Robust sound event detection in bioacoustic sensor networks
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Abstract

Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record
sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving
per-species abundance estimates from these sensors requires detection, classification, and
quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient
noise, both over time and across sensors, hinders the reliability of current automated systems for
sound event detection (SED), such as convolutional neural networks (CNN) in the
time-frequency domain. In this article, we develop, benchmark, and combine several machine
listening techniques to improve the generalizability of SED models across heterogeneous
acoustic environments. As a case study, we consider the problem of detecting avian flight calls
from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the
presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art
accuracy on this task, we introduce two noise adaptation techniques, respectively integrating
short-term (60 ms) and long-term (30 min) context. First, we apply per-channel energy
normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain
control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense
layer in the network by a context-adaptive neural network (CA-NN) layer, i.e. an affine layer
whose weights are dynamically adapted at prediction time by an auxiliary network taking
long-term summary statistics of spectrotemporal features as input. We show that PCEN reduces
temporal overfitting across dawn vs. dusk audio clips whereas context adaptation on
PCEN-based summary statistics reduces spatial overfitting across sensor locations. Moreover,
combining them yields state-of-the-art results that are unmatched by artificial data augmentation
alone. We release a pre-trained version of our best performing system under the name of
BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.

Introduction

Machine listening for large-scale bioacoustic monitoring

The past decades have witnessed a steady decrease in the hardware costs of sound

acquisition [ 1], processing [2], transmission [3], and storage [4]. As a result, the application
domain of digital audio technologies has extended far beyond the scope of interhuman
communication to encompass the development of new cyberphysical systems [5]. In particular,
passive acoustic sensor networks, either terrestrial or underwater, contribute to meet certain
challenges of industrialized societies, including wildlife conservation [6], urban planning [7],
and the risk assessment of meteorological disasters [8].
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Biodiversity monitoring is one of the most fruitful applications of passive acoustics. Indeed,
in comparison with optical sensors, acoustic sensors are minimally invasive [9], have a longer
detection range — from decameters for a flock of migratory birds to thousands of kilometers for
an oil exploration airgun [10] — and their reliability is independent of the amount of
daylight [11]. In this context, one emerging application is the species-specific inventory of
vocalizing animals [12], such as birds [13], primates [14], and marine mammals [15], whose
occurrence in time and space reflects the magnitude of population movements [16], and can be
correlated with other environmental variables, such as local weather [17].

The principal motivation for this article is to monitor bird migration by means of a
bioacoustic sensor network [18]. From one year to the next, each species is susceptible to alter
its migratory onset and route as a function of both intrinsic factors [19] and extrinsic (e.g.
human-caused) environmental pressures [20,21]. Mapping in real time [22], and even
forecasting [23,24], the presence and quantity of birds near hazardous sites (e.g. airports [25],
windfarms [26], and dense urban areas [27]) would enable appropriate preventive measures for
avian wildlife conservation, such as temporary reduction of light pollution [28]. In addition, it
could benefit civil aviation safety as well as agricultural planning [29].

At present, monitoring nocturnal bird migration is a challenge of integrating complementary
methods to try to produce the most comprehensive understanding of migrants’ movements. The
two most readily available sources of information for tracking the movements of avian
populations at large (e.g. continental) scales are weather surveillance radar data [30] and
crowdsourced observations of birders [31]. Both of these information sources are valuable but
imperfect. In particular, the former does not distinguish different species, rather providing data
only on bird biomass aloft. Conversely, the latter is dominated by diurnal information, which
does not describe spatial and temporal distribution of species when they are actively migrating at
night, and is sparse, requiring state-of-the-art computational approaches to produce distribution
models. In contrast, flight calls can provide species information, at the least for vocal species;
and may, in principle, be detected in real time [32]. Supplementing spatiotemporal exploratory
models [33], currently restricted to radar and observational modalities [34], with the output of a
bioacoustic sensor network, could improve our ability to detect species flying over the same area
simultaneously, and offer new insights in behavioral ecology and conservation science.

In a large-scale setting of bioacoustic monitoring at the continental scale and over
multi-month migration seasons, the task of counting individual vocalizations in continuous
recordings by human annotators to achieve these ends is impractical, unsustainable, and
unscalable. Rather, there is dire need for a fully automated solution to avian flight call
detection [35], that would rely on machine listening, i.e. the auditory analogue of computer
vision [36]. We propose that, in the future, each sensor could run autonomously [37], by sending
hourly digests of bird vocalization activity to the central server, which in turn would aggregate
information from all sensors, ultimately resulting in a spatiotemporal forecast of nocturnal
migration [38].

The detection of far-field signals despite the presence of background noise constitutes a
fundamental challenge for bioacoustic sensor networks [39]. Whereas, in a typical fieldwork
setting, a human recordist would use a directional microphone and point it towards a source of
interest, thus minimizing background noise or other interference [40], autonomous recording
units (ARUs) are most often equipped with single omnidirectional microphones [41]. As a result,
instead of tracking the sources of interest, they capture a global soundscape (sonic landscape) of
their environment [42], which also comprises spurious sources of noise [43]. Furthermore, in the
context of avian flight calls, migratory birds move rapidly, vocalize intermittently, and may
simultaneously be present at multiple azimuths around a sensor [44]. Consequently, none of the
well-established methods for beamforming animal vocalizations — which assume that each
sensor combines multiple directional microphones [45] — would apply to the use case of flight
call monitoring. On the contrary, we formulate a scenario in which sound event detection occurs
in natural soundscapes without prior localization of sources. This formulation represents a
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potential use case for the deployment of a large-scale bioacoustic sensor network consisting of
low-cost, single-microphone hardware [46].

Because migratory birds appear to vocalize at a low acoustic intensity and at a high distance
to the sensor [47], simple energy-based detection functions [48] or spectrotemporal template
matching [49] may be inadequate for solving problems of retrieving avian flight calls in
continuous recordings. Instead, machine learning appears necessary for detecting acoustic
events in noisy, highly reverberant environments [50]. Yet, one fundamental assumption behind
conventional machine learning methods is that samples from the training set and samples from
the test set are drawn from the same high-dimensional probability distribution.

In the specific case of bioacoustic sensor networks, a training set may consist of audio clips
from a limited number of recordings that are manually annotated a priori, whereas the test set
will encompass a broader variety of recording conditions, including days, sensor locations, and
seasons that are unreviewed or unlabeled [51]. Although it is plausible to assume that, from one
recording condition to another, the statistical properties of the flight calls themselves —
hereafter denoted as foreground — are identically or almost identically distributed, the same
cannot be said of background sources of noise. Rather, natural soundscapes, even at the spatial
scale of a few square kilometers and at the temporal scale of a few hours, may exhibit large
variations in background noise spectra [52]. Therefore, state-of-the-art machine learning
systems for sound event detection, once trained on the far-field recordings originating from a
limited number of sensors, might fail to generalize once deployed on a different sensor [53].

The crux of the challenge of robust sound event detection resides in the practical limitations
of human annotation. In a supervised setting, the diversity of recording conditions that are
available for training the sound event detection system at hand is necessarily lower than those on
which the same system will eventually be deployed. The current lack of robust methods for
sound event detection in heterogeneous environments have caused past bioacoustic studies to
focus on relatively few acoustic sensors in close proximity [54,55]. Nevertheless, the goal of
deploying a large-scale network of acoustic sensors for avian migration monitoring requires
sound event detection to adapt to nonstationarities (i.e. variations in time) and nonuniformities
(i.e. variations in space) of background noise. In this article, we propose a combination of novel
methods, not only to improve the accuracy of state-of-the-art detectors on average, but also to
make these detectors more reliable across recording conditions, such as those arising at dawn vs.
dusk or across different sensor locations.

