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Abstract—In time series classification and regression, signals 
are typically mapped into some intermediate representation used 
for constructing models. Since the underlying task is often 
insensitive to time shifts, these representations are required to 
be time-shift invariant. We introduce the joint time-frequency 
scattering transform, a time-shift invariant representation which 
characterizes the multiscale energy distribution of a signal in 
time and frequency. It is computed through wavelet convolutions 
and modulus non-linearities and may therefore be implemented 
as a deep convolutional neural network whose filters are not 
learned but calculated from wavelets. We consider the progres- 
sion from mel-spectrograms to time scattering and joint time- 
frequency scattering transforms, illustrating the relationship be- 
tween increased discriminability and refinements of convolutional 
network architectures. The suitability of the joint time-frequency 
scattering transform for time-shift invariant characterization of 
time series is demonstrated through applications to chirp signals 
and audio synthesis experiments. The proposed transform also 
obtains state-of-the-art results on several audio classification 
tasks, outperforming time scattering transforms and achieving 
accuracies comparable to those of fully learned networks. 

Index Terms—Acoustic signal processing, continuous wavelet 
transform, convolutional neural networks, supervised learning. 

 

I. INTRODUCTION 

To extract information from signals, we typically  map 
them into a  lower-dimensional  representation  space  where 
we construct model. The suitability of these representations 
depends on their ability to capture signal structure relevant 
to the task in question, such as classification or regression. 
For time series, this often includes the signal’s time-frequency 
geometry. Figure 1 shows a time-frequency decomposition, 
the wavelet transform, applied to two audio recordings. Both 
are recordings of a person laughing, so their time-frequency 
structure is similar, but they also exhibit significant variability. 
We would like to construct representations invariant to this type 
of variability but which adequately capture the time-frequency 
structure of the signals. 

An especially important form of variability is time-shifting 
(and time-warping deformations). Indeed, many time series 
classification and regression tasks are invariant to these trans- 
formations. This work will therefore study representations that 
are time-shift invariant. 

Initial work on audio classification computed representations 
from time-frequency decompositions, such windowed Fourier 
transforms. These include mel-spectrograms, mel-frequency 
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Fig. 1: The wavelet transform amplitudes, or scalograms, of 
two recordings as a function of time t and log-frequency λ. 
Both recordings are of one person laughing. 

 
 

cepstral coefficients (MFCCs) [1], modulation spectrograms [2], 
[3] and correlograms [4], [5]. More recent work employs deep 
convolutional neural networks—cascades of filter banks alter- 
nated with nonlinearities [6], [7], [8]. Filters are learned from 
data, so each network is adapted to then task, often resulting in 
excellent performance [9]. However, learning typically requires 
large training sets and extensive computational resources. 

This  work  provides  a  bridge  between  traditional  time- 
frequency representations and deep convolutional neural net- 
works. In particular, we implement the mel-spectrogram as a 
convolutional network and extend it by adding certain filters 
to that network which increase its discriminative power while 
maintaining the amount of time-shift invariance. These filters 
are  not  learned  but  fixed  according  to  the  invariance  and 
discriminability  needs  of  the  task.  This  simplifies  analysis 
and interpretation of the network. Fixed filters also reduces the 
associated computational burden since no training is necessary. 

A convolutional network cascades convolutions, subsampling 
operators, and pointwise nonlinearities (such as rectifiers) [10], 
[11]. Its convolution kernels, or filters, are optimized over a 
training set. Section II-A describes how the wavelet transform 
is computed by a similar cascade of convolutions, but with fixed 
filters. A wavelet transform is thus a convolutional network 

with filters specified by certain time-frequency topology. 
To impose time-shift invariance, we compute the modulus 

of the wavelet transform, known as the scalogram, and average 
in time. As shown in Section II-B, this yields a variant of the 
popular mel-spectrogram. 

Although powerful, mel-spectrograms do not capture large- 
scale temporal structure, such as amplitude modulation. In 
Section II-C, the time scattering transform extends the mel- 
spectrogram through multiscale modulation coefficients [12], 
[13]. Instead of averaging the scalogram, it applies a second 
wavelet transform in time, takes the modulus, and averages. 
This representation is more discriminative and performs well 
for several classification tasks [13], [14], [15], [16]. Extending 
the wavelet transform network now lets us implement both mel- 
spectrograms and time scattering as convolutional networks. 

A significant limitation of the time scattering transform is 
its restriction to convolutions along the time axis. In other 
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words, its convolutional network is actually a tree, with each 
node having only a single parent. A consequence is that time 
scattering cannot separate signals subjected to time shifts which 
vary in frequency, which is shown in Section III-A. To remedy 
this, we must capture time and frequency structure jointly. 

With  this  goal  in  mind,  we  introduce  the  joint  time- 

 
(a) 
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(b) 
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frequency scattering transform. As described in Section III-B, 
it replaces the one-dimensional, channel-by-channel wavelet 
decomposition of the scalogram by a two-dimensional wavelet 
transform. Its construction is inspired by the cortical transform 
of Shamma et al. [17], [18], which provides neurophysiological 
models of auditory processing in the mammalian brain. The 

Fig. 2: (a) Real and imaginary parts of a Morlet mother wavelet 
with Q = 4. (b) The wavelet filters in the frequency domain. 

 

may be computed using a multirate filter bank, as has been 
described in several works [22], [23]. 

Let x(t) be  a continuous  signal  for  t ∈ R.  Its  Fourier 
corresponding joint scattering network introduces additional transform is given by x̂(ω) = 

(
 x(t)e−2πiωt dt for ω ∈ R. 

filters  into  the  time  scattering  network,  breaking  its  tree R 
Following Andén and Mallat [13], we consider a complex 

structure and increasing its discriminative power. To illustrate analytic  wavelet  ψ(t)  whose  Fourier  transform ψ� (ω) is 
this, Section III-C shows how the joint scattering transform 
captures the chirp rate of frequency-modulated excitations. 

The representational power of the proposed transform is fur- 

concentrated in the interval [2−1/Q, 1] for some Q ≥ 1. Dilating 
ψ(t) by factors 2−λ now yields the wavelet filter bank 

ther demonstrated in Section IV through synthesis experiments. 
Here, a signal is synthesized from a target scattering transform 

ψλ(t) = 2λψ(2λt) ⇐⇒ 
for  λ ∈ R.   Consequently, 

ψ� λ(ω) = ψ� (2−λω) , (1) 
ψ� λ(ω)  is  concentrated  in 

by minimizing the distance of its transform to that target. The 
resulting synthesized signals show how certain structures which 
are not captured by the mel-spectrogram and time scattering 
are better characterized by the joint scattering transform. 

Section V concludes by evaluating the joint time-frequency 
scattering transform on several audio classification tasks. These 
include classification of phone segments, musical instruments, 
and acoustic scenes. The joint transform outperforms the 
mel-spectrogram and time scattering while achieving results 
comparable to, or better than, state-of-the-art convolutional 
networks. All figures and tables may be reproduced using 
software available at http://www.di.ens.fr/data/software/. 

 
II. TIME-SHIFT INVARIANT REPRESENTATIONS 

Section II-A defines the wavelet transform, a representation 
well  suited  for  time  series  with  multiscale  structure.  The 
modulus of the wavelet transform, known as the scalogram, 
is averaged in time to yield the time-shift invariant mel- 
spectrogram, as described in Section II-B. Section II-C reviews 
the time scattering transform, introduced in Andén and Mallat 
[13], which extends the invariant mel-spectrogram. Instead of 
just averaging the scalogram, it also applies a second wavelet 
transform, demodulates, and averages the result in time. These 
representations are cascades of convolutions and non-linearities 

[2λ−1/Q, 2λ].  This  interval  has  approximate  center  2λ  and 
bandwidth 2λ/Q. We therefore need Q filters to cover an 
octave, independent of frequency. Since ψ� λ(ω) is concentrated 

around 2λ, we refer to λ as the wavelet’s log-frequency index. 
We are typically interested only in structures shorter than 

some fixed  time  scale T .  In  time,  ψλ(t) has  approximate 
duration 2−λQ. We therefore require λ to satisfy 2−λQ ≤ T . 
Unfortunately, certain low frequencies are then not covered 
by any wavelet. For audio signals, these frequencies typically 
contain a small amount of energy and may be safely ignored. 
In the following, we instead add a set of constant-bandwidth 
filters covering these frequencies (see Andén and Mallat [13]). 

