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Abstract-In the context of automatic speech recognition and
acousticevent detection,an adaptive procedurenamed per-channel
energy normalization (PCEN) has recently shown to outperform
the pointwise logarithm of mel-frequency spectrogram (logmel-
spec) as an acoustic frontend. This Jetter investigates the adequacy
of PCEN for spectrogram-based pattern recognition in far-field
noisy recordings, both from theoretical and practical standpoints.
First, we apply PCEN on various datasets of natural acoustic en-
vironments and find empirically that it Gaussianizes distributions
of magnitudes while decorrelating frequency bands. Second, we
describe the asymptotic regimes of each component in PCEN: tem-
poral integration, gain control, and dynamic range compression.
Third, we give practical advice for adapting PCEN parameters to
the temporal properties of the noise to be mitigated, the signal to
be enhanced, and the choice of time-frequency representation. As
it converts a large class of real-world soundscapes into additive
white Gaussian noise, PCEN is a computationally efficient fron-
tend for robust detection and classification of acoustic events in
heterogeneous environments.

111dex Terms-Aco ustic noise, acoustic sensors, acoustic signal
detection,signal classification, spectrogram.

|. INTRODUCTION

REQUENCY transposition is a major factor of intra-class
F variability inmany sound classificationtasks, including au-
tomatic speech recognition (ASR) [1], acoustic event detection
(AED) [2], and bioacoustic species classification [3]. Tuning
auditory filters to the perceptual mel scale provides a time-
frequency representation, named mel-frequency spectrogram,
in which the frequency transpositions of any periodic audio sig-
nal become vertical translations [4]. In the presence of a single
source, this property allows convolutional operators in the time-
frequency domain [5], such as convolutional neural networks
[1]and time-frequency scattering [6], to extract pitch contours
as spectrotemporal patterns, regardless of their fundamental fre-
quency -a property known asequivariance [7], [8].
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Yet, there is often more than one active source in real-world
audio recordings, especially outdoors [9]. Even after narrow-
ing down the classification task to the identification of the most
salient source only (thereafter called foreground), the presence
of background noise is detrimental to equivariance along the
mel-frequency axis [10]. Indeed, on one hand, intra-class vari-
ability causes frequency transposition of the foreground while
leaving the background unaffected. On the other hand, equiv-
ariance is only possible if foreground and background happen
to be transposed simultaneously. The generalizability oflearned
convolutional kernels across acoustically similar events of dis-
tinct fundamental frequencies is hindered by the contradiction
between these two assumptions. To reconcile them, the back-
ground must result from a stochastic process that is stationary
along the mel-frequency axis [11]. Indeed, the robustness of
deep neural networks to adversarial additive perturbations has
been shown to be theoretically optimal if background noise in
the training set is additive, white, and Gaussian (AWGN) [12].
However, in the absence of any further processing, magnitudes
in the mel-frequency spectrogram E(z,/)of real-world acoustic
scenes are typically sparse and strongly correlated, both along
time 7 and mel frequency f [13], and thus not approximable by
AWGN.

Per-channel energy normalization (PCEN) [14] has recently
been proposed as an alternative to the logarithmic transforma-
tion of the mel-frequency spectrogram (logmelspec), with the
aim of improving robustness to channel distortion. PCEN com-
bines dynamic range compression (DRC, also present in log-
melspec) and adaptive gain control (AGC) with temporal inte-
gration. AGC is a prior stage to DRC involving a low-pass filter
<[>T atatime scale T, thus yielding

PCEN(t, /) = ( (t.)

e+ (E* <P, ))a

+0)I”-OI” (1)

where a,£,r, and O are positive constants. While DRC reduces
the variance of foreground loudness, AGC is intended to sup-
press stationary background noise. The resulting representation
has shown to improve performance in far-field ASR [15], AED
[16], keyword spotting [14], [17], and vocal activity detection
in music [18]. However, the literature is yet to provide clear
insight into why and how PCEN works.

This article aims to address this gap by showing empirically
how PCEN Gaussianizes and whitens mel-frequency magnitude
spectra in various acoustic conditions, characterizing the effect
of its various parameters by means of theoretical and practical
insights combined, and providing concrete guidelines in setting
them to optimize performance in a given application context.
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Fig. 1. A soundscape comprising bird calls, insect stridulations, and a passing
vehicle. The logarithmic transformation of the mel-frequency spectrogram (a)
maps all magnitudes to a decibel-like scale, whereas per-channel energy nor-
malization (b) enhances transient events (bird calls) while discarding stationary
noise (insects) as well as slow changes in loudness (vehicle). Data provided by
BirdVox. Mel-frequency spectrogram and PCEN computed with default librosa
0.6.1parameters and 7'=60ms (see Section V).

