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Abstract. Endmember mixing analysis (EMMA) is often
used by hydrogeochemists to interpret the sources of stream
solutes, but variations in stream concentrations and dis-
charges remain difficult to explain. We discovered that ma-
chine learning can be used to highlight patterns in stream
chemistry that reveal information about sources of solutes
and subsurface groundwater flowpaths. The investigation has
implications, in turn, for the balance of CO2 in the atmo-
sphere. For example, CO2-driven weathering of silicate min-
erals removes carbon from the atmosphere over ∼106-year
timescales. Weathering of another common mineral, pyrite,
releases sulfuric acid that in turn causes dissolution of car-
bonates. In that process, however, CO2 is released instead of
sequestered from the atmosphere. Thus, understanding long-
term global CO2 sequestration by weathering requires quan-
tification of CO2- versus H2SO4-driven reactions. Most re-
searchers estimate such weathering fluxes from stream chem-
istry, but interpreting the reactant minerals and acids dis-
solved in streams has been fraught with difficulty. We ap-
ply a machine-learning technique to EMMA in three water-
sheds to determine the extent of mineral dissolution by each
acid, without pre-defining the endmembers. The results show
that the watersheds continuously or intermittently sequester
CO2, but the extent of CO2 drawdown is diminished in areas
heavily affected by acid rain. Prior to applying the new al-
gorithm, CO2 drawdown was overestimated. The new tech-
nique, which elucidates the importance of different subsur-
face flowpaths and long-timescale changes in the watersheds,
should have utility as a new EMMA for investigating water
resources worldwide.

1 Introduction

We need to understand the long-term controls on atmospheric
CO2 because of the impact of this greenhouse gas on global
climate. This is important because humans are increasingly
burning fossil fuels and releasing long-sequestered carbon
into the atmosphere (Kasting and Walker, 1992). This new C
flux upsets the natural long-term balance in the atmosphere
between volcanic degassing and weathering-induced draw-
down of CO2 over millennial timescales. Chemical weath-
ering of the most common rock-forming minerals, silicates
and carbonates, removes CO2 from the atmosphere by form-
ing dissolved inorganic carbon that is carried in rivers to
the ocean (DIC; Fig. 1). Over 105–106-year timescales, this
DIC is precipitated as marine calcite, releasing half or all of
the atmospherically derived CO2 back into the atmosphere
for silicates and carbonates, respectively (Fig. 1). Thus, over
this timescale, CO2-driven weathering (CO2 weathering) of
silicates sequesters CO2 out of the atmosphere, while CO2
weathering of carbonates neither removes nor releases CO2
into the atmosphere (Fig. 1). Some researchers also empha-
size that this simple picture neglects weathering of another
ubiquitous mineral, pyrite (Lerman et al., 2007). When pyrite
weathers, it produces sulfuric acid that also dissolves sil-
icates and carbonates, i.e., H2SO4 weathering. When DIC
generated through H2SO4 weathering of carbonates is carried
to the ocean, marine calcite precipitates and releases CO2,
increasing atmosphere concentrations (Spence and Telmer,
2005; Calmels et al., 2011; Torres et al., 2014; Kölling et
al., 2019). Thus, determination of the weathering contribu-
tions of silicates, carbonates, and pyrite is essential toward
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understanding long-term dynamics of CO2. In this paper we
describe a powerful machine-learning technique to interpret
the sources of stream solutes to understand problems such as
weathering. While we show the importance of applying this
machine-learning technique to the weathering question, we
also emphasize how machine learning can teach hydrogeo-
chemists about subsurface flowpaths and other characteris-
tics of stream systems.

The most common way hydrogeochemists interpret the
fluxes of weathering is to investigate stream and river chem-
istry. Determining the endmembers for streams is impor-
tant because streams integrate the byproducts of weathering
reactions over drainage basins, allowing assessment of re-
gional to global understanding of fluxes – but only if minerals
weathered by different acid sources can be deconvoluted (Li
et al., 2008; Calmels et al., 2011; Torres et al., 2016; Winnick
et al., 2017; Burke et al., 2018; Killingsworth et al., 2018).
In small-scale studies in the laboratory or soil profiles, min-
eral reactions can be documented, but this information can-
not be scaled up easily (Navarre-Sitchler and Brantley, 2007).
Here we show that machine learning can decipher the bal-
ance of fluxes of CO2 versus H2SO4 weathering as recorded
in stream chemistry. We discovered that catchments partition
water into subsurface flowpaths that can be (i) deciphered
with respect to the extent of pyrite, silicate, and carbonate
weathering in different lithologies and (ii) interpreted with
respect to whether weathering is driven by CO2 or H2SO4.
We emphasize the long-term effects (over 105–106 years) on
the CO2 balance in the atmosphere.

Although geochemists commonly use stream chemistry
to determine mineral sources of solutes via weathering re-
actions over large aerial extents (Gaillardet et al., 1999)
and hydrologists commonly use endmember mixing analy-
sis (EMMA) to determine the sources of solutes in a stream
(Christophersen et al., 1990), stream datasets remain difficult
to interpret because of spatial and temporal variations in end-
member composition. For example, sulfur isotopes in stream
solutes can distinguish pyrite-derived from rain-derived sul-
fate because pyrite typically is depleted in 34S (Burke et
al., 2018; Killingsworth et al., 2018). However, this attribu-
tion is difficult, more expensive, and often ambiguous be-
cause pyrite δ34S varies between formations (Gautier, 1986)
or within a single catchment (Bailey et al., 2004). Likewise,
inputs of sulfate to watersheds, such as acid rain, can swamp
out the signal from mineral reactions and can change signifi-
cantly over time (e.g., because of changing acid rain deposi-
tion) (Lynch et al., 2000; Lehmann et al., 2007). These fac-
tors make it difficult to determine sources releasing sulfate to
varying stream chemistries over time.

