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1. Introduction

Denote by (R, m, k) a commutative Noetherian local ring with unique maximal ideal m
and residue field k. Unless otherwise stated, we assume R is of prime characteristic p > 0. 
We let F e : R → R denote the eth-iterate of the Frobenius endomorphism which maps 
an element r �→ rp

e . The Frobenius endomorphisms induce natural Frobenius actions of 
local cohomology modules

F e : Hi
m(R) → Hi

m(R)

for each i ∈ N. There are several interesting classes of singularities which can be defined 
in terms of the behavior of these Frobenius actions. These include F -rational, F -injective, 
and F -nilpotent singularities. The ring R is F -injective if the Frobenius actions above 
are all injective. We say R is an F -nilpotent ring if the above Frobenius actions are 
nilpotent on the local cohomology modules Hi

m(R) when i < dim(R) and the nilpotent 
submodule of Hd

m(R) is “as large as possible.” We refer the reader to Section 2 for a 
precise definition. An excellent equidimensional ring R is F -rational if and only if it 
is both F -injective and F -nilpotent. All three notions have interesting and important 
connections with the theory of tight closure.

Let R◦ be the multiplicative set of elements of R which are not contained in a minimal 
prime ideal. Given an ideal I ⊆ R we let I [pe] denote the expansion of I along F e. If 
x ∈ R then we say that x is in the tight closure of I if there exists c ∈ R◦ such that 
cxpe ∈ I [pe] for all e � 0. The collection of all such elements is denoted by I∗. If the above 
element c ∈ R◦ can be taken to be the element 1, i.e., if xpe ∈ I [pe] for all, equivalently 
for some, e � 0, then it is said that x is in the Frobenius closure of I. The Frobenius 
closure of an ideal is denoted by IF . The sets IF and I∗ are ideals of R and there are 
inclusions I ⊆ IF ⊆ I∗. If I = IF then I is said to be Frobenius closed and if I = I∗

then I is called tightly closed. We refer the reader to [10,11,17] for the basics of tight 
closure.

A parameter ideal of R is an ideal q which is generated by a full system of parameters 
for R. The ring R is F -rational if and only if q = q∗ for every parameter ideal of R. 
The second author and Shimomoto show in [30] that if q = qF for each parameter ideal 
of R then R is F -injective, but they also show that not every parameter ideal need 
be Frobenius closed in an F -injective ring. In this article, the following classification of 
F -nilpotent rings is given:

Theorem A. Let (R, m, k) be an excellent equidimensional local ring of prime character-
istic p > 0. Then the following are equivalent:

(1) The ring R is F -nilpotent.
(2) qF = q∗ for every parameter ideal q of R.



198 T. Polstra, P.H. Quy / Journal of Algebra 529 (2019) 196–225
The example of an F -injective ring with a parameter ideal not being Frobenius closed 
given in [30] is not equidimensional. However, we shall see that all F -nilpotent rings are 
equidimensional, and so Theorem A might be an indication that all parameter ideals in 
an equidimensional F -injective ring are Frobenius closed.

If x1, . . . , xd is a system of parameters for R then the top local cohomology module 
with support in the maximal ideal has a very explicit description:

Hd
m(R) ∼= lim−−→

N

(
· · · → R

(xN
1 , . . . , xN

d )
x1···xd−−−−→ R

(xN+1
1 , . . . , xN+1

d )
→ . . .

)
.

Furthermore, if R is Cohen-Macaulay, i.e., Hi
m(R) = 0 for all i < dim(R), then the maps 

in direct limit system are injective. Having an explicit description of Hd
m(R) provides 

a great advantage in making connections between the behavior of Frobenius actions 
on local cohomology modules and prime characteristic properties of parameter ideals 
in rings which are assumed to be Cohen-Macaulay. For example, an important open 
problem, which is solved in the Cohen-Macaulay case, is whether F -injectivity deforms. 
That is if x ∈ R is a regular element such that R/(x) is an F -injective ring then is it 
necessarily the case that R is an F -injective as well? Fedder proved that R is indeed 
F -injective under the assumptions R is Cohen-Macaulay and R/(x) is F -injective for 
some regular element x in [9]. We refer the reader to [13] and [27] for more recent 
developments on the deformation of F -injectivity problem.

Similar to the study of F -injective rings, the difficulties of understanding F -nilpotent 
rings comes from the study of non-Cohen-Macaulay rings. The notion of a filter regular 
element allows some insight to the behavior of nonzero lower local cohomology modules. 
An element x ∈ m is called a filter regular element if x avoids all non-maximal associated 
primes of R. The eth-iterate of the Frobenius endomorphism F e : R/(x) → R/(x)
can be factored as R/(x) → R/(xpe) → R/(x) where the second map is the natural 
projection. In particular, there are induced maps of local cohomology modules F e

R :
Hi

m(R/(x)) → Hi
m(R/(xpe)). We say that R/(x) is F -nilpotent relative to R if for each 

i < dim(R/(x)) and η ∈ Hi
m(R/(x)) there exists e ∈ N such that F e

R(η) = 0 as an 
element of Hi

m(R/(xpe)). We will also require that the relative nilpotent submodule of 
Hd−1

m (R/(x)) be as “large as possible.” We refer the reader to Section 5 for a precise 
definition. Our proof of Theorem A will depend on the following characterization of 
F -nilpotent rings.

Theorem B. Let (R, m, k) be a excellent and equidimensional local ring of prime charac-
teristic p > 0. Then the following are equivalent:

(1) The ring R is F -nilpotent.
(2) For each filter regular element x on R the cyclic module R/(x) is F -nilpotent with 

respect to R.
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Theorem B is crucial to proof of Theorem A, but more is needed. It is not enough to 
consider the algebraic properties of a filter regular element, we will need to understand 
algebraic properties of a filter regular sequence. A sequence of elements x1, . . . , x� is a 
called a filter regular sequence if for each 1 ≤ j ≤ � the class of xj is a filter regular 
element of R/(x1, . . . , xj−1). We show that ideals generated by a filter regular sequence 
enjoy the following desirable property:

Theorem C. Let (R, m, k) be a local ring of prime characteristic p > 0. Let x1, . . . , xt be 
a filter regular sequence of R and I = (x1, . . . , xt). Then there exists a positive integer 
C such that for all e ∈ N

mCpe ·H0
m(R/I [pe]) = 0.

Understanding algebraic and cohomological properties of filter regular sequences yields 
the following characterization of lower local cohomology modules being F -nilpotent:

Theorem D. Let (R, m, k) be a local ring of dimension d and of prime characteristic p > 0
and let t < d. Then the following are equivalent:

(1) Hi
m(R) is F -nilpotent for all i ≤ t.

(2) For every filter regular sequence x1, . . . , xt we have⋃
n∈N

(x1, . . . , xt) : mn ⊆ (x1, . . . , xt)F .

The paper is organized as follows: Section 2 covers the basic notions and background 
material relevant to the results of later sections and develops a few new results concerning 
F -nilpotent rings. Section 3 is where we prove Theorem C. The proof of Theorem D and 
other characterizations of lower local cohomology modules to be F -nilpotent can be 
found in Section 4. The final section, Section 5, is where we piece together the results of 
the previous sections and prove Theorem A and Theorem B.

2. Preliminaries

2.1. Local cohomology

Let R be a Noetherian ring, not necessarily of prime characteristic, M an R-module, 
and I an ideal of R. Then we denote by Hi

I(M) the i-th local cohomology module with 
support at I ([6] and [19]). Recall that Hi

I(M) may be computed as the ith cohomology 
of the Čech complex

Č•(x1, . . . , xt;M) : 0 → M →
t⊕

Mxi
→ · · · → Mx1...xt

→ 0

i=1
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where x1, . . . , xt are any choice of generators of I up to radical. If R → S is a homomor-
phism of rings then for each R-module M there is functorial map of local cohomology 
modules Hi

I(M) → Hi
IS(M⊗RS). In particular, if R is of prime characteristic p > 0, then 

the eth-iterate of the Frobenius endomorphism F e : R → R induces the eth-Frobenius 
action F e : Hi

I(R) → Hi
I[pe](R) ∼= Hi

I(R) with the isomorphism of local cohomology 
modules coming from the observation that the ideals I and I [pe] are the same up to 
radical.

If c ∈ N then (x1, . . . , xt) is cofinal with (xc
1, . . . , x

c
t) and Ht

I(R) is isomorphic to the 
direct limit system

lim−−→
n

(
· · · → R

(xcn
1 , . . . , xcn

t )
(x1···xt)c−−−−−−→ R

(xc(n+1)
1 , . . . , x

c(n+1)
t )

→ · · ·
)
.

In particular, if R is of prime characteristic then the Frobenius action on the top local 
cohomology module Ht

I(R) has the following explicit description: If η + (xm
1 , . . . , xm

t ) is 
a representative of an element in

Ht
I(R) ∼= lim−−→

n

R

(xn
1 , . . . , x

n
t )

then the eth-Frobenius action on Ht
I(R) sends η+(xm

1 , . . . , xm
t ) �→ ηp

e +(xpem
1 , . . . , xpem

t )
in Ht

I(R) as it is realized as the direct limit

Ht
I(R) ∼= lim−−→

n

R

(xpen
1 , . . . , xpen

t )
.