Evidence of technical bias in state-of-the-art bioacoustic detection systems

For example, Fig 1 illustrates the challenges of a state-of-the-art sound event detector of
nocturnal flight calls, namely the convolutional neural network architecture of [56], hereafter
called “CNN baseline” in this paper. In the top plot, which is replicated from a previous

study [57], the authors measured the evolution of recall of the CNN baseline over a publicly
available machine listening benchmark for avian flight call detection, named Bird Vox-full-night.
This benchmark consists of six continuous recordings of flight calls, corresponding to six
different autonomous recording units; it will be described in further detail in the Methods
section. Over the course of ten hours, the CNN baseline system exhibits large variabilities in
recall, i.e. fraction of detected events that are true positives, through time: both within the vocal
ranges of thrushes (from 0 to 5kHz) and of warblers and sparrows (from 5 to 10kHz), recall
oscillates between 5% and 35% during dusk and night before soaring rapidly up to 75%.

One explanation for these variations lies in the unequal amount of available training data in
function of recording conditions: as shown in the middle plot of Fig 1, the average number of
flight calls per minute increases with time. Because its loss function assigns the same
importance to every misclassified example, the baseline CNN model overfits dawn audio clips
and underfits dusk audio clips.

The nonstationarity of background noise, at the time scale of a full night, aggravates the
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Fig 1. On Bird Vox-full-night, the recall of the baseline CNN increases with time, as the density
of flight calls increases and the noise level decreases. Shaded areas denote interquartile
variations across sensors.
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phenomenon of overfitting of this machine learning system. In the bottom plot of Fig 1, we
extract the evolution of sound pressure level (SPL) within a narrow subband of interest (between
2 and 2.5kHz), as well as within the subband corresponding to its second harmonic (i.e. between
4 and 5kHz). Both correspond to the frequency range of stridulating insects in the background.
In both subbands, we find that the median SPL, as estimated over 30-minute temporal windows,
decreases by about 10dB between 8 p.m. and midnight. This is because insect stridulations are
most active at dusk, before fading out gradually.

The large variations in accuracy through time exhibited above are particularly detrimental
when applying the baseline CNN detector for bird migration monitoring. Indeed, deploying this
baseline CNN detector over a bioacoustic sensor network will likely lead to a systematic
underestimation of vocal activity of migratory birds at dusk and an overestimation at dawn. This
is a form of technical bias that, if left unchecked, might lead to wrong conclusions about the
behavioral ecology and species composition of nocturnally migrating birds. Furthermore, and
perhaps worse, such bias could create a foundation for conservation science that, contrary to
original ambitions, is not based on the actual distribution and attributes of the target species of
concern.

Contributions

The aim of this article is to improve the reliability of state-of-the-art sound event detection
algorithms across acoustic environments, thus mitigating the technical bias incurred by
nonstationarity and nonuniformity in background noise. We present four contributions to
address this problem.

First, we develop a new family of neural network architectures for sound event detection in
heterogeneous environments. The commonality among these architectures is that they comprise
an auxiliary subnetwork that extracts a low-dimensional representation of background noise and
incorporates it into the decision function of the main subnetwork. As such, they resemble
context-adaptive neural networks (CA-NNs), i.e. an existing line of research in automatic speech
recognition from multichannel audio input [58]. Yet, our CA-NN architectures differ from the
current literature, both in the choice of auxiliary features and in the choice of mathematical
formulation of the context-adaptive layer. We introduce long-term spectral summary statistics as
auxiliary features for representing acoustic environments, whereas previous publications [59]
relied on short-term spatial diffuseness features [60]. Furthermore, we generalize the
mathematical formulation of context adaptation — initially described as a mixture-of-experts
multiplicative gate [61] — within the broader topic of dynamic filter networks [62], and
especially discuss the cases of context-adaptive dense layers with dynamic weights or with
dynamic biases.

Second, we apply a new time-frequency representation to bioacoustic signal detection.
Known as per-channel energy normalization (PCEN), this representation was recently proposed
with the aim of improving robustness to channel distortion in a task of keyword spotting [63]. In
this article, we demonstrate that, after we reconfigure its intrinsic parameters appropriately,
PCEN also proves to be useful in outdoor acoustic environments. Indeed, we find that it
enhances transient events (e.g. bird vocalizations) while discarding stationary noise (e.g. insect
stridulations). To the best of our knowledge, this article is the first in successfully applying
PCEN to the analysis of non-speech data.

Third, we conduct a thorough evaluation of the respective effects of each component in the
development of a deep convolutional network for robust sound event detection: presence of
artificial data augmentation; choice of time-frequency representation (PCEN vs. logarithm of the
mel-frequency spectrogram); and formulation of context adaptation. The overall computational
budget that is incurred by this thorough evaluation is of the order of 10 CPU-years. After
summarizing the results of our benchmark, we provide conclusive evidence to support the claim
that CA-CNN and PCEN, far from interchangeable, are in fact complementary. Our experiments
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demonstrate that context adaptation alone fails to improve the generalizability of a
logmelspec-based deep learning model for avian flight call detection. A positive result contrasts
this negative result: after replacing logmelspec by PCEN, context adaptation improves the
generalizability of the detector, and this improvement is unmatched by data augmentation alone.

Finally, we combine all our findings into a deep learning system for avian flight call
detection in continuous recordings. This system is named BirdVoxDetect, is written in the
Python language, and is released under the MIT free software license. This open source
initiative is directed towards the machine listening community, in order to allow the extension of
our research beyond its current application setting. In addition, we release our best performing
BirdVoxDetect model under the form of a command-line interface, which segments and exports
all detected sound events as separate audio clips, thus facilitating further inspection or automatic
processing. This interface is directed towards the avian bioacoustics community, in order to
allow the large-scale deployment of autonomous recording units for flight call monitoring. In an
effort of conducting transparent, sustainable, and reproducible audio research [64],
BirdVoxDetect also comprises documentation, a test suite, a Python package indexation, and an
interoperable application programming interface (API). The source code of BirdVoxDetect is
freely available at the following URL address: https://github.com/Bird Vox/birdvoxdetect.

The development stage of an automated solution for bioacoustic monitoring typically relies
on a small, prototypical subset of the sensor network. In this article, so as to estimate the ability
of the system to generalize beyond this prototypical subset, we propose a “leave-one-sensor-out”
cross-validation methodology. Furthermore, because all sensors in the Bird Vox-full-night dataset
consist of identical acquisition hardware, the experimental benefit of integrating long-term
spectrotemporal summary statistics as auxiliary features to our context-adaptive neural network
can be interpreted as a form of robustness to spatial nonuniformity of environmental noise, and
not merely as robustness to incidental variations in the impedance curve of each sensor.

No previous publication has investigated the relational effect of PCEN and CA, so this result
is novel and unanticipated. Although the number of papers which propose to employ PCEN for
acoustic event detection has grown in recent months, all of them have motivated PCEN by
appealing to a property of robustness to loudness variations, not robustness to artificial data
augmentation. The fact that deep convolutional networks for sound event detection benefit more
from data augmentation in the time-frequency domain if the logmelspec frontend is replaced by
PCEN is a novel and unanticipated finding of our article.

Related work

To the best of our knowledge, the only computational system for long-term bird migration
monitoring that currently relies on acoustic sensor data is Vesper [65]. In order to detect
thrushes, warblers, and sparrows, Vesper implements algorithms originally described in [48] that
do not adapt dynamically to the changes in background noise described above. Instead, these
detectors employ a measure of spectral flux [66] within manually defined passbands, associated
with some ad hoc constraints on the minimal and maximal duration of a flight call. This
straightforward and computationally elegant approach has been a standard for many in the
amateur, academic, and professional migration monitoring communities. Yet, despite its
simplicity and computational efficiency, such algorithms suffer from considerable shortcomings
in detection accuracy, and may not be a reliable replacement for human inspection. In particular,
a previous evaluation campaign showed that these detectors can exhibit precision and recall
metrics both below 10% in a multi-sensor setting [57].

