCH) : PFT 0.44 0.22 5.73 0.003
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3.5  |  Mechanism 2: Crown architecture

We found support for our second proposed mechanism underly-
ing canopy height:complexity relationships that individual tree 
height:canopy area ratios differ between needleleaf and broadleaf 
species An analysis of 6,457 individual trees from 22 field sites in 
the NEON vegetation database comparing individual measured tree 
height with modelled tree crown area shows that patterns at the indi-
vidual tree level mirror those observed in our analysis at the plot to site 
level—with crown area increasing with tree height in an approximate 

power law. Linear regression analysis of crown area to tree height was 
statistically significant for both needleleaf (R2 = 0.75; p = « 0.001) and 
broadleaf (R2 = 0.64; p = «0.001) species. ANCOVA results show the 
slope of these relationships significantly differ (p = «0.0001).

4  |  DISCUSSION

We illustrated generalizable mathematical relationships linking 
forest canopy height—easily measured using aerial and satellite 

F I G U R E  3  Using natural scale data, we see canopy complexity increased with height for all PFTs, but more slowly for needleleaf 
forests (ENF) and mixed forests (MF) (a); FHD scaled with MOCH across all PFTs (b). At bottom (c), as measured by ENL, canopy layering 
increased at a rate of 0.42 layers per metre of height for ENF (ENL = 0.42HMax + 3.33; R2 = 0.36) as compared to either broadleaf (DBF) 
(ENL = 0.63HMax + 2.27; R2 = 0.56) or mixed forests (MF) (ENL = 0.72HMax − 1.27; R2 = 0.63). Linear regression analysis demonstrated 
differences among PFTs in canopy layering by height. All statistical relationships were significant at alpha = 0.05. Relationships between 
both needleleaf forests and MF and HMax were well-described by power law functions, but broadleaf forests did not demonstrate power law 
relationships between ENL and HMax. Pairwise comparisons of natural scale data showed that needleleaf forests are the only forests to differ 
statistically from others
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remote sensing—with CSC, which has been strongly tied to eco-
system functioning and habitat value. We have shown the rela-
tionship between canopy height and the emergent property of 
interior CSC can be described by power laws. The universality and 
scale invariance of power laws are inherently beneficial to under-
standing fundamental processes in ecology (Farrior et  al.,  2016; 
Marquet et  al.,  2005; Stark et  al.,  2015) and the relationships 
identified here likely reflect fundamental ecological processes 
related to canopy space filling and optimization of light capture 
(Anten,  2016; McMahon,  1973). While we framed our hypoth-
eses as opposing—that power law relationships are generalizable 
across all forests (H1) or, alternatively, are forest type specific 
(H2), our findings indicated support for both hypotheses, depend-
ing on which conceptions of height and complexity were com-
pared. When canopy height is expressed as a mean or composite 
value (e.g. MOCH), we found a universal relationship with canopy 
complexity as measured by FHD across all forest types. However, 
when we measured canopy height as a maximum or peak value 
(e.g. HMax), there were no longer common relationships across for-
est types. We observed DBF had initially higher values of CSC for 
a given height as compared to either MF or ENF, but that com-
plexity increased at a lower rate with height for broadleaf forests 
than it did for either MF or needleleaf forests. We attributed dif-
ferences among forest types in power law relationships between 
height and complexity to differences in tree architecture among 
species, as well as canopy layer development, successional pro-
cesses and competitive exclusion.

4.1  |  Scaling across all forest types

A strong universal power law relationship existed between com-
plexity measured as FHD and canopy height as measured by 
MOCH among all forest types surveyed. FHD is calculated as a 

sum over vertical canopy strata (Table 3) so it follows that FHD 
increases with canopy height, although a power law is not math-
ematically guaranteed. FHD can be remotely sensed from lidar 
sensors aboard ground, air- and spaceborne platforms, including 
NASA's Global Ecosystem Dynamics Investigation (GEDI; Dubayah 
et  al.,  2020). GEDI does not, however, provide wall-to-wall esti-
mates of FHD—FHD and other complexity/structure metrics avail-
able from GEDI are calculated at the waveform level. The strong 
correlation we observed between FHD and MOCH indicates the 
potential to infer FHD (i.e. complexity) from canopy height mod-
els, which are more widely available than lidar point clouds and 
computationally simpler to analyse. The key advantage to our ap-
proach using terrestrial lidar is the ability of terrestrial-based sen-
sors to provide greater intra-canopy detail than air- or spaceborne 
sensors.