2.2. Filter regular sequences

Definition 2.1. Let M be a finitely generated module over a local ring (R, m, k) and let 
x1, . . . , xt be a set of elements of R. Then we say that x1, . . . , xt is a filter regular sequence
on M if the following conditions hold:

(1) (x1, . . . , xt) ⊆ m.
(2) xi /∈ p for all p ∈ AssR

( M

(x1, . . . , xi−1)M

)
\ {m}, i = 1, . . . , t.

The notion of a filter regular sequence was introduced by Cuong, Schenzel, and Trung 
in [8]. If M is a finitely generated module over a local ring (R, m, k) then a simple prime 
avoidance argument shows that there always exists a system of parameters for M which 
is also a filter regular sequence on M . Filter regular sequences are also called m-filter 
regular sequence in other sources.



T. Polstra, P.H. Quy / Journal of Algebra 529 (2019) 196–225 201
Lemma 2.2. Let (R, m, k) be a local ring and M a finitely generated R-module. Then 
x1, . . . , xt ∈ m is a filter regular sequence on M if and only if one of the following four 
equivalent conditions holds:

(1) For each 1 ≤ i ≤ t the quotient(
(x1, . . . , xi−1)M :M xi

)
(x1, . . . , xi−1)M

is an R-module of finite length.
(2) For each 1 ≤ i ≤ t the sequence

x1

1 ,
x2

1 , . . . ,
xi

1

forms an Rp-regular sequence in Mp for every p ∈
(
Spec(R/(x1, . . . , xi)) ∩

SuppR M
)
\ {m}.

(3) The sequence xn1
1 , . . . , xnt

t is a filter regular sequence for all n1, . . . , nt ≥ 1.
(4) The sequence x1 . . . , xt ∈ R̂ is a filter regular sequence of M̂ .

If x1, . . . , xt satisfies any of the above equivalent conditions then it also satisfies the 
following fifth condition:

(5) For all n1, . . . , nt ≥ 1 we have

AssR(M/(x1, . . . , xt)M) ∪ {m} = AssR(M/(xn1
1 , . . . , xnt

t )M) ∪ {m}.

Proof. Equivalence of the first three properties can be found in [29, Proposition 2.2]. For 
the equivalence of (4) with the first three properties we refer to [31, Remark 2.4]. Lastly, 
observe that the quotient module in condition (1) having finite length is unaffected by 
completion. Hence condition (5) is equivalent to the other four conditions. �

The following result will be useful to this paper (cf. [29, Proposition 3.4]).

Lemma 2.3 (Nagel-Schenzel isomorphism). Let (R, m, k) be a local ring and let M be a 
finitely generated R-module. If x1, . . . , xt is a filter regular sequence on M then

Hi
m(M) ∼=

{
Hi

(x1,...,xt)(M) if i < t

Hi−t
m (Ht

(x1,...,xt)(M)) if i ≥ t.

The Nagel-Schenzel’s isomorphism allows us to identify Ht
m(R) as the collection of 

elements of Ht
(x1,...,xt)(R) annihilated by a sufficiently large power of the maximal ideal. 

This is often useful since the local cohomology module Ht
(x1,...,xt)(R) has an explicit 

description via Čech cohomology. Moreover, if R is of prime characteristic then the 
Frobenius action on Ht

m(R) is the restriction of the Frobenius action on Ht
(x1,...,xt)(R)

to H0
m(Ht (R)).
(x1,...,xt)
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If (R, m, k) is a local ring and M a module with support only at the maximal ideal 
then Hi

m(M) = 0 for all i ≥ 1. In particular, if x is a filter regular element of R then 
(0 : x) is supported only at the maximal ideal and examination of the long exact sequence 
of local cohomology modules induced from the short exact sequence

0 → (0 : x) → R → R/(0 : x) → 0

shows Hi
m(R/(0 : x)) ∼= Hi

m(R) for each i ≥ 1. Furthermore, for each i ≥ 1 the induced 
map of local cohomology modules Hi

m(R) ∼= Hi
m(R/(0 : x)) → Hi

m(R) derived from the 
short exact sequence

0 → R/(0 : x) x−→ R → R/(x) → 0

is multiplication by the element x.
Another useful property of filter regular elements is the following:

Lemma 2.4. Let (R, m, k) be a local ring and fix N ∈ N large enough so that H0
m(R) =

(0 : mN ). If x ∈ mN is a filter regular element then H0
m(R/(0 : x)) = 0, i.e., R/(0 : x)

has positive depth.

Proof. Consider the induced long exact sequence of local cohomology modules induced 
from the short exact sequence

0 → (0 : x) → R → R/(0 : x) → 0.

Observe that H0
m((0 : x)) → H0

m(R) is an isomorphism since every element of H0
m(R) =

(0 : mC) is an element of (0 : x). Furthermore, H1
m((0 : x)) = 0 since (0 : x) has finite 

length and therefore H0
m(R/(0 : x)) = 0. �

2.3. Tight closure and Frobenius closure

Let R be a Noetherian ring of prime characteristic p > 0. We let F e
∗ (R) denote the 

R-bimodule which as an Abelian group and as a right R-module is R, but as a left 
module F e

∗ (R) is the module obtained by restricting scalars under F e : R → R. Given 
x ∈ R we let F e(x) denote the corresponding element in F e

∗ (R). Thus given c ∈ R we 
have F e

∗ (x)c = F e
∗ (xc) and cF e

∗ (x) = F e
∗ (cpe

x). The ring R is F -finite if F e
∗ (R) is a finite 

left R-module for some, equivalently for all, e ∈ N.

Definition 2.5 ([10,11,17]). Let R◦ = R \
⋃

p∈MinR
p and I ⊆ R an ideal of R.

(1) The Frobenius closure of I is the ideal

IF = {x | xpe ∈ I [pe] for some e ∈ N}.



T. Polstra, P.H. Quy / Journal of Algebra 529 (2019) 196–225 203
(2) The tight closure of I is the ideal

I∗ = {x | cxpe ∈ I [pe] for some c ∈ R◦ and for all e � 0}.

An element x ∈ IF if and only if x is in the kernel of the composition of maps

R → R/I
id⊗F e

−−−−→ R/I ⊗ F e
∗ (R)

for some e ≥ 0. Similarly, an element x ∈ I∗ if and only if it contained in the kernel of 
the composition

R → R/I → R/I ⊗ F e
∗ (R) id⊗F e

∗ (c)−−−−−−→ R/I ⊗ F e
∗ (R)

for some c ∈ R◦ and for all e � 0. In general, let N be a submodule of an R-module M . 
The Frobenius closure of N in M , denoted by NF

M , is the collection of elements in M
which lie in the kernel of the composition

M → M/N
id ⊗F e

−−−−−→ M/N ⊗R F e
∗ (R)

for some e ≥ 0. The tight closure of N in M , denoted by N∗
M , is the collection of elements 

in M which lie in the kernel of the composition

M → M/N
id ⊗F e

−−−−−→ M/N ⊗ F e
∗ (R) id ⊗F e

∗ (c)−−−−−−→ M/N ⊗ F e
∗ (R)

for some c ∈ R◦ and for all e � 0. Both NF
M and N∗

M are submodules of M and there 
are containments

N ⊆ NF
M ⊆ N∗

M ⊆ M.

Given an R-module M , m ∈ M , and c ∈ R we will denote by cmpe the element of 
M ⊗ F e

∗ (R) which is mapped to by m under the composition of maps

M
id ⊗F e

−−−−−→ M ⊗ F e
∗ (R) id ⊗F e

∗ (c)−−−−−−→ M ⊗ F e
∗ (R).

Remark 2.6. Let (R, m, k) be a local ring of prime characteristic p > 0, x1, . . . , xt a 
sequence of elements in m, and I = (x1, . . . , xt).

(1) The eth-Frobenius action on Hi
I(R) becomes a left R-module homomorphism F e :

Hi
I(R) → Hi

I(F e
∗ (R)) for all i ≥ 0.

(2) For each e ∈ N there is an isomorphism of left R-modules Ht
I(R) ⊗R F e

∗ (R) ∼=
Ht

I(F e
∗ (R)) (this is not true in general for lower degree local cohomology modules). 

If we identify the later with Ht
I(R), then the map Ht

I(R) id⊗F e

−−−−→ Ht
I(R) ⊗ F e

∗ (R) is 
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the eth-Frobenius action on Ht
I(R). In particular, the nilpotent submodule of Ht

I(R)
is simply 0FHt

m(R), the Frobenius closure of the 0-submodule.
(3) If (R, m, k) is any local ring of prime characteristic p > 0, I ⊆ R an ideal, and 

x1, . . . , xt any choice of generators of I, then

lim
−→

(xn
1 , . . . , x

n
t )F

(xn
1 , . . . , x

n
t )

∼= 0FHt
I(R).

See [15, Proposition 3.3] for a proof (cf. Lemma 5.5 below).
(4) If R is an excellent equidimensional local ring and x1, . . . , xt part of a system of 

parameters then

lim−−→
n

(xn
1 , . . . , x

n
t )∗

(xn
1 , . . . , x

n
t )

∼= 0∗Ht
I(R).

See [33, Proposition 3.3] for a proof (cf. Lemma 5.7 below).

An element c ∈ R◦ is called a test element if for all R-modules N ⊆ M if η ∈ N∗
M

then for all e ∈ N the element η is an element of the kernel

M → M/N
id ⊗F e

−−−−−→ M/N ⊗R F e
∗ (R) id ⊗F e

∗ (c)−−−−−−→ M/N ⊗R F e
∗ (R).

If (R, m, k) is reduced and excellent then R admits a test element. Moreover, we may 
assume c ∈ R◦ is a completely stable test element, i.e., c is also serves as a test element 
for R̂.