In numerical experiments, we use the Morlet wavelet due to  
its near-optimal time-frequency localization [22], [13]. Figure 
2 shows a sample Morlet wavelet and its wavelet filter bank. 

We now define the continuous wavelet transform of x(t) as 

x ∗ ψλ(t) (2) 

for λ such that 2−λQ ≤ T . It captures the local oscillations 
of x(t) at time t and frequency 2λ with resolution 2−λQ and 
2λ/Q in time and frequency, respectively. In audio applications, 
we typically set Q ≈ 8 to better resolve oscillatory components. 

Now let x[n] be a discrete signal for n ∈ Z. Its discrete- 

time Fourier transform is x̂(ω) = 
},

n∈Z x[n] e− 

and may thus be implemented as deep convolutional networks 
with fixed filters. 

 
A. Wavelet Transform Filter Bank 

The wavelet transform of a signal is obtained by convolving 
it with a set of dilated bandpass filters known as wavelets. 
It captures both short, transient structures and long-range 
oscillations in a localized manner. In the frequency domain, the 
ratio between center frequency and bandwidth, the Q factor, is 
the same for all filters. These transforms are therefore constant- 
Q transforms [19]. Wavelet filter banks provide good models for 
cochlear function in mammals [20], [17], [18], [21] and form 
the basis for many audio representations [22]. The transform 

2πitω for ω ∈ 

[−1/2, 1/2]. We now define a discrete analog of the continuous 
wavelet transform (2), implemented as a multirate filter bank. 

To achieve this, we consider the multiresolution pyramid 
obtained by averaging x[n] at different scales 2j . We initialize 
the finest scale to a0[n] = x[n]. For j > 0, aj [n] is obtained 
from aj−1[n] through convolution by a lowpass filter h[n] 
whose transfer function ĥ(ω) is concentrated in [−1/4, 1/4]. 
We then subsample by 2 to obtain 

aj [n] = aj−1 ∗ h[2n] . (3) 

Note that aj [n] = x ∗ hj [2j n] for some filter hj [n] defined by 
j−1 

ĥj (ω) = 
n 

ĥ(2pω). 

|ψ 
 λ

(ω
)|
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j = 3 

 
j = 4 

 
the process is repeated. As we progress through this cascade, 
the depth corresponds to the octave index j. 

Combining the bandpass outputs yields the discrete wavelet 
transform in (5) for 1 ≤ j ≤ J and 0 ≤ k < Q. This is similar 
to the output of the continuous wavelet transform. Indeed, 
if we sample a continuous band-limited signal x(t) at unit 
intervals, its discrete wavelet transform (5) approximates the 
continuous transform (2) for λ = −j − k/Q ≤ −1 provided 

h g0 possible to construct filters h[n] and g0[n], . . . , gQ− 1[n] such 
...
 

gQ−1 

that this correspondence holds for large j [22]. The result is 
an approximation of the continuous wavelet transform using 
the convolutional network illustrated in Figure 3. 

 
 

h g0 

...
 

gQ−1 

 
h 

 
 
 
 
 
 
 

g0 

...
 

gQ−1 

 
h 

B. Mel-Spectrogram 
The lack of time-shift invariance of the wavelet transform 

hinders its generalization power for classification. For most 
classification tasks, shifting a signal in time does not modify its 
class. To reduce variability when constructing models, the signal 
representation must therefore be made time-shift invariant. In 
Andén and Mallat [13], this is achieved by computing the 
modulus and  applying a  lowpass filter.  Let us  review this 
construction and study how this may be implemented in a 

 
The amplitude of the wavelet transform is the scalogram: 

X(t, λ) = |x ∗ ψλ(t)|. (6) 

Fig. 3: Multirate filter bank computing wavelet coefficients 
for J = 4. Each block corresponds to a filter convolution 
subsampled by 2 where a boxed h is a low-pass filter and a 
boxed gk is a band-pass filter. The depth corresponds to the 
octave index j while k = 0, . . . , Q − 1 is the suboctave index. 

 
As a result, ĥj (ω) is concentrated in [−2−j−1, 2−j−1] and 
hj [n] has approximate duration 2j+1. 

The high frequencies of aj−1[n] lost when convolving with 
h[n] are captured by Q bandpass filters g0[n], . . . , gQ−1[n]. 

Figure 1 shows two sample scalograms. Since the wavelets 
are analytic, applying the complex modulus performs a Hilbert 
demodulation, capturing the temporal envelope of each subband. 
The scalogram X(t, λ) therefore describes the time-frequency 
intensity of x(t) at time t and log-frequency λ. 

Unfortunately, the scalogram is not time-shift invariant. 
Indeed, shifting a signal x(t) 1→ xc(t) = x(t − c) also 
shifts its scalogram X(t, λ) 1→ Xc(t, λ) = X(t − c, λ). To  
ensure invariance, we average in time to obtain 

Mx(t, λ) = X(·, λ) ∗ φT (t) = |x ∗ ψλ| ∗ φT (t), (7) 
Each   has   a   transfer   function ĝk (ω)  concentrated   in where φT (t) = T −1φ(T −1t) for some lowpass filter φ(t) 
[2−(k+1)/Q−1, 2−k/Q−1]. After convolving aj −1[n] with gk [n], of duration 1, so φT (t) has  duration  T .  This  is  the  mel- 
the result is subsampled by 2, yielding 

dj,k [n] = aj−1 ∗ gk [2n], (4) 

for j > 0 and 0 ≤ k < Q. One may verify that 

dj,k [n] = x ∗ gj,k [2j n], (5) 

spectrogram Mx(t, λ) of x(t). For |c| « T , it satisfies 
Mxc(t, λ) ≈ Mx(t, λ), so it is locally invariant to time-shifts. 
The underlying wavelet structure of the mel-spectrogram also 
ensures stability to time-warping deformations [13]. 

The mel-spectrogram was originally introduced for speech 
classification [1] and was motivated by psychoacoustic studies. 

where ĝj,k (ω) = ĥj−1(ω) ĝk (2 ω). These filters are concen- It has since found widespread use in various audio classification 
trated in intervals [2−j−(k+1)/Q, 2−j−k/Q]. In time, they have tasks [24], [25], [26]. Traditionally, the mel-spectrogram is 
approximate duration 2j Q. Since we are only concerned with 
local variability below time scale T , we require 2j Q ≤ T . This 
specifies the maximum depth J = log2(T/Q) of the cascade. 

Figure 3 illustrates this multirate filterbank cascade. Each box 
corresponds to a convolution and subsampling by 2 according 
to (3) or (4). First, x[n] is convolved with g0[n], . . . , gQ−1[n] 
and  subsampled  to  yield  the  highest  octave  of  bandpass 
coefficients d1,0[n], . . . , d1,Q−1[n]. Convolving x[n] with h[n] 
and subsampling provides the remaining low frequencies, and 

computed through frequency averaging of the windowed Fourier 
transform amplitude, also known as the spectrogram. However, 
it has recently been shown that they may be approximated by 
the time-averaged scalogram coefficients (7) [13], [27], [28]. 
Note that this formulation makes the time-shift invariance of 
the mel-spectrogram explicit. Indeed, the amount of invariance 
is directly controlled by the duration T of the lowpass filter 
φT (t). We shall use this wavelet-based variant of the mel- 
spectrogram in the following. 
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Fig. 4: Mel-spectrogram implemented as a convolutional 
network. Each |gk | block convolves by a band-pass filter gk [n], 
computes the modulus, and subsamples by 2. Blocks containing 

|gQ−1| 
 

h 

· · · 
 

· · · 

 
 

0th order 

h or h(t)  convolve by a low-pass filter and subsample by 2. 

 
We now define the discrete mel-spectrogram using the 

discrete wavelet transform. The resulting convolutional network 
is shown in Figure 4. Instead of just convolving by gk [n], 
this  network  also  applies  a  modulus  and  subsamples  by 
2. The whole operation is denoted by a boxed |gk |. The 
result is then passed through a sequence of lowpass filters 
h(t)[n] alternated with subsampling operators, approximating 
the convolution by φT (t). The output is JQ + 1 signals of 

Fig. 5:  A time scattering network. Each block with |gk | or 
|g(t)| outputs the modulus of the input convolved with a band- 
pass filter, subsampled by 2. Blocks with h and h(t) convolves 
the input with a low-pass filter and subsample by 2. 