4.2  |  Scaling within PFTs

Needleleaf forests initially developed less complexity per unit 
height than either broadleaf or mixed forests, but as forest height 
increased past some threshold, needleleaf forests developed com-
plexity at rates greater than other forest types. Our data showed 
these trends converged at around 35  m in height (Figure  3). 
Consistent with these findings, Fahey et al.  (2015a) showed that 
broadleaf forests (i.e. sugar maple dominated in their analysis) 
were 10 m taller but nearly four times more complex than similarly 
aged needleleaf (hemlock dominated) stands in the upper penin-
sula of Michigan. Correspondingly, Wales et al. (2020) found simi-
larly aged needleleaf forests were significantly less complex than 
either broadleaf or mixed stands. However, our analysis did not in-
clude forests over 40 m because of limited terrestrial lidar-derived 
complexity data for these forests. If we extrapolate from our find-
ings, we can hypothesize two possible trajectories for complexity 

TA B L E  3  Canopy structural complexity heterogeneity metrics

Metric Acronym Formula Definition

Canopy rugosity RC
RC =

[

‼

�
2
H

LT

−

(

‼
�H

LT

)2
]0.5 RC is the accumulated variance of leaf area/leaf area density in both 

horizontal and vertical directions in units of metres. In the equation 
at left, of each plot was calculated from the transect-long (LT), 
standard deviation (σ) in column vegetation area index (VAI)-
weighted mean heights (H) (Atkins, Bohrer, et al., 2018; Gough 
et al., 2020; Hardiman et al., 2013)

Foliar height 
diversity

FHD FHD =
∑n

i=1
�i × log�i FHD was codified by MacArthur and MacArthur (1961), and is 

the distribution of canopy cover among forest strata or layers 
expressed as a diversity index. FHD is dimensionless. In the 
equation at left, ρi is the proportion of leaf area density in each 
layer i

Effective number of 
layers

ENL ENL = 1∕
∑n

i=1
�
2
i

ENL, like FHD, quantifies the distribution of leaf area/leaf area density 
through the canopy but is based on the occupation of 1-m wide 
vertical layers by tree components relative to the total space 
occupation of a stand. ENL is in units of metres. In the equation 
at left, n is the number of 1-m thick canopy layers, and ρi is the 
proportion of filled voxels in each layer i (Ehbrecht et al., 2017)
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and height relationships for very tall forests. Either complexity 
saturates with height for all PFTs at a certain threshold, potentially 
in the 35–45 m height range, or needleleaf forests continue to in-
crease in complexity at a greater rate per unit height than either 
broadleaf or MF (Figure S2).

4.3  |  Canopy layering and crown architecture

We hypothesized that tree architectural constraints likely influ-
enced the initial lower rate of complexification of needleleaf forests 
with height, relative to broadleaf forests or MF. Needleleaf species 
may have fewer available canopy topologies than broadleaf species 
resulting in simply fewer relative ways to ‘build’ a tree (Verbeeck 
et  al.,  2019). With fewer building blocks, the number of possible 
structural configurations is reduced, limiting complexity. At the level 
of the individual tree, canopy topology, or crown form, arises from 
internal branching topology, which is primarily constrained by genet-
ics, light availability and hydraulics (Horn, 1971). An explicitly trait-
based approach in the future research could be incredibly beneficial 
in understanding and predicting functional outcomes by considering 
the properties of the individual (Enquist et al., 2015). The excurrent 
growth forms of many needleleaf species, as compared to decurrent 
growth forms of broadleaf species, may also be a geometrically lim-
iting factor. The greatest diversity in crown architectures occurs in 
the tropics due to interspecific competition arising from spatial and 
temporal climate similarity creating uniformly favourable growth 
conditions (Tomlinson,  1987). Underlying branching topology—
again, primarily constrained by light and water availability—appears 
to have little to no effect on differences in crown form in highly bio-
diverse tropical forests (Martin-Ducup et al., 2020), as neither water 
nor light are limiting. In these systems, successional events, gap-
formation processes and available canopy space are stronger pre-
dictors of crown form (Hallé et al., 1978; Martin-Ducup et al., 2020). 
In temperate and boreal forests however, climate is far more sea-
sonal and variable, resulting in greater competition for light and 
water, creating fewer potential crown topologies, and limiting the 
number of possible structural configurations. Ehbrecht et al. (2021) 
showed that potential forest complexity declined with increasing 
latitude in the northern hemisphere which may be attributable to 
how needleleaf trees supplant broadleaf trees with increasing lati-
tude and elevation in part because they are more resistant to xylem 
cavitation and more efficient at utilizing diffuse light, allowing them 
to live in colder environments than many broadleaf species can tol-
erate. Correspondingly, boreal forests have lower species richness 
and shorter average canopy heights—patterns also observable with 
increasing elevation.