2.4. F -nilpotent rings

Let (R, m, k) be a local ring of dimension d and prime characteristic p > 0. We say 
that a local cohomology module Hi

I(R) is F -nilpotent if the Frobenius action on Hi
I(R)

is nilpotent. If I = m is the maximal ideal then the modules Hi
m(R) are Artinian and it 

follows that there is an e ∈ N such that SpanR{Im(F e)} = SpanR{Im(F e+1)} = · · · . In 
particular, if Hi

m(R) is F -nilpotent then F e : Hi
m(R) → Hi

m(R) is the 0-map for all e � 0
(cf. [16, Proposition 1.11] and [24, Proposition 4.4]). The ring R is said to be F -nilpotent 
if Hi

m(R) is F -nilpotent for all i < d and 0FHd
m(R) = 0∗Hd

m(R), i.e., the Frobenius action 

on Hd
m(R) is nilpotent when restricted to the tight closure of the 0-submodule, i.e., 

0∗Hd
m(R) = 0FHd

m(R).
The study of F -nilpotent rings predominates in [3] and [34]. The authors of [3] make 

an explict relation between the Lyubeznik numbers of a closed point x in a variety X
defined over a separably closed field k of prime characteristic p > 0 which is assumed 
to be F -nilpotent off x and étale cohomology groups of X with coefficients in Fp. The 
authors of [34] propose a geometric interpretation of F -nilpotent singularities. Given 
isolated normal singularity x ∈ X over C, the authors of [34] conjecture that a Hodge 
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theoretic condition on the singularity x is equivalent to the reduction mod p of X being 
F -nilpotent for almost all primes p. They verify their conjecture up to dimension 3.

This paper is concerned with algebraic and cohomological properties of F -nilpotent 
rings. We continue by discussing a well-known fact.

Remark 2.7. Suppose x1, . . . , xd is a system of parameters of R. The element 1 +
(x1, . . . , xd) is a nonzero element of Hd

m(R) ∼= lim−−→R/(xN
1 , . . . , xN

d ) by the Monomial Con-
jecture.3 The eth Frobenius action on Hd

m(R) maps 1 +(x1, . . . , xd) �→ 1 +(xpe

1 , . . . , xpe

d ), 
which is also a nonzero element of Hd

m(R) ∼= lim−−→R/(xpeN
1 , . . . , xpeN

d ). Thus the Frobenius 
action on Hd

m(R) is never nilpotent.

Proposition 2.8. Let (R, m, k) be a local ring of prime characteristic p > 0.

(1) If R has dimension 0 then R is F -nilpotent.
(2) The ring R is F -nilpotent if and only if R/

√
0 is F -nilpotent.

(3) If R is F -nilpotent then R is equidimensional.
(4) If R is excellent then R is F -nilpotent if and only if R̂ is F -nilpotent.

Proof. If R is of dimension 0 then H0
m(R) = R and 0∗R =

√
0.

For (2) we let x = x1, . . . , xd be a system of parameters for R. Then the Frobe-
nius endomorphism induces a commutative diagram of short exact sequences of Čech 
complexes:

0 −−−−→ Č•(x;
√

0) −−−−→ Č•(x;R) −−−−→ Č•(x;R/
√

0) −−−−→ 0⏐⏐�F e

⏐⏐�F e

⏐⏐�F e

0 −−−−→ Č•(x;
√

0) −−−−→ Č•(x;R) −−−−→ Č•(x;R/
√

0) −−−−→ 0.

Observe that F e : Č•(x; 
√

0) → Č•(x; 
√

0) is the 0-map for e � 0. It easily follows that 
for 0 ≤ i < d that Hi

m(R) is F -nilpotent if and only if Hi
m(R/

√
0) is F -nilpotent. It 

remains to show 0FHd
m(R) = 0∗Hd

m(R) if and only if 0F
Hd

m(R/
√

0) = 0∗
Hd

m(R/
√

0). Suppose first 
that 0FHd

m(R) = 0∗Hd
m(R) and let η ∈ 0∗

Hd
m(R/

√
0). Denote by ι and π the following maps of 

local cohomology modules:

Hd
m(

√
0) ι−→ Hd

m(R) π−→ Hd
m(R/

√
0).

The map π is onto and so there exists η̃ ∈ Hd
m(R) so that π(η̃) = η. The commutative dia-

gram of Čech complexes induces the following commutative diagram of local cohomology 
modules:

3 The Monomial Conjecture is equivalent to the Direct Summand Conjecture. The reader can find proofs 
of these conjectures in the case R contains a field in [14]. We also refer the reader to [2,5] for proofs of the 
Direct Summand Conjecture for the case that R does not contain a field.
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Hd
m(

√
0) ι−−−−→ Hd

m(R) π−−−−→ Hd
m(R/

√
0) −−−−→ 0⏐⏐�F e

⏐⏐�F e

⏐⏐�F e

Hd
m(

√
0) ι−−−−→ Hd

m(R) π−−−−→ Hd
m(R/

√
0) −−−−→ 0.

It follows that there is a c ∈ R◦ so that cη̃pe ∈ Im(ι) for all e � 0. However, if e0 ∈
N is chosen such that 

√
0[pe0 ] = 0 then F e0(γ) = 0 for all γ ∈ Hd

m(
√

0). A simple 
diagram chase then shows cpe0

η̃p
e+e0 = 0 for all e ∈ N, i.e., η̃ ∈ 0∗Hd

m(R). But we are 

assuming R is F -nilpotent, hence for e � 0 we have η̃p
e = 0 and another diagram chase 

shows η ∈ 0F
Hd

m(R/
√

0). We leave it to the reader to run a similar argument proving if 
0F
Hd

m(R/
√

0) = 0∗
Hd

m(R/
√

0) then 0FHd
m(R) = 0∗Hd

m(R).
To prove (3) we may assume R is reduced. Let {P1, · · · , P�} be the minimal primes of 

R and suppose for a contradiction that dim(R/P1) = i < dim(R). Let I = P2 ∩ · · · ∩ P�. 
Consider the short exact sequence

0 → R → R

P1
⊕ R

I
→ R

(P1 + I) → 0.

It follows that there is an onto map Hi
m(R) → Hi

m(R/P1) of local cohomology mod-
ules since dim(R/(P1 + I)) < i. A straightforward diagram chase proves Hi

m(R/P1) is 
F -nilpotent, a contradiction since the top local cohomology module of a local ring cannot 
be F -nilpotent.

For (4) we begin by recalling Hi
m(R) ∼= Hi

m(R) ⊗R R̂ ∼= Hi
mR̂

(R̂) for all i ∈ N. Suppose 

first R̂ is F -nilpotent. Clearly Hi
m(R) are F -nilpotent for all i < dim(R). It remains to 

show 0∗R

Hd
m(R)

= 0FR

Hd
m(R). But this is also clear since R◦ ⊆ R̂◦, hence 0∗R

Hd
m(R) ⊆ 0∗R̂

Hd
m(R) =

0FR̂

Hd
m(R) and therefore a large iterate of the Frobenius action on Hd

m(R) maps η to 0.
Conversely, suppose that R is F -nilpotent. To ease notation, given a ring S we write 

Sred to denote S/
√

0. To show R̂ is F -nilpotent it is enough to show R̂red is F -nilpotent. 
Observe R̂red

∼= (R̂red)red and so we instead prove R̂red is F -nilpotent. The ring Rred is 
F -nilpotent by (2). Therefore we may assume R is an excellent reduced ring. All lower 
local cohomology modules of R̂ are F -nilpotent by assumption and it remains to show 
0∗R̂

Hd
m(R) = 0FR̂

Hd
m(R). Let η ∈ 0∗R̂

Hd
m(R). The ring R admits a complete stable test element 

and therefore η is an element of 0∗R

Hd
m(R) as well. By assumption, a large enough iterate 

of the Frobenius action on Hd
m(R) must map η to 0. �

Remark 2.9. The proof of (3) of Proposition 2.8 did not fully use the hypothesis that 
R is F -nilpotent. The proof only required that the Frobenius actions on Hi

m(R) were 
nilpotent for i < dim(R). Using the language of [25, Section 4], if the F -depth of a local 
ring R is equal to the dimension of R, then R is necessarily an equidimensional local 
ring.
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3. On the complexity of Frobenius powers of ideals

Let (R, m, k) be a local ring of prime characteristic p > 0. An ideal I ⊆ R is said to 
satisfy condition (LC) if there is an integer C such that for each e ∈ N

mCpe ·H0
m(R/I [pe]) = 0.

Showing every ideal satisfies condition (LC) would have an important application. If R
is assumed to be weakly F -regular, i.e., every ideal is tightly closed, and every ideal of 
R satisfies condition (LC), then every localization of R would remain weakly F -regular. 
A ring whose localizations are weakly F -regular is called F -regular. We refer the reader 
to the discussion following [10, Proposition 4.16] or the discussion following [18, Corol-
lary 3.2] for further details on why every weakly F -regular ring satisfying condition (LC) 
is F -regular.

Conjecture 3.1 (LC) Conjecture. Let (R, m, k) be a local (graded) ring of prime charac-
teristic p > 0 and I a (homogeneous) ideal of R. Then there exists a positive integer C
such that

mCpe ·H0
m(R/I [pe]) = 0

for all e ≥ 0.