 
 

scattering coefficients. Let us rederive this representation and 
implement it as a convolutional network extending that of the 
mel-spectrogram (see Figure 4). 

The first-order time scattering coefficients coincide with the 
mel-spectrogram Mx(t, λ) and are given by 

(t) J 
form |x ∗ gj,k | ∗ hJ −j [2 n], where j is the depth at which the S x(t, λ) = X( , λ) φ (t) . 
modulus was applied. If the filters are chosen as in Section 
II-A, this approximates Mx(t, λ) for a bandpass x(t). 

For real gk [n], we may replace the modulus with a rectified 

1 · ∗   T 

The lost high frequencies of X(t, λ) are recovered by con- 
volving with a new set of wavelets, defined from a Morlet 

linear  unit.  Indeed,  averaging  a  rectified  bandpass  signal 
approximates its Hilbert envelope, so the result is similar [29]. mother wavelet ψ(t)(t) by ψ(t)(t) = 2µ ψ(t) (2µ t) for µ ∈ R. 

Each ψ(t)(t) has a center frequency of approximately 2µ, so 
we refer to µ as their log-frequency. Unlike their first-order 

C. Time Scattering counterparts ψλ (t),  the  second-order  wavelets  ψ(t)(t) have 
The mel-spectrogram discards a large amount of potentially 

useful information when averaging X(t, λ) along t in (7), 
removing any high-frequency structure. The time scattering 
transform extends the mel-spectrogram and partially recovers 
this lost structure while maintaining invariance and stability 
[12], [13]. This is achieved in Andén and Mallat [13] by 
convolving  the  scalogram  with  a  second  set  of  wavelets, 

Q = 1. As a result, they are better adapted to structures in 
X(t, λ), which are less oscillatory and more localized in time 
compared to those in x(t). 

Convolving X(t, λ) with these wavelets along t, we obtain 
X(·, λ) ∗ ψ(t)(t). To ensure local invariance to translation, we 
take another modulus and average using φT (t), which yields 

taking the modulus, and averaging to create second-order time S2x(t, λ, µ) = | |x ∗ ψλ| ∗ ψ(t)| ∗ φT (t) . (8) 
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These are the second-order time scattering coefficients. They 
describe the variability of X(t, λ) along t at frequency 2µ, 
where λ is the first-order, or acoustic, log-frequency, while µ is 
the second-order, or modulation, log-frequency. As before, we 

limit ourselves to scales shorter than T by enforcing 2−µ ≤ T . 
Concatenating all first- and second-order scattering coeffi- 

cients S1x and S2x of x(t) yields the time scattering transform 
Sx. Higher-order scattering coefficients may be defined [12], 

but these are of negligible energy [30] and do not greatly affect 
classification results [13]. The scattering transform exhibits the 
same amount of time-shift invariance and time-warping stability 
as the mel-spectrogram described previously [12], [13]. It is 

 
X(t, λ) 

 
 
 
 
 

t 

 
X̃ (t, λ) 

 
 
 
 

t 

more discriminative than the mel-spectrogram, however, since 
it captures amplitude modulations in X(t, λ) along t. As a 
result, the time scattering transform enjoys better performance 
for classification of audio [13], biomedical [14], and other 
types of time series [15], [16]. 

Other approaches capture temporal structure in the scalogram 
using Fourier transforms [2], [3] or second-order moments [4], 
[5], [31]. However, these lack the time-warping stability or 
noise robustness of the scattering transform [13], [12]. 

Extending the mel-spectrogram convolutional network of 
Figure 4, we define the network of a discrete time scattering 
transform. The result is shown in Figure 5. To implement the 
second-order wavelets ψ(t)(t), we use the network of Figure 
3, but with a single bandpass filter g(t)[n] and a lowpass filter 
h(t)[n].  These  are  constructed  to  approximate  convolutions 
with ψ(t)(t) for µ = −j ≤ −1 as described in Section II-A. 

As before, x[n] is first decomposed in the |gk | boxes by 
convolution with g0[n], . . . , gQ−1[n] followed by modulus 
and subsampling by 2. However, instead of averaging their 
outputs, they are further convolved with g(t)[n] followed by 
modulus  and  subsampling,  denoted  by  |g(t)| boxes.  These 

Fig. 6: Effect of frequency-dependent time-shifts τ (λ) on 
scalograms of a speech recording (top) and a Dirac delta 
function (bottom). The two columns correspond to the original 
signal x(t) and the transformed signal x̃(t), respectively. 

 
 

A. Loss of Time-Frequency Structure 
The time scattering convolutional network in Figure 5 has 

a tree structure; that is, each node only has one parent. In 
contrast, a general convolutional network sums contributions 
from multiple nodes in a layer to produce a node in the next 
layer. Due to this tree structure, the time scattering transform 
is not sensitive to certain time-frequency deformations. 

To see this, we suppose that x(t) is transformed into x̃(t) 
whose scalogram X̃ (t, λ) is an approximate translation  of 
X(t, λ)  by  τ (λ)  in  each  frequency  band.  In  other  words, 
X̃ (t, λ) ≈ X(t − τ (λ), λ). Such transformations are illustrated 
in Figure 6 for a speech signal and a Dirac delta function. This 
time-frequency warping misaligns the speech harmonics and 
transforms the delta function into a chirp. Although x(t) differs 
markedly from x̃(t), this is not detected by time scattering 

coefficients  are  then  averaged  using  lowpass  filters  h(t)[n] 
which alternate with subsampling operators. This yields the if | τ (λ)| « T . Indeed, the effect of the frequency-varying 

second-order scattering coefficients of x[n] for the highest 
octave in λ and the highest octave in µ. We obtain lower octaves 
in µ by applying a sequence of convolutions with h(t)[n] 
alternated with subsampling operators before convolving with 
g(t)[n]. Similarly, lower octaves in λ are obtained by applying 
a sequence of convolutions by h[n] and subsampling operators 
before the decomposition by g0[n], . . . , gQ−1[n]. The outputs 
of this convolutional network approximate the continuous time 
scattering transform Sx of x(t). 

 
III. JOINT REPRESENTATIONS IN TIME AND FREQUENCY 

While successfully describing temporal modulation, the time 
scattering transform fails to capture more sophisticated time- 
frequency structure, as shown in Section III-A. It fails because 
it decomposes the scalogram as a set  of  one-dimensional 
time series. Section III-B introduces the joint time-frequency 
scattering transform, which instead decomposes the scalogram 
in both time and log-frequency. Its convolutional network 
representation introduces connections between nodes in each 
layer, maintaining the amount of time-shift invariance but 
increasing its discriminability. This property is demonstrated 
in Section III-C, where we show how the proposed transform 
accurately captures frequency-modulated excitations. 

time shift disappears when averaging by φT (t). Computing 
the scattering transforms Sx and Sx̃ for T equal to the signal 
length yields relative differences lSx̃ −Sxl/lSxl of 0.07 and 
0.09 for the speech signal and the delta function, respectively. 

Detection of time-frequency warping requires measurement 
of scalogram variability across frequency. In particular, the 
second-order wavelet convolution (8) in time must be replaced 
by a convolution in time and log-frequency. 

 
B. Joint Time-Frequency Scattering 

Existing methods for capturing a signal’s time-frequency 
geometry are not always suitable for classification. For example, 
McDermott and Simoncelli [31] compute higher-order moments 
of the scalogram across frequencies. Through synthesis experi- 
ments, this representation is shown to provide a good model for 
audio textures. However, higher-order moments are not robust 
to noise, reducing the descriptor’s usefulness for classification. 

An alternative approach, motivated by neurophysiological 
studies in the audio cortex of ferrets, is the cortical transform 
of Shamma et al. [17]. It decomposes the scalogram in both 
time and log-frequency using two-dimensional Gabor wavelets. 
The cortical transform and related representations have brought 
significant improvements over mel-spectrograms in tasks from 

t t 

λ 
λ 

λ 
λ 
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Fig. 7: Real parts of four time-frequency wavelets Ψµ,£,s(t, λ). 
White-yellow is negative, orange is zero, and red-black is 
positive. 

 
 

speech classification [32], [33] to timbre analysis [18], [34], 
[35]. Unfortunately, the lack of time-shift invariance and time- 
warping stability limits the performance of this approach. 