Another line of research that is related to this article is that of “bird detection in audio” [67],
i.e. a yearly challenge during which machine listening researchers train systems for
general-purpose detection of vocalizations over a public development dataset, and then compete
for maximal accuracy over a private evaluation dataset. In recent years, the organizers of this
challenge have managed to attract researchers from the machine learning and music information
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retrieval (MIR) communities [68]. This had led to the publication of new applications of existing
machine learning methods to the domain of avian bioacoustics: these include multiple instance
learning [69], convolutional recurrent neural networks [70], and densely connected
convolutional networks [71]. Despite its undeniable merit of having gathered several data
collection initiatives into a single cross-collection evaluation campaign, the methodology of the
“bird detection in audio” challenge suffers from a lack of interpretability in the discussion of
results post hoc. Indeed, because bird vocalizations are not annotated at the time scale of
individual acoustic events but at the time scale of acoustic scenes, it is impossible to draw a
relationship of proportionality between the average miss rates of competing systems and their
respective technical biases, in terms of robustness to nonstationarity and nonuniformity of
background noise. Furthermore, because these acoustic scenes are presented to the competitors
under the forms of ten-second audio segments, rather than continuous recordings of several
hours, the development and evaluation of some context-adaptive machine listening methods,
such as the ones relying on spectrotemporal summary statistics for modeling background noise,
remain out of the scope of practical applicability.

Until very recently, the scope of applications of per-channel energy normalization (PCEN) in
deep learning was restricted to speech and music applications [72,73]. This situation changed
over the past six months with the publication of [74] which conducts a statistical analysis of
PCEN in various outdoor environments; and [75], which trains a PCEN layer within an
end-to-end urban sound event detection system. Furthermore, one publication has raised the idea
of using PCEN in a deep learning system for a task of bird species identification [76], but did
not report any result. Lastly, one publication reports unsuccessful results from using PCEN in
the same task of bird species identification [77]. This article is the first in reporting significant
improvements from replacing logmelspec by PCEN in a task of bioacoustic sound event
detection; the first in demonstrating the importance of using PCEN in context-adaptive machine
listening; and the first in showing experimentally that PCEN improves robustness to
nonstationarity and nonuniformity of background noise at the scale of an entire acoustic sensor
network over time scales of multiple hours.

Methods

Overview

All methods presented herein rely on machine learning. Therefore, their comparison entails a
training stage followed by a prediction stage. Fig 2 illustrates both stages schematically.

First, we formulate the training stage as binary classification of presence vs. absence of a
sound event. In this setting, the input to the system is a short audio clip, whose duration is equal

to 150ms. We represent this audio clip by a time-frequency representation E(z, /). In the
state-of-the-art model of [57], the matrix E(z, f) contains the magnitudes in the mel-frequency
spectrogram near time ¢ and mel frequency f. The output to the system is a number y between 0
and 1, denoting the probability of presence of a sound event of interest. In the case of this paper,
this sound event is a nocturnal flight call.

Next, we formulate the prediction stage as sound event detection. In this setting, the input to
the system is an acoustic scene of arbitrarily long duration. The output of the system is an event
detection function y(¢), sampled at a rate of 20 frames per second. For every ¢, we compute ()
by sliding a window of duration equal to 150 ms and hop size equal to 50 ms over the
time-frequency representation E(z, ) of the acoustic scene. We turn the event detection function

¥(?) into a list of predicted timestamps by a procedure of thresholding and peak extraction. The
total number of predicted timestamps is a computer-generated estimate of the vocal activity of

migratory birds near the sensor location at hand. In the realm of avian ecology, this number
could potentially be used as a proxy for the density of birds over the course of an entire
migration season. Furthermore, the short audio clips corresponding to detected flight calls could
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Stage |: training. Binary classification on the BirdVox-70k dataset of audio clips.
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Stage 2: prediction. Sound event detection on the BirdVox-full-night dataset of continuous recordings.
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Fig 2. Overview of the presented baseline. After training a deep learning model to identify the
presence of a sound event within short audio clips (150 ms), we run this model on a continuous
recording by a sliding window procedure. We compare the peaks in the resulting event detection
function (EDF) with a fixed threshold T in order to obtain a list of predicted timestamps for the
sound event of interest. In the case of the presented baseline, these sound events of interest are
avian flight calls; the input representation is a mel-frequency spectrogram; and the deep learning
model is a convolutional network.

predicted timestamps f; ... 1,
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be subsequently passed to an automatic species classifier [56] to obtain the distribution of
species in the vicinity of each sensor.

We shall describe the procedures of training and evaluating our proposed system in greater
detail in the Experimental Design section of this article.

Context-adaptive neural network
Related work

There is a growing body of literature on the topic of filter-generating networks [62], which are
deep learning systems of relatively low complexity that generate the synaptic weights in another
deep learning system of greater complexity. The association between the filter-generating
network, hereafter denoted as auxiliary network, and the high-complexity network, hereafter
denoted as main branch, constitutes an acyclic computation graph named dynamic filter network.
Like any other deep learning system, a dynamic filter network is trained by gradient
backpropagation, with both the main branch and the auxiliary branch being updated to minimize
the same loss function. In the computation graph, the two branches merge into a single output
branch. Several mathematical formulations to this merging procedure coexist in the machine
learning literature [78—80]. This article compares three of the most straightforward ones, namely
adaptive threshold (AT), adaptive weights (AW), and mixture of experts (MoE).

In the application setting of automatic speech recognition, one prominent instance of
dynamic filter network is known as context-adaptive neural network (CA-NN) [61]. Ina CA-NN
for sound event detection, the purpose of the auxiliary branch is to learn a feature representation
that would characterize the intrinsic properties of the acoustic environment, while remaining
invariant to whether a sound event is present or not in the environment. Therefore, the auxiliary
branch does not act upon the audio clip itself; but rather, onto some engineered transformation
thereof, hereafter known as a vector of auxiliary features.

Percentile summary statistics as auxiliary features

Original implementations of CA-NN aim at improving robustness of far-field speech recognition
systems to reverberation properties of indoor acoustic environments. To this effect, they rely on
auxiliary features that characterize spatial diffuseness [60], and are derived from a stereophonic
audio input. In contrast, in the application setting of bioacoustic sound event detection, we argue
that the leading spurious factor of variability is not reverberation, but rather, background noise.
One distinctive property of background noise, as opposed to foreground events, is that it is
locally stationary: although bird calls modulate rapidly in amplitude and frequency, a swarm of
insects produce a buzzing noise that remains unchanged at the time scale of several minutes.
Likewise, a vehicle approaching the sensor will typically grow progressively in acoustic
intensity, yet without changing much of its short-term spectrum. We denote by context
adaptation (CA) the integration of a sensor-specific, long-term trend into a rapidly changing
event detection function, by means of a learned representation of acoustic noise.

It stems from the two observations above that, coarsening the temporal resolution of the
time-frequency representation E(¢, f) provides a rough description of the acoustic environment,
yet is unaffected by the presence or absence of a short sound event in the short-term vicinity of
the time instant #. Hence, we design auxiliary features as nine long-term order statistics (median,
quartiles, deciles, percentiles, and permille) summarizing the power spectral density in E(z, /)
over windows of duration Tca. In the following, we denote by u(z, ¢, f) the three-way tensor of
auxiliary features, where the indices ¢ and f correspond to quantile and mel-frequency
respectively. After cross-validating the parameter Tca as a geometric progression ranging
between one second and two hours, a preliminary experiment revealed that all values above five
minutes led to a background estimator of sufficiently low variance to avoid overfitting. We set

Tca to 30 minutes in the following, and sample u(z, g, f) at a rate of 8 frames per hour.
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Fig 3. Architecture of our context-adaptive neural network (CA-CNN) with spectral summary
statistics as auxiliary features. The double arrow depicts an operation of merging between the
main branch and the auxiliary branch.

