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Abstract—With the aim of constructing a biologically plausible 
model  of  machine  listening,  we  study  the  representation  of 
a multicomponent stationary signal by a wavelet scattering 
network. First, we show that renormalizing second-order nodes 
by their first-order parents gives a simple numerical criterion to 
assess whether two neighboring components will interfere psy- 
choacoustically. Secondly, we run a manifold learning algorithm 
(Isomap) on scattering coefficients to visualize the similarity space 
underlying parametric additive synthesis. Thirdly, we generalize 
the “one or two components” framework to three sine waves or 
more, and prove that the effective scattering depth of a Fourier 
series grows in logarithmic proportion to its bandwidth. 

Index Terms—Audio systems, Amplitude modulation, Continu- 
ous wavelet transform, Fourier series, Multi-layer neural network. 

 
 

I. INTRODUCTION 

In the mammalian auditory system, cochlear hair cells 
operate like band-pass filters whose equivalent rectangular 
bandwidth (ERB) grows in proportion to their center frequency. 
Given  two  sine  waves  t  1→ y1(t)  =  a1 cos(f1t + ϕ1)  
and 
t 1→ y2(t) = a2 cos(f2t+ϕ2) of respective frequencies f1 > 
0 
and f2 > 0, we perceive their mixture as a musical chord 
insofar as y1 and y2 belong to disjoint critical bands. However, 
if a2 « a1 or f2 ≈ f1, then the tone y2 is said to be masked 
by y1. In lieu of two pure tones, we hear a “beating tone”: i.e., 

 
This article discusses the response of the scattering transform 

operator to a complex tone input y : t 1→ y1(t) + 
y2(t), depending on the sinusoidal parameters of y1 and  
y2. In this respect, we follow a well-established  
methodology in nonstationary signal processing, colloquially 
known as: “One or two frequencies? The X Answers”, where 
X is the nonlinear operator of interest. The key idea is to  
identify transitional 
regimes in the response of X with respect to variations in 
relative amplitude ( a2 ), relative frequency ( f2 ), and relative 1 1 

phase (ϕ2 − ϕ1). Prior publications have done so for X being 
the empirical mode decomposition [19], the synchrosqueezing 
transform [25], and the singular spectrum analysis operator 
[9]. We extend this line of research to the case where X is the 
scattering transform in dimension one. 

II. WAVELET-BASED RECURSIVE INTERFEROMETRY 

Let ψ ∈ L2(R, C) a Hilbert-analytic filter with null average, 
unit center frequency, and an ERB equal to 1/Q. We define a 
constant-Q wavelet filterbank as the family ψλ : t 1→ 
λψ(λt). Each wavelet ψλ has a center frequency of λ, an ERB 
of λ/Q, and an effective receptive field of (2πQ/λ) in the time 
domain. In practice, the frequency variable λ gets discretized 
according 

1 

to a geometric progression of common ratio 2 Q . Consequently, 
every continuous signal y that is bandlimited to [fmin, fmax] fmax 

a locally sinusoidal wave whose carrier frequency is 1 (f1 + f2) activates a number of Q log2( f  
min ) wavelets ψλ at most. 

and whose modulation frequency is 1 |f1 − f2|. In humans, the 
resolution of beating tones involves physiological processes 

We  define  the  scalogram  of  y as  the  squared  complex 
modulus of its constant-Q transform (CQT): 

beyond the cochlea, i.e., in the primary auditory cortex. 
The scattering transform (S) is a deep convolutional operator 

 f  +∞ 

U1y : (t, λ1) −→ 
 
 

 2 

y(tt)ψλ1 (t − tt) dtt
 
 
 
. (1) 

which alternates constant-Q wavelet decompositions and the ap- −∞ 
plication of pointwise complex modulus, up to some time scale 
T . Broadly speaking, its first two layers (S1 and S2) resemble 
the functioning of the cochlea and the primary auditory cortex, 

Likewise, we define a second layer of nonlinear transformation 
for y as the “scalogram of its scalogram”: 

 2 2 
respectively. In the context of audio classification, scattering 
transforms have been succesfully employed to represent speech 