Several so-called “inverse models” have been used suc-
cessfully to partition sulfate into endmember sources for
streams and rivers. These include the two prominent mod-
eling approaches by Torres et al. (2016) and Burke et
al. (2018). However, because the chemistry of acid rain has
varied over the past decades, utilizing the full range of rain

chemistry in those models results in unrealistic contribu-
tions of acid rain (i.e., > 100 %) or models that fail to con-
verge. This is at least partly because the chemistry of acid
rain has been so variable that it spans the entire measured
range of stream samples. Additionally, utilizing the approach
of Burke et al. (2018), based on the approach of Gaillardet
et al. (1999), requires a priori assignment of accurate end-
member chemistries. Often, the researcher must rely on a
few samples to characterize endmembers, resulting in large
uncertainties in endmember chemistry and in source appor-
tioning. Since the inception of EMMA, many researchers
have aimed to improve analysis through a more accurate
determination of unknown or under-constrained endmember
chemistries (Hooper, 2003; Carrera et al., 2004; Valder et
al., 2012). However, these efforts all use some a priori deter-
mination of endmembers. Our machine-learning model adds
to the growing effort to improve EMMA by applying blind
source separation. The machine-learning approach we de-
scribe here deconvolves sources of stream chemistry without
pre-defining the endmembers. We demonstrate this first with
a synthetic dataset and then with data from three well-studied
watersheds with different characteristics. The new method
discovers the endmember chemistries and, as a result, doc-
uments new findings of importance previously undiscovered
with the other methods.

For the target watersheds, we focus first on Shale Hills,
an acid-rain-impacted shale watershed in central Pennsylva-
nia, USA, with extensive data for water/rock chemistry (Jin
et al., 2010; Brantley et al., 2013a; Sullivan et al., 2016). This
watershed allows the most complete understanding of solute
sources. Although we do not show this here, if we use ei-
ther of the two previously used models for source attribution,
stream chemistry data for Shale Hills either do not separate
acid rain and pyrite as a sulfate source (if we use the model of
Torres et al., 2016) or yield a proportion for acid rain which
is larger than 100 % (if we use the model of Burke et al.,
2018). As shown below, the non-negative matrix factoriza-
tion (NMF) model easily defines endmembers and propor-
tions.

We then show the utility of the machine-learning method
for watersheds where less water/rock chemistry has been
published: we investigate East River and Hubbard Brook
catchments. Like Shale Hills, East River is shale-hosted, but
it receives little acid rain (Winnick et al., 2017). In contrast,
Hubbard Brook has been extensively impacted by acid rain
but is underlain by glacial till over schist (Likens et al., 2002).
In both cases, NMF successfully determines endmembers
and source proportions.
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Figure 1. Schematic summarizing the reactions, timescales, and net CO2 release to or uptake from the atmosphere accompanying weathering
of silicate and carbonate minerals. Uptake or release depends upon timescale, as shown, and as discussed in the text. CaSiO3 is used as a
generic silicate mineral.

2 Methods

2.1 Study sites

Where previous deconvolutions of stream chemistry into
endmembers were generally based on assumptions about the
chemistry of dissolving minerals alone, data for watersheds
show that the flowpath of the water also affects this chemistry
(e.g., Brantley et al., 2017). We demonstrate this with data
from three well-studied watersheds with different character-
istics. We focus first on Shale Hills, a small (0.08 km2), acid-
rain-impacted forested watershed underlain by Rose Hill
shale located in central Pennsylvania, USA (Brantley et al.,
2018). The Rose Hill Formation shale contains ∼ 0.14 wt %
S as pyrite (FeS2) (Gu et al., 2020a).

We then show the utility of the method in East River
(shale-hosted, but it receives little acid rain) and Hubbard
Brook (extensively impacted by acid rain but underlain by
schist and glacial till) catchments. Specifically, East River is
a large (85 km2), mountainous watershed underlain by Man-
cos Shale that is located near Gothic, Colorado, USA, within
the Gunnison River basin (Winnick et al., 2017). Mancos
is a black shale that contains ∼ 1.6 wt % S as pyrite (Wan
et al., 2019). Both of these shale-hosted watersheds con-

tain carbonate minerals that vary in composition and abun-
dance in the subsurface. Lastly, Hubbard Brook (Nezat et al.,
2004), located in the White Mountains of New Hampshire,
USA, consists of a series of nine small (0.14–0.77 km2),
forested watersheds underlain by Rangeley Formation meta-
morphosed shale and sandstone (schist) generally covered by
glacial till derived mostly from the Kinsman granodiorite.
The schist bedrock contains ∼ 0.2–0.9 wt % S, and till con-
tains ∼ 0.1–0.2 wt % S. Again, almost all S is present as iron
sulfide (pyrite or pyrrhotite). Both bedrock and till are largely
carbonate-free.

2.2 Data acquisition

For Shale Hills, daily stream chemistry has been reported
from 2008 to 2010 (Brantley et al., 2013b; Brantley et al.,
2013c; Brantley et al., 2013d). Additional samples were mea-
sured in other time intervals for sulfur isotopes and alkalinity
(Jin et al., 2014). All samples were filtered through a 0.45 µm
Nylon filter and aliquots for cation analysis were acidified
with nitric acid. Cations were measured on a Leeman Labs
PS3000UV (Teledyne Leeman Labs, Hudson, NH) induc-
tively coupled plasma–optical emission spectrometer (ICP-
OES), and anions were measured on a Dionex Ion Chromato-
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graph (Sunnyvale, CA). Alkalinity was measured by titra-
tion with 0.16 M H2SO4. Discharge data are available online
(http://www.czo.psu.edu/data_time_series.html, last access:
1 November 2019).