In the following, we adapt the cortical transform within the 
scattering framework, allowing us to address its invariance and 
stability. This also lets us analyze its discriminative power. 

We  first  decompose  the  scalogram  X(t, λ) using  a  two- 
 

wavelets. Two-dimensional Morlet wavelets are also used in the 
 

success in natural image classification [36], [37]. In this case, 
however, the wavelets are obtained by rotating and uniformly 

scalogram. Indeed, rotation does not preserve the relationship 

not the scalogram of some other signal. 
We instead define our wavelets separably, with independent 

 
mother wavelet Ψ(t, λ) = ψ(t)(t) ψ(f)(λ) is the product of 
two one-dimensional functions in time and log-frequency. Both 
the time ψ(t)(t) and the frequency ψ(f)(λ) wavelets are Morlet 
wavelets with Q = 1. Dilating by 2−µ along t, dilating by 2−£ 

along λ, and reflecting according to s yields the wavelet 

Ψµ,£,s(t, λ) = 2µ+£ ψ(t)(2µt) ψ(f)(s2£λ) , (9) 

where the spin s = ±1 specifies the oscillation direction (up 
or down). The frequency of the wavelet along t is 2µ, so µ 
is the log-frequency of Ψµ,£,s(t, λ). Its frequency along λ is 
2£, so we refer to it as a “quefrency.” Consequently, f is the 
“log-quefrency” of Ψµ,£,s(t, λ). 

As before, µ satisfies 2−µ  ≤ T . Along λ, we fix some 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8:  A joint time-frequency scattering network. Each |gk | 
block convolves a one-dimensional signal with the band-pass 
filter gk and outputs its modulus. The outputs are aggregated 
into two-dimensional arrays shown by thick lines. A |G£| block 
convolves a two-dimensional array with the band-pass filter (t) 

maximum log-frequency scale F , measured in octaves, and let G£ and outputs its modulus. The h and h blocks convolve 

2−£ ≤ F . At this maximum scale, we include a lowpass filter 
to capture average structure along λ. Specifically, we set 

only in time. All blocks subsample their output in time by 2. 

Ψµ, ,+1(t, λ) = 2µ ψ(t) (2µ t) φF (λ) . (10) These coefficients describe the time-frequency geometry of 

Note that these are only defined for s = +1. Figure 7 shows 
a few sample two-dimensional wavelets Ψµ,£,s(t, λ). 

The two-dimensional wavelet transform of the scalogram 
X(t, λ) computes convolutions X ∗ Ψµ,£,s(t, λ). It captures the 
joint variability of X(t, λ) at log-frequency µ and log-quefrency 
f with spin s. To ensure time-shift invariance and time-warping 
stability, we take the complex modulus and average, obtaining 
the second-order joint time-frequency scattering coefficients 

S2x(t, λ, µ, f, s) = |X ∗ Ψµ,£,s(·, λ)| ∗ φT (t). (11) 

x(t) at time t and log-frequency λ. They retain the time-shift 
invariance and time-warping stability of the second-order time 
scattering coefficients, but with increased discriminative power. 

Concatenating the first-order time scattering coefficients S1x 
and the second-order time-frequency scattering coefficients S2x 
yields the complete joint time-frequency scattering transform 
Sx of x(t). As for time scattering, we may define higher-order 
coefficients, but these are often of limited use for classification. 
For each t, there are O(Q log2 T ) first-order coefficients and 
O(Q(log2 T )2 log2 F ) second-order coefficients. 
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We now define a convolutional network to provide a discrete 
implementation of the joint scattering transform. In the time 
scattering network (see Figure 5), we approximate the convolu- 
tion of X(t, λ) with ψ(t)(t) along t by cascading discrete filters 
h(t)[n] and g(t)[n], alternated with subsampling operators. The 
joint transform network incorporates additional filters along 
the discrete log-frequency m = Qλ = −jQ − k ∈ Z, where, 
as before, j and k are the octave and subband indices of λ. 

In a given layer, the modulus bandpass outputs of the 
previous layer are arranged along time n and log-frequency m 
into a two-dimensional array. This array is then filtered along 
m by different filters 2£ψ(f)(s2£m/Q). It is also filtered by 
φF (m/Q) to account for f = −∞. The sampling interval of 
the filters is 1/Q, since this is the spacing of the discretized 
log-frequencies λ = m/Q. Each frequency-filtered array is 
then filtered by g(t)[n] along n. 

Combining these into two-dimensional filters, we get 

G£,s[n, m] = g(t)[n] 2£ψ(f)(s2£m/Q) 
(t) 

 
shown in Figure 6) or similar transformations may not be 
relevant for the classification task. In this case, replacing the 
time scattering transform with a joint time-frequency scattering 
transform would needlessly increase the number of model 
parameters, potentially requiring more training data to train 
an accurate classifier. On the other hand, the high-quefrency 
joint coefficients approximate the standard second-order time 
scattering coefficients. As a result, the types of structures 
captured by the time scattering transform are equally well 
characterized by the joint transform, so little discriminative 
power is lost by replacing the former by the latter. 

The invariance and discriminability properties of the trans- 
form are controlled by three parameters: Q, T , and F . The 
number of wavelets per octave, Q, depends on the time- 
frequency localization of the input signal. For example, if the 
signal is highly oscillatory (that is, well-localized in frequency, 
but not necessarily in time), a higher value for Q is appropriate. 
This is the case in audio, but not necessarily for biomedical or 
geophysical time series, which are more localized in time. 

G−∞,+1[n, m] = g [n] φF (m/Q) , 

where f ∈ Z such that − log2 F ≤ f ≤ log2 Q (to ensure that 
1/Q ≤ 2−£ ≤ F ) and s = ±1. Abusing notation slightly, we 
renumber this set of discrete filters as G1[n, m], . . . , GL[n, m]. 
These filters capture all log-quefrencies along λ, but only high 
frequencies along n. The missing low frequencies are absorbed 
by h(t)[n], which averages along n, leaving m intact. 

Using these filters, we construct the convolutional network 
shown in Figure 8, extending the time scattering network of 
Figure 5. Small circles denote aggregation of multiple time 
series into a two-dimensional array, while the arrays themselves 
are thick lines. We denote by a boxed |G£| convolution with 
G£[n, m] for f = 1, . . . , L, followed by a complex modulus 
and subsampling by 2 along n. Similarly, a boxed h(t) denotes 
lowpass filtering along n by h(t)[n] followed by subsampling. 

Starting with a signal x[n], we first compute its decomposi- 
tion using the first-order blocks |g0|, . . . , |gQ−1|, extracting the 

highest octave of the signal. We then combine these into a two- 
dimensional array which is decomposed by |G1|, . . . , |GL|. 
The outputs of |G1|, . . . , |GL| are then forwarded to a succes- 
sion of h(t) blocks which implement the averaging by φT [n]. 
The original array is also decomposed by h(t), and the result is 
concatenated to the first-order outputs of the second layer (that 
is, the second octave of the original signal). We then repeat the 
process on this array. As before, an appropriate choice of g(t)[n] 
and h(t)[n] ensures that the network accurately approximates 
the continuous joint scattering transform. 

The important difference between this network and the time 
scattering network is the presence of within-layer connections. 
These break the tree structure, increasing discriminative power 
through better characterization of time-frequency geometry. 
Returning to the frequency-warped signals of Figure 6, the joint 
network separates the original and transformed signals, with 
lSx̃ −Sxl/lSxl of 0.41 and 0.90, compared to 0.07 and 0.09 
for time scattering. This network therefore has same time-shift 
invariance as time scattering, but with better discriminability. 
Note that this increased discriminative power may not always be 

desirable. For example, frequency-dependent time-shifts (as 

The averaging scale T controls the maximum length of the 
signal structure captured by the transform. In other words, if 
the relevant structure in a classification problem occurs at very 
small scales, T should be kept small. This is the case in phone 
segment classification (see Section V-B), where the object of 
interest, the phone, is of short duration. For other signals, 
such as musical instrument recordings (see Section V-C), there 
are relevant structures at larger scales. The T parameter also 
controls the length of the lowpass filter φT (t) and therefore 
determines the amount of desired time-shift invariance. 