At the individual tree level, needleleaf species create more com-
pact, denser crowns than broadleaf species (Sprugel, 1989) and tend 
to be more conical in their architecture—broader at crown base 
than at crown top—the opposite of many broadleaf species. While 
these differences are manifested at the individual level, we note our 
study assessed the layering of the entire canopy. At the canopy or 

stand level then, the higher rate of layering we observed in broad-
leaf forests may be a product of greater competition for light with 
multiple individuals competing by filling different canopy layers. 
The decreased rate of layering in needleleaf forests therefore is 
likely a product of reduced competition for light among individuals. 
Needleleaf species maximize light capture at the leaf level—the cylin-
drical shape of needles is more efficient at capturing diffuse light—as 
well as at the individual level—creating denser crowns than broad-
leaf species. Needle leaves also have higher leaf mass per area and 
longer life spans than broad leaves, indicative of the higher resource 
investment made by needleleaf species (Wright et al., 2004). These 
crown structural and architectural adaptations also help needleleaf 
species to enhance carbon gain during the growing season and sur-
vive harsher winter conditions (Smith & Brewer, 1994). This suggests 
that there may be less canopy overlap in needleleaf forests than in 
forests where broadleaf species are dominant.

We found broadleaf species produced greater crown area at 
lower heights, with the ratio of crown area to height converging as 
height increased for needleleaf species. (Figure 4a)—a relationship 
conserved across elevation (Figure  4b) which provides additional 
confidence in our findings regarding differences in height:complex-
ity scaling among PFTs, implying the pattern we observed is not a 
result of environmental gradients. Crown area to height for needle-
leaf species does appear to be more variable with increasing lati-
tude than it does for broadleaf species which supports findings from 
Ehbrecht et al.  (2021). However, sub-boreal and boreal forests are 
not well-represented in this dataset, possibly limiting the scope of 
inference. The availability of forest structural complexity data across 
broader areas (e.g. NASA's GEDI and ICESat2 missions) will help to 
address to fill this niche and further allow us to test the universality 
of the scaling relationships we observed.

4.4  |  Height and canopy volume

The difference in the relationship between CSC and different meas-
ures of height—either MOCH or HMax—also make us consider how 
we conceptualize canopy or stand height. The height of a tree is a 
measurable attribute. Beyond the individual, the concept of height 
becomes difficult to define. As Gough et al. (2020) describe, height 
creates the upper bound on the forest canopy, with the space be-
neath being the volume in which complexity emerges. We can then 
think of all canopy elements that fill this space as ‘building blocks’ 
to be arranged. While a full consideration of how the upper limit of 
the canopy is defined is outside the focus of this paper, we consider 
that HMax is the upper limit of the canopy volume while MOCH de-
scribes the average canopy state. How best to define canopy height, 
conceptually or practically, is potentially less well-resolved than tra-
ditional wisdom implies.

We found RC had a power law relationship with HMax within 
each forest type grouping, but not across all forests. This further 
supports the finding that there are differences in in how complex-
ity arises within each forest type—or in how we currently estimate 
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complexity. Though the general form of the relationships is that of 
a power law, the scaling factors of those relationships differ. For 
both broadleaf and mixed forests, where RC power law relationships 
existed for both HMax and MOCH relationships, the slopes of those 
relationships were higher for HMax (DBF, b = 2.53; MF, b = 2.62) than 
they were for MOCH (DBF, b = 1.4; MF, b = 1.28). HMax as a max-
imum value and by definition greater than MOCH. However, given 
that complexity increases with HMax at 1.8–2 times the rate it does 
with MOCH, this is an important consideration when inferring com-
plexity from height data.

4.5  |  Implications for measurement, 
research and management

The universality of power law relationships extends our potential 
to broadly estimate and model CSC—and associated functional and 
habitat values. With the increasing use of terrestrial, aerial, and spa-
ceborne laser scanning (Calders et al., 2020; Dubayah et al., 2020), 
we are expanding our understanding of the role of forest and CSC. As 
our understanding of complexity scaling evolves, we can further in-
corporate complexity into restoration and silvicultural practice, pro-
moting adaptability and resilience (Fahey et al., 2018). In this paper, 
we have shown that scaling relationships between forest height and 
complexity are nonlinear. This is important as understanding the 
mathematical form of forest height:complexity relationships can 
better inform applications seeking to estimate fundamental forest 

attributes and processes including standing biomass, carbon seques-
tration, element cycling and biodiversity.

We are witnessing a revolution in our understanding of the 
structural diversity of ecosystems—its fundamental nature, how it 
is measured and the role complexity plays in ecosystem function-
ing and habitat provisioning. This revolution is driven by theoret-
ical advances such as power law scaling relationships shown here 
as well as our growing understanding of the role of landscape and 
climate in shaping forest structure (Ehbrecht et al., 2021). Height 
dependency relationships have already been used to inform man-
agement decisions: when canopy density is modelled with stand 
height, predictions of stand volume improve (Xu et al., 2019). Here 
we have shown there is ever greater potential. Canopy structural 
complexity metrics are strong information aggregators; mecha-
nistically, this is due in part to their strong height dependency as 
well as their correlations with leaf area, biomass and biodiversity—
additional factors that in combination constrain function. Canopy 
structural complexity metrics aggregate structural and compo-
sitional characteristics, and thus become, both figuratively and 
mathematically, greater than the sum of their parts.
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