Computational architecture of a context-adaptive neural network

Fig 3 is a block diagram of our proposed context-adaptive neural network (CA-NN) for avian
flight call detection in continuous recordings. The main branch is a convolutional neural network
with three convolutional layers followed by two dense layers. The main branch takes the
time-frequency representation E(z, /) of a short audio clip as input, and learns a 64-dimensional
representation z(z, n) as output, where 7 is an integer between 0 and 63. At prediction time, the

value taken by z(z, n) solely depends on the content of the audio clip, and is not context-adaptive.
As regards the auxiliary branch, it is a convolutional neural network with one convolutional layer

followed by one dense layer. The auxiliary branch takes a slice of the tensor of quantile summary

statistics (¢, g, f) as input, and learns some context-adaptive parameters of arbitrary dimension.
Because the temporal sampling of U (4 frames per hour) is coarser than the temporal sampling

of y (20 frames per second), the slice in (¢, g, f) that is fed to the network consists of a single
temporal frame. More precisely, it is a matrix of 9 quantiles ¢ and 32 mel-frequency bins f.

Main branch of the context-adaptive neural network

The main branch has exactly the same architecture as the one that reported state-of-the-art
results in urban sound classification [81] (Urban-8K dataset [82]) and species classification from
clips of avian flight calls [56] (CLO-43SD dataset [83]). Its first layer consists of 24
convolutional kernels of size 5x5, followed by a rectified linear unit (ReLU) and a strided
max-pooling operation whose receptive field has a size of 4x2, that is, 4 logmelspec frames (i.e.
6ms) and 2 subbands (i.e. about a musical quartertone). Likewise, the second layer consists of
24 convolutional kernels of size 5x5, followed by a ReLU and a strided max-pooling operation
whose receptive field has a size of 4x2, that is, 16 logmelspec frames (i.e. 24 ms) and 4
mel-frequency subbands (i.e. about a musical semitone). The third layer consists of 48
convolutional kernels of size 5x5, followed by a ReLU. There is no pooling after the third layer.
The fourth layer is a fully connected layer with 64 hidden units, and whose weights are
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regularized in L2 norm with a multiplicative factor set to 1073, followed by a ReLU. The fifth
layer is a fully connected layer with a single output unit, followed by a sigmoid nonlinearity. We
train the whole deep learning architecture to minimize binary cross-entropy by means of the
Adam optimizer [84]. We use the Keras [85] and pescador [86] Python libraries, respectively to
build the model and stream training data efficiently under a fixed memory budget.

Auxiliary branch of the context-adaptive neural network

In the absence of any context adaptation, the last layer of the convolutional neural network for

absence vs. presence classification of a flight call in the short audio clip E(¢, f) is an affine
transformation of the vector z followed by a sigmoid nonlinearity; that is,

(
y(@©)=0 b+ ZW(n)z(t, n) )

where w(n) is a 64-dimensional vector of synaptic weights and the scalar b is a synaptic bias.

Both parameters w(n) and b are optimized by Adam at training time, yet remain unchanged at
prediction time.

The convolutional layer in the auxiliary branch consists of 8 kernels of size 1x32, followed
by a ReLU. Observe that, because the height of the kernels is equal to the number of
mel-frequency bins in the auxiliary features (i.e. 32) and does not involve any input padding, this
convolutional layer performs weight sharing only across quantiles g, and not across neighboring
frequency bins f. Each of the learned kernels can be interpreted post hoc as a spectral template
of background noise, onto which auxiliary features are projected. The dense layer in the
auxiliary branch is an affine transformation from the 9 X 8 = 72 output activations of the first
layer onto 64 nodes, followed by a ReLU. In all three cases, we denote by zaux(z, 1) the
64-dimensional output of this dense layer. Because it directly proceeds from the auxiliary

features U(z, g, f) and not from the main features E(z, f), Zaux(?, 7) has a coarse sampling rate of
8 frames per hour; that is, one context slice every 450 seconds. To the best of our knowledge,
this paper is the first in proposing to use long-term summary statistics as auxiliary features to a
context-adaptive neural network.

In this article, we compare experimentally three formulations of such a feature map: adaptive
weights (AW), adaptive threshold (AT), and mixture of experts (MoE). These formulations

correspond to different equations connecting the output z(¢, n) of the main branch with the
output Zaux(?, 7) of the auxiliary branch into a predicted probability of presence y(z) at time ¢,
described below.

Adaptive weights

In its adaptive weights formulation (AW), context adaptation replaces w(n) by Zaux(z, 7)
verbatim in Equation 1, resulting in an event detection function of the form

( \
yO) =0 b+ Szax(t, Mzt n) - (2)

Observe that the CNN baseline is a particular case of this formulation, in which the vector

Zaux(t, n) is constant through time. This is made possible by setting the synaptic weights of the
dense layer in the auxiliary branch to zero, and keeping only nonnegative biases for each of the
64 nodes. Therefore, a CA-CNN with adaptive weights has an optimal training accuracy that is,
in theory, at least as good as that of a conventional CNN with static weights. However, because
the loss surface of a deep neural network is nonconvex, an iterative stochastic optimizer such as
Adam reaches a local optimum rather than the global optimum in the space of neural network
parameters. Consequently, a CA-CNN with adaptive weights may in practice underperform a
conventional CNN.
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Adaptive threshold

In its adaptive threshold formulation (AT), context adaptation learns a 64-dimensional static

vector Waux(n), onto which is projected the auxiliary representation zaux(¢, n) by canonical inner
product. This inner product replaces the static scalar bias in Equation 1, resulting in an event
detection function of the form \

y(t) =0 zwaux(n)zaux(t; n) + ZW(n)z(t, n) . (3)

Again, the CNN baseline is a particular case of the AT formulation. Indeed, setting the
vector Zuux(Z, 1) to a constant and the weights Waux(2) such that the product Waux(n)zaux(t, 1) is

equal to w(n) for every n is equivalent to discarding context adaptation altogether.
Furthermore, this formulation can also be interpreted as the application of a slowly varying
threshold ontoastatic eventdetection function. Thisis because, by monotonicity of the inverse

sigmoid functionO ’(1 ,and given soge ﬁxeéi threshold 7, the inequality y(t{> Tisequivalentto

o Swmz(t,n) >0 o '1) =S Wax(Wzaux(t, - Q)
n n)
The interpretation of the right-hand side as a time-varying threshold is all the more insightful

given that Zaux(¢) has much slower variations than z(7), i.e. 8 frames per hour vs. 20 frames per
second. Under this framework, we may draw a connection between context adaptation in neural
networks and a long-lasting line of research on engineering adaptive thresholds for sound onset
detection [87].

Mixture of experts

Under the adaptive weights formulation, each scalar weight in waux(n) is an independent output
of the auxiliary network. In contrast, the mixture of experts formulation (MoE) reduces this

requirement by learning a fixed weight vector w(n) and having a much smaller number of
adaptive weights (e.g. K = 4) that are applied to subsets of w(n). Each of these subsets
comprises % nodes and can be regarded as an “expert”. Therefore, the small number K of
outputs from the auxiliary branch no longer corresponds to the number of node weights in the
main branch, but to the number of mixture weights across expert subsets, hence the name of
“mixture of experts” (MoE) formulation [88].

In practice, the output of the main branch z(¢, n) is reshaped into a tensor &, m, k), with the
integer indices m and k respectively being the quotient and remainder of the Euclidean division
of the integer n by the constant XK. Likewise, we reshape w(t, n) into ¥ (¢, m, k), Zaux(¢, ) into
Bz, m, k), and waux(t, 1) into Waux(t, m, k), where n = K X m + k for every 0 < n < 64.

The integer &, known as expert index, ranges from 0 to (K — 1), and is a hyperparameter of

the chose context-adaptive architecture. In accordance with [61], we manually set K = 4 in all of
the following. On the other hand, the integer m, known as mixture index, ranges from 0 to

M= %, i.e. from 0 to M = 16 for N = 64 nodes and K = 4 experts.