II. wHY PCEN WORKS: A STATISTICAL ANALYSIS

Figure 1 compares logmelspec and PCEN on a complex
acoustic scene: while PCEN enhances chirped events, it con-
verts background noise into a spectrotemporal texture that is
devoid of long-range interactions. To demonstrate this property
across a variety of acoustic conditions, we perform a compar-
ative statistical analysis of logmelspec and PCEN output on a
sample of urban, periurban, and rural recordings.

A. Datasets

The SONYC dataset consists of 66 ten-second recordings
sampled from from 51sensors deployed across NYC during sev-
eral months [19],and spanning 22 urban sound classes:car horn,
crowd,jackhammer, etc. The SONYC dataset thus amounts to
22 x 3 x 10= 660 seconds of audio (7.3M coefficients).

The DCASE 2013 Scene Classification (SC) dataset was
recorded in various periurban locations — both indoor and
outdoor -near London, UK, by a person wearing a binau-
ral microphone [20]. Itconsists of 100 half-minute recordings
from ten different soundscape classes (open air market, restau-
rant, bus, etc.) amounting to 100 x 30 = 3000 seconds of audio
(33M coefficients).

The BirdVox project uses nine acoustic sensors near Ithaca,
NY, USA, for monitoring avian migration [21]. Out of the 7k
hours of audio in the full BirdVox data, we manually curate
15 one-minute recordings; the resulting subset amounts to 15 x
60 =900 seconds of audio (10 M coefficients).

B. Gaussianization of Magnitudes

Figure 2 displays a histogram of all magnitudes in the matrix
of mel-frequency spectrogram coefficients, after either logarith-
mic transformation or PCEN. We observe that, for each of the
three datasets, logmelspec magnitudes exhibit a skewed distri-
bution, either left (BirdVox) or right (SONYC, DCASE 2013
SC). Replacing the logarithm by an adapted Box-Cox power
transform [22] could, in principle, improve normality, but the
maximum likelihood inference of its two parameters (offset and
exponent) is inadequate for real-time applications. Furthermore,
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Fig. 2. Distributions of magnitudes in the mel-frequency spectrogram after
logmelspec (a), and PCEN (b), as estimated on three datasets of acoustic scenes:
SONYC (left); DCASE 2013 SC (middle); and BirdVox (right). Each distribu-
tion is scaled to nul 1 mean and unit variance, and discretized with 500 histogram
bins ranging between -4 and 4. For comparison, the dashed line indicates the
standard normal distribution. See Section 11-B for details.
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Fig. 3. Covariance matrices of frequency channels after logarithmic transfor-
mation (a) and PCEN (b), as estimated on three datasets of acoustic scenes:
SONYC (left); DCASE 2013 (middle); and BirdVox (right). Darker shades
indicate larger covariances in absolute value. See Section 11-C for details.

we found in practice that both logarithm and adaptive Box-Cox
led to leptokurtic distributions. On the contrary, PCEN success-
fully brings the distribution of magnitudes closer to Gaussian,
with skewness and kurtosis both negligible.

The Shapiro-Wilk test of normality indicates statistically sig-
nificant evidence to reject the claim that the logarithmic transfor-
mation Gaussianizesthe distribution of spectrogram magnitudes
(p < 0.005 on all three datasets). At the same time, the same test
fails to reject the null hypothesis of normality in the distribution
of PCEN magnitudes.

C. Spectrogram Whitening by Decorrelation of Frequency
Bands

Figure 3 displays the covariance matrices of mel-frequency
spectrogram coefficients across frequency channels. While
the logarithmic transformation suffers from strong cross-
correlations between non-adjacent bands, the covariance ma-
trix of PCEN is close to identity, thus suggesting that noise is
"whitened".
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Fig. 4. Bode plot of the filter I;/(w)j?, measured in relative magnitude
(dB) as a function of the ratio ;:C between frequency and cut-off frequency

We = ~. ThetimescaleT isalternatively setto 10'27" (left), 10°27" (middle},
and 10327" (right). We observe a sidelobe falloff of 10 dB per decade in the
stopband. Solid lines and shaded areas, respectively, denote asymptotic bounds
and their corresponding error margins, asproved in Proposition III. I.Thedashed
purple (resp.green) vertical line denotes the cut-off (resp. Nyquist) frequency.

III. HowPCENWORKS:ANASYMPTOTIC ANALYSIS

PCEN's ability to Gaussianize and whiten the background of
acoustic recordings is the result of its three component oper-
ations of temporal integration, adaptive gain control, and dy-
namic range compression. In this section, we aim to elucidate
the parameter space of these three operations by means of an
asymptotic analysis.