U2y : (t, λ1, λ2) −→  y ∗ ψλ1 
  ∗ ψλ2    (t), (2) 

[2], environmental sounds [13], urban sounds [20], musical 
instruments [10], rhythms [8], and playing techniques [24]. 
Therefore, the scattering transform simultaneously enjoys a 
diverse range of practical motivations, a firm rooting in wavelet 
theory, and a plausible correspondence with neurophysiology. 

where the asterisk denotes a convolution product. This construct 
may be iterated for every integer m by “scattering” the multi- 
variate signal Umy into all wavelet subbands λm < λm−1: 

Um+1y : (t, λ1 . . . λm+1) −→ 
 2 

This work is supported by the NSF award 1633259 (BIRDVOX).  Umy(t, λ1 . . . λm) ∗ ψλm    (t, λ1 . . . λm).    (3) 
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By linearity of the CQT, we expand the interference between 
y1  and y2  by heterodyning: 

 2 1 2 1 2 ( f1 )   2 ( f2 )   2 

 (y1 + y2) ∗ ψλ1    (t) = 
2 
ψ�  

λ 
\    a1 + 

2  ψ
�  

λ    a2 

  f1 
    f2 

  
+ R ψ� 

1 
ψ�∗ 

1 
a1a2 cos 

(
(f2 − f1)t + (ϕ2 − ϕ1)

)
. 

(6) 
 

 
 
 
 
 
 

Fig. 1. Superimposed heatmaps of second-order masking coefficients S�2y 
after a scattering transform of two sine waves y1 and y2, measured around 
the frequency f , as a function of relative amplitude a2  and relative frequency a1 
difference |f2 −f1 | . The color of each blot denotes the resolution λ  at the 

f1 
second layer. Wavelets have an asymmetric profile (Gammatone wavelets) and 
a quality factor Q = 4. The second layer covers an interval of nine octaves 
below f1. For the sake of clarity, we only display one interference pattern per 
octave. 

 
 
 Note that the original definition of the scattering transform 

adopts the complex modulus (|z| = 
√

zz̄) rather its square 

Because the wavelet ψ has a null average, the two constant 
terms in the equation above are absorbed by the first layer of 
the scattering network, and disappear at deeper layers. However, 
the cross term, proportional to a1a2, is a “difference tone” of 
fundamental frequency ∆f = |f2 − f1|. 

The authors of a previous publication [3] have remarked that 
this difference tone elicits a peak in second-order scattering 
coefficients for the path p = (λ1, λ2) = (f1, |f2 − f1|). In the 
following, we generalize their study to include the effect of the 
relative amplitude a2 , the wavelet shape ψ, the quality factor 

1 

Q, and the time scale of local stationarity T . 
Equation 6 illustrates how the scalogram operator U1 

converts  a  complex  tone  (two  frequencies  f1  and  f2)  into 
a simple tone (one frequency |f2 − f1|). For this simple tone 
to carry a nonnegligible amplitude in U2, three conditions 
must be satisfied. First, the rectangular term a1a2 must be 

2 2 
(|z|2 = zz̄) as its activation function. This is to ensure that 
Um is a non-expansive map in terms of Lipschitz regularity. 
However, to simplify our calculation and spare an intermediate 
stage of linearization of the square root, we choose to employ a 
measure of power rather than amplitude. This idea was initially 
proposed by [6] in the context of marine bioacoustics. 

Every layer m in this deep convolutional network composes 
an invariant linear system (namely, the CQT) and a pointwise 
operation (the squared complex modulus). Thus, by recurrence 
over the depth variable m, every tensor Umy is equivariant 
to the action of delay operators. In order to replace this 
equivariance property by an invariance property, we integrate 
each Um  over some predefined time scale T , yielding the 

nonnegligible in comparison to the square terms a1 and a2. 
Secondly, there must exist a wavelet ψλ1 whose spectrum 
encompasses both frequencies f1 and f2. Said otherwise, λ1 

must satisfy the inequalities | fn − 1| « 1 , both for fn = f1 
λ1 Q 

and for fn = f2. Thirdly, the frequency difference |f2 − f1| 
must belong to the passband of some second-order wavelet 
ψλ2 . Yet, in practice, to guarantee the temporal localization 
of scattering coefficients and restrict the filterbank to a finite 
number of octaves, the scaling factor of every ψλm is upper-  
bounded by the temporal constant T . Therefore, the period 
|f2 −f1 | of the difference tone should be under the pseudo- 
period of the wavelet with support T ; i.e., a pseudo-period of 
QT . Hence the third condition: |f2 − f1| « 2πQ . T 

invariant scattering transform: 
f +∞ 

Smy : (t, p) −→ 
−∞ 

 
Um(tt, p)φT (t − tt) dtt, (4) 