First, the auxiliary branch converts (¢, m, k) into a K-dimensional time series Qauxt, k, by
means of an affine transformation over the mixture index m:

Oaux(t, k) = baux(k) + Zﬂaux(t, m, k)Zaux(t, m, k) (5)

Secondly, a softmax transformation maps Gaux(t, k) onto a discrete probability distribution
over the experts k. Each softmax coefficient then serves as a multiplicative gate to the static

inner product between ¥p(¢, m, k) and @, m, k) over the mixture index m in the main branch.
This leads to the following definition for the event detection function ().
/ ( \
yo)=o b+ Zv@(t, m, k)zét,m,k) . (6)

i Zk eOaux(t,k)

eclaux(l‘,k)
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Like the AW and AT formulations, the MoE formulation is a generalization of the CNN
baseline. Indeed, setting the learned representation Wpaux (¢, m, k) to zero and the static vector of

auxiliary biases baux(k) to an arbitrary constant will cause the probability distribution over
experts & to be a flat histogram.

Per-channel energy normalization
Definition

Per-channel energy normalization (PCEN) [63] has recently been proposed as an alternative to
the logarithmic transformation of the mel-spectrogram (logmelspec), with the aim of combining
dynamic range compression (DRC, also present in logmelspec) and adaptive gain control (AGC)
with temporal integration. AGC is a prior stage to DRC involving a low-pass filter (07 of support
T, thus yielding / \

N )

€+ (EXx@ ) )
where q, €, 8, and r are positive constants. While DRC reduces the variance of foreground
loudness, AGC s intended to suppress stationary background noise. The resulting representation
has shown to improve performance in far-field ASR [89], keyword spotting [63], and
speech-to-text systems [90].

There is practical evidence that, over a large class of real-world recording conditions, PCEN
decorrelates and Gaussianizes the background while enhancing the contrast between the
foreground and the background [74]. From the standpoint of machine learning theory, this
Gaussianization property appears to play a key role in avoiding statistical overfitting. Indeed,
deep neural networks are optimally robust to adversarial additive perturbations if the background
in the training set is a realization of additive, white, and Gaussian noise (AWGN) [91]. This
theoretical argument is all the more crucial to the success of sound event detection systems given
that, in the case of bioacoustic sensor networks, background noise is nonuniform, and thus will
typically vary in terms of power spectral density between training set and test set. Therefore, in
our study, PCEN serves the double purpose of, first, disentangling foreground and background
as independent sources of variability and, second, facilitating the transferability of learned audio
representations between one recording condition and another.

PCEN(/, /) =

Parameter settings

As Equation 7 shows, the instantiation of PCEN depends upon six parameters: 7,Q, €, &, and r.
The effect of these parameters relate to respective properties of the foreground and background
noise, as well as the underlying choice of time-frequency representation E(z, f). Yet, the
motivation for developing PCEN initially arose in the context of far-field automatic speech
recognition in domestic environments [92]. In this context, the recommendations of the original

publication on PCEN [63] are as follows: € = 107% a =0.98 ;6 =2;r = 5 and
Tecen = 400 ms.

In contrast, the detection of avian flight calls in rural outdoor areas with autonomous
recording units is a starkly different application setting, thus requiring adjustments in the choice
of parameters. One previous publication [74] has conducted an asymptotic analysis of PCEN
components, and concluded with some practical recommendation for making such adjustments
according to the task at hand. It appears that, in comparison with indoor applications (e.g. ASR
in the smart home), bioacoustic event detection distinguishes itself by faster modulations of
foreground, higher skewness of background magnitudes, a louder background, and more distant
sources. Such idiosyncrasies respectively call for a lower T, a lower , a higher 6, and a lower r.

We decode each audio signal as a sequence of floating-point numbers in the range

[—231;23!] with a sample rate of 22.050 Hz, and apply a short-term Fourier transform (STFT)
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Fig 4. Histogram of magnitudes of time—frequency bins for six one-minute recordings in the
BirdVox-full-night dataset, corresponding to six different bioacoustic sensors, for different
choices of loudness mapping. Left: after logarithmic compression. Middle: after per-channel
energy normalization (PCEN) with the parameters of [63], best suited to automatic speech
recognition in a noisy indoor environment. Right: after PCEN with the parameters of [74], best
suited to sound event detection in a noisy outdoor environment. We globally standardize the
magnitudes in each column to null mean and unit variance. The black dashed line represents the
ideal case of a standard normal distribution. The text on the left of each row denotes the latitude
and longitude of the corresponding autonomous recording unit in the acoustic sensor network.
See text for details about parameter settings.
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with window size 256 (12 ms), hop size 32 (1.5 ms), and fast Fourier transform length (Nrrr
parameter) 1024. Then, we map the 513 nonnegative frequency bins of the STFT squared
modulus representation onto a mel scale, with 128 mel-frequency subbands ranging from 2 kHz

to 11.025 kHz. Lastly, we apply PCEN according to Equation 7 with € = 107%, a = 0.8 ;

& = 10; 7 = 3; and Tpcen = 60ms after following the recommendations of [74]. The choice of
minimal frequency at 2kHz corresponds to a lower bound on the vocal range of avian flight calls
of thrushes. With the librosa Python library [93], the computation of logmelspec is about 20
times faster than real time on a dual-core Intel Xeon E-2690v2 3.0 GHz central processing unit

(CPU). Replacing these ad hoc constants by trainable, frequency-dependent parameters a(f),
6 (f), and so forth, is a promising line of research [73, 75], but is beyond the scope of this paper,
as it does not fundamentally change its overall narrative.

Fig 4 illustrates the effect of PCEN on the empirical distribution of mel-frequency
spectrogram magnitudes, across all six sensor locations in the Bird Vox-full-night dataset. First,
logarithmic compression (left column) results in non-Gaussian, occasionally bimodal
distributions whose mode may vary from one sensor to the next, by as much as one global
standard deviation. This fact demonstrates that logmelspec representations are fundamentally
inadequate for deploying a single machine listening system over multiple autonomous recording
units. Secondly, running PCEN with parameters that are best suited to indoor environments,
such as those of [63] (middle), results in distributions of magnitudes that are consistent across
outdoor recording locations, but are skewed towards the right. This fact demonstrates the
importance of adjusting PCEN parameters, at least roughly, to the type of acoustic sensor
network (indoor vs. outdoor). Lastly, running PCEN with parameters that are best suited to
outdoor environments, such as those recommended by [74] (right), results in distributions that
are quasi-Gaussian, consistently across sensors.

Baseline: convolutional neural network

The baseline model of our study is a CNN in the logmelspec domain for avian flight call
detection, whose architecture is replicated from a previous study [57]. In spite of its simplicity,
this deep learning model has shown to significantly outperform other algorithms for avian flight
call detection in the BirdVox-full-night dataset, including spectral flux [87], the Vesper library
reimplementation of the “Old Bird” energy-based detection function [65], and the
PCA-SKM-SVM shallow learning pipeline [81].

In a preliminary stage, we explored over 100 common variations in the architecture of the
baseline, including changes in kernel size, layer width, number of layers, mel scale
discretization, multiresolution input [94], choice of nonlinearity, use of dropout, use of batch
normalization, and choice of learning rate schedule. Yet, none of these general-purpose
variations, unrelated in their design to the question of robustness to background noise, led to
systematic improvements upon the baseline. Therefore, although the baseline architecture is by
no means optimal, there are grounds to believe that the following improvements brought by CA
and PCEN would not easily be matched by applying other, more well-established variations.

Artificial data augmentation

Applying randomized digital audio effects to every sample in a dataset at training time often
reduces overfitting without any extra computational cost at prediction time [95]. Hence, many
deep machine listening systems are trained on augmented data: related applications to this study
include bird species classification [56], singing voice detection [96], and urban sound
classification [81]. Yet, one difficulty of artificial data augmentation is that the chosen
distribution of parameters needs to reflect the underlying variability of the data. In the context of
avian flight calls, we use domain-specific knowledge in animal behavior so as to find an
appropriate range of parameters for each perturbation.
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We distinguish two kinds of data augmentation: geometrical and adaptive. Geometrical data
augmentation (GDA) includes all digital audio effects whose parameters are independent of the
probability distribution of samples in the training set, such as pitch shifting and time stretching.
On the contrary, adaptive data augmentation (ADA) takes into account the whole training data,
and in some cases also the corresponding labels, to transform each sample. For instance, mixing
each audio clip in the sensor at hand with a negative (noisy) audio clip belonging to a different
sensor in the training set leads to greater generalizability [97]. However, this adaptive procedure
causes the number of augmented samples to scale quadratically with the number of sensors.
Furthermore, it cannot be easily combined with CA because the addition of extraneous noise to
the front end would require to also re-compute the corresponding auxiliary features for the
mixture of signal and noise at a long temporal scale (7ca = 30 minutes), which is intractable for
large Tca. Therefore, we apply geometrical data augmentation to all models, but adaptive data
augmentation only to the models that do not include context adaptation.