A. Temporal Integration

Filtering each subband f in E(t, f) with <Pr aims at esti-
mating the intensity of background noise at f while remain-
ing invariant to the intensity of foreground events. Under the
assumption that the amplitude modulations (AM) of the fore-
ground at f are faster than those of the background, T should
be chosen to be above typical periods of foreground AM and
below those of background AM. The same can be said of fre-
quency modulation (FM): PCEN enhances chirped events in
the mel-frequency spectrogram that move from one subband f
to the next in less time than T while attenuating slower FM.
Thus, T is the transition threshold between a stationary regime
of background and a transient regime of foreground.

The original implementation of PCEN [14] defines </>r (t) as
a first-order IR filter whose response to E(t,/)is

M(t, /)= (E *<Pr)(t, )=sE{,f)+(1-s)M(t-7./),

@
where 0 <s < listhe weight of the associated autoregressive
process (AR(1)) and ris the discretization time step ("hop
size")in seconds.

Proposition IILI: The autoregressive filter </>r defined in
Equation 2 is a low-pass filter of gain 0 dB, cutoff frequency
we =2 r =arccos(l — ,(t s))at3dB,and sidelobe falloff of
10dB per decade near we.

Figure4illustrates the frequency response of </>I for different
values of T.

B. Adaptive Gain Control (AGC)

The smoothed mel-frequency spectrogram M(Z, f)estimates
the level of stationary background noise level in each frequency
band f (where background is defined as slower AM than T),
and serves to adapt the gain level in the denominator of the
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Fig. 5. Static compression characteristic of gain M ,..... (e TM)-"_as a
function of the ratio I.. between input magnitude M and soft threshold .
The exponent a is alternatively setto 0.1 (left), 0.5 (middle}, and 1.0 (right).
Solid lines and shaded areas, respectively, denote asymptotic bounds and their
corresponding error margins, as proved in Proposition I11.2. Thedashed purple
vertical line denotes the transition M = £.

following equation:

G(tf) - Ef)
T o (M(tH Te)a’

where 0 < a < I(resp.£ > 0)is the exponent (resp. soft thresh-
old) of AGC. This stage resembles mean-variance renormaliza-
tion [23], relative spectra (RASTA) [24], and cepstral mean
normalization [25].

The parameter e: distinguishes two regimes: silent
(M(t, f) << £) and active (M(t,f) > £). Multiplying E(t, )
by some constant C'leads to G(t, /) being multiplied by ap-
proximately C in the silent regime and by C!-° in the active
regime. For £ of the order of unit roundoff and a close to 1,
the following proposition proves that AGC is nonexpansive in
quasi-silent frequency bands and strongly compressive in active
frequency bands.

Proposition I11.2: G(t,7) is asymptotically equivalent to:
) E(t,/)/ea if M(t,f) <« £ and to (i) E(t,/)/ M (2, Y if
M(t, 1) M«

Figure 5 illustrates the empirical fit of the characteris-
tic M>-> (M+e:)-a to the asymptotic regimes described in
Proposition II1.2. In the active regime, bringing a closer to 1
(resp.to0)leadstomore (resp.less)cancellation of background
noise.

In the limit case £ = 0 and a = 1, the proposition below
proves that spectral equalization does not affect G, because its
effect on the numerator E is compensated by AGC with M.

Proposition I11.3: Leth(t) be the impulse response of some

acoustic environment orrecording device. Tilal ()= 0for f<

3

and |h|(’) > O0forevery f inthe audiblerange, G isinvariant
to the filtering of the underlying waveform by h.

This result, derived from [26], makes PCEN suitable for re-
mote sensing applications, where acoustic models need to be
robust to variations in the absorption properties of the environ-
ment, as well as in sensor technology [5], [27].

C. Dynamic Range Compression (DRC)

The last stage of PCEN is the addition of a positive bias O to
G(t,!),followed by pointwise exponentiation of the sum:

PCEN(t, /) = (G(t, /) + oy —c;r, )

where 0 < r < 1(resp.O > 1)is the exponent (resp. soft thresh-
old) of dynamic range compression.

The parameter O distinguishes two regimes: quiet (G << O)
and loud (G »> 0) after AGC. For M(t,!) > £, multiplying
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and their corresponding error margins, as proved in Proposition ill.4.

E(t,!) by someconstant Cleadsto G (%,!) being multiplied
by Cl-ainthequietregime, and by cr(1-a)in theloudregime.
Therefore, DRC is stronger for smaller values of 7.

Proposition 1ll.4: PCEN is asymptotically equivalent to:
(i) ro(r-1) G for G «o and to (ii) Gr for G »o.