The frequency scale F has a similar role, controlling the 
maximum frequency extent of the signal structure captured by 
the transform. If we expect relevant structures to spread out 
over several octaves, a large value for F is needed. This is 
the case for speech signals, where plosive phones occupy a 
large part of the frequency domain. For other signals, such 
environmental sounds, relevant structures may be confined 
within an octave, so a small F is more appropriate. 

 
The output of a scattering network may be used as input to 

another convolutional network whose filters are subsequently 
optimized for some classification task. This yields a large 
convolutional network taking raw waveforms as input and 
whose first few layers are fixed. By fixing certain layers, the 
network has fewer parameters to optimize and could then be 
trained using less data. Previous work training convolutional 
networks on raw waveforms have yielded mel-like filters in 
the first few layers [38], [39], providing some support for this 
idea. Other attempts at explicitly incorporating wavelets into 
convolutional network architectures have also demonstrated 
the viability of the approach [40], [41], [42], [43]. In addition, 
the success of transfer learning [44], [45], [46], [47] suggests 
that there exist certain universal representations which perform 
well for a wide range of tasks. The joint scattering network 
provides a way to construct such a representation while 
enforcing certain time-shift invariance and time-frequency 
discriminability conditions. 
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C. Frequency Modulation 
The above construction is similar to that of traditional 

convolutional networks except that filters are not learned from 
data. These filters provide the time-shift invariance and time- 
warping stability of the time scattering transform, but the joint 
transform is also more discriminative. To illustrate this, we 
show how the joint time-frequency scattering transform captures 
frequency modulation structure ignored by time scattering. 

Let x(t) = exp(2πi ξ(t)) be a frequency-modulated excita- 
tion with instantaneous phase ξ(t). At time t, its instantaneous 
frequency is given by ξ1(t), while the relative change in this 
frequency, the (relative) chirp rate, is ξ11(t)/ξ1(t). Frequency 
modulation occurs in a variety of signals, such as speech, 
animal calls, music and radar signals [48]. 

We now consider a particular case of frequency modulation: 
the exponential chirp. Here ξ(t) = 2αt, so it has instanta- 
neous frequency ξ1(t) = α log(2)2αt  and constant chirp rate 

 
(a) 

 
 
 
 
 

t 
(c) 

 
 
 
 
 

µ 

 
(b) 

 
 
 
 
 

t 
(d) 

 

 
µ 

ξ11(t)/ξ1(t) = α log(2). We note that an arbitrary frequency- 
modulated excitation may be locally approximated by an 
exponential chirp by setting α = (log 2)−1 ξ11(t)/ξ1(t). 

For exponential chirps, we have the following result. 

Theorem 1.  Let ψλ(t) and Ψµ,£,s(t, λ) be defined as in (1) 
and  (9). We require that ψ(t) have compact support, that 

Fig. 9:  Scalograms of two exponential chirps with chirp rates 
(a) α = 4 and (b) α = −2. (c, d) Corresponding second-order 
joint time-frequency scattering coefficients S2x(t, λ, µ, f, s) 
for fixed t and λ. The dotted lines satisfy s2µ−£ = −α. 

u)| du, and lψ (t)
1 l∞ are bounded, 

describing frequency modulation. The same applies to related 
representations which also decompose each subband of X(t, λ) 

and that supp ψ(f)(λ) ⊂ [−A, A] for some A > 0. Further, 
we assume that ψ(t)(t) is the product of a positive envelope 
|ψ(t)|(t) and exp(2πi t). Let x(t) = exp(2πi 2αt) for some 
α ∈ R. The joint scattering transform (11) then satisfies 

separately, such as mel-spectrograms, MFCCs, and modulation 
spectrograms. This information loss is fundamentally due to 
the tree structure of their convolutional networks. 

Theorem 1 states that, for fixed t and λ, S2x(t, λ, µ, f, s) 
(f) 

S2x(t, λ, µ, f, s) is approximately proportional to |ψ� (f) (−s2µ−£α−1)|.  Since 
 
 

where 

c0E(t, λ)  
 
 = ψ� 

  
(f) 
( s2µ−£ \  

− α + ε(t, λ, µ, f, s) , 
( 

λ log log 2α \ 

ψ�    is concentrated around frequency 1, this is maximized 
for −s2µ−£α−1 = 1. In other words, a ridge is present along 
s2µ−£ = −α. Frequency modulation structure in the form of 
the chirp rate α, is thus encoded in the second-order joint 

E(t, λ) = |ψ(t)| ∗ φT t − + , time-frequency scattering coefficients. Consequently, they are 
µ α log 2α sensitive to frequency-dependent time-shifts X(t, λ) 1→ X(t − 

lεl∞ < C 
( 

|α|2− 
λ+2−  A + 22µ |α|−2 + 22µ−£ |α| −2

\  
, τ (λ), λ) even when |τ (λ)| « T , since these change α. 

Figure 9(c,d) displays a subset of the second-order joint 
for C > 0 depending only on ψ(t), ψ(t)(t), and ψ(f)(λ), and scattering coefficients for the chirps whose scalograms are 
c0 = 

(
 |ψ� (2u)| du. shown in Figure 9(a,b). These coefficients do indeed show a 

maximum along the predicted ridge. At low f and high µ, the 
The proof is given in Appendix A. The result relies on 

approximating X(t, λ) by |ψ� (log(2α)2−λ+αt)|. Since |ψ� (ω)| 
is maximized at ω = 1, this forms a ridge λ = αt with slope 
α, as illustrated in Figure 9(a,b). In the joint transform, this 
ridge only activates certain second-order wavelets Ψµ,£,s(t, λ). 
Indeed, only wavelets whose slope −s2µ−£ aligns with λ = 
αt yield large coefficients. Taking the complex modulus and 
averaging in time preserves this slope information. 

Let us consider another chirp x̃(t) = exp(2πi 2α̃t). We may 
obtain x̃(t) from x(t) using a frequency-dependent time-shift 
of its scalogram X(t, λ) as in Section III-A. Here, we take 

approximation does not hold, but for most of the frequency 
range, it is accurate. We thus see how the chirp rate α is 
captured by the joint scattering coefficients in a natural way. 

 
IV. AUDIO TEXTURE SYNTHESIS 

Section III-A showed how mel-spectrograms and time 
scattering transforms do not adequately capture time-frequency 
structure. As T increases, this problem becomes more serious, 
necessitating the introduction of the joint time-frequency scatter- 
ing transform. In this section, we illustrate the representational 

( 
1

 
τ (λ) = λ 

α 
1 
\ 

− α̃ − 
log log 2α 

log 2α 

log log 2α̃ 
+ 

log 2α̃ .
 

power of this transform using texture synthesis experiments. 
With the aim of generating realistic soundtracks of arbitrary 

duration,  audio  texture  synthesis  has  many  applications  in 
As we saw in Section III-A, the time scattering transform is not 
sensitive to such changes. In other words, the scattering trans- 
form discards information on slope, rendering it unsuitable for 

virtual reality and multimedia design [49]. In computational 
neuroscience, it also offers a testbed for the comparative eval- 
uation of biologically plausible models for auditory perception 

s = +1 s = +1 
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[31]. Given a signal x(t) and a time-shift invariant representa- 
tion Φx of x, the texture synthesis problem may be formulated 2 
as the minimization of the error E(y) = lΦy − Φxl between 
Φx and the representation Φy of the synthesized signal y(t). 
Here, Φ can be a scattering transform S, a mel-spectrogram M, 
or some other representation. Note that minimizing E(y) does 
not imply that y(t) approximates x(t) in any way; since Φ is a 
time-shift invariant representation, this is not possible. Instead, 
we expect y(t) to contain examples of the time-frequency 
structures captured in Φ(x). 

The state of the art in the domain is held by McDermott and 

 
 

(a) Scalograms of spoken English, solo flute, and dog barks. 

Simoncelli [31], who define Φ using a set of summary statistics. t t t 
These statistics are similar to the time scattering transform as 
they are calculated using cascades of constant-Q filterbanks 
and pointwise nonlinearities. However, unlike the scattering 
transform, which simply averages in time, McDermott and 
Simoncelli  also  compute  higher-order  statistical  moments: 
variance, skewness, kurtosis, and correlation coefficients across 
frequency bands. These coefficients are very sensitive to outliers 
in the data, which reduces their applicability to classification. 