We use the muda Python package (MUsical Data Augmentation [95]) to apply 20
randomized digital audio effects to each audio clip: four pitch shifts; four time stretchings; and
four additions of background noise originating from each of all three training sensors in the
cross-validation fold at hand. The choices of probability distributions and hyperparameters
underlying these augmentations are identical to those of [57], and are chosen in accordance with
expert knowledge about the typical vocal ranges of thrushes, warblers, and sparrows.

All transformations are independent from each other in the probabilistic sense, and never
applied in combination. In the case of the addition of background noise, we restrict the set of
augmentations to those in which the background noise and the original audio clip belong to
recordings that are both in the training set, or both in the validation set.

Experimental design

As illustrated in Fig 2, our experimental design consists of two stages: training the system as a
binary classifier of presence vs. absence, and then running it on a task of avian flight call
detection. The datasets we use for these two stages are Bird Vox-70k and Bird Vox-full-night. The
metrics we use are miss rate (i.e., the complementary of classification accuracy) and Area Under
the Precision—Recall Curve (AUPRC). While the former is related to the way our deep learning
models are trained, the latter is related to the way these models are deployed in the field.

Stage 1: binary classifier
Dataset: BirdVox-70k

We train all sound event detection models presented in this article as binary classifiers of
presence vs. absence of a flight call, at the time scale of audio clips of duration 150 ms. To this
end, we rely on the BirdVox-70k dataset, which contains 35k positive clips and 35k negative
clips, originating from a network of 6 bioacoustic sensors. We refer to [57] for more details on
the curation of the BirdVox-70k dataset.

Evaluation: leave-one-sensor-out cross-validation

Because our study focuses on the comparative generalizability of automated systems for flight

call detection, we split the BirdVox-70k dataset according to a stratified, “leave-one-sensor-out”
evaluation procedure. After training all systems on the audio recordings originating from three
sensors (training set), we use two of the remaining sensors to identify the optimal combination
of hyperparameters (validation set), and leave the last sensor out for reporting final results (test
set). From one fold to the next, all boundaries between subsets shift by one sensor, in a periodic
fashion.
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The loss function for training the system is binary cross-entropy L (v, yue) = 1og|y — Virvel,
where ye 1S set to 1 if a flight call is present in the audio clip at hand, and 0 otherwise. To
evaluate the system in its validation stage, we measure a classification accuracy metric; that is,
the proportion of clips in which the absolute difference |y — yirue| is below 0.5 over a hold-out
validation set.

Stage 2: detection in continuous audio
Dataset: BirdVox-full-night

We evaluate all sound event detection models presented in this article on a task of
species-agnostic avian flight call detection. To this end, we rely on the Bird Vox-full-night
dataset, which contains recordings originating from one ten-hour night of fall migration, as
recorded from 6 different sensors. Each of these sensors is located in rural areas near Ithaca, NY,
USA, and is equipped with one omnidirectional microphone of moderate cost. The resulting
bioacoustic sensor network covers a total land area of approximately 1000km?. The 6
recordings in Bird Vox-full-night amount to 62 hours of monaural audio data. The split between
training set, validation set, and test set follows the same “leave-one-sensor-out” evaluation
procedure as presented in the previous section. Therefore, all models are tested on recording
conditions that are extraneous to the training and validation subsets. We refer to [83] for more
details on sensor hardware and to [57] for more details on Bird Vox-full-night.

Evaluation: precision and recall metrics

We formulate the task of avian flight call detection as follows: given a continuous audio
recording from dusk to dawn, the system should produce a list of timestamps, each of them
denoting the temporal center of a different flight call. Then, we may evaluate the effectiveness
of the system by comparing this list of timestamps against an expert annotation. To this aim, we
begin by extracting local peaks in the event detection function according to a fixed threshold 7.
The baseline CNN model of [57] constrains consecutive detections to be spaced in time by a
minimum lag of at least 150ms. This constraint improved precision in the baseline CNN model
without much detriment to recall, and for consistency we kept this constraint throughout our
evaluation. However, as we will see in the Results section, this constraint becomes unnecessary
in our state-of-the-art combined model, named BirdVoxDetect. Therefore, BirdVoxDetect may
produce predicted timestamps as close to each other as 100 ms (i.e. two discrete hops of duration
50ms) as it does not induce any constraint on the minimum duration between adjacent peaks in
the event detection function.

Once the procedure of thresholding and peak-picking is complete, the detected peaks (flight
calls) are evaluated by matching them to the manually labeled calls — the “reference”,
sometimes called “ground truth” — and computing the number of true positives (TP), false
positives (FP) and false negatives (FN). This process is repeated for varying peak detection
threshold values T between 0 and 1 to obtain the standard information retrieval metric of Area
Under the Precision—Recall Curve (AUPRC) with 0 being the worst value and 1 being the best.
A detected peak and a reference peak are considered to be a matching pair if they are within
500ms of each other. To ensure optimum matching of detected peaks to reference peaks while
ensuring each reference peak can only be matched to a single estimated peak, we treat the
problem as a maximum bipartite graph matching problem [98] and use the implementation
provided in the mir eval Python library for efficiency and transparency [99].
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Results

Stage 1: training of a binary classifier
Exhaustive benchmark on validation set

Fig 5 summarizes the validation error rates on BirdVox-70k of twelve different models. These
models represent different combinations between three design choices: choice of time-frequency
representation, choice of formulation in the context adaptation, and use of artificial data
augmentation. In order to mitigate the influence of random initialization on these validation
error rates, we train and evaluate each of the twelve different models ten different times on each
of the six folds, and report the median validation error rate only. The cumulative computational
budget for training all models is of the order of 180 GPU-days for training, and 180 CPU-days
for prediction. In both cases, we parallelize massively across models, folds, and trials, resulting
in 720 different jobs in total, each running independently for approximately six hours on a
high-performance computing cluster.

We find that, across all models, some folds consistently lead to a greater error rate than
others. In the case of the logmelspec-CNN baseline, the typical error rate is of the order of 5%,
but varies between 2% and 20% between folds. Individual variations of that baseline are not
equally beneficial. First, replacing the logmelspec acoustic frontend by PCEN improves
validation accuracy on five folds out of six, and GDA improves it on four folds out of six.
Secondly, adding context adaptation to the baseline, by means of a mixture of experts (MoE), is
detrimental to validation accuracy in four folds, while using an adaptive threshold (AT) instead
of MoE essentially leaves the baseline unchanged, as it improves and degrades per-fold
performance in comparable measures. Therefore, it appears that context adaptation alone fails to
improve the generalizability of a logmelspec-based deep learning model for avian flight call
detection. In what follows, we focus on analyzing the effects of context adaptation on models
that are either trained with PCEN, GDA, or both.

Fig 5 also shows that applying GDA to a PCEN-based model consistently improves
validation accuracy over all six folds, whether an AT is present or not. We hypothesize that this
consistent improvement is the relational effect of artificial pitch shifts in GDA and background
noise reduction caused by PCEN. Indeed, one shortcoming of pitch shifting in GDA is that it
affects foreground and background simultaneously. Yet, natural factors of variability in avian
flight call detection, such as those arising due to animal behavior, will typically affect the
absolute fundamental frequency of the foreground while leaving the background — i.e. the
power spectral density of insects or passing cars — unchanged. Consequently, artificial pitch
shifts, even as small as a musical semitone, may lead to a plausible foreground, yet mixed with
an implausible background in logmelspec domain. On the contrary, as described in the Methods
section, PCEN tends to bring the distribution of background time-frequency magnitudes closer
to additive white Gaussian noise (AWGN). Because AWGN has a flat spectrum, transposing a
polyphonic mixture containing a nonstationary foreground and an AWGN background has the
same effect as transposing the foreground only while leaving the background unchanged.
Therefore, not only does replacing the logmelspec acoustic frontend by PCEN improve the
robustness of a classifier to background noise, it also helps disentangling pitch transpositions of
background and foreground, thus allowing for more extensive geometrical data augmentation by
pitch shifts and time stretchings.