One simple way of quantifying the amount of mutual interfer- 
ence between signals y1 and y2 is to renormalize second-order 
coefficients by their first-order “parent” coefficients: 

S2y(t, λ1, λ2) 

where the m-tuple p = (λ1 . . . λm) is a scattering path and the 
S�2y(t, λ1, λ2) = (7) 

S1y(t, λ1) 

signal φT  is a real-valued low-pass filter of time scale T . 
 

III. AUDITORY MASKING IN A SCATTERING NETWORK 

Given n ∈ {1, 2}, the convolution between every sine wave 
yn  and every wavelet ψλ1   writes as a multiplication in the 

This operation, initially proposed by [2], is conceptually 
analogous to classical methods in adaptive gain control, notably 
per-channel energy normalization (PCEN) [14]. 

In accordance with the “one or two frequencies” methodol- 
ogy, Figure 1 illustrates the value of this ratio of energies in 
the subband λ1 = f1, for different values of relative amplitude 

Fourier domain.  Because  ψλ1   is  Hilbert-analytic,  only  the analytic part ya  = yn + iH{yn} = an exp(i(fnt + ϕn)) of a1   
and relative frequency difference f1 

. We fixed f2 < f1 
n without loss of generality. As expected, we observe that, for 

the real signal yn  is preserved in the CQT: a2 ≈ a1 and a relative frequency difference between  Q and 

1 a Q , second-layer wavelets ψλ2   resonate with the difference 
(yn ∗ ψλ1 ) (t) = 

2 
ψ�λ1 (fn)yn(t). (5) tone as a result of the interference between signals y1 and y2. 

1 1 

λ λ 
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Scattering transform embedding 
 

   
 

Audiovisual correspondence (Open-L3) embedding 
 

   
 
 

Fig. 2. Log-magnitudes of synthetic musical tones as a function of wavelet log- 
frequency (log λ). Ticks of the vertical (resp. horizontal) axis denote relative 
amplitude (resp. frequency) intervals of 10 dB (resp. one octave). Parameters α 
and r denote the Fourier decay exponent and the relative odd-to-even amplitude 
difference r respectively. See Equation 8 for details. 

 
 

IV. APPLICATION TO MANIFOLD LEARNING 

To demonstrate the ability of the scattering transform to 
characterize auditory masking, we build a dataset of complex 
tones according to the following additive synthesis model: 

Mel-frequency cepstral coefficient (MFCC) embedding 
 

   
Color: f1 Color: α Color: r 

 
Fig. 3.  Isomap embedding of synthetic musical notes, as described by their 
scattering transform coefficients (top); their Open-L3 coefficients (center); and 

N 

yα,r (t) = 
'

 
n=1 

1 + (−1)nr 
nα 

cos(nf1t)φT (t), (8) their mel-frequency cepstral coefficients (MFCC, bottom). The color of a dot, 
ranging from red to blue via white, denotes the fundamental frequency f1 (left), 
the Fourier decay exponent α (center), and the relative odd-to-even amplitude 
difference r (right) respectively. Note that all methods are unsupervised: triplets 

where φT   is a Hann window of duration T . This additive 
synthesis model depends upon two parameters: the Fourier 
decay α and the relative odd-to-even amplitude difference r. 
Figure 2 displays the CQT log-magnitude spectrum of yα,r 
for different values of α and r. In practice, we set T to 1024 
samples, N to 32 harmonics, and f1 between 12 and 24 cycles. 