All published data from East River were used in analy-
sis (Winnick et al., 2017), except for two samples with ex-
tremely high values of chloride (246 and 854 µM) because
they differed significantly from the remaining sample chem-
istry (average Cl concentration= 21 µM). Hubbard Brook
weekly chemistry from 2000 to 2017 was downloaded for
the sub-catchments (3, 6, 7, 8, 9) that were not experimen-
tally manipulated (Bernhardt et al., 2019). Stream discharge
data for each sub-catchment are from the USDA Forest Ser-
vice (USDA, 2019).

2.3 Machine-learning model

To assign the proportion of sulfate in streams to sources,
we first bootstrapped measurements to increase data volume
and then used a method of blind source separation (Alexan-
drov and Vesselinov, 2014; Vesselinov et al., 2018) called
NMF. NMF is unique from previously used methods in that
it allows calculation of endmember compositions and mixing
proportions simultaneously and does not rely on measure-
ments or assumptions about endmembers a priori (Fig. 2a;
see Sect. S1). Specifically, NMF decomposes the n×m ma-
trix, V, into two matrices W and H:

V=WH. (1)

Here, cell entries of V are molar solute concentration
ratios, [X] / [Y ], for stream samples. Indicator n refers to
the sampling date, m refers to different solutes X (=Ca2+,
Mg2+, Na+, K+, and Cl−), and brackets refer to concentra-
tions. W is the n×p matrix whose cell entries are propor-
tions, α, for each endmember in each stream sample. Again,
n refers to sampling dates, but p is the number of sources of
solutes (referred to as endmembers). The proportions refer
to the fractions of sulfate in each sample that derive from an
individual endmember, where the sum of proportions must
equal 1±0.05 for each sample. To derive the mixing propor-
tions of sulfate specifically, we set up the NMF approach by
normalizing each analyte concentration by sulfate concen-
tration (Y =SO2−

4 ), the target solute. After running the algo-
rithm for each of the three watersheds, we then inferred by
inspection (see discussion below) that the endmembers rep-
resent different flowpaths in the subsurface. Therefore, these
proportions of sulfate are referred to here as shallow, mod-
erately shallow, and deep flowpaths, i.e., αshallow, αmoderate,
and αdeep, respectively (only one of our target watersheds re-
vealed the moderate-depth flowpath). H is the p×m matrix
whose cell entries are the concentration ratios that define the
chemical signature of each of the p endmembers. The key
to NMF is that these concentration ratios are not determined
prior to apportionment but rather are determined from the
data themselves. In addition, the chemical signatures of each

endmember can vary temporally around central tendencies.
Because the solution to Eq. (1) is non-unique, we run the
model 20 000 times, apply a filter to the models, and then
calculate the mean and standard deviation of the remaining
models for trend and error analysis (see Sect. S1; Eq. S1).

The only hyperparameter that must be defined to run NMF
a priori is the number of endmembers, p. We used principal
component analysis (PCA) to determine the minimum num-
ber of components needed to explain > 90 % of the variance
in stream solute ratios and trained NMF to the bootstrapped
data while assuming that number of endmembers. Machine
learning determined the compositions defining the endmem-
bers and the mixing proportions of each endmember in each
sample. After running NMF, we interpreted each endmember
composition based on geological and watershed knowledge.

Based on the outputs of the NMF model, we calculated
the weathering rates of sulfide, carbonate, and silicate min-
erals in the watersheds. Additionally, we calculated the rela-
tive contributions of sulfuric and carbonic acid driving those
weathering reactions. For details on the weathering calcula-
tions, see Sect. S2.

2.4 Synthetic dataset

NMF is an algorithm that has been used for many applica-
tions (e.g., spectral analysis, email surveillance, cluster anal-
ysis; Berry et al., 2007) but has only recently been applied
to stream chemistry (e.g., Xu and Harman, 2020). To exem-
plify the validity of our modeling approach, we generated a
dataset of synthetic stream chemistry versus time and ran it
through our NMF model. First, we defined two known end-
member compositions, which are shown in Table S1. Next,
we randomly generated 300 synthetic stream samples that
were each calculated as a mixture of the two endmembers.
Lastly, we ran NMF on the synthetic stream chemistry to de-
termine the mixing proportions (α) and endmember compo-
sitions ([X] / [SO2−

4 ]) for all X.

3 Results and discussion

3.1 Synthetic data model

After generating the synthetic dataset of stream samples,
we utilized NMF to determine the mixing proportions and
endmember compositions. We then filtered out the poor fit-
ting models (see Eq. S1). As described more fully in the
Supplement, this left an average number of valid models
of 62 (range: 42–77). The average variance between valid
models was < 10 %. Without any prior information about
the system, NMF accurately determined the correct mixing
proportions (RMSE= 0.04; R2

= 0.98; p< 0.001; Fig. 2b)
and endmember compositions (RMSE= 0.21; R2

= 0.99;
p< 0.001; Fig. 2c). In effect, the model was able to use pat-
terns in the data to deconvolve sample chemistry into end-
members and proportions.
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Figure 2. Schematic diagram showing the differences between a traditional mixing model and our machine-learning mixing model (a).
Notably, in the machine-learning mixing model, endmember chemistry is not assigned a priori but rather derived from patterns in the data.
Results from using our machine-learning mixing model (i.e., NMF) on a synthetic dataset of known endmember chemistry and mixing
proportions (i.e., α) are shown in (b) and (c). Using only the synthesized stream sample chemistries, the model adequately recovered the
correct mixing proportions (b) and endmember chemistries (c). The axes in (c) are the true concentration ratios of the endmembers and the
NMF-derived concentration ratios of the endmembers.