Because the six folds in the leave-one-sensor-out cross-validation procedure are of unequal
size and acoustic diversity, it is not straightforward to rank all twelve models according to a
single global evaluation metric. However, we may induce a structure of partial ordering between
models by the following definition: a model A is regarded as superior to model B if and only if
switching from A to B degrades accuracy on half of the folds or more. According to this
definition, the last model (GDA-PCEN-AT) is the only one that is superior to all others.
Moreover, we find that PCEN is superior to the logmelspec baseline; that GDA-PCEN is
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Fig 5. Exhaustive benchmark of architectural variations with respect to the logmelspec-CNN
baseline, on a task of binary classification of presence vs. absence of a bird in audio clips. Dot
colors represent folds in BirdVox-70k. GDA: geometrical data augmentation. logmelspec:
log-mel-spectrogram. PCEN: per-channel energy normalization. MoE: mixture of experts. AT:
adaptive threshold.

superior to PCEN; and that GDA-PCEN-AT is superior to PCEN. We also find that
GDA-logmelspec is superior to logmelspec, and that GDA-PCEN is superior to
GDA-logmelspec. However, we do not find either logmelspec-AT or logmelspec-MoE to be
superior to logmelspec. In addition, GDA-PCEN-MOoE is superior to GDA-PCEN, yet inferior to
GDA-PCEN-AT.

Because GDA-PCEN-AT and GDA-PCEN-MoE perform almost equally across the board,
one supplementary question that arises from this benchmark is whether AT and MoE could
somehow be combined into a hybrid form of context adaptation. To challenge this hypothesis,
we trained a thirteenth model, named GDA-PCEN-AT-MOoE, ten times on each fold of
BirdVox-70k, and measure median validation accuracies. We found that this model performs
below GDA-PCEN-AT on the majority of folds, and failed to train at all on many trials.
Therefore, we do not pursue this line of research further. Rather, we adopt the adaptive threshold
(AT) formulation as a simple, yet effective, method. We postulate that the overall degradation in
accuracy from GDA-PCEN-AT to GDA-PCEN-AT-MoE is caused by an excessive number of
degrees of freedom in the design of the context-adaptive neural network.

Two conclusions arise from all the observations above. First, the best performing model, in
terms of validation accuracy on BirdVox-70k, appears to be GDA-PCEN-AT. Therefore, in the
following, GDA-PCEN-AT is the model that we will choose to report results on the test set.
Second, because context adaptation does not improve the baseline, but only models that feature
PCEN, we deduce that an ablation study from GDA-PCEN-AT should begin by removing AT
before removing PCEN. Therefore, in the following, we discuss and compare the evolution of
test set recall through time for GDA-PCEN-AT and GDA-PCEN, but do not report test set
results on GDA-logmelspec-AT because this model is excluded by cross-validation.

As a supplement to this benchmark, we evaluate a completely different deep learning system,
named “bulbul”, for the detection of bird sounds in audio signals [69]. This system won the 2017
edition of the “Bird detection in audio” challenge [67], and its source code is freely available at
the following URL address: https://jobim.ofai.at/gitlab/gr/bird_audio_detection challenge 2017.
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With the help of the authors, we set up a pre-trained version of bulbul and use it as a binary
classifier of presence vs. absence in the BirdVox-70k dataset. Given that it expects 10-second
audio clips rather than 150-millisecond audio clips, we had to repeat each clip periodically 67
times in order to collect each prediction. After calibraing the detection threshold to its optimal
value, we report a detection accuracy of 50.8%, that is, marginally above the chance level at
50%. In comparison, the deep learning baseline of [74] has a detection accuracy of 90.5%. This
result confirms that the deep learning baseline of [74] was the state of the art in avian flight call
detection up until this publication. It also shows, as stated in the introduction, that the task of
avian flight call detection at the fine time scale of isolated acoustic events is fundamentally
different from the task of “bird detection in audio”, as formulated by [68] at the scale of ten
seconds; and that state-of-the-art systems in the coarse-scale task are ill-suited to address the
fine-scale task.

Ablation study

Once the exhaustive benchmark has identified one reference model — namely, GDA-PCEN-AT
— we may measure the relative difference in error rate between the reference and some other
model in the benchmark for each fold, and compute quantiles across folds. The reason why we
opt for averaging relative differences rather than absolute differences is that the former, unlike
the latter, tends to follow a symmetric distribution across folds, and thus can be represented on a
box-and-whisker plot. Thus, we may compare and rank the respective positions of the boxes for
different ablations of the reference. Furtheremore, relative improvements, unlike absolute
improvements, are theoretically unbounded. Fig 6 summarizes the results of our ablation study.

First, replacing AT by MoE hardly affects our results. Therefore, it is more likely the
presence of any form of context adaptation at all, rather than specific architectural choices in the
side-channel neural network, that enables a greater generalization across folds. In the original
article on context-adaptive neural networks [58], as well as those which followed by the same
first author [61, 100, 101], the proposed technique is MoE. Although we confirm that MoE is
successful, we find that implementing context adaptation with an adaptive threshold (AT) leads
to sound event detection results which are within a statistical tie with respect to MoE. Yet, AT is
simpler, faster, and more interpretable than MoE. Therefore, although our alternative techniques
for context adaptation do not lead to significant improvements in accuracy, our results call into
question the widespread claim that the root cause behind the success of context adaptation in
deep learning lies in its ability to represent multiplicative interactions between heterogeneous
sources of data, and thus elicit neural specialization at prediction time. Although the MoE and
AW techniques do contain multiplicative interactions, the AT technique does not. It stems from
these observations that, at least in the case of long-term bioacoustic monitoring with
spectrotemporal summary statistics as auxiliary features, the presence or absence of
multiplicative interactions is not the sole determining factor of the success of context adaptation.

Secondly, removing geometrical data augmentation, and training the PCEN-AT model on
original audio clips from BirdVox-70k only, does hinder accuracy consistently, though less so
than other improvements upon the baseline (i.e. PCEN and context adaptation). This supports
our hypothesis that shortcomings of the baseline are mainly attributable to its lack of robustness
to background noise, more so than its lack of robustness to the geometrical variability in
time-frequency patterns of avian flight calls.

Thirdly, we find that ADA-PCEN-AT and GDA-PCEN bring comparable differences in miss
rate with respect to the reference model GDA-PCEN-AT. In other words, the addition of noise to
the main branch of the network without reflecting it in the auxiliary features is, quite
unsurprisingly, about as detrimental as not having auxiliary features at all.

Fourthly, replacing PCEN by logmelspec in the reference model increases miss rates by
about 60% on average, and over 100% in two out of the six folds. Thus, there are grounds to
believe that PCEN is the predominant contributor to validation accuracy in the GDA-PCEN-AT
reference model.
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Fig 6. Ablation study of best model (CNN+PCEN+CA+GDA) on the Bird Vox-full-night dataset.
Boxes (resp. whiskers) denote interquartile (resp. extremal) variations between sensors.

