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Abstract- In the context of  automatic speech recognition and 
acousticevent detection,an adaptive procedurenamed per-channel 
energy normalization (PCEN) has recently shown to outperform 
the pointwise logarithm of mel-frequency spectrogram (logmel 
spec) as an acoustic frontend. This Jetter investigates the adequacy 
of PCEN for spectrogram-based pattern recognition in far-field 
noisy recordings, both from theoretical and practical standpoints. 
First, we apply PCEN on various datasets of natural acoustic en 
vironments and find empirically that it Gaussianizes distributions 
of magnitudes while decorrelating frequency bands. Second, we 
describe the asymptotic regimes of each component in PCEN: tem 
poral integration, gain control, and dynamic range compression. 
Third, we give practical advice for adapting PCEN parameters to 
the temporal properties of the noise to be mitigated, the signal to 
be enhanced, and the choice of time-frequency representation. As 
it converts a large class of real-world soundscapes into additive 
white Gaussian noise, PCEN is a computationally efficient fron 
tend for robust detection and classification of acoustic events in 
heterogeneous environments. 

 
I11dex Terms-Aco ustic noise, acoustic sensors, acoustic signal 

detection,signal classification, spectrogram. 
 
 

I. INTRODUCTION 

REQUENCY transposition is a major factor of intra-class 
variability in many sound classification tasks, including au 

tomatic speech recognition (ASR) [l], acoustic event detection 
(AED) [2], and bioacoustic species classification [3]. Tuning 
auditory filters to the perceptual mel scale provides a time 
frequency representation, named mel-frequency spectrogram, 
in which the frequency transpositions of any periodic audio sig 
nal become vertical translations [4]. In the presence of a single 
source, this property allows convolutional operators in the time 
frequency domain [5], such as convolutional neural networks 
[l] and time-frequency scattering [6], to extract pitch contours 
as spectrotemporal patterns, regardless of their fundamental fre 

quency -a property known as equivariance [7], [8]. 
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Yet, there is often more than one active source in real-world 
audio recordings, especially outdoors [9]. Even after narrow 
ing down the classification task to the identification of the most 
salient source only (thereafter called foreground), the presence 
of background noise is detrimental to equivariance along the 
mel-frequency axis [10]. Indeed, on one hand, intra-class vari 
ability causes frequency transposition of the foreground while 
leaving the background unaffected . On the other hand, equiv 
ariance is only possible if foreground and background happen 
to be transposed simultaneously. The generalizability oflearned 
convolutional kernels across acoustically similar events of dis 
tinct fundamental frequencies is hindered by the contradiction 
between these two assumptions. To reconcile them, the back 
ground must result from a stochastic process that is stationary 
along the mel-frequency axis [11]. Indeed, the robustness of 
deep neural networks to adversarial additive perturbations has 
been shown to be theoretically optimal if background noise in 
the training set is additive, white, and Gaussian (AWGN) [12]. 
However, in the absence of any further processing, magnitudes 
in the mel-frequency spectrogram E(t,!)of real-world acoustic 
scenes are typically sparse and strongly correlated, both along 
time t and mel frequency f [13], and thus not approximable by 
AWGN. 

Per-channel energy normalization (PCEN) [14] has recently 
been proposed as an alternative to the logarithmic transforma 
tion of the mel-frequency spectrogram (logmelspec),  with the 
aim of improving robustness to channel distortion. PCEN com 
bines dynamic range compression (DRC, also present in log 
melspec) and adaptive gain control (AGC) with temporal inte 
gration. AGC is a prior stage to DRC involving a low-pass filter 
<l>T at a time scale T, thus yielding 

 
 

PCEN(t, !) = ( (t, !) + o) r -or (1) 
(e: + (E * </>r )(t, !))a 

 
where a,£ , r, and o are positive constants. While DRC reduces 
the variance of foreground loudness, AGC is intended to sup 
press stationary background  noise. The resulting representation 
has shown to improve performance in far-field ASR [15], AED 
[16], keyword spotting  [14], [17], and vocal activity detection 
in music [18]. However, the literature is yet  to provide clear 
insight into why and how PCEN works. 