There has been limited progress towards a proof of Conjecture 3.1. See [18, Corol-
lary 3.2] and [35, Theorem 1] for proofs that a homogeneous ideal I of a equidimensional 
graded ring such that dim(R/I) = 1 satisfies the (LC) condition. We also refer the reader 
to [20, Theorem 20] for a similar result which should be compared to Theorem 3.4, the 
main result of this section, found below. Specifically, Theorem 3.4 shows that an ideal 
generated by a filter regular sequence satisfies condition (LC). We begin with a pair of 
lemmas.

Lemma 3.2. Let (R, m, k) be a local ring, of arbitrary characteristic, and t a non-negative 
integer. For each j ≥ 0 let aj(R) = Ann(Hj

m(R)) and a = a0(R) · · · at(R). If x1, . . . , xt

a filter regular sequence then

a2t ·H0
m(R/(x1, . . . , xt)) = 0

Proof. There is nothing to show if t = 0. If t > 0 consider the long exact sequence of 
local cohomology

· · · → Hi
m(R) → Hi

m(R/(x1)) → Hi+1
m (R) → · · ·

induced from the short exact sequence
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0 → R/(0 : x1)
x1−−→ R → R/(x1) → 0.

Then for each i ≤ t − 1 we have

ai(R/(x1)) = Ann (Hi
m(R/(x1))) ⊇ ai(R)ai+1(R) ⊇ a2.

The assertion follows inductively as for each i ≤ t − (j + 1) there will be short exact 
sequence

· · · → Hi
m(R/(x1, . . . , xj)) → Hi

m(R/(x1, . . . , xj , xj+1))

→ Hi+1
m (R/(x1, . . . , xj)) → · · · . �

For the next lemma we first recall the notion of an attached prime of an Artinian 
module and some of their basic properties due to Macdonald, [26]. Let (R, m, k) be a 
local ring and M a nonzero Artinian R-module. We say that M is secondary if for each 
x ∈ R the multiplication map M x−→ M is either onto or nilpotent. If M is secondary then 
P =

√
AnnR(M) is a prime ideal and we call M a P -secondary module. A secondary 

representation of an Artinian R-module M is a decomposition M = N1 + · · · + N�

such that each Ni is secondary. The chosen secondary representation of M is called 
minimal if Ni � Nj for all i �= j and 

√
AnnR(Ni) �=

√
AnnR(Nj) for all i �= j. We 

say that the prime ideals 
√

AnnR(Ni) are attached primes of M . Minimal secondary 
representations of Artinian modules always exist, are not unique, but the list of attached 
primes associated with a minimal secondary representation is unique. The set of such 
prime ideals is denoted by AttR(M).

Lemma 3.3. Let (R, m, k) be a local ring which is the image of a Cohen-Macaulay local 
ring (e.g. R is excellent4), and t a non-negative integer. For each j ≥ 0 let aj(R) =
Ann(Hj

m(R)) and a = a0(R) · · · at(R). If x1, . . . , xt is a filter regular sequence then a +
(x1, . . . , xt) is m-primary.

Proof. It is enough to show aj(R) +(x1, . . . , xt) is m-primary for each j ≤ t. Without loss 
of generality we assume Hj

m(R) �= 0 and t < d. Suppose there is a prime ideal P �= m con-
taining aj(R) +(x1, . . . , xt). The module Hj

m(R) is Artinianian and P contains the annihi-
lator of Hj

m(R) by assumption. Therefore by [6, 7.2.11 (ii)] there exists Q ∈ AttR(Hj
m(R))

such that Q ⊆ P . By [28, Theorem 1.1] we have QRP ∈ AttRP
H

j−dim R/P
PRP

(RP ). Thus 
H

j−dim R/P
PRP

(RP ) �= 0. However, x1, . . . , xt is a filter regular sequence in P �= m. So 
x1, . . . , xt becomes a regular sequence after localization at P by Lemma 2.2. So we also 
have shown Hj

PRP
(RP ) = 0 for all j < t, a contradiction. �

We are now ready to prove the main result of this section.

4 Kawasaki proved every excellent local ring is the homomorphic image of a Cohen-Macaulay local ring, 
see [21, Corollary 1.2].
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Theorem 3.4. Let (R, m, k) be a local ring of characteristic p > 0. Let x1, . . . , xt be a 
filter regular sequence of R and I = (x1, . . . , xt). Then there exists a positive integer C
such that

mCpe ·H0
m(R/I [pe]) = 0

for all e ≥ 0.

Proof. The property that x1, . . . , xt is a filter regular sequence is unaffected by passing to 
the completion of R, see (4) of Lemma 2.2. In particular, by passing to the completion, we 
may assume R is the homomorphic image of a Cohen-Macaulay local ring. We can further 
assume that t > 0. For each j ≥ 0 let aj(R) = Ann(Hj

m(R)) and a = a0(R) · · · at(R). The 
sequence xpe

1 , . . . , xpe

t is a filter regular sequence for each e ≥ 0 by Lemma 2.2. Recall that 
a2t ·H0

m(R/I [pe]) = 0 for all e ≥ 0 by Lemma 3.2. Thus a2t + I [pe] ⊆ Ann H0
m(R/I [pe])

for all e ≥ 0. By Lemma 3.3 the ideal a2t + I is m-primary. So we can choose C1 such 
that mC1 ⊆ a2t + I, and so

(m[pe])C1 = (mC1)[p
e] ⊆ (a2t

+ I)[p
e] ⊆ a2t

+ I [pe]

for all e ≥ 0. Then we can choose a suitable multiple C of C1 such that

mCpe ⊆ a2t

+ I [pe] ⊆ Ann H0
m(R/I [pe])

for all e ≥ 0. �
4. Nilpotence of Frobenius action on local cohomology and deformation

Continue to let (R, m, k) be a local ring of prime characteristic p > 0. The first theo-
rem of the section is a deformation type result for F -nilpotent rings. More specifically, 
Theorem 4.2 provides a necessary and sufficient criteria to determine if the Frobenius 
endomorphism on Ht

m(R) is nilpotent by examining the behavior of the Frobenius endo-
morphism on Hi

m(R/(x)) for all i ≤ t − 1 for general choice of parameter element x ∈ R. 
The example following the proof of Theorem 4.2 indicates that the result is the best pos-
sible towards deforming F -nilpotent singularities. The reader should observe that the 
Frobenius action on the 0th local cohomology module will always be nilpotent whenever 
dim(R) > 0. In particular, if R is of Krull dimension at least 2 with parameter element 
x, then the Frobenius action on H0

m(R/(x)) will always be nilpotent and cannot detect 
if the Frobenius action on H1

m(R) is nilpotent. To describe our deformation type result 
we will need to discuss the notion of being F -nilpotent relative to R.

Let I ⊆ K be ideals of R. The Frobenius endomorphism F : R/I → R/I can be 
factored as composition of two natural maps: R/I → R/I [p] → R/I, where the first map 
is obtained by base change along the Frobenius endomorphism F : R → R and the second 
map is the natural projection map. We denote the first map by FR: FR(a +I) = ap +I [p]
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for all a ∈ R. We say that a local cohomology module Hi
K(R/I) is F-nilpotent with 

respect to R if for every η ∈ Hi
K(R/I) there is an e � 0 such that F e

R(η) = 0 in 
Hi

K(R/I [pe]) where F e
R : Hi

K(R/I) → Hi
K(R/I [pe]) is the natural map induced by the 

eth Frobenius morphism F e
R : R/I → R/I [pe].

Remark 4.1. Observe that H0
K(R/I) ∼= (I : K∞)/I =

⋃∞
n=1(I : Kn)/I. Therefore 

H0
K(R/I) is F -nilpotent with respect to R if and only if for all e � 0, (I : K∞)[pe] ⊆ I [pe]. 

This is equivalent to the requirement that (I : K∞) ⊆ IF . It should also be noted that 
H0

K(R/I) is always F -nilpotent whenever K � P for all P ∈ min(I).

Theorem 4.2. Let (R, m, k) be a local ring of prime characteristic p > 0 and of dimension 
d > 0. For every integer t the following are equivalent:

(1) Hi
m(R) is F -nilpotent for all i ≤ t.

(2) For every filter regular element x, Hi
m(R/(x)) is F-nilpotent with respect to R for 

every i ≤ t − 1.
(3) There exists a filter regular element x such that for all n ≥ 1, Hi

m(R/(xn)) is F-
nilpotent with respect to R for all i ≤ t − 1.

(4) There exists a filter regular element x such that for all e ≥ 0, Hi
m(R/(xpe)) is 

F-nilpotent with respect to R for every i ≤ t − 1.

Proof. (1) ⇒ (2), suppose that Hi
m(R) is F -nilpotent for each i ≤ t and let x ∈ m be a 

filter regular element. The multiplication map R x→ R induces the short exact sequence

0 → R/(0 : x) x−→ R → R/(x) → 0.

Let i ≤ t − 1 and pick η ∈ Hi
m(R/(x)). Let δ be the induced connecting homomorphism 

of local cohomology modules

Hi
m(R/xR) → Hi+1

m (R/(0 : x)) ∼= Hi+1
m (R).

Choose e � 0 such that F e(δ(η)) = 0 where F e : Hi+1
m (R) → Hi+1

m (R) is the e-th 
Frobenius action on Hi+1

m (R). Consider the following commutative diagram whose rows 
are exact:

Hi
m(R) −−−−→ Hi

m(R/(x)) δ−−−−→ Hi+1
m (R)⏐⏐�F e

⏐⏐�F e
R

⏐⏐�F e

Hi
m(R) β−−−−→ Hi

m(R/(xpe)) −−−−→ Hi+1
m (R).