3.2 Application to Shale Hills

While clay minerals in shale-underlain watersheds in rainy
climates are found at all depths because of their low chemical
reactivity, pyrite and carbonate minerals are often chemically
removed from upper layers and only found in unweathered
shale at depth (Fig. 3; Brantley et al., 2013a; Wan et al., 2019;
Gu et al., 2020a). For example, at Shale Hills, pyrite and car-
bonate minerals are only observed deeper than at least 15 m
below land surface (mbls) under the ridges and 2 mbls under
the valley. In these deeper zones, calcite (CaCO3), ankerite
(Ca(Fe0.34Mg0.62Mn0.04)(CO3)2), and pyrite (FeS2) dissolve
in regional groundwaters that flow to the stream (Brantley et
al., 2013a; Gu et al., 2020a). These groundwaters thus con-
tribute DIC, Ca2+, Mg2+, and SO2−

4 into the stream.
Like many catchments, water also flows to the stream in

Shale Hills along a much shallower near-surface flowpath,
which we call interflow (Fig. 3). Interflow is thought to
occur along a transiently perched water table that lies
within the upper 5–8 mbls. The most abundant mineral, illite
(K0.69(Si3.24Al0.76)(Al1.69Fe3+

0.10Fe2+
0.16Mg0.19)O10(OH)2),

dissolves in interflow, where it flows through the soil, with
minimal illite dissolution in underlying weathered rock.
Illite dissolution releases DIC and Mg2+ and K+ to interflow
waters and causes precipitation of clays and iron oxides.
Interflow derives ultimately from local precipitation that
also contains Na+, Cl−, and SO2−

4 . Interflow and deep
groundwater flow lines converge under the catchment outlet
where the stream, on average, is 90 % interflow and 10 %
deep groundwater (Sullivan et al., 2016; Li et al., 2017).

Only one mineral, chlorite
((Fe2+

0.40Mg0.15Al0.35)6(Si0.76Al0.24)4O10(OH)8), is ob-
served to begin to weather in the deep groundwater and
continue weathering all the way to the surface (Fig. 3; Gu et
al., 2020a). Chlorite thus dissolves to release Mg2+ to both
interflow and deep groundwater. While most water entering
the catchment leaves as interflow without entering deep
groundwater, the wide reaction zone observed for chlorite
is consistent with a small fraction of water infiltrating
vertically to the deeper zone (Brantley et al., 2017).

PCA for stream chemistry (2008–2010) at Shale Hills re-
vealed two sources of sulfate, and this was used to set up
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Figure 3. Schematic cross section of Shale Hills showing the depths (labeled lines) where oxidation of pyrite and dissolution of carbonate,
chlorite, and illite initiate (modified after Brantley et al., 2013a). Illite and chlorite dissolve at all depths above the labeled lines, but reactions
of carbonate minerals and pyrite only occur in a narrow 1 m wide depth zone under the ridge that widens to several meters toward the valley.
Specifically, pyrite oxidation is complete under both ridge and valley at the depths where chlorite dissolution initiates. Carbonate dissolution
is complete at the depth where pyrite oxidation is complete under the ridge but at∼ 4 m above the pyrite front under the valley. These reaction
fronts are estimated and extrapolated from bulk chemistry measured in samples from boreholes located at the ridge and valley (Jin et al.,
2010; Brantley et al., 2013a; Gu et al., 2020b).

NMF, i.e., p = 2 (Table S2). By comparing the composi-
tions from matrix H (Table S2) determined by NMF to our
knowledge of the subsurface (Fig. 3), we interpreted the
two endmembers as deep and shallow weathering along the
two flowpaths, i.e., groundwater and interflow (Fig. 3), re-
spectively (Jin et al., 2014; Sullivan et al., 2016). The end-
member with high [Ca2+] / [SO2−

4 ] and [Mg2+] / [SO2−
4 ]

was attributed to deep weathering because Ca- and Mg-
containing minerals (i.e., calcite and ankerite) only dissolve
at depth (Fig. 3; Jin et al., 2014; Gu et al., 2020a). The high
[Cl−] / [SO2−

4 ] endmember was attributed to shallow inter-
flow because it is dominated by Cl-containing acid rain. This
attribution revealed, consistent with other studies of the acid-
rain-impacted northeastern United States, that precipitation
accounts for the majority of sulfate flux (i.e., 77 %) at Shale
Hills between 2008 and 2010.

Many lines of evidence back up these endmember attribu-
tions. The sulfate in the shallow endmember derives from in-
terflow well above the pyrite oxidation front through pyrite-
depleted rock and is thus attributed to acid rain, while the
sulfate in the deep endmember is attributed mostly to pyrite
oxidation. Some sulfate from acid rain may infiltrate to the
regional groundwater, but the fraction is small. At Shale
Hills, acid rain always contains Cl−, and pyrite oxidation al-

ways preferentially dissolves carbonate minerals, giving each
flowpath endmember a unique signature.

To test the NMF deconvolution, we compared these attri-
butions to isotopic data. The value of δ34S in dissolved sul-
fate is observed to correlate with increasing concentrations
of pyrite-derived sulfate determined by NMF (Fig. 4a), con-
sistent with depleted δ34S signatures in pyrite (e.g., −20 ‰;
Killingsworth et al., 2018). In contrast, acid rain shows δ34S
values around +3 ‰–5 ‰ (Bailey et al., 2004), and low sul-
fate concentrations in stream samples are characterized by
δ34S values within this range. Also, as pyrite oxidizes, the
concentration of sulfate increases and the δ34S values de-
crease to reflect the inferred composition of pyrite, −9.5 ‰
to −7.2 ‰ (Fig. 4a). Finally, Gu et al. (2020b) showed that
pyrite oxidation drives the carbonate dissolution at Shale
Hills. NMF results show that stream water was near cal-
cite equilibrium (i.e., �calcite = 1; log �calcite = 0) and had
the highest pyrite-derived sulfate concentrations when the
stream was fed by groundwater (Fig. 4b).