This article aims to address this gap by showing empirically 
how PCEN Gaussianizes and whitens mel-frequency magnitude 
spectra in various acoustic conditions, characterizing the effect 
of its various parameters by means of theoretical and practical 
insights combined, and providing concrete guidelines in setting 
them to optimize performance in a given application context. 
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(a) Logarithmic  transformation. 
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(b) Per-channel energy normalization (PCEN). 
 

Fig. 1. A soundscape comprising bird calls, insect stridulations, and a passing 
vehicle. The logarithmic transformation of the mel-frequency spectrogram (a) 
maps all magnitudes to a decibel-like scale, whereas per-channel energy nor 
malization (b) enhances transient events (bird calls) while discarding stationary 
noise (insects) as we11 as slow changes in loudness (vehicle). Data provided by 
BirdVox. Mel-frequency spectrogram and PCEN computed with default librosa 
0.6.1 parameters and T = 60 ms (see Section IV). 

 
 

II. WHY PCEN WORKS: A STATISTICAL ANALYSIS 

Figure 1 compares logmelspec and PCEN  on a complex 
acoustic scene: while PCEN enhances chirped events, it con 
verts background noise into a spectrotemporal texture that is 
devoid of long-range interactions. To demonstrate this property 
across a variety of acoustic conditions, we perform a compar 
ative statistical analysis of logmelspec and PCEN output on a 
sample of urban, periurban, and rural recordings. 

 

A. Datasets 
The SONYC dataset consists of 66 ten-second recordings 

sampled from from 51sensors deployed across NYC during sev 
eral months [19], and spanning 22 urban sound classes:car horn, 
crowd,jackhammer, etc. The SONYC dataset thus amounts to 
22 x 3 x 10 = 660 seconds of audio (7.3M coefficients). 

The DCASE 2013 Scene Classification (SC) dataset was 
recorded in various periurban locations - both indoor and 
outdoor -near London, UK, by a person wearing a binau 
ral microphone [20]. It consists of 100 half-minute recordings 
from ten different soundscape classes (open air market, restau 
rant, bus, etc.) amounting to 100 x 30 = 3000 seconds of audio 
(33M coefficients). 

The BirdVox project uses nine acoustic sensors near Ithaca, 
NY, USA, for monitoring avian migration [21]. Out of the 7k 
hours of audio in the full BirdVox data, we manually curate 
15 one-minute recordings; the resulting subset amounts to 15 x 
60 = 900 seconds of audio (10 M coefficients). 

 

B. Gaussianization of Magnitudes 
Figure 2 displays a histogram of all magnitudes in the matrix 

of mel-frequency spectrogram coefficients, after either logarith 
mic transformation or PCEN. We observe that, for each of the 
three datasets, logmelspec magnitudes exhibit a skewed distri 
bution, either left (BirdVox) or right (SONYC, DCASE 2013 
SC). Replacing the logarithm by an adapted Box-Cox power 
transform [22] could, in principle, improve normality, but the 
maximum likelihood inference of its two parameters (offset and 
exponent) is inadequate for real-time applications. Furthermore, 

 
 

SONYC DCASE 2013 SC BirdVox 
 

 
(a) Logarithmic  transformation. 

 

 
(b) Per-channel energy normalization (PCEN). 

 
Fig. 2. Distributions of magnitudes in the mel-frequency spectrogram after 
logmelspec (a), and PCEN (b), as estimated on three datasets of acoustic scenes: 
SONYC (left); DCASE 2013 SC (middle); and BirdVox (right). Each distribu 
tion is scaled to nu11 mean and unit variance, and discretized with 500 histogram 
bins ranging between -4 and 4. For comparison, the dashed line indicates the 
standard normal distribution . See Section 11-B for details. 

 
 

SONYC DCASE 2013 SC BirdVox 
 

  
(a) Logarithmic transformation. 

 

 
(b) Per-channel energy normalization  (PCEN). 