Our synthetic dataset comprises 2500 audio signals in total, 
corresponding to 50 values of α between 0 and 2 and 50 values 
of r between 0 and 1, while f1 is an integer chosen uniformly at 
random between 12 and 24. We extract the scattering transform 
of each signal yα,r up to order M = 2, with Q = 1 and J = 8, 
by means of the Kymatio Python package [4]. Concatenating 
QJ first-order coefficients with 1 Q2J (J − 1) second-order 

coefficients yields a representation in dimension 37. 
For visualization  purposes, we  bring  the 37-dimensional 

space of scattering coefficients to the dimension three by 
means of the Isomap algorithm for unsupervised manifold 
learning [22]. The appeal behind Isomap is that pairwise 
Euclidean distances in the 3-D point cloud approximate the 
corresponding geodesic distances over the K-nearest neighbor 
graph associated to the dataset. Throughout this paper, we set 
the number of neighbors to K = 100 and measure neighboring 
relationships by  comparing  high-dimensional .£2  distances. 

(f1, α, r) are not directly supplied to the models, but only serve for color 
grading post hoc. See Section IV for details. 

 
 

Crucially, in the case of the scattering transform, these .£2 

distances are provably stable (i.e., Lipschitz-continuous) to the 
action of diffeomorphisms [16, Theorem 2.12]. 

Figure 3 (top) illustrates our findings. We observe that, 
after scattering transform and Isomap dimensionality reduction, 
the dataset appears as a 3-D Cartesian mesh whose principal 
components align with f1, α, and r respectively. This result 
demonstrates that the scattering transform is capable of 
disentangling and linearizing multiple factors of variability in 
the spectral envelope of periodic signals, even if those factors 
are not directly amenable to diffeomorphisms. 

As a point of comparison, Figure 3 presents the outcome 
of Isomap on alternative feature representations: Open-L3 
embedding (center) and mel-frequency cepstral coefficients 
(MFCC, bottom). The former results from training a deep 
convolutional network (convnet) on a self-supervised task of 
audiovisual correspondence, and yields 6177 coefficients [7]. 
The latter resuts from a log-mel-spectrogram representation, 
followed by a discrete cosine transform (DCT) over the mel- 

= 0.00 ; r = 0.00 

= 0.00 ; r = 0.75 

= 0.00 ; r = 1.00 

log frequency (oct.) 

= 1.00 ; r = 0.00 

= 1.00 ; r = 0.75 

= 1.00 ; r = 1.00 

log frequency (oct.) 

= 2.00 ; r = 0.00 

= 2.00 ; r = 0.75 

= 2.00 ; r = 1.00 

log frequency (oct.) 

am
pli

tud
e (

dB
) 

am
pli

tud
e (

dB
) 

am
pli

tud
e (

dB
) 



n=1 

 

0 
 

-25 
 

-50 
 

-75 
 

-100 

 
 
 
 
 
 
 
 
 
 
 

2 to 3 
4 to 7 
8 to 15 

sinusoidal components but fails to characterize more intricate 
structures in the spectral envelope of y. 

To address this issue, we propose to study the scattering 
transform beyond order two, thus encompassing heterodyne 
structures of greater multiplicity. For the sake of mathematical 
tractability, we consider the following mother wavelet, hereafter 
called “complex Shannon wavelet” after [15, Section 7.2.2]: 

exp(2it) − exp(it) 
-125 

 
-150 

16 to 31 
32 to 63 ψ : t −→ 2πit 

(9) 

1 2 3 4 5 6 7 
Wavelet scattering depth 

 
 

Fig. 4. Energy decay as a function of wavelet scattering depth m, for mixtures 
of N components with equal amplitudes, equal phases, and evenly spaced 
frequencies. The color of each line plot denotes the integer part of log2 N . 
In this experiment, wavelets have a sine cardinal profile (Shannon wavelets) 
and a quality factor equal to Q = 1. Each filterbank covers seven octaves. 

 
 

frequency axis, and yields 12 coefficients. We compute MFCC 
with librosa v0.7 [18] default parameters. 