Therefore F e
R(η) = β(η′) for some η′ ∈ Hi

m(R). Hence there is e′ � 0 such that F e′(η′) =
0. Then examination of the following commutative diagram, whose rows are exact, shows 
that F e+e′

R (η) = 0 in Hi
m(R/(xpe+e′ )).
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Hi
m(R) −−−−→ Hi

m(R/(x)) δ−−−−→ Hi+1
m (R)⏐⏐�F e

⏐⏐�F e
R

⏐⏐�F e

Hi
m(R) β−−−−→ Hi

m(R/(xpe)) −−−−→ Hi+1
m (R).⏐⏐�F e′

⏐⏐�F e′
R

Hi
m(R) −−−−→ Hi

m(R/(xpe+e′ )).

This completes the implication (1) ⇒ (2). Clearly, (2) ⇒ (3) ⇒ (4). We now show that 
(4) ⇒ (1). Let x be a filter regular element on R such that Hi

m(R/(xpe)) is F -nilpotent 
with respect to R for every e and every i ≤ t −1. We can assume that t ≥ 1. Since H0

m(R)
is always F -nilpotent we need only to show Hi

m(R) is F -nilpotent for all 1 ≤ i ≤ t. 
Suppose that η ∈ Hi

m(R). After replacing x by xpe for some e � 0, we may assume that 
xη = 0. We can then take e large, and then chase the following diagram to conclude that 
F e(η) = 0.

Hi−1
m (R/(x)) −−−−→ Hi

m(R) x−−−−→ Hi
m(R)⏐⏐�F e

R

⏐⏐�F e

⏐⏐�F e

Hi
m(R/(xpe)) −−−−→ Hi

m(R) −−−−→ Hi
m(R). �

Example 4.3. Let R be the localization of Fp[T1, T2, T3]/(T 2
1 T2, T 2

1 T3) at the ideal 
(T1, T2, T3). Let t1, t2, t3 represent the classes of T1, T2, T3 in R respectively. Observe 
that R is local ring of prime characteristic p of dimension 2, depth 1, and x = t1 + t2
is an R-regular element. Moreover, H0

m(R/(x)) is F -nilpotent with respect to R but 
H0

m(R/(xp)) is not F -nilpotent with respect to R. To see this observe that

H0
m(R/(x)) ∼=(x, t21)

(x) and

H0
m(R/(xpe

)) ∼=(t21, t
pe

2 )
(xpe) for all e ≥ 1.

It is then simple to see that every element of H0
m(R/(x)) is mapped to 0 under the 

Frobenius map H0
m(R/(x)) → H0

m(R/(xp)). However, the element t21 of H0
m(R/(xp))

cannot be mapped to 0 in H0
m(R/(xpe+1)) under Frobenius for all e ≥ 1 by degree 

considerations.

We remind the reader that if I is an ideal generated by a filter regular sequence and 
if x is a filter regular element on R/I, then x is a filter regular element on R/I [pe] for all 
e ≥ 0 and I satisfies the (LC) condition by Theorem 3.4.
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Theorem 4.4. Let (R, m, k) be a local ring of prime characteristic p > 0 and of dimension 
d. Let I be an ideal of R and suppose that x ∈ R is a filter regular element on R/I [pe]

for all e ≥ 0.

(1) If Hi
m(R/I [pe]) is F -nilpotent with respect to R for all i ≤ t and for all e ≥ 0 then 

Hi
m(R/(I [pe], xpe′ )) is F -nilpotent with respect to R for all i ≤ t − 1 and for all 

e, e′ ≥ 0.
(2) Conversely, if I satisfies the (LC) condition and Hi

m(R/(I [pe], xpe′ )) is F -nilpotent 
with respect to R for all i ≤ t −1 and for all e, e′ ≥ 0, then Hi

m(R/I [pe]) is F -nilpotent 
with respect to R for all i ≤ t and for all e ≥ 0.

Proof. Replacing I [pe] by I and xpe′ by x, it is enough to show that Hi
m(R/(I, x)) is 

F -nilpotent with respect to R for all i ≤ t − 1. The multiplication map R/I
x→ R/I

induces the short exact sequence

0 → R/(I : x) x−→ R/I → R/(I, x) → 0.

Since x is a filter regular element of R/I, we have (I : x)/I has finite length. So Hi
m(R/(I :

x)) ∼= Hi
m(R/I) for all i ≥ 1. Thus we have the induced long exact sequence of local 

cohomology

· · · → Hi
m(R/I) → Hi

m(R/(I, x)) δ→ Hi+1
m (R/I) x−→ Hi+1

m (R/I) → · · · .

There is a commutative diagram

0 −−−−→ R/(I : x) x−−−−→ R/I −−−−→ R/(I, x) −−−−→ 0⏐⏐�(F e
R)′

⏐⏐�F e
R

⏐⏐�F e
R

0 −−−−→ R/(I [pe] : xpe) xpe

−−−−→ R/I [pe] −−−−→ R/(I, x)[pe] −−−−→ 0,

where the most left vertical map is the composition

R/(I : x) F e
R−→ R/(I : x)[p

e] � R/(I [pe] : xpe

).

Moreover since x and xpe are filter regular elements of R/I and R/I [pe] respectively, the 
derived maps of local cohomology modules in positive degrees can be identified with the 
Frobenius maps

F e
R : Hi

m(R/I) −→ Hi
m(R/I [pe]).

Therefore we have the following commutative diagram whose rows are exact for any i ≥ 0
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Hi
m(R/I) −−−−→ Hi

m(R/(I, x)) δ−−−−→ Hi+1
m (R/I)⏐⏐�F e

R

⏐⏐�F e
R

⏐⏐�F e
R

Hi
m(R/I [pe]) β−−−−→ Hi

m(R/(I, x)[pe]) −−−−→ Hi+1
m (R/I [pe]).

Let i ≤ t −1 and pick η ∈ Hi
m(R/(I, x)). Choose e � 0 such that F e

R(δ(η)) = 0. Therefore 
F e
R(η) = β(η′) for some η′ ∈ Hj

m(R). Hence there is e′ � 0 such that F e′(η′) = 0. Then 
the following commutative diagram, whose rows are exact, shows that F e+e′

R (η) = 0 in 

Hi
m(R/((I, x)[pe+e′]), i.e., Hi

m(R/(I, x)) is F -nilpotent with respect to R.

Hi
m(R/I) −−−−→ Hi

m(R/(I, x)) δ−−−−→ Hi+1
m (R/I)⏐⏐�F e

R

⏐⏐�F e
R

⏐⏐�F e
R

Hi
m(R/I [pe]) β−−−−→ Hi

m(R/(I, x)[pe]) −−−−→ Hi+1
m (R/I [pe]).⏐⏐�F e′

R

⏐⏐�F e′
R

Hi
m(R/I [pe+e′ ]) −−−−→ Hi

m(R/(I, x)[pe+e′ ]).

Conversely, suppose I satisfies Conjecture 3.1 and Hi
m(R/(I [pe], xpe′ )) is F -nilpotent with 

respect to R for all i ≤ t − 1 and for all e, e′ ≥ 0. By replacing I [pe] by I, it is enough to 
show that Hi

m(R/I) is F -nilpotent for all i ≤ t. We are assuming there exists C ∈ N such 
that mCpe

H0
m(R/I [pe]) = 0 for all e ≥ 0, i.e., H0

m(R/I [pe]) = (I [pe] :R mCpe)/I [pe] for all 
e ≥ 0. Choose e0 so that pe0 ≥ C and replace x by xpe0 . Then H0

m(R/(I [pe] : xpe)) ∼= 0
by Lemma 2.4 for all e ≥ 0. Therefore, the commutative diagram

0 −−−−→ R/(I : x) x−−−−→ R/I −−−−→ R/(I, x) −−−−→ 0⏐⏐�(F e
R)′

⏐⏐�F e
R

⏐⏐�F e
R

0 −−−−→ R/(I [pe] : xpe) xpe

−−−−→ R/I [pe] −−−−→ R/(I, x)[pe] −−−−→ 0,

induces the following commutative diagram whose rows are exact for all e ≥ 0:

0 −−−−→ H0
m(R/I) −−−−→ H0

m(R/(I, x))⏐⏐�F e
R

⏐⏐�F e
R

0 −−−−→ H0
m(R/I [pe]) −−−−→ H0

m(R/(I, x)[pe]).

It easily follows that the assumption H0
m(R/(I, x)) is F -nilpotent with respect to R

implies H0
m(R/I) is F -nilpotent with respect to R. We next show that Hi

m(R/I) is 
F -nilpotent with respect to R for each 1 ≤ i ≤ t. Let η ∈ Hi

m(R/I). After replacing x
by xpe for some e � 0, we may assume that xη = 0. We can then take e large, and then 
chase the following diagram to conclude that F e(η) = 0.
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Hi−1
m (R/(I, x)) −−−−→ Hi

m(R/I) x−−−−→ Hi
m(R/I)⏐⏐�F e

R

⏐⏐�F e
R

⏐⏐�F e
R

Hi
m(R/(I, x)[pe]) −−−−→ Hi

m(R/I [pe]) −−−−→ Hi
m(R/I [pe]). �

Remark 4.5. Let (R, m, k) be a local ring of prime characteristic p > 0 and suppose 
I ⊆ R is an ideal satisfying condition

AssRR/I [pe] ⊆ AssRR/I ∪ {m}.