 
Fig. 3. Covariance matrices of frequency channels after logarithmic transfor 
mation (a) and PCEN (b), as estimated on three datasets of acoustic scenes: 
SONYC (left); DCASE 2013 (middle); and  BirdVox (right). Darker shades 
indicate larger covariances in absolute value. See Section 11-C for details. 

 
 

we found in practice that both logarithm and adaptive Box-Cox 
led to leptokurtic distributions. On the contrary, PCEN success 
fully brings the distribution of magnitudes closer to Gaussian, 
with skewness and kurtosis both negligible. 

The Shapiro-Wilk test of normality indicates statistically sig 
nificant evidence to reject the claim that the logarithmic transfor 
mation Gaussianizes the distribution of spectrogram magnitudes 
(p < 0.005 on all three datasets). At the same time, the same test 
fails to reject the null hypothesis of normality in the distribution 
of PCEN magnitudes. 

 

C. Spectrogram Whitening by Decorrelation of Frequency 
Bands 

Figure 3 displays the covariance matrices of mel-frequency 
spectrogram  coefficients  across  frequency  channels.  While 
the logarithmic transformation suffers from strong cross 
correlations between non-adjacent bands, the covariance ma 
trix of PCEN is close to identity, thus suggesting that noise is 
"whitened". 
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Fig. 4. Bode plot of the filter l;/;(w)j2 , measured in relative magnitude 
(dB) as a function of the ratio ;::c between frequency and cut-off frequency 
We = 2¥-.Thetime scaleT is alternatively set to 10127" (left), 10227" (middle}, 
and 10327" (right). We observe a sidelobe falloff of 10 dB per decade in the 
stopband. Solid lines and shaded areas, respectively, denote asymptotic bounds 
and their corresponding error margins, asproved in Proposition III. I .Thedashed 
purple (resp.green) vertical line denotes the cut-off (resp. Nyquist) frequency. 
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Fig. 5. Static compression characteristic of gain M ,..... (e + M)-0 , as a 
function of the ratio r.: between input magnitude M and soft threshold £. 
The exponent a is alternatively set to 0.1 (left), 0.5 (middle}, and 1.0 (right). 
Solid lines and shaded areas, respectively, denote asymptotic bounds and their 
corresponding error margins, as proved in Proposition III.2. The dashed purple 
vertical line denotes the transition M = £. 

 

following equation: 
 

 
III. How PCEN WORKS: AN ASYMPTOTIC ANALYSIS 

G(t f ) - E(t, f) 
' - (M(t,f) + e)a ' (3) 

PCEN's ability to Gaussianize and whiten the background of 
acoustic recordings is the result of its three component oper 
ations of temporal integration, adaptive gain control, and dy 
namic range compression. In this section, we aim to elucidate 
the parameter space of these three operations by means of an 
asymptotic analysis. 

where 0 < a < 1(resp.£ > 0) is the exponent (resp. soft thresh 
old) of AGC. This stage resembles mean-variance renormaliza 
tion [23], relative spectra (RASTA) [24], and cepstral mean 
normalization  [25]. 

The parameter e: distinguishes two regimes: silent 
(M(t, f) « £) and active (M(t,f ) » £). Multiplying E(t, f) 
by some constant C leads to G(t, !) being multiplied by ap 

A. Temporal Integration proximately c in the silent regime and by c1-0 in the active 

Filtering each subband f in E(t, f) with <Pr aims at esti 
mating the intensity of background noise at f while remain 
ing invariant to the intensity of foreground events. Under the 
assumption that the amplitude modulations (AM) of the fore 
ground at f are faster than those of the background, T should 
be chosen to be above typical periods of foreground AM and 
below those of background AM. The same can be said of fre 
quency modulation (FM): PCEN enhances chirped events in 
the mel-frequency spectrogram that move from one subband f 
to the next in less time than T while attenuating slower FM. 
Thus, T is the transition threshold between a stationary regime 
of background and a transient regime of foreground. 

The original implementation of PCEN [14] defines </>r (t) as 
a first-order IIR filter whose response to E(t, !) is 

M(t, !) = (E * <Pr )(t, !) = sE(t, f) + (1- s)M(t -T,!), 
(2) 

where 0 < s < 1is the weight of the associated autoregressive 
process (AR(l)) and T is the discretization time step ("hop 
size") in seconds. 