Stage 2: detection in continuous audio
Precision-recall curves

Although the BirdVox-70k dataset is particularly well suited for training machine listening
systems for avian flight call detection, it does not reflect the practical use case of flight call
monitoring in continuous recordings. Indeed, as described in [57], BirdVox-70k is curated in a
semi-automatic fashion: while the positive clips proceed from human annotations, the negative
clips correspond to the false alarms of an off-the-shelf shallow learning model. Specifically,
BirdVox-70k contains a larger proportion of challenging confounding factors — such as siren
horns and electronic beeps — and, conversely, a smaller proportion of quasi-silent sound clips,
than a full night of bird migration. Therefore, whereas the previous subsection used validation
accuracy on BirdVox-70k as a proxy for singling out an optimal model, it is, from the
perspective of applied bioacoustics, less insightful to report test set accuracy on Bird Vox-70k
than it is to plot a precision-recall curve on BirdVox-full-night.

Fig 7 illustrates the combined effects of PCEN, CA, and GDA on the area under the
precision-recall curve (AUPRC) when applying CNN to flight call event detection on the
BirdVox-full-night test set recordings. In agreement with the ablation study, the best model
(CNN+PCEN+CA+GDA) reaches a test AUPRC of 72.0%, thus outperforming models lacking
either PCEN, CA, or GDA. In addition to the precision-recall curves that are shown in Fig 7, we
computed predictions over Bird Vox-full-night for each of the twelve models presented in the
exhaustive benchmark (Fig 5), over 6 folds and 10 randomized trials. This last procedure
represents about 10 CPU-years of computation in total. From it, we can confirm that
BirdVoxDetect does not overfit the validation set more than any of its counterparts.

Error analysis

We opened this article by pointing out that many state-of-the-art systems for bioacoustic event
detection lack robustness to spatiotemporal variations in background noise, thus preventing their
reliability at the scale of distributed sensor networks. In particular, we had shown in Fig 1 that
the CNN baseline of [57] exhibits a poor recall (below 50%) in the early hours of
BirdVox-full-night, while only achieving a satisfying recall towards the end of each full night
continuous recording. We hypothesized that such drastic variation in performance was
attributable to the scarcity of training examples at dusk in comparison to dawn, in conjunction
with more intense levels of background noise at dusk than at dawn. Now, Fig 8 offers evidence
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to support this initial hypothesis. While the top subfigure shows the evolution of recall of the
CNN baseline on the Bird Vox-full-night dataset, the other two subfigures in Fig 8 show the
evolution of recall from two models presented in this paper, both of which are designed to be
more robust to noise than the baseline.

First, Fig 8 (middle) shows that the PCEN model, comprising per-channel energy
normalization, is not only useful at dawn, but also earlier in the night: at certain sensor locations,
the recall rate is above 70% from 10 p.m. onwards, as opposed to 2 a.m. for the CNN baseline.
This qualitative finding confirms that replacing the logarithmic compression of the
mel-frequency spectrogram (logmelspec) by per-channel energy normalization (PCEN) may turn
out to be greatly beneficial to the practical usefulness of deep machine listening models for
sound event detection. Indeed, not only does PCEN significantly improve the tradeoff between
precision and recall over the global test set (as was demonstrated in Fig 7), but it also
considerably reduces the probability of missed detection within time slots in which sound events
are very rare, such as dusk in the case of avian flight calls. It is striking to note that our
end-to-end learning system, once endowed with a PCEN acoustic frontend, manages to perform
almost as well on these time slots, despite the fact that, having fewer events, they contribute
marginally to the global precision-recall curve of Fig 7.

However, it should be noted that the increase in robustness to nonstationary noise that is
afforded by the introduction of PCEN is not accompanied by an increase in robustness to
nonuniform noise, as one could have hoped. Rather, as illustrated by the shaded areas
surrounding the line plots, and which denote interquartile variations across sensors, the
GDA-PCEN model suffers from large variations in recall between sensor locations at any given
time of the full night recording. For example, near 2 a.m., the median recall for warblers and
sparrows (frequency subband above 5 kHz) is about 60%, but as low as 30% for one of the
sensors. From the standpoint of the practitioner in the life sciences, the fact that such variations
are both large and difficult to anticipate indicates that the use of PCEN alone is insufficient to
offer any guarantees of reliability in the realm of automated bioacoustic event detection.

Secondly, Fig 8 (bottom) shows the evolution of recall of the GDA-PCEN-AT model, also
known as BirdVoxDetect, over the course of the BirdVox-full-night dataset. It appears that this
model, which combines a PCEN-based convolutional neural network and an auxiliary branch
learning an adaptive threshold (AT), exhibits narrower interquartile differences between sensor
locations than any of its counterparts. In other words, even though context adaptation leaves the
amount of robustness to nonstationarity in background noise essentially unchanged, it noticeably
improves the robustness to nonuniformity in background noise of the sound event detection
system at hand. This observation suggests that the deployment of distributed machine listening
software for flight call monitoring in a bioacoustic sensor network of autonomous recording
units requires the resort to deep, data-driven methods for context adaptation, in addition to a
shallow procedure of adaptive gain control in the time-frequency domain.

Conclusion

Spatial and temporal variability in background noise and the inability to generalize automatic
detectors in such conditions are major obstacles to the large-scale deployment of bioacoustic
sensor networks. In this article, we have developed, benchmarked, and combined several
machine listening techniques to improve the generalizability of SED models across
heterogeneous acoustic environments.

Our main finding is that, although both per-channel energy normalization (PCEN) and
context adaptation (CA) improve the generalizability of deep learning models for sound event
detection, these two methods are not interchangeable, but instead complementary: whereas
PCEN is best suited for mitigating the temporal variations of background noise in a single
sensor, CA is best suited for mitigating spatial variations in background noise across sensor
locations, whether the acoustic environment surrounding each sensor varies through time or not.
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Indeed, PCEN relies on the assumption that background noise is stationary at a short time scale
(Trcen = 60ms), of the order of the duration of the acoustic events of interest; whereas CA
computes auxiliary features at a longer temporal scale (7ca = 30 m). Consequently, PCEN
compensates intermittent changes in the loudness of background sources, such as a passing
vehicle or the stridulation of an insect; however, it assumes statistical independence between
background and foreground, and is thus inadequate to model how different habitats might trigger
different vocalization behaviors in the species of interest. For its part, the CA-CNN draws on the
variety of sensors in the training set to learn a joint model of both background and foreground;
however, this joint model needs to be regularized by integrating long-term context into auxiliary
features of relatively low dimensionality, which are, by design, invariant to rapid changes in
environmental noise.

After a comprehensive benchmark of architectural variations between convolutional neural
networks, we obtain statistically significant evidence to suggest that a combination of PCEN,
adaptive threshold, and artificial data augmentation (pitch shifts and time stretchings) provides a
consistent and interpretable improvement over the logmelspec-CNN baseline. Reductions in
miss rates with respect to the state of the art range between 10% and 50% depending on the
location of the sensor, and bring the area under the precision-recall curve (AUPRC) of the
BirdVox-full-night benchmark [57] from 61% to 76%. In addition, the recall of our selected
model for sound event detection, named Bird VoxDetect, remains relatively high even in
recording conditions where less training data is available, e.g. at dusk or in sensors with peculiar
characteristics in background noise.

Alongside this article, we release BirdVoxDetect as a pre-trained model on
BirdVox-full-night. We encourage bioacoustics researchers to download it and run it on their
own recordings of nocturnal flight calls in the wild, especially if these recordings also contain
high levels of background noise and/or spurious sound events. BirdVoxDetect can detect the
nocturnal flight calls of warblers, thrushes, and sparrows, with a high level of generality in terms
of target species as well as sensor locations. Indeed, as demonstrated by our benchmark, the
procedures of PCEN and unsupervised context adaptation allow BirdVoxDetect to be deployed
in a broad variety of recording conditions, exceeding those that are present in the
BirdVox-full-night dataset. The source code of BirdVoxDetect is freely available at the
following URL address: https://github.com/Bird Vox/birdvoxdetect.

Deriving computer-generated estimates of migratory activity at ranges of spatiotemporal
scales from a decentralized network of low-cost bioacoustic sensors is a promising avenue for
new insights in avian ecology and the conservation of biodiversity. Future work will apply the
BirdVoxDetect machine listening system to large-scale bioacoustic migration monitoring.
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