Then every filter regular element of R/I is also a filter regular element of R/I [pe] for 
all e ≥ 0. Ideals generated by a filter regular sequence will always satisfy the above 
condition, Remark 2.2.

Theorem 4.6. Let (R, m, k) be a local ring of prime characteristic p > 0 and of dimension 
d. Let t < d. Then the following are equivalent:

(1) Hi
m(R) is F-nilpotent for all i ≤ t.

(2) For every filter regular sequence x1, . . . , xt we have (x1, . . . , xt) : m∞ ⊆ (x1, . . . , xt)F .
(3) There exists a filter regular sequence x1, . . . , xt such that

(xn1
1 , . . . , xnt

t ) : m∞ ⊆ (xn1
1 , . . . , xnt

t )F

for all n1, . . . , nt ≥ 1.
(4) There exists a filter regular sequence x1, . . . , xt such that

(xpe1

1 , . . . , xpet

t ) : m∞ ⊆ (xpe1

1 , . . . , xpet

t )F

for all e1, . . . , et ≥ 0.

Proof. For (1) ⇒ (2), let x1, . . . , xi, i ≤ t be a filter regular sequence. By Theorem 4.4
and Remark 4.5 we have Hj

m(R/(x1, ..., xi)) is F-nilpotent with respect to R for all 
i + j ≤ t. In particular, we have H0

m(R/(x1, . . . , xt)) is F -nilpotent with respect to R. 
This condition is equivalent to the claim that

(x1, . . . , xt) : m∞ ⊆ (x1, . . . , xt)F .

The implications (2) ⇒ (3) ⇒ (4) are trivial.
Our proof of (4) ⇒ (1) begins with the observation that all hypotheses and de-

sired conclusions are unaffected by passing to the completion of R, see Lemma 2.2 and 
Proposition 2.8. Condition (4) is equivalent to H0

m(R/(xpe1

1 , . . . , xpet

t )) being F -nilpotent 
with respect to R for all e1, . . . , et ≥ 0. We next show that Hi

m(R/(xpe1

1 , . . . , xpet−1

t−1 ))
is F -nilpotent with respect to R for all i ≤ 1 and for all e1, . . . , et−1 ≥ 0. For each 
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e1, . . . , et−1 ≥ 0 we denote Ie1,...,et−1 = (xpe1

1 , . . . , xpet−1

t−1 ). We have H0
m(R/(I [pe]

e1,...,et−1 ,

xpe′

t )) is F -nilpotent with respect to R for all e, e′ ≥ 0. On the other hand Ie1,...,et−1 is 
generated by a filter regular sequence, so its satisfies Conjecture 3.1 by Theorem 3.4. By 
Theorem 4.4 we have Hi

m(R/Ie1,...,et−1) is F -nilpotent with respect to R for all i ≤ 1. 
We continue this progress with the same method and we have (1). �

We next use the Nagel-Schenzel isomorphism, Lemma 2.3, to provide another equiva-
lent characterization for Frobenius actions to be nilpotent on local cohomology modules.

Proposition 4.7. Let (R, m, k) be local ring of prime characteristic p. Let x1, ..., xt be a 
filter regular sequence, I = (x1, ..., xt), and suppose that for each e > 0 that (I [pe] :
m∞) ⊆ (I [pe])F , then Ht

m(R) is F-nilpotent.

Proof. By Lemma 2.3 there is an isomorphism Ht
m(R) ∼= H0

m(Ht
I(R)). Moreover, we may 

realize Ht
I(R) as the direct limit system

Ht
I(R) ∼= lim−−→(· · · → R/I [pe] → R/I [pe+1] → · · · )

where R/I [pe] → R/I [pe+1] is multiplication by (x1 · · ·xt)p
e+1−pe . Therefore

Ht
m(R) ∼= H0

m(Ht
I(R)) ∼= lim−−→(· · · → H0

m(R/I [pe]) → H0
m(R/I [pe+1]) → · · · )

∼= lim−−→(· · · → (I [pe] : m∞)/I [pe] → (I [pe+1] : m∞)/I [pe+1] → · · · ),

and the map (I [pe] : m∞)/I [pe] → (I [pe+1] : m∞)/I [pe+1] is multiplication by 
(x1 · · ·xt)p

e+1−pe . Let η ∈ Ht
m(R), then there is an e > 0 such that η is represented 

by an element r ∈ (I [pe] : m∞)/I [pe] in the direct limit system. By assumption, there 

then exists an e′ > 0 such that rpe′ ∈ (I [pe])[pe′ ] = I [pe+e′ ]. Consider the following 
commutative diagram:

(I:m∞)
I −−−−→ (I[p]:m∞)

I[p] −−−−→ · · · −−−−→ (I[pe]:m∞)
I[pe] −−−−→ · · ·⏐⏐�F e′

R

⏐⏐�F e′
R

⏐⏐�F e′
R

(I[pe
′
]:m∞)

I[pe′ ]
−−−−→ (I[pe

′+1]:m∞)
I[pe′+1]

−−−−→ · · · −−−−→ (I[pe+e′ ]:m∞)
I[pe+e′ ]

−−−−→ · · ·

The vertical maps F e′ are raising elements to the pe
′ power and the horizontal maps 

(I [pe′′ ] : m∞)/I [pe′′ ] → (I [pe′′+1] : m∞)/I [pe′′+1] are multiplication by (x1 · · ·xt)p
e′′+1−pe′′ . 

The induced map on direct limit systems of the above commuting diagram gives the 
e′th Frobenius action on Ht

m(R). Since the representative r ∈ (I [pe] : m∞)/I [pe] of η is 
mapped to 0 by F e′ , we see that the e′th iterated Frobenius action on Ht

m(R) sends η
to 0. �
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Theorem 4.8. Let (R, m, k) be a local ring of dimension d and prime characteristic p > 0
and let t < d. Then the following are equivalent:

(1) Hi
m(R) is F-nilpotent for all i ≤ t;

(2) There exists a filter regular sequence x1, . . . , xt such that

(xpe

1 , . . . , xpe

s ) : m∞ ⊆ (xpe

1 , . . . , xpe

s )F

for all s ≤ t and for all e ≥ 0.

Proof. (1) ⇒ (2) follows from (1) ⇒ (2) of Theorem 4.6.
(2) ⇒ (1) follows from Proposition 4.7. �
Comparing with the condition (4) of Theorem 4.6, the condition (2) of Theorem 4.8

we need to consider all s ≤ t. However, we need only consider Frobenius powers of a filter 
regular sequence in (2) of Theorem 4.8 instead of mixed pth powers in (4) of Theorem 4.6.

5. F -nilpotent rings

Recall that a local ring (R, m, k) of dimension d and prime characteristic p > 0 is 
F -nilpotent if Hi

m(R) are F -nilpotent whenever i < d and 0FHd
m(R) = 0∗Hd

m(R).

Proposition 5.1. Let (R, m, k) be an equidimensional excellent local ring of dimension d
and of prime characteristic p > 0. If x1, . . . , xd is a filter regular sequence on R and 
((x1, . . . , xd)[p

e])∗ = ((x1, . . . , xd)[p
e])F for all e ≥ 0 then the Frobenius action on 0∗Hd

m(R)
is nilpotent.

Proof. Under the assumptions R is equidimensional and excellent we have that for any 
e ∈ N

0∗Hd
m(R) = lim−−→

((x1, . . . xd)[p
e])∗

(x1, . . . xd)[pe] .

Moreover, it is generally the case that for each e ∈ N

0FHd
m(R) = lim−−→

((x1, . . . xd)[p
e])F

(x1, . . . xd)[pe]

(see Remark 2.6). The proposition easily follows from the above identifications of 0∗Hd
m(R)

and 0FHd
m(R). �

Combination of Theorem 4.8 and Proposition 5.1 yields a sufficient criterion for a ring 
to be F -nilpotent.
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Theorem 5.2. Let (R, m, k) be an equidimensional excellent local ring of dimension d and 
of prime characteristic p > 0. Suppose x1, . . . , xd is a filter regular sequence of R such 
that the following hold:

(1) For all t < d and for all e ≥ 0, (xpe

1 , . . . , xpe

t ) : m∞ ⊆ (xpe

1 , . . . , xpe

t )F .
(2) For all e ≥ 0, (xpe

1 , . . . , xpe

d )∗ = (xpe

1 , . . . , xpe

d )F .

Then R is F -nilpotent.

If (R, m, k) satisfies colon capturing and if x1, . . . , xd is a system of parameters, then 
for all t < d one has (x1, . . . , xt) : m∞ ⊆ (x1, . . . , xt) : x∞

t+1 ⊆ (x1, . . . , xt)∗. If such a ring 
also satisfies (x1, . . . , xt)F = (x1, . . . , xt)∗ for all filter regular sequences then R must be 
F -nilpotent by Theorem 5.2.

Corollary 5.3. Let (R, m, k) be an excellent equidimensional local ring of dimension d
and of prime characteristic p > 0. Suppose x1, . . . , xd is a filter regular sequence satis-
fying that (xpe

1 , . . . , xpe

t )∗ = (xpe

1 , . . . , xpe

t )F for all t ≤ d and for all e ≥ 0. Then R is 
F -nilpotent.

We now discuss the notion of a relative tight closure of the 0-submodule of a local 
cohomology module.