However, the annual flux of acid-rain-derived sulfate from
2008 to 2010 in the shallow endmember determined from
NMF at Shale Hills (Table 1) far exceeds the wet deposition
of sulfate during the sampling period (Fig. 4c). Such incon-
sistencies have been noted elsewhere and attributed to travel-
time delays over decades between acid rain input and stream
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output (Cosby et al., 1985; Prechtel et al., 2001; Mörth et al.,
2005; Rice et al., 2014). Fig. 4c thus allows us to estimate
a ∼ 19–31-year lag time between input and export of sulfate
from the temporally changing acid rain (see Sect. S2.4).

Weathering profiles at Shale Hills, the chemistry of the
composition (H) matrix, sulfur isotopes, calcite saturation,
and lag in acid rain export all support our interpretation that
the two components in the NMF model are shallow and
deep flowpaths and that sulfate largely derives from acid rain
and pyrite, respectively. The dissolution of different minerals
along these flowpaths leads to patterns in stream chemistry
that our NMF model discerns and separates. If mineral reac-
tion fronts are not separated in the subsurface, different flow-
paths might not be separated by NMF; however, Brantley et
al. (2017) and Gu et al. (2020a) have shown that separation
of reaction fronts is common.

3.3 Rates of weathering and CO2 sequestration at
Shale Hills

With these calculations we can use NMF results to eluci-
date the effect of sequestration or release of CO2 at Shale
Hills. We emphasize fluxes of importance over 105–106-year
timescales. CO2-driven weathering of the silicate minerals
chlorite and illite removes carbon from the atmosphere and
carries it as DIC in rivers to the ocean where it is buried
as carbonate minerals (akin to Reaction R2 in Fig. 1, Ta-
ble S3). In contrast, calcite and ankerite weathering coupled
to pyrite oxidation instead releases CO2 into the atmosphere
over those timescales (Reaction R7 in Fig. 1), and carbon-
ate mineral weathering is neutral over those timescales (Re-
action 4 in Fig. 1). Additionally, acid rain can interact with
silicate minerals but not carbonate minerals at Shale Hills
(because these are not present in the shallow subsurface –
Fig. 3). Thus H2SO4 dissolution caused by acid rain com-
petes with CO2 dissolution for silicates. This competition
lowers the CO2 consumption from silicate weathering, which
has been observed in other watersheds (e.g., Suchet et al.,
1995).

To summarize the effect of weathering on CO2 considered
at the timescale of 105–106 years as shown in Fig. 1, we pro-
pose a new parameter, the stream CO2 sequestration coeffi-
cient, κstream (see Sect. S2.2 for the full derivation). This co-
efficient is defined as mol CO2 /

[
6+

]
total, where

[
6+

]
total is

the sum of the equivalents of base cations in a sample. Here,
equivalents refer to molar concentration multiplied by charge
for an ion. Positive κstream implies the stream acts as a source
and negative implies it acts as a net sink of CO2, and the
values are calculated for an individual sample or integrated
over some time period of stream sampling. The product of
κstream times

[
6+

]
total in a sample equals the moles of CO2

sequestered or released during weathering as represented in
that sample (but the accounting is calculated for the reactions
considered for the 105–106-year timescale in Fig. 1). Quanti-
tatively this parameter reveals the moles of CO2 sequestered

Figure 4. (a) Sulfur isotope composition plotted versus concentra-
tion for sulfate in the subset of stream water or groundwater sam-
ples at Shale Hills where S isotopes were measured (symbols; Jin
et al., 2014). Dot-dashed lines represent the average sulfur isotope
range for acid rain in the USA (3 %–5 ‰; Bailey et al., 2004) and
dashed lines represent the average sulfur isotope range of pyrite cal-
culated from NMF results (−9.5 ‰ to −7.2 ‰). Sulfur isotopes in
pyrite at Shale Hills were previously constrained to lie in the range
of −1 ‰ to −15 ‰ (Jin et al., 2014). (B) Plot showing the cal-
cite saturation index (log �calcite) versus concentration of pyrite-
derived sulfate (calculated through NMF) in surface and ground-
water samples at Shale Hills where alkalinity was measured. Here
�calcite (= ion activity product/equilibrium constant for calcite dis-
solution) is < 1, the water is undersaturated with respect to calcite,
and when �calcite is > 1, the water is oversaturated. Black line rep-
resents water–calcite equilibrium. Some samples in (b) differ from
those in (a) because more samples were collected for alkalinity than
sulfur isotopes. In both A and B, color shading represents the frac-
tion of total sulfate derived from pyrite calculated by NMF (i.e.,
αdeep). (c) Time series plot showing the flux of sulfate in Pennsyl-
vania NADP site PA42 (2.8 km from Shale Hills) from wet and dry
deposition (see Sect. S2.4). Black bar shows the NMF results for the
export flux of sulfate derived from acid rain for Shale Hills during
our sampling period and the rationale for the inferred 19-year lag
between input and output.

or released during weathering per cation equivalent in a given
stream sample:

κstream =
1
2
(−1+ γstream+ ζstream) . (2)

Here, γstream is the proportion of cation equivalents in the
stream derived from carbonate weathering per

[
6+

]
total, and

ζstream is the ratio of sulfate equivalents from sulfuric acid
per total base cation equivalents. We calculate γstream for a
sample by multiplying the pyrite-derived sulfate concentra-
tion (i.e., αdeep multiplied by total sulfate concentration) by
the [Ca2+] / [SO2−

4 ] and [Mg2+] / [SO2−
4 ] ratios in the sam-

ple calculated by NMF to have derived from the deep weath-
ering endmember and then dividing by

[
6+

]
total. Likewise,
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ζstream is calculated by multiplying the fraction of sulfate
from pyrite + acid rain (e.g., αdeep + αshallow) by the total
sulfate concentration and dividing that by

[
6+

]
total. This cal-

culation shows that, seasonally, Shale Hills switches between
a net source and net sink of CO2 (Fig. 5d). Using the weath-
ering reactions described in Sect. S2.2, we also calculated
the actual associated CO2 fluxes; annual CO2 dynamics are
net neutral at Shale Hills when considered over timescales of
105–106 years (Table 1; Fig. S4).