To synthesize y(t), we first initialize using random Gaussian 
noise  with  power  spectral  density  matching  the  first-order 
scattering coefficients S1x(t, λ) of the target waveform x(t), 
since  these  coefficients  are  present  in  all  the  considered 

(b) Re-synthesis from time scattering, T = 743 ms. 
 
 
 
 
 
 

(c) Re-synthesis from time-frequency scattering, T = 743 ms. 

representations. We then iteratively refine the signal by gradient t t t
 

descent [50]. Because the modulus nonlinearity is not convex, 
the error E(y) is not convex; consequently, gradient descent 
only converges to a local minimum of E(y). However, this 
local minimum is typically of low error, with E(y) equal to 2 

(d) Re-synthesis from time scattering, T = 1486 ms. 

around 0.02 × lΦxl for typical audio recordings. We found 
empirically that the convergence rate is increased using a fixed t t t 
momentum term and a “bold driver” learning rate policy [51]. 

Gradient descent in a scattering network can be implemented  
by backpropagation from deeper to shallower layers. Like in 
a deep convolutional network, the gradient backpropagation 
of the convolution with each wavelet gk (t) corresponds to a 

(e) Re-synthesis from time-frequency scattering, T = 1486 ms. 

convolution with the adjoint filter g† (t) = ḡk (−t), obtained 
by time reversal and complex conjugation of gk (t). 

Figure 10 shows the synthesized scalograms of three sounds 
for various values of T . Here, time-frequency scattering outper- 
forms time scattering for T greater than 1 s. Again, we do not 
expect these synthesized signals to reproduce the originals in the 
top row due to the imposed time-shift invariance In particular, 

(f) Re-synthesis from time scattering, T = 2972 ms. 

speech  is  more  intelligible  due  to  better  reconstruction  of t t t 
articulations, individual  notes  in  a  musical scale  are  more 
salient, and broadband impulses such as dog barks keep their 
typical amplitude envelopes and inter-onset intervals. Compared 
to the representation of McDermott and Simoncelli [31], time- 
frequency scattering achieves similar quality, but does not have 
the same sensitivity to outliers. Indeed, the contractivity of 
the wavelet transform and the modulus ensures the scattering 
transform’s robustness to additive noise [12], [13]. 

 
V. SUPERVISED CLASSIFICATION 

We evaluate the performance of the joint time-frequency 
scattering transform on various classification tasks. It is shown 
to enjoy significantly greater accuracy compared to baseline 

(g) Re-synthesis from time-frequency scattering, T = 2972 ms. 
 
 
 
 
 
 

(h) Re-synthesis using McDermott and Simoncelli [31]. 

Fig. 10: Scalograms of audio re-synthesis using time scattering, 
time-frequency scattering, and McDermott and Simoncelli [31]. 
Synthesis is performed at various time scales T and inputs: 
spoken English (left), solo flute (middle), and dog barks (right). 
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MFCC and time scattering approaches. In fact, the proposed 
transform performs comparably to state-of-the-art learned 
convolutional networks whose training requires significant 
computational resources and large training sets. As a result, 
the joint scattering transform provides a good alternative when 
such an expensive training step is infeasible or undesirable. 

 
A. Frequency Transposition Invariance 

In addition to time-shifting and time-warping, signals are 
also transformed by frequency-shifting and frequency-warping. 
Frequency-shifting, also known as frequency transposition, 
changes the pitch but leaves subband envelopes intact. This 
shifts the scalogram X(t, λ) by a fixed amount η in log- 
frequency, giving X(t, λ − η). While certain tasks are sensitive 
to pitch, like speaker identification, others, like speech recogni- 
tion in non-tonal languages, require invariance to transposition. 

The  time  scattering  transform  is  rendered  transposition 
invariant and stable to frequency-warping by applying a second 
scattering transform along log-frequency λ. The result is the 
separable time and frequency scattering transform, introduced 
in Andén and Mallat [13]. Note that we may skip the averaging 
step of this second scattering transform. Indeed, the averaging 
step is a linear map that can be learned by the classifier given 

enough training data [13]. 
To render the joint time-frequency scattering transform 

transposition invariant, we similarly apply a second scattering 
transform along λ for the first-order coefficients S1x. For the 
second order S2x, however, we simply average along λ, since 
the two-dimensional wavelet decomposition already captures 
the relevant frequency structure. The resulting representation 
then has the necessary transposition invariance and frequency- 
warping stability properties. Again, if the training set is large 
enough, the final averaging steps can be learned by the classifier. 

 
B. Phone Segment Classification 

An individual phone in speech is short, on average 40 ms 
in duration. For phone identification, we therefore require the 
invariance scale T to be of this order. Since T is small, there 
is less room for the type of misalignment seen in Section 
III-A. We therefore expect the joint time-frequency scattering 
to provide only limited improvement over time scattering. 

To  evaluate,  we  use  the  TIMIT  dataset,  which  contains 
recordings of spoken phrases, each labeled with its constituent 
phones  and  their  locations  [52].  Given  a  phone  segment, 
we  wish  to  classify  the  phone  according  to  the  standard 
protocol [53], [54]. This task is simpler than continuous speech 
recognition, but provides a good framework for evaluating 
representations. The training and evaluation sets consist of 3696 
and 192 phrases, respectively. We use a 400–phrase validation 

set to optimize hyperparameters (see Andén and Mallat [13]). 
Instead  of  the  raw  scattering  transform,  we  use  their 

logarithm, known as the log-scattering transform, as input to 
the classifier [13]. We compute these coefficients over 192 ms 
intervals centered on each segment with T = 32 ms. All 
coefficients are concatenated into a single vector together with 
the logarithm of the segment duration. This vector is then used 
for classification. The same processing is also performed for 

 
Representation Error (%) 
Delta-MFCCs 18.3 
State of the art [58] 11.9 
Time scattering 17.3 
Separable time and freq. scattering 16.1 
Joint time-freq. scattering 15.7 

 
TABLE I: Error rates for phone segment classification. All 
representations are computed with T = 32 ms and Q = 8. 

 
 

separable time and frequency scattering as well as joint time- 
frequency scattering. We set the maximum frequency scale 
F to 4 octaves. As a baseline, we compute Delta-MFCCs, 
which supplement standard MFCCs with first and second time 
derivatives [55]. These are computed with the same windows 
and concatenation as the log-scattering coefficients. 

For each representation, we train a support vector machine 
(SVM) [56] with a Gaussian kernel. Here and in the following, 
we use a modified implementation of the LIBSVM library [57]. 

Results are shown in Table I. Delta-MFCCs have an error 
rate  of  18.3%,  while  the  state-of-the-art  representation,  a 
convolutional neural network, achieves 11.9% [58]. The time 
scattering transform obtains an error rate of 17.3%, which 
is improved by scattering along log-frequency to give 16.1%. 
Finally, we obtain an error of 15.7% for the joint time-frequency 
scattering transform. As mentioned earlier, the amount of time- 
frequency structure present in an individual phone is small, 
but there is enough to give a small improvement to the joint 
transform. This is partly due to the fact that certain phones (such 
as plosives) are characterized by their onset, which exhibits 

sophisticated time-frequency structure. 
For this task, the joint time-frequency scattering transform 

does not outperform the state-of-the-art learned convolutional 
network. Note, however, that the only learning involved for 
the scattering transform is training the SVM. The scattering 
network weights are fixed, providing a simpler representation 
with acceptable performance. Another important difference is 
that the state-of-the-art result was obtained by simultaneously 
estimating the labels for all phone segments in an utterance. 
As a result, this network has access to more context about each 
segment that it can use to improve classification performance. 
Combining these two approaches–a scattering transform as 
input to a more adaptive deep neural network–could yield even 
better performance as fewer parameters need to be estimated. 
Indeed, replacing mel-spectrograms by scattering transforms in 
deep neural networks have improved performance for several 
tasks [59], [60], [61]. 

 
C. Musical instrument classification 

The timbre of a musical instrument is essentially determined 
by its shape and materials. Both remain constant during a 
musical performance. Therefore, musical instruments may be 
modeled as dynamical systems with constant parameters. The 
task of musical instrument classification is to retrieve these 
parameters  while  remaining  invariant  to  changes  in  pitch, 
intensity, and expressive technique induced by the performer. 

In a musical instrument, the response of the vibrating body 
to an excitation is typically nonlinear. As a result, sharp onsets 
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TABLE II: Error rates for musical instrument classification. 
All representations are computed with T = 3 s, Q = 12, and 
F = 4 octaves. 