Remark 5.4. Let I ⊆ K be ideals of R and suppose K/I is an ideal of R/I generated 
by t-elements. Then by (2) of Remark 2.6 the tight closure of the zero submodule of 
Ht

K(R/I) with respect to R is

0∗R

Ht
K(R/I) = {η ∈ Ht

K(R/I) | cF e
R(η) = 0 ∈ Ht

K(R/I [pe])

for some c ∈ R◦ and for all e � 0}.

By the same remark, the Frobenius closure of zero submodule of Ht
K(R/I) with respect 

to R is

0FR

Ht
K(R/I) = {η ∈ Ht

K(R/I) | F e
R(η) = 0 ∈ Ht

K(R/I [pe]) for some e ≥ 0}.

Similar to (3) of Remark 2.6 we have the following.

Lemma 5.5. Let (R, m, k) be a local ring of prime characteristic p > 0, I ⊆ R an ideal, 
x1, . . . , xt a sequence of elements in R, and K = (I, x1, . . . , xt). If we identify

Ht
K(R/I) ∼= lim−−→

n

(
· · · → R

(I, xn
1 , . . . , x

n
t )

x1···xt−−−−→ R

(I, xn+1
1 , . . . , xn+1

t )
→ · · ·

)
then
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0FR

Ht
K(R/I)

∼= lim−−→
n

(I, xn
1 , . . . , x

n
t )F

(I, xn
1 , . . . , x

n
t ) .

Proof. It is easy to see that

0FR

Ht
K(R/I) ⊇ lim−−→

n

(I, xn
1 , . . . , x

n
t )F

(I, xn
1 , . . . , x

n
t ) .

Conversely, let η ∈ 0FR

Ht
K(R/I). Without loss of generality we may assume η is represented 

by an element x + (I, x1, . . . , xt) in R/(I, x1, . . . , xt). We are assuming that there is an 
e ∈ N such that η is mapped to 0 under F e : Ht

K(R/I) → Ht
K(R/I [pe]). If we identify 

Ht
K(R/I [pe]) as the direct limit system

lim−−→
n

(
· · · → R

(I [pe], xpen
1 , . . . , xpen

t )
(x1···xt)p

e

−−−−−−−→ R

(I [pe], x
pe(n+1)
1 , . . . , x

pe(n+1)
t )

→ · · ·
)

then η is mapped to the element represented by xpe + (I [pe], xpe

1 , . . . , xpe

t ). Since 
F e(η) = 0 there is a n ∈ N such that xpe(x1 · · ·xt)p

e(n−1) ∈ (I [pe], xpen
1 , . . . , xpen

t ), 
hence x(x1 · · ·xt)n−1 is an element of (I, xn

1 , . . . , x
n
t )F and η is also represented by 

x(x1 · · ·xt)n−1 + (I, xn
1 , . . . , x

n
t ). �

We also extend (4) of Remark 2.6 in the same way we extend (3) of Remark 2.6 in 
Lemma 5.5, but first we recall a couple of facts concerning annihilators of local coho-
mology modules. Let (R, m, k) be a local ring of dimension d > 0 and for each i ≥ 0 set 
ai(R) = Ann(Hi

m(R)) and let a(R) = a0(R) . . . ad−1(R). Suppose further that R is an 
image of a Cohen-Macaulay local ring. Then we have the following (see [4, Section 8.1]):

(1) dimR/a(R) < d.
(2) If x1, . . . , xi, 1 ≤ i ≤ d is part of a system of parameters then

a(R)
(
(x1, . . . , xi−1) : xi

)
⊆ (x1, . . . , xi−1).

In particular, repeated application of (2) provides the following:

Lemma 5.6. Let (R, m, k) be an excellent local ring of dimension d > 0. Suppose that 
x1, . . . , xs, xs+1, . . . , xs+t is a part of a system of parameters of R then

a(R)t
(
(xn1

1 , . . . , xns
s , x

ns+1+ms+1
s+1 , . . . , x

ns+t+ms+t

s+t ) :(xms+1
s+1 · · ·xms+t

s+t )
)
⊆

(xn1
1 , . . . , xns

s , x
ns+1
s+1 , . . . , x

ns+t

s+t )

for all ni, mi ≥ 1.
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Proof. Set I = (xn1
1 , . . . , xns

s ), let a1, . . . , at ∈ a(R), and let

γ ∈ (I, xns+1+ms+1
s+1 , . . . , x

ns+t+ms+t

s+t ) : (xms+1
s+1 · · ·xms+t

s+t ).

Then there is an r ∈ R so that γxms+1
s+1 · · ·xms+t−1

s+t−1 − rx
ns+t

s+t ∈ (I, xns+1
s+1 , . . . , xns+t−1

s+t−1 ) :
x
ms+t

s+t . Therefore

a1γ ∈ (I, xns+1+ms+1
s+1 , . . . , x

ns+t−1+ms+t−1
s+t−1 , x

ns+t

s+t ) : (xms+1
s+1 · · ·xms+t−1

s+t−1 ).

By induction, at · · · a2a1γ ∈ (xn1
1 , . . . , xns

s , xns+1
s+1 , . . . , xns+t

s+t ). �
Lemma 5.7. Let (R, m, k) be an excellent equidimensional local ring of prime character-
istic p > 0. Suppose that x1, . . . , xs, xs+1, . . . , xs+t is a part of system of parameters of 
R, and set I = (x1, . . . , xs) and K = (I, xs+1, . . . , xs+t). If we identify

Ht
K(R/I) ∼= lim−−→

n

(
· · · → R

(I, xn
s+1, . . . , x

n
s+t)

xs+1···xs+t−−−−−−−→ R

(I, xn+1
s+1 , . . . , x

n+1
s+t )

→ · · ·
)

then

0∗R

Ht
K(R/I)

∼= lim−−→
n

(I, xn
s+1, . . . , x

n
s+t)∗

(I, xn
s+1, . . . , x

n
s+t)

.

Proof. It easy to see that

0∗R

Ht
K(R/I) ⊇ lim−−→

n

(I, xn
s+1, . . . , x

n
s+t)∗

(I, xn
s+1, . . . , x

n
s+t)

.

Now suppose η ∈ 0∗RHt
K(R/I). Without loss of generality we may assume that η is repre-

sented by an element x + (I, xs+1, . . . , xs+t) ∈ R
(I,xs+1,...,xs+t) . The Frobenius action

F e : Ht
K(R/I) → Ht

K(R/I [pe]) ∼= lim−−→
n

R

(I [pe], xpen
s+1, . . . , x

pen
s+t)

maps η to the element ηpe represented by xpe +(I [pe], xpe

s+1, . . . , x
pe

s+t) ∈ R

(I[pe],xpe

s+1,...,x
pe

s+t)
. 

We are assuming there is c ∈ R◦ such that cηpe = 0 for all e � 0. So for each e � 0
there is an n ∈ N such that cxpe(xs+1 · · ·xs+t)p

e(n−1) ∈ (I [pe], xpen
s+1, . . . , x

pen
s+t). We are 

assuming R is equidimensional, hence there is d ∈ R◦ ∩ a(R)t and it follows

dcxpe ∈ (I [pe], xpe

s+1, . . . , x
pe

s+t) = (I, xs+1, . . . , xs+t)[p
e]

for all e � 0 by Lemma 5.6. Therefore η is represented by an element of
(I,xs+1,...,xs+t)∗
(I,xs+1,...,xs+t) . �
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Remark 5.8. Let (R, m, k) be an equidimensional excellent local ring of dimension d and 
of characteristic p > 0. Let x1, . . . , xi be a part of system of parameters of R, and set 
I = (x1, . . . , xi). Then

(1) 0∗R

Hd−i
m (R/I)

agrees with the usual tight closure 0∗
Hd−i

m (R/I), here we consider 
Hd−i

m (R/I) as an R-module. Indeed, set K = (xi+1, . . . , xd) a parameter ideal of 
R/I. We have Hd−i

m (R/I) ∼= Hd−i
K (R/I). Thus

Hd−i
m (R/I) ⊗R F e

∗ (R) ∼= Hd−i
K (R/I) ⊗R F e

∗ (R) ∼= Hd−i
K (F e

∗ (R)/IF e
∗ (R))

∼= Hd−i
m (F e

∗ (R)/IF e
∗ (R)).

Therefore if we identify F e
∗ (R) with R, then the map Hd−i

m (R/I) id⊗F e

−−−−→
Hd−i

m (R/I) ⊗R F e
∗ (R) can be identified with the e-th Frobenius action with re-

spect to R, F e
R : Hd−i

m (R/I) → Hd−i
m (R/I [pe]). Now two tight closures 0∗R

Hd−i
m (R/I)

and 0∗
Hd−i

m (R/I) are the same by their definitions.
(2) Let ai(R) = Ann(Hi

m(R)) and let a(R) = a0(R) · · · ad−1(R). Notice that since 
dimR/a(R) < d and R is equidimensional that R◦∩a(R) �= 0. Moreover for any part 
of system of parameters y1, . . . , yi of R we have a(R)Hj

m(R/(y1, . . . , yi)) = 0 for all 
j < d − i (see [7, Remark 2.2, Lemma 3.7]). Therefore for all η ∈ Hj

m(R/I), j < d − i, 
we have a(R)F e

R(η) = 0 ∈ Hj
m(R/I [pe]) for all e ≥ 0. Thus 0∗R

Hj
m(R/I)

= Hj
m(R/I) for 

all j < d − i.