DRC resembles a spectral substraction in the context of
speech restoration [28]. Figure 6 illustrates the empirical fit
of the characteristic G ....... (G+0) =0r to the asymptotic
regimes described in Proposition 11i.4.

IV. PRACTICAL RECOMMENDATIONS
A. Setting Parameters T and s

As discussed in SubSection ill-A, the time constant T (di-
rectly linked to the dimensionless parameter s) should be longer
than the time taken by a frequency-modulated foreground event
to move from one subband f to another, adjacent subband.
For a mel-frequency spectrogram of N bands ranging between
mel(fmin) and mel(fmax), a rule of thumb for PCEN in AED is

Txcx N =K (5)
mel(fma.x)-mel(fmin) '

where c is the typical chirp rate of the event of interest, mea-
sured in mels per second; and K is some constant, depending
on the reverberation properties of the environment. If the mel-
frequency spectrogram is replaced by a constant-Q transform,
the rule of thumb simply becomes T x ¢ x Q = K, where ¢
(resp. Q) is measured in octaves (resp. octaves per second). K
is of the order of lin dry environments and above 10 in highly
reverberant environment, e.g. bioacoustic event detection [29],
[30].

In Equation 5, the optimal value of T does not solely de-
pend on the physical phenomenon of interest (through the chirp
rate ¢ and reverberation constant K), but also on the choice
of parametrization of the mel-frequency spectrogram (through
N, fmin and fm ax). Therefore, in the context of hyperparameter
optimization, any change in the resolution of the time-frequency
representation should be reflected in an update of T, which in
turn updates s through the following formula.

Proposition N.1: Ata discrete rate T ', the weight s of the
autoregressive filter ¢ T defined in Equation 2 is

s:Jl—cosﬂTT (J3—coleTT— 1—cos2!TT)

(©)
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B. Setting Parameters e: and a

Inaccordance with [14], we found empirically that 7 and a
were the most important parameters. Although & = 1leadsto an
optimal cancellation of stationary background (see Prop. 11i.3),
it may skew the distribution of magnitudes towards the right.
Setting @ below 1reduces skewness and brings the background
closer to AWGN. However, we have found £ to have no effect
as long as itis set below unit roundoff.

C. Setting Parameters O andr

o0
The effects of and r are more noticeable on the fore-

ound time-frequency regions than on the background. The
RC threshold O > Tsets atradeoff between improving average

foreground-to-background ratio (0 ----> +00 in highly noisy ap-
plications)andreducing variance in the loudness of foreground
events (0----> 1). Moreover, ifthe foreground source is transient
with respect to the time scale T and at distance d from the sen-
sor, the energy in E(t, /) is proportional to -;fI’Z therefore, under
a fixed background noise level M(t,f), one has G "" ¢f.;- and
PCEN""CII'.,-. Werecommend r=forindoor applications

(d """ 10m) and r = t for outdoor applications (d "” 100 m).

D. Open Source Implementation of PCEN in Librosa

We release an open source implementation of PCEN in li-
brosa v0.6.1 [31], whose default parameters are identical to
[14]: T=400 ms (i.e. s 0.025 with 7 =23 ms), e: = 10-°,
a =098, 0=2,and r = -Whereas these defaults are best
suited to indoor applications (e.g. ASR in the smart home),
bioacoustic event detection distinguishes itself by faster mod-
ulations of foreground (lower T), higher skewness of back-
ground magnitudes (lower a:), a louder background (higher 0),
and more distant sources (lower r). Thus, we adopt the follow-
ing settings in our bird detection work: T = 60 ms with Q = 50
and 7= 1.5ms,£= 10->.a =0.8,0 = 10,and 7 =0.25.The
inspection of magnitude histograms (Figure 2) and covariance
matrices (Figure 3) suggests that such settings lead to a success-
ful Gaussianization and decorrelation of subbands.

V. CONCLUSION

Unlike batch learning decorrelation procedures such as prin-
cipal component analysis (PCA), PCEN can be implemented
in real time and distributed across sensors [19]; in addition, it
preserves the locality structure of harmonic patterns along the
mel-frequency axis [32]. Although it depends on five parame-
ters (T, a, e:, r, and 0) that are possibly frequency-dependent ,
this article has shown that each of these parameters has an inter-
pretable purpose, and given asymptotic approximations of the
PCEN equations in ideal regimes: silent vs. active (£),stationary
vs. transient (T), and quiet vs. loud (0). Inthe context of deep
learning for ASR and AED, our results could yield well-adapted
initial values for the trainable version of PCEN [14], as well as
a post hoc interpretation of all learned parameters.
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