Proposition III.I: The autoregressive filter </>r  defined in 
Equation  2 is a low-pass filter of gain 0 dB, cutoff frequency 

regime. For £ of the order of unit roundoff and a close to 1, 
the following proposition proves that AGC is nonexpansive in 
quasi-silent frequency bands and strongly compressive in active 
frequency bands. 

Proposition IIl.2: G(t, f) is asymptotically equivalent to: 
(i) E(t, !)/ea if M(t, f) « £ and to (ii) E(t, f)/ M (t, !)0 if 
M(t,f) »£. 

Figure  5 illustrates  the  empirical  fit  of  the  characteris 
tic M >--> (M + e:) -a to the asymptotic regimes described in 
Proposition IIl.2. In the active regime, bringing a closer to 1 
(resp. to 0) leads to more (resp. less) cancellation of background 
noise. 

In the limit case £ = 0 and a = 1, the proposition below 
proves that spectral equalization does not affect G, because its 
effect on the numerator E is compensated by AGC with M. 

Proposition III.3: Let h(t) be the impulse response of some 
acoustic environment or recording device. If lhl(!) = 0 for f < 

and lhl(!) > 0 for every f in the audible range, G is invariant 
to the filtering of the underlying waveform by h. 

This result, derived from [26], makes PCEN suitable for re 
mote sensing applications, where acoustic models need to be 
robust to variations in the absorption properties of the environ 
ment, as well as in sensor technology [5], [27]. 

We = 2 r = arccos(l - ( t  s) ) at 3 dB, and sidelobe falloff of 
10 dB per decade near We. 

Figure 4 illustrates the frequency response of </>r for different 
values of T. 

 

B.  Adaptive  Gain Control (AGC) 

The smoothed mel-frequency spectrogram M(t, f)estimates 
the level of stationary background noise level in each frequency 
band  f (where background  is defined  as slower AM than T), 
and serves to adapt the gain level in the denominator of the 

C. Dynamic Range Compression (DRC) 

The last stage of PCEN is the addition of a positive bias o to 
G(t,!),followed by pointwise exponentiation of the sum: 

PCEN(t, f) = (G(t, !) + oy - c;r , (4) 

where 0 < r < 1(resp.o > 1) is the exponent (resp. soft thresh 
old) of dynamic range compression. 

The parameter o distinguishes two regimes: quiet (G « o) 
and loud (G » o) after AGC. For M(t, !) » £, multiplying 

-40 i 
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B. Setting Parameters e: and a 

Inaccordance with [14], we found empirically that T and a 
were the most important parameters. Although a = l leads to an 
optimal cancellation of stationary background (see Prop. lli.3), 
it may skew the distribution of magnitudes towards the right. 
Setting a below 1reduces skewness and brings the background 
closer to AWGN. However, we have found £ to have no effect 
as long as it is set below unit roundoff. 

G ,..... (G + o)' - or , as a function of the ratio *  
 

input magnitude 

C. Setting Parameters o and r 

Fig. 6.    Static compression characteristic of dynamic range compressions 
between o,for different values of r:0.25 (left), 0.5 (right}, and 0.75 o 

G and soft threshold 
(right). Solid lines and shaded areas, respectively, denote asymptotic bounds The effects of and r are more noticeable on the fore 
and their corresponding error margins, as proved in Proposition ill.4. 

 
 

E(t,!) by some constant C leads to G(t,!) being multiplied 
by c1-a in the quiet regime, and by cr(l -a) in the loud regime. 
Therefore, DRC is stronger for smaller values of r. 

Proposition Ill.4: PCEN is asymptotically equivalent to: 
(i) ro(r-l) G for G «o and to (ii) Gr for G »o. 

DRC resembles a spectral  substraction in the context of 
speech restoration  [28]. Figure 6 illustrates the empirical fit 
of  the  characteristic  G ........ (G + oy - or to the asymptotic 
regimes described in Proposition lli.4. 