The switch in systems from operating as a source or a sink
is attributed to seasonality in the dominant flowpath: CO2
weathering of silicates occurs year-round, but H2SO4 weath-
ering is more important in the wet season and is dominated
by acid from rain. Specifically, in the dry season when water
tables are low, the stream water is often dominated by deeper
groundwater flow that interacts with the deep pyrite reaction
front and has little contribution of acid rain. However, even
though this dry season is characterized by higher proportions
of pyrite-derived sulfate, the watershed acts predominantly
as a sink of CO2 during this time of the year because the
drawdown of CO2 from CO2 weathering of silicates is larger
than the efflux of CO2 from pyrite-driven H2SO4 weathering
of carbonate (Fig. 5d). In the wet season when water tables
are high, however, the stream is dominated by shallow inter-
flow that does not interact with pyrite but has a large contri-
bution of H2SO4 from rain. Kanzaki et al. (2020) also pre-
viously showed that the separation of reaction fronts (Fig. 3)
can cause such important effects on CO2 fluxes, although that
previous treatment focused strictly on simple model systems
unaffected by acid rain.

To test the accuracy of these inferences based on NMF,
we compare to previous results for Shale Hills. Based on
soil porewater chemistry and rain fluxes at Shale Hills, Jin
et al. (2014) estimated the CO2 drawdown from silicate
weathering to be 44 mmol m−2 yr−1. We find that if we as-
sume all silicate weathering is CO2-driven, then the sili-
cate weathering drawdown is 38 mmol m−2 yr−1, which is
consistent with the estimate of Jin et al. (2014). However,
44 mmol m−2 yr−1 is an overestimate because it does not
consider H2SO4 weathering of silicates or carbonates.

3.4 East River

Shale Hills is unique in that it is a monolithologic catch-
ment and that the data volume to constrain endmember ap-
portionment is large. However, NMF also works well for wa-
tersheds in which the subsurface flow and reactions are less
constrained, partly due to the more complex subsurface geol-
ogy. The weathering profile at East River (underlain by black
shale) shows that pyrite and carbonate are depleted in upper
layers but start dissolving at ∼ 2–4 mbls (Wan et al., 2019).
PCA shows that the number of components is two. The com-
positions of the endmembers for East River are similar to
Shale Hills (Table S2); however, the endmember composi-

tion indicates a higher proportion of H2SO4 weathering of
carbonates (see Sect. S2).

Based on NMF for East River, pyrite contributes 62 % of
the annual sulfate flux (Table 1). Sulfuric acid drives 29 % to
69 % of carbonate dissolution depending on the season, and
this compares well with previous estimates of 35 %–75 %
(Winnick et al., 2017). Unlike Shale Hills, pyrite oxidation at
East River is the dominant source of sulfate because acid rain
is less important, and the black shale is pyrite-rich (Fig. 5b).

Although East River is like Shale Hills in that it intermit-
tently switches between acting as a source or sink of CO2
(Fig. 5), the seasonality of the switch between Shale Hills
and East River is reversed. During baseflow (i.e., between
periods of precipitation), Shale Hills is predominantly a sink
of CO2, and it sometimes switches to a source of CO2 in
the wet season because acid rain competes with CO2 and re-
duces CO2 consumption from silicate weathering. Without
the large acid rain influx, East River instead acts as a sink of
CO2 during the wet season of snowmelt and then switches to
a source during baseflow. Our results are consistent with pre-
vious interpretations (Winnick et al., 2017) suggesting CO2
efflux rates are highest in baseflow-dominated and lowest in
snowmelt-dominated flow regimes.

3.5 Hubbard Brook

Monolithologic shale watersheds are not the only target
chemistries that can be deconvoluted with NMF: we now
consider Hubbard Brook, a catchment on crystalline rock.
Large variations in the δ34S composition of the bedrock at
Hubbard Brook (Bailey et al., 2004) mean that sulfur iso-
topes in stream water cannot be used to unambiguously
apportion sulfate sources. Weathering fluxes from sulfide
minerals are therefore difficult to constrain (Mitchell et al.,
2001).

At Hubbard Brook, PCA shows three endmember sources
of sulfate. As described below, we attribute these to three in-
ferred flow lines, two in till and one at depth: waters flowing
through (i) shallow soil developed from till, (ii) moderately
deep, less-weathered till, and (iii) weathering bedrock. A
three-layered weathering profile has been observed in other
till-covered areas of New Hampshire as well (Goldthwait and
Kruger, 1938). We used these ideas to identify endmembers
as described below.

Concentrations of sulfate in acid rain have declined over
time in the northeastern USA (Lynch et al., 2000; Lehmann
et al., 2007). Of the three NMF-determined endmembers at
Hubbard Brook, two of them show declining sulfate concen-
trations with time. We therefore attributed the first and sec-
ond endmembers to acid rain (Fig. S1).

Only one endmember showed little to no decline in sul-
fate concentration over time, and we therefore attributed
that endmember to deep weathering in water interact-
ing with the underlying bedrock. The composition of the
deep weathering endmember shows a strong correlation be-
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Table 1. Fluxes of SO2−
4 , cations, and CO2. n/a stands for “not applicable”.