 
 

produce distinctive time-frequency patterns which are not 
adequately captured by short-term audio descriptors operating 
on scales T ≈ 20 ms, a typical window size for MFCCs. Joint 
time-frequency scattering, on the other hand, captures such 
patterns up to the scale T ≈ 3 s of a short musical phrase. 

To illustrate this, we apply it to automatic instrument classi- 
fication in solo phrases with a taxonomy of eight instruments. 
In line with the cross-collection methodology of Bogdanov et 
al. [62], we train and validate all models on the MedleyDB 
v1.1 dataset [63] and test them on the solosDb dataset [64]. 
This is the evaluation setting of Lostanlen and Cella [65]. 

Results are shown in Table II. It appears that all models 
which do not explicitly decompose in both time and log- 
frequency (Delta-MFCCs, time scattering, and a convolutional 
network of temporal convolutions on the scalogram) perform 
comparably, with errors around 38%. Introducing decompo- 
sitions along the log-frequency axis through time-frequency 
convolutional networks and spiral convolutional networks, we 
obtain error rates of 28.3% and 26.0, respectively [65]. The 
improvement likely stems from the fact that musical instruments 
carry important discriminative information in the temporal 
evolution of their spectral envelopes as well as frequency 
modulation structures, both of which are captured by joint 
decompositions in time and log-frequency. The joint time- 
frequency scattering transform further reduces the error to 
22.0%. The small size of the training set makes optimizing a 
convolutional network difficult, which may partially explain the 
improved accuracy of the joint scattering transform compared 
to the fully learned convolutional networks. 

 

D. Acoustic Scene Classification 
Environmental sounds and acoustic scenes are characterized 

by larger-scale time-frequency structures. These recordings 
typically stretch over several seconds, each composed of shorter 
sound events which characterize the scene. This could be 
birdsong in a park, car horns in a street, or the scraping of 
chairs in a café. To differentiate between different sequences 
of such events, we must characterize longer-range structures. 
As discussed above, this is not possible using standard 
representations, such as  MFCCs  or  time  scattering,  which 
do not adequately capture time-frequency structure. 

We evaluate the joint scattering transform on three acoustic 
scene datasets: UrbanSound8K (US8K) [66], ESC-50 [26], and 
DCASE2013 [67]. US8K and DCASE2013 have 10 classes 
each, while ESC-50 contains 50 classes, ranging from gun 
shots and subway stations to crying babies and supermarkets. 

 
TABLE III: Average and standard deviation of error rates for 
scene classification on US8K, ESC-50, and DCASE2013. 

 
 

Both US8K and ESC-50 contain several thousand recordings 
of approximate duration 4 s. DCASE2013, on the  other 
hand, contains 100 (public) training samples and 100 (private) 
evaluation samples, each of duration 30 s. All recordings being 
relatively long, they may exhibit sophisticated time-frequency 
structures that are discriminative for classification. 

For US8K and ESC-50, we compute scattering transforms 
with Q = 8 and T = 4 s. We choose a large value for T 
because there are long, texture-like structures in this dataset 
that we would like to characterize. To ensure some transposition 
invariance, we explicitly average the separable and joint 
transforms over F = 1 octave (US8K) or F = 2 octaves (ESC- 
50). Here, we do not want to choose a large frequency scale F 
since some pitch information is necessary to distinguish certain 
sounds. Since T equals the clip duration, each clip yields a 
single scattering vector, which is fed into the classifier. 

For DCASE2013, we compute scattering transforms with 
Q = 4, T = 1.5 s, and frequency averaging over F = 8 
octaves where applicable. We must select parameters different 
from those of US8K and ESC-50 due to the much smaller size 
of DCASE2013. Choosing smaller values for Q and T limits 
the complexity of the time-frequency structure captured by 
the transform, while choosing a large F and averaging along 
frequency creates additional invariance to transposition. Since 
T is much smaller than the recording duration (30 s), this yields 
multiple scattering vectors which are classified separately. The 
overall class is then obtained by majority voting. 

Delta-MFCCs are computed for all datasets as a baseline. 
For each representation, we train a linear SVM with hyperpa- 
rameters optimized by cross-validation on the training set. 

The error for US8K and ESC-50 is calculated through cross- 
validation on pre-specified folds. For these datasets, we use 
the data augmentation scheme of Salamon and Bello [68], but 
without pitch-shifting, since transposition invariance is already 
enforced. We calculate the DCASE2013 error on the evaluation 
subset in accordance with previous work [46], [47]. 

Results are shown in Table III. The Delta-MFCCs have 
error rates of 46.0%, 56.0%, and 42% for US8K, ESC-50, 
and DCASE2013, respectively. State-of-the-art convolutional 
networks, on the other hand, obtain 21.0%, 20.7% and 7%. 

The standard time scattering transform yields accuracies 
of 26.8% (US8K), 39.3% (ESC-50), and 12% (DCASE2013), 
improving on Delta-MFCCs by better capturing the temporal 
structure of each subband. Adding a scattering transform along 
the log-frequency axis improves results to 22.8% (US8K), 
26.0% (ESC-50), and 6% (DCASE2013). This improvement is 
expected since these sounds exhibit significant pitch variability 

Representation US8K ESC-50 DCASE2013 
Delta-MFCCs [66], [26] 46.0 56.0 42 
Salamon and Bello [68] 21.0 – – 
SoundNet [46] – 25.8 12 
L3  network [47] – 20.7 7 
Time scatt. 26.9 ± 4.1 39.3 ± 2.2 12 
Separable time and freq. scatt. 22.8 ± 3.0 26.0 ± 2.7 6 
Joint time-freq. scatt. 19.6 ± 2.9 21.8 ± 2.0 5 

 

Representation Error (%) 
Delta-MFCCs 39.3 
Time convolutional networks 38.2 
Time-frequency convolutional networks 28.3 
Spiral convolutional networks [65] 26.0 
Time scattering 38.0 
Time-frequency scattering 22.0 
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which is not discriminative to each class. 
The joint time-frequency scattering transform performs even 

better, giving errors of 19.6% (US8K), 21.8% (ESC-50), and 
5% (DCASE2013). This is partly because environmental sounds 

For u close to zero, the derivative of 2α(t−u)  is approximately 
— log(2α)2αt. We exploit this to integrate (14) by parts. Let 
g(u) = exp(2πi 2αt(2−αu + u log(2α))). We then have 

r 
are often characterized by dynamic filters which evolve in time, 
creating a spectrotemporal filter. The mechanical and biological 

x ∗ ψλ(t) = g(u) exp(−2πi u log(2α)2αt)ψλ(u) du 

nature of these sounds also results in frequency modulation. 
Both phenomena are examples of time-frequency geometry 

|u|≤2−λ ∆ r 
= g(2−λ∆)ψ� λ(log(2α)2αt) − g1(u)I(u) du , (15) 

which are well-characterized by the joint scattering transform. 
From a different perspective, the recordings in these datasets ( u 

|u|≤2−λ ∆ 
α   αt 

are sensitive to frequency-dependent time-shifts (see Section where I(u) = −2−λ ∆ exp(−2πi v log(2 )2 )ψλ(v) dv. 
III-A). Indeed, taking a signal with many transients, such as The magnitude of the second term in (15) is bounded by 
a jackhammer in a street scene, and misaligning its subbands 
yields a completely different sound. A representation sensitive 

2π 2αt| log(2α)|(1−2−|α|2 ∆)21−λ∆ max | 
|u|≤2−λ ∆ 

I(u)| . (16) 

to such transformations is therefore expected to perform better. 
Again, the joint scattering transform performs comparably 

Integrating I(u) by parts and taking the modulus gives 
to learned convolutional neural networks. However, learned lψλl∞ + lψ1 l1 λ lψl∞ + lψ1l1 

networks require significant computational resources to train 
and certain expertise in designing the network. Both SoundNet 

|I(u)| ≤ = 2 
2π| log(2α)| 2αt 

λ 

, 
2π| log(2α)| 2αt 

λ 
and the L3  network are pretrained on large external datasets, since α /= 0, lψλl∞  =  

2 
lψl∞  and lψλl1  = 2 lψ1l1. 

requiring several days of computation on graphics processing Plugging this into (16), we obtain λ ∆)( ψ  + ψ1  
) . (17) 

units. In contrast, the joint scattering transform has a fixed 
network structure, so the only training needed is for the SVM, 

2∆(1 − 2−|α|2 l l∞ l l1 

requiring at most a few hours. By considering the invariances Given that 1 − 2−u < log(2)u for all u > 0, this simplifies to 
of the problem (time-shifting, frequency transposition) and the 
structures we would like to capture (joint time-frequency geom- 2 log(2)∆2(lψl + lψ1l1) |α|2−λ . (18) 

etry), we obtain good performance without costly pretraining. Since |g(u)| = 1, the modulus of the first term in (15) is 
VI. CONCLUSION |ψ� λ(log(2 )2αt )| = |ψ� (log(2α )2αt−λ )|. The triangle inequal- 

We introduced a joint time-frequency scattering transform, a 
time-shift invariant descriptor with state-of-the-art classification 

ity then establishes (12) with |ε(t, λ)| bounded by (18). 
Lemma 2. Define ψλ(t), Ψµ,£,s(t, λ), and c0  as in Theorem 

performance for a wide range of audio datasets. Important im- 
provements are obtained for classification tasks involving large- 
scale signal structures. Time-frequency scattering descriptors 
also recover complex signals including audio textures. 