We observe that Open-L3 embeddings correctly disentangles 
boundary conditions (r) from fundamental frequency (f1), 
but fails to disentangle Fourier decay (α) from f1. Instead, 
correlations between r and f1 are positive for low-pitched 
sounds (12 to 16 cycles) and negative for high-pitched sounds 
(16 to 24 cycles). Although this failure deserves a more formal 
inquiry, we hypothesize that this it stems from the small 
convolutional receptive field of the L3-Net: 24 mel subbands, 
i.e., roughly half an octave around 1 kHz. 

Moreover, in the case of MFCC, we find that the variability 
in fundamental frequency (f1) dominates the variability in 
spectral shape parameters (α and r), thus yielding a rectilinear 
embedding (top). This observation is in line with a previous 
publication [11], which showed statistically that MFCCs are 
overly sensitive to frequency transposition in complex tones. 

From this qualitative benchmark, it appears that the scattering 
transform is a more interpretable representation of periodic 
signals than Open-L3, while incurring a smaller computational 
cost. However, in the presence of aperiodic signals such as 
environmental sounds, Open-L3 outperforms the scattering 
transform in terms of classification accuracy with linear support 
vector machines [5]. To remain competitive, the scattering 
transform must not only capture heterodyne interference, but 
also joint spectrotemporal modulations [1]. In this context, 
future work will strive to combine insights from multiresolution 
analysis and deep self-supervised learning. 

V. BEYOND PAIRWISE INTERFERENCE: 
FULL-DEPTH SCATTERING NETWORKS 

In speech and music processing, pitched sounds are rarely 
approximable as a mixture of merely two components. More 
often than not, they contain ten components or more, and 
span across multiple  octaves  in  the  Fourier  domain.  Thus, 
computing the masking coefficient at the second layer only 
provides a crude description of the timbral content within each 
critical band. Indeed, S2 encodes pairwise interference between 

The definition of a scattering transform with complex Shannon 
wavelets requires to resort to the theory of tempered distribu- 
tions. We refer to [21] for further mathematical details. 

The following theorem, proven in the Appendix, describes 
the response of a deep scattering network in the important 
particular case of a periodic signal with finite bandwidth. 

Theorem V.1. Let y ∈ C∞(R) a periodic signal of fundamen- 
tal frequency f1. Let ψ the complex Shannon wavelet as in 
Equation 9 and U1 its associated scalogram operator as in 
Equation 1. If y has a finite bandwidth of M octaves, then its 
scattering coefficients Umy are zero for any m > M. 

This result is in agreement with the theorem of exponential 
decay of scattering coefficients [23]. Note, however, that [23] 
expresses an upper bound on the energy at fixed depth for 
integrable signals, while we express an upper bound on the 
depth at fixed bandwidth for periodic signals. 

We apply the theorem above to the case of a signal containing 
N components of equal amplitudes, equal phases, and evenly 
spaced frequencies: y : t 1→ 

),N    a1 cos(nf1t + ϕ1). Figure 
4 illustrates the decay of scatterered energy as a function of 
depth. The conceptual analogy between depth and scale was 
originally proposed by [17] in a theoretical effort to clarify the 
role of hierarchical symmetries in convnets. 

Although our findings support this analogy, we note that 
computing a  scattering transform  with  M =  log2 T  layers 
is  often  impractical.  However,  if  the  Fourier  series  in  y 
satisfies a self-similarity assumption, it is possible to match 
the representational capacity of a full-depth scattering network 
while keeping the depth to M = 2. Indeed, spiral scattering 
performs wavelet convolutions over time, over log-frequency, 
and across octaves, thereby capturing the spectrotemporal 
periodicity of Shepard tones and Shepard-Risset glissandos [12]. 
Further research is needed to integrate broadband demodulation 
into deep convolutional architectures for machine listening. 

VI. CONCLUSION 

In this article, we have studied the role of every layer in a 
scattering network by means of a well-established methodology, 
colloquially known as “one or two components” [19]. We have 
come up with a numerical criterion of psychoacoustic masking; 
demonstrated that the scattering transform disentangles multiple 
factors of variability in the spectral envelope; and proven that 
the effective scattered depth of Fourier series is bounded by the 
logarithm of its bandwidth, thus emphasizing the importance 
of capturing geometric regularity across temporal scales. 
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