 
IV.  PRACTICAL  RECOMMENDATIONS 

A. Setting Parameters T and s 
As discussed in SubSection ill-A, the time constant T (di 

rectly linked to the dimensionless parameter s) should be longer 
than the time taken by a frequency-modulated foreground event 
to move from one subband f  to  another, adjacent  subband. 
For a mel-frequency  spectrogram of N bands ranging between 
mel(fm in) and mel(fmax), a rule of thumb for PCEN in AED is 

T x c x N = K (5) 
mel(fma.x ) - mel(fm in) ' 

where c is the typical chirp rate of the event of interest, mea 
sured in mels per second; and K is some constant, depending 
on the reverberation  properties  of the environment. If the mel 
frequency spectrogram is replaced by a constant-Q transform, 
the rule of thumb simply becomes T x c x Q = K, where c 
(resp. Q) is measured in octaves (resp. octaves per second). K 
is of the order of 1in dry environments and above 10 in highly 
reverberant environment, e.g. bioacoustic event detection [29], 
[30]. 

In Equation 5, the optimal value of T does not solely de 
pend on the physical phenomenon of interest (through the chirp 
rate c and reverberation  constant  K), but  also on  the choice 
of parametrization  of the mel-frequency  spectrogram (through 
N,fmin ,and fm ax). Therefore, in the context of hyperparameter 
optimization, any change in the resolution of the time-frequency 
representation should be reflected in an update of T, which in 
turn updates s through the following formula. 

Proposition N.1: At a discrete rate T 1 the weight s of the 
autoregressive filter ¢T defined in Equation 2 is 

ground time-frequency regions than on the background. The 
DRC threshold o > 1sets a tradeoff between improving average 
foreground-to-background ratio (o ----> +oo in highly noisy ap 
plications) and reducing variance in the loudness of foreground 
events (o ----> 1). Moreover, if the foreground source is transient 
with respect to the time scale T and at distance d from the sen 
sor, the energy in E(t, !) is proportional to -;fr: therefore, under 
a fixed background  noise level M(t,f ), one has G "" cf.;-  and 
PCEN "" cfr.,-. We recommend r =  for indoor applications 

(d "" 10 m) and r = t for outdoor applications ( d "" 100 m). 

D. Open Source Implementation of PCEN in Librosa 
We release an open source implementation of PCEN in li 

brosa v0.6.1 [31], whose default parameters are identical to 
[14]: T = 400 ms (i.e. s     0.025 with T  = 23 ms), e: = 10-6 , 

a = 0.98, o = 2, and r =  · Whereas these defaults are best 
suited to indoor applications (e.g. ASR in the smart home), 
bioacoustic event detection distinguishes itself by faster mod 
ulations of foreground (lower T), higher skewness of back 
ground magnitudes (lower a:), a louder background (higher o), 
and more distant sources (lower r ). Thus, we adopt the follow 
ing settings in our bird detection work: T = 60 ms with Q = 50 
and T = 1.5 ms,£ = 10-5, a = 0.8, o = 10, and r = 0.25.The 
inspection  of magnitude  histograms (Figure 2) and covariance 
matrices (Figure 3) suggests that such settings lead to a success 
ful Gaussianization and decorrelation of subbands. 

 
 

V. CONCLUSION 

Unlike batch learning decorrelation procedures such as prin 
cipal component analysis (PCA), PCEN  can  be implemented 
in real time and distributed across sensors [19]; in addition, it 
preserves the locality structure of harmonic patterns along the 
mel-frequency axis [32]. Although it depends on five parame 
ters (T, a, e:, r, and o) that are possibly frequency-dependent , 
this article has shown that each of these parameters has an inter 
pretable purpose, and given asymptotic approximations of the 
PCEN equations in ideal regimes: silent vs. active (£),stationary 
vs. transient (T), and quiet vs. loud (o). Inthe context of deep 
learning for ASR and AED, our results could yield well-adapted 
initial values for the trainable version of PCEN [14], as well as 
a post hoc interpretation of all learned parameters. 

s = .J l - cos 21TT ( .J 3 -cos 21TT - ·J l - cos 21TT ) 
 

. 

(6) 
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