1 and let 
 
 

Given 

λ 
t0(λ) = α − 

log log 2α 

log 2α   . 

A joint time-frequency scattering has a computational 
structure similar to deep convolutional networks [69], but is 
calculated with fixed wavelet filters. It thus requires less training 
data to obtain accurate classification results. However, when 

Y(t, λ) = |ψ� (log(2α) 2αt−λ) 
| , 

its two-dimensional wavelet modulus decomposition satisfies 

|Y ∗ Ψµ,£,s|(t, λ) (19) 
more training examples are available, learned convolutional networks provide state-of-the-art results. Indeed, these networks c0|ψ(t) 

= µ |(t − t0(λ)) 
ψ

(f) 
( s2µ−£ \    + ε(t, λ, µ, f, s) , 

adapt the representation to each classification problem. Taking 
into account prior information on time-frequency geometry 
could help improve their performance. 

α 

where |ψ(t)|(t) = 2µ|ψ 
µ 

 � −   
 
(t) 

|(2µt), and 

APPENDIX A |ε(t, λ, µ, f, s)| ≤ C(22µ|α|−2 + 22µ−£|α|−2) , 

Lemma 1. Let ψλ(t) be as defined in Theorem 1. For x(t) = for some C > 0 depending only on ψ(t), ψ (t) (t), ψ (f) (λ). 
exp(2πi 2αt), we then have 

|x ∗ ψλ|(t) = |ψ� (log(2α) 2αt−λ) 
| + ε(t, λ) , (12) 

where 
|ε(t, λ)| ≤ C|α|2−λ (13) 

for some constant C > 0 which only depends on ψ(t). 

Proof. Since |ψ� (ω)| is maximized at ω = 1, fixing λ, the 
maximum of Y(t, λ) is at t0(λ). For small enough µ, Y(t, λ) 
approximates a Dirac delta function centered at t0(λ). We 
exploit this when convolving Y(t, λ) by ψ(t)(t). 

Approximating ψ(t)(u) with its value at u = t − t0(λ) gives 
r 

Proof. If α = 0, x ∗ ψλ(t) = ψ� (0) exp(2πi). We therefore 
assume that α /= 0. If supp ψ ⊂ [−∆, ∆], we have 

Y(·, λ) ∗ ψ(t)(t) = 
r 

Y(t − u, λ)ψ(t)(u) du 
R 

r 
x ∗ ψλ(t) = exp(2πi 2α(t−u))ψλ(u) du . (14) 

= |ψ� (log(2α)2α(t−u)−λ)| × 
R 

 
|u|≤2−λ ∆ 

µ  (t − t0(λ)) + ε1(t, λ, µ, u)) du , 

− 

α 
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where |ε1(t, λ, µ, u)| ≤ |t − t0(λ) − u| lψ(t)1l .  Setting ε(t, λ, µ, f, s) follows from (21), (25), (26), and the triangle 
ε2(t, λ, µ) = 

(
 |ψ� (log(2α)2α(t−u)−λ)|ε1(t, λ, µ, u) du gives inequality. 

Y(·, λ) ∗ ψ(t)(t) = c0α−1ψ(t)(t − t0(λ)) + ε2(t, λ, µ) , (20) Proof of Theorem 1. Lemma 1 gives 
µ µ α    αt−λ 

using a change of variables, where c0 = 
(
 |ψ� (2u)| du < ∞. X(t, λ) = |x ∗ ψλ|(t) = |ψ� (log(2 )2 )| + ε1(t, λ) , 

We bound ε2(t, λ, µ) through 
r where |ε1(t, λ)| ≤ C1|α|2−λ  for some C1   > 0. We now 

convolve X(t, λ) with ψ(t)(t) in time ψ(f)(λ) in log-frequency 
µ £,s 

|ε2(t, λ, µ)| ≤ 
≤ lψ(t)1l 

|ψ� (log(2α)2α(t−u)−λ)| |ε1(t, λ, µ, u)| du R r 
|ψ� (log(2α)2α(t−u)−λ)| |t − t (λ) − u| du . 

and take the modulus. Lemma 2 approximates the convolution 
of the first term. For the second term, we observe that 

µ ∞ 0 R lε1(·, λ) ∗ ψ(t)l ≤ lε (·, λ)l lψ(t)l ≤ C |α|2−λ , 
µ    ∞ 1 ∞ 1 2 

The change of variables t − t0(λ) − u 1→ α−1u now 
gives 

for some C > 0, since ψ(t) (t) 

|ε2(t, λ, µ)| ≤ |α|−222µlψ(t)1l 
r 

|ψ� (2u)| |u| du, (21) 
2 l µ l1 = lψ 

r 
l1 for all µ. Now, 

(f) 
∞    

R |ε1 ∗ Ψµ,£,s(t, λ)| ≤ C2|α| 2−(λ−µ) 
R 

|ψ£,s(µ)| dµ 
where we have used lψ(t)1l = 22µlψ(t)1l  . λ 

r 
µ (f) 

µ ∞ ∞ = C2|α|2− 2 |ψ£,s(µ)| dµ 
We now convolve (20) by ψ(f)(λ) = 2£ψ(f)(s2£λ). At high |µ|≤2− A 

f, this wavelet will mostly capture phase variation. To see this, 
we factorize ψ(t)(t) into an envelope and a phase, yielding 

≤ C2|α|2−λ 22−  A 
lψ£,sl1 = C3|α|2 −λ+2−  A , 

µ |ψ(t) for some C3 > 0, since ψ (f) is supported on [−A, A]. 
µ  |(t) exp(2πi 2µt)). The convolution then becomes  

As a result, 
c0α−1ψ(t) (f) 

µ (t − t0(·)) ∗ ψ£,s(λ) 
r |X ∗ Ψµ,£,s(t, λ)| (27) 

= c0α−1 |ψ(t)|(t − t0(λ − γ)) × c0 (t) (f) 
( s2µ−£ \  

R 

exp(2πi 2µ(t − t0(λ − γ)))ψ(f)(γ) dγ . (22) 
= 

 
where 

|ψµ |(t − t0(λ)) ψ�   − + ε2(t, λ, µ, f, s) ,   

We now make the approximation |ε2(t, λ, µ, f, s)| ≤ C(|α|2−λ+2 A+|α|−222µ+|α|−222µ−£)  . 
|ψ(t) (t) 

µ |(t − t0(λ − γ)) = |ψµ  |(t − t0(λ)) + ε3(t, λ, µ, γ) , Since this bound is constant in t and lφT l1 = lφl1 for all 
where |ε3(t, λ, µ, γ)| ≤ l|ψ(t)|1l |t (λ−γ)−t (λ)|. Plugging T , it still holds after convolving (27) with φ (t) . 

µ ∞  0 0 
this into (22), we obtain 

c0α−1|ψ(t) 
µ  |(t − t0(λ)) × (23) 

r 

T 
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[32] M. Schädler, B. Meyer, and B. Kollmeier, “Spectro-temporal modulation 
subspace-spanning filter bank features for robust automatic speech 
recognition,” J. Acoust. Soc. Am., vol. 131, no. 5, pp. 4134–4151, 2012. 
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