Shale Hills East River Hubbard Brook

Base cation fluxes (meq m−2 yr−1)a

Total base cation flux 336± 13 1540± 30 84.6± 0.8
Base cation flux from CO2 weathering of silicates 12.6± 21.1 315± 58 24.1± 0.8
Base cation flux from CO2 weathering of carbonates 216± 16 587± 48 n/ac

Base cation flux from H2SO4 weathering of silicates 62.4± 1.0 152± 4 60.5± 0.2
Base cation flux from H2SO4 weathering of carbonates 44.8± 1.9 488± 9 n/ac

Fluxes (mmol m−2 yr−1)b

Total sulfate flux 50.3± 0.3 198± 1 30.3± 0.1
Sulfide-derived sulfate flux 11.2± 0.9 122± 4 9.1± 0.1
Rain-derived sulfate flux 38.9± 1.0 76.0± 4.2 21.2± 0.6
CO2 sequestration or release 4.9± 10.7 −35.6± 30.4 −12.1± 0.4

CO2 Sequestration coefficients

κ
d,e
stream 0.01± 0.03 −0.02± 0.02 −0.14± 0.01
κrock −0.08± 0.11 0.08± 0.17 −0.19± 0.11

a Weathering fluxes calculated following the procedure in Sect. S2.2. b Negative CO2 flux indicates sequestration and positive indicates release
into the atmosphere as considered over 105–106-year timescales (see Fig. 1). c No carbonate cation fluxes reported because the bedrock
contains no carbonate. d Stream CO2 sequestration coefficient integrated over the period of record for each site. e Rock and stream CO2
sequestration coefficients show that Shale Hills and East River are within an error of net neutral with respect to CO2 and that Hubbard Brook
sequesters CO2.

tween [Mg2+] / [SO2−
4 ] and [K+] / [SO2−

4 ]. This chemical
signature is similar to previous observations of weather-
ing of metasedimentary rock piles where silicates (biotite
and chlorite) are the first minerals to dissolve when sul-
fides oxidize (Moncur et al., 2009). Specifically, biotite
(K(Si3Al)Mg2FeO10(OH)2) is known to release Mg2+ and
K+, while chlorite releases Mg2+ upon weathering. More-
over, the metamorphic conditions that produce pyrrhotite
also produce biotite and chlorite, and those three minerals
tend to be located together in schist foliations (Carpenter,
1974). We thus infer that pyrrhotite oxidation at Hubbard
Brook apparently causes dissolution of biotite± chlorite be-
cause these are the most susceptible minerals in close prox-
imity to the sulfide. Thus, several lines of evidence underlie
our interpretation that component 3 is the deep weathering
source of sulfate.

From the NMF results summarized in Table 1, pyrrhotite
can account for 30 % of the total sulfate flux at Hubbard
Brook. The schist and till contain essentially no carbonate;
therefore, weathering is always a net sink for CO2. In this
watershed, however, the story is complicated by the dissolu-
tion of silicate minerals by sulfuric acid from pyrrhotite oxi-
dation and acid rain. If we had assumed all of the base cations
detected in Hubbard Brook were caused by CO2 weathering,
we would have overestimated the net drawdown of CO2 out
of the atmosphere (Fig. 1).

3.6 Predicting CO2 release or drawdown from rock
chemistry

From the stream chemistry, we found that Shale Hills and
East River are net neutral with respect to CO2, and Hubbard
Brook is a net sink (Table 1; Fig. 5). In Table 1, the weath-
ering fluxes are summarized as CO2 fluxes (see Sect. S2.2;
Fig. S4), but the NMF results can also be used to calculate
weathering losses for each mineral as described in Sect. S2.5
(Table S5). Although we do not explicitly discuss each of
these mineral-related fluxes learned from NMF, they have re-
sulted in differences in composition of soil versus protolith,
and we can use soil chemistry therefore as an additional test
of κstream: specifically, we compare κstream to the CO2 flux
recorded in the weathered profile as solid-phase chemistry.
To do this, we calculate a CO2 sequestration coefficient anal-
ogous to κstream but instead based on rock chemistry, κrock,
by assessing soil and taking into account the fraction of base
cations weathered, the fraction of base cations from carbon-
ates, and the capacity of the bedrock to produce H2SO4:

κrock =
1
2
(τ + γrock+ ζrock) . (3)

In effect, κrock is the time-integrated CO2 sequestration co-
efficient recorded as the solid-phase weathering products in
units of mol CO2/eq base cation. In Eq. (3), τ is the mass
transfer coefficient for base cations at the land surface (where
1-τ equals the fraction of total base cations originally present
in parent rock that remain in topsoil at the land surface),
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Figure 5. Concentration of total sulfate (black line), rain-derived sulfate (NMF-calculated; gray), and sulfide-derived sulfate (NMF-
calculated; yellow) in stream water plotted versus time at Shale Hills (a), East River (b), and Hubbard Brook (W-3 sub-catchment) (c).
Shale Hills and East River temporally switch between being a source and sink of CO2, while Hubbard Brook is always a sink over the
timescales studied, as shown by the CO2 sequestration coefficient (κstream) for Shale Hills (d), East River (e), and Hubbard Brook (f). Gray
error bars in (d), (e), and (f) represent 1 SD from the calculated κstream for that sample. The range (mean+ 1 SD) indicated in red to the right
of (d), (e), and (f) represents κrock, the time-integrated CO2 sequestration coefficient calculated from the rock chemistry (see text). Here,
κstream> 0 or < 0 indicates stream is a source or sink of CO2, respectively, when considering weathering reactions over 105- to 106-year
timescales (see Fig. 1). The long record at Hubbard Brook shows that κstream is approaching κrock as the watershed recovers from acid rain.
Gaps in the time series for Shale Hills occur when the autosampler tubing or stream froze.

γrock is the proportion of base cations in the bedrock asso-
ciated with carbonate minerals, and ζrock is the acid gen-
eration capacity of the rock. The derivation of Eq. (3) and
the description of each variable are more fully summarized
in Sect. S2.3. Briefly, γrock expresses the proportion of base
cations in the parent rock that are associated with carbon-
ate minerals (varies from 0 to 1 for 100 % silicate protolith
to 100 % carbonate protolith). ζrock expresses the relative
amount of (acid-generating) pyrite to base cations in the
protolith (varies from 0 to 1.5 for catchments where 100 %
of weathering is CO2-driven to catchments where 100 % of
weathering is H2SO4-driven, respectively). τ expresses the
fraction of cations that have not dissolved away upon expo-
sure at the land surface (varies from −1 to 0 for 0 % cations
remaining at the land surface to 100% cations remaining,
respectively). Negative κrock describes a lithology that has
been net sequestering CO2 over the duration of weathering,
whereas positive κrock has been net releasing CO2. Based
on the chemistry of the bedrock and topsoil at each water-
shed, κrock is −0.08± 0.11, 0.08± 0.17, and −0.19± 0.11

for Shale Hills, East River, and Hubbard Brook, respectively
(Tables 1, S4). Based on these values from observations of
the solid weathering phases, Shale Hills and East River on
net are CO2 neutral (i.e., within an error of 0), but Hubbard
Brook has acted as a long-term CO2 sink.

If the streams at each site today are acting just like the
weathering recorded over the last tens of thousands of years
in the solid-phase material and our assumptions about CO2
versus H2SO4 weathering are correct, κrock should equal
κstream. Here, we find that κstream (discharge-weighted av-
erage) for Shale Hills, East River, and Hubbard Brook are
0.01± 0.03, −0.02± 0.02, and −0.14± 0.01, respectively
(Table 1, Fig. 5). For all sites, the stream chemistry shows
similar values of the CO2 sequestration coefficient for the
modern (stream timescale) compared to the time-integrated
(soil timescale), i.e., κstream ≈ κrock, consistent with Shale
Hills and East River acting as CO2 net neutral but Hubbard
Brook as a CO2 sink. In addition, at Hubbard Brook, it can
be seen that acid rain has competed with CO2 in weather-
ing minerals, lowering the capacity of the rock to sequester
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atmospheric CO2. Because our calculation of κrock does not
include acid rain, we would expect acid rain would increase
κstream relative to κrock, which is what we observe at Hubbard
Brook. Hubbard Brook has only moved back to equivalency
between the rock and stream record in recent years (2013–
2016; Fig. 5f) as the system has recovered from acid rain.
These comparisons also suggest that rock chemistry, which is
much easier to analyze, can sometimes predict stream fluxes
adequately.

4 Conclusions

By not requiring a priori assignments of endmembers, our
machine-learning model not only successfully reproduced
source apportionments made in more traditional endmem-
ber analysis for streams, but also revealed new information
about how watersheds work. At the same time, the method
also solved some issues related to source apportionment for
streams with time variations of large acid rain inputs. The ap-
proach documented that two carbonate-containing shale wa-
tersheds (Shale Hills, East River) are intermittent sources or
sinks of CO2 into the atmosphere but on net are neutral with
respect to CO2. In contrast, because it has no carbonate min-
erals, Hubbard Brook is a constant sink for CO2 (Figs. 5 and
S5). These observations were compared and confirmed by
comparing stream chemistry to rock chemistry.

NMF also emphasized the importance of different wa-
ter flowpaths in determining endmembers: the endmembers
were not strictly defined by mineralogy but by patterns of
subsurface flow that can be related to subsurface reaction
zones. These flowpaths lead to patterns in stream water
chemistry that were easily deciphered by our newly devel-
oped machine-learning-based mixing model. In particular,
for three streams, signals in the chemical variations were ob-
served to reveal dissolution of the most reactive mineral in
proximity to sulfide oxidation. Many watersheds have flow-
paths distinguished by geochemical signatures from min-
eral reactions (Brantley et al., 2017), but we do not know
these paths a priori when we investigate stream chemistry.
Machine learning will be useful for modeling mineral reac-
tions on broader spatial scales and will help constrain global
weathering-related CO2 dynamics because it can delineate
endmembers without a priori assumptions.

Beyond these attributes, the machine-learning approach
also revealed other new attributes of weathering. In Shale
Hills, we discovered that sulfate inputs from acid rain may
not be exported completely for 2 decades, which impacts
mass balance and weathering-related CO2 dynamics. Al-
though not discussed explicitly here, this decadal time lag
was also observed at Hubbard Brook. NMF also showed that
Hubbard Brook, recovering from the impacts of acid rain, has
only recently been returning to its full potential as a CO2-
sequestering rock system. In other words, prior to acid rain,
Hubbard Brook sequestered more CO2 per mole of weath-

ered bedrock than it does today. However, acid rain dissolved
some of the silicates with H2SO4, lowering the CO2 seques-
tration capability of the watershed. NMF led us to discover
this new attribute of acid rain, namely that it diminishes the
capacity of a rock to sequester CO2 at millennial timescales
(Fig. 1) by replacement of CO2 by H2SO4 as a weather-
ing agent. Regardless of the net CO2 dynamic, we discov-
ered that without considering sulfide oxidation or acid rain,
the CO2 weathering sink considered over 105 to 106-year
timescales is always overestimated.

Data availability. Data used in analysis of this work can be found
online for Shale Hills (https://doi.org/10.1594/IEDA/100241,
https://doi.org/10.1594/IEDA/100242,
https://doi.org/10.1594/IEDA/100243, Brantley et
al., 2013b, c, d), the Hubbard Brook data catalog
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