By the above remark, an equidimensional excellent local ring (R, m, k) is F -nilpotent 
if and only if 0∗R

Hj
m(R)

= 0FR

Hj
m(R)

for all j ≤ d.
Let (R, m, k) be a local ring of prime characteristic p > 0 and I ⊆ R an ideal. Suppose 

that dim(R/I) = t. We say that R/I is F -nilpotent with respect to R if the following 
hold:

(1) Hi
m(R/I) is F -nilpotent with respect R for each i < t.

(2) 0∗R

Ht
m(R/I) = 0FR

Ht
m(R/I).

Theorem 5.9. Let (R, m, k) be an excellent equidimensional local ring of dimension d and 
prime characteristic p > 0. Let x1, . . . , xi, i ≤ d, be a filter regular sequence of R and let 
I = (x1, . . . , xi−1). The following are equivalent

(1) R/I [pe] is F -nilpotent with respect to R for all e ≥ 0.
(2) R/(I [pe], xpe′

i ) is F -nilpotent with respect to R for all e, e′ ≥ 0.

Proof. (1) ⇒ (2) It is enough to prove that R/(I, xi) is F -nilpotent with respect to R. 
Moreover by Theorem 4.4 we need only to prove that 0∗R

d−i is F -nilpotent with 

Hm (R/(I,xi))



T. Polstra, P.H. Quy / Journal of Algebra 529 (2019) 196–225 221
respect to R. Similar to the proof of Theorem 4.4 we have the following commutative 
diagram

Hd−i
m (R/I) −−−−→ Hd−i

m (R/(I, xi))
δ−−−−→ Hd−i+1

m (R/I)⏐⏐�F e
R

⏐⏐�F e
R

⏐⏐�F e
R

Hd−i
m (R/I [pe]) β−−−−→ Hd−i

m (R/(I, xi)[p
e]) −−−−→ Hd−i+1

m (R/I [pe]).⏐⏐�F e′
R

⏐⏐�F e′
R

Hd−i
m (R/I [pe+e′ ]) −−−−→ Hd−i

m (R/(I, xi)[p
e+e′ ]).

For any element η ∈ 0∗R

Hd−i
m (R/(I,x)

we have δ(η) ∈ 0∗R

Hd−i+1
m (R/I)

by Lemma 5.7 and chasing 

the image of η. Therefore we can choose e large enough such that F e
R(δ(η)) = 0. Thus 

F e
R(η) ∈ Im(β). On the other hand Hd−i

m (R/I [pe]) is F -nilpotent with respect to R, so 
we have F e+e′

R (η) = 0 for all e′ � 0. Hence 0∗R

Hd−i
m (R/(I,x))

= 0FR

Hd−i
m (R/(I,x))

, and R/(I, xi)
is F -nilpotent.

(2) ⇒ (1) It is enough to prove that R/I is F -nilpotent. Moreover by Theorem 4.4 we 
need only to prove that 0∗R

Hd−i+1
m (R/I)

is F -nilpotent with respect to R. Extend x1, . . . , xi

to a full system of parameters x1, . . . , xd and let η ∈ 0∗R

Hd−i+1
m (R/I)

. By Lemma 5.7 and 

by replacing xi, . . . , xd by their pe-powers, e � 0, we can assume that η is represented 
by an element x + (I, xi, . . . , xd) ∈ R

(I,xi,...,xd) , where x ∈ (I, xi, . . . , xd)∗. This element 
maps to some element θ ∈ 0∗R

Hd−i
m (R/(I,xi))

. Hence in the following commutative diagram 

δ(θ) = η

Hd−i
m (R/(I, xi))

δ−−−−→ Hd−i+1
m (R/I)⏐⏐�F e

R

⏐⏐�F e
R

Hd−i
m (R/(I, xi)[p

e]) −−−−→ Hd−i+1
m (R/I [pe]).

Since R/(I, xi) is F -nilpotent, F e
R(θ) = 0 for large enough e. So F e

R(η) = 0, and hence 
R/I is F -nilpotent. �

An application of the previous theorem is the following deformation type result for 
F -nilpotent rings.

Theorem 5.10. Let (R, m, k) be an excellent equidimensional local ring of dimension d
and prime characteristic p > 0. The following are equivalent:

(1) The ring R is F -nilpotent.
(2) For each filter regular element x the ring R/(x) is F -nilpotent with respect to R.
(3) There exists a filter regular element x such that for each n ∈ N the ring R/(xn) is 

F -nilpotent with respect to R.
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(4) There exists a filter regular element x such that for each e ∈ N the ring R/(xpe) is 
F -nilpotent with respect to R.

We next give a proof of Theorem A.

Theorem 5.11. Let (R, m, k) be an excellent local ring of dimension d and of prime char-
acteristic p > 0. Consider the following statements:

(1) R is F -nilpotent.
(2) For every parameter ideal q we have q∗ = qF .
(3) There exists filter regular sequence x1, . . . , xd such that

(xn1
1 , . . . , xnd

d )∗ = (xn1
1 , . . . , xnd

d )F

for all n1, . . . , nd ≥ 1.
(4) There exists filter regular sequence x1, . . . , xd such that

(xpe1

1 , . . . , xped

d )∗ = (xpe1

1 , . . . , xped

d )F

for all e1, . . . , ed ≥ 0.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). If R is equidimensional then (4) ⇒ (1).

Proof. The implications (2) ⇒ (3) ⇒ (4) are obvious. We first prove that (1) ⇒ (2). 
Suppose R is F -nilpotent and q = (x1, . . . , xd) is a parameter ideal. We may assume 
x1, . . . , xd is a filter regular sequence. Note that R is equidimensional by (3) of Propo-
sition 2.8. Applying Theorem 5.9 consecutively we have R/(x1), . . . , R/(x1, . . . , xd) are 
F -nilpotent with respect to R. Moreover dimR/q = 0 and H0

m(R/q) = R/q. We also 
have 0∗R

R/q = q∗/q and 0FR

R/q = qF /q. Therefore q∗ = qF for all parameter ideals q.
We prove the implication (4) ⇒ (1) under the additional assumption that R equidi-

mensional. Fix e1, . . . , ed−1 ∈ N and consider the filter regular sequence xpe1

1 , . . . , xped−1

d−1

of R and let Ie1,...,ed−1 = (xpe1

1 , . . . , xped−1

d−1 ). Then R/(I [pe]
e1,...,ed−1 , x

e′

d ) is F -nilpotent rela-
tive to R for all e, e′ ≥ 0. By Theorem 5.9, R/Ie1,...,ed−1 is F -nilpotent relative to R for 
all e1, . . . , ed−1 ≥ 0. Consecutive use of Theorem 5.9 then shows R is F -nilpotent. �

We now wish to show that if (R, m, k) is a local ring of prime characteristic p > 0
which is F -nilpotent and I an ideal generated by part of system of parameters then 
I∗ = IF . But first, we will need to discuss the notion of Frobenius test exponent for 
parameter ideals.

Definition 5.12. Let (R, m, k) be a local ring of prime characteristic p > 0. The Frobenius 
test exponent for parameter ideals of R defined as follows
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Fte(R) = min{e | (qF )[p
e] = q[pe] for all parameter ideals q},

and Fte(R) = ∞ if no such e exists.

Remark 5.13. Katzman and Sharp asked in [22] under what hypotheses on local ring 
(R, m, k) of prime characteristic p > 0 is Fte(R) < ∞. If R is Cohen-Macaulay they 
showed that Fte(R) is finite and is equal to the Hartshorne-Spieser-Lyubeznik number 
of R, which under the Cohen-Macaulay hypothesis, is the least integer e for which F e :
0FHd

m(R) → 0FHd
m(R) is the 0-map. The authors of [12] are able to show under the weaker 

hypotheses R is generalized Cohen-Macaulay that Fte(R) < ∞.

The second author of this paper uses techniques of this article in [32] to provide a 
simpler proof of the main result of [12]. An argument, which also utilizes the techniques of 
this paper, also proves the Frobenius test exponent for parameter ideals of an F -nilpotent 
ring is finite.

Theorem 5.14 ([32]). Let (R, m, k) be a local ring of dimension d and prime characteristic 
p > 0. If Hi

m(R) is F -nilpotent for all i < d then Fte(R) < ∞.

Theorem 5.11 and Theorem 5.14 yield the desired corollary.

Corollary 5.15. Let (R, m, k) be an excellent F -nilpotent local ring of dimension d. 
Then for every part of system of parameters x1, . . . , xt of R we have (x1, . . . , xt)∗ =
(x1, . . . , xt)F .

Proof. Extend x1, . . . , xt to a full system of parameters x1, . . . , xd. We can assume that 
R is reduced. Let x ∈ (x1, . . . , xt)∗, then x ∈ (x1, . . . , xt, xn

t+1, . . . , x
n
d )F for all n ≥ 1. 

Let e = Fte(R), then

xpe ∈
⋂
n≥1

(x1, . . . , xt, x
n
t+1, . . . , x

n
d )[p

e] = (x1, . . . , xt)[p
e]

by the Krull interestion theorem. Thus we have x ∈ (x1, . . . , xt)F . �
Combining the above result with Corollary 5.3 we have the following.

Theorem 5.16. Let (R, m, k) be an equidimensional excellent local ring of dimension d
and of prime characteristic p > 0. Then the following are equivalent:

(1) R is F -nilpotent.
(2) There exists filter regular sequence x1, . . . , xt so that (xpe

1 , . . . , xpe

t )F = (xpe

1 , . . . , xpe

t )∗
for all t ≤ d and for all e ≥ 0.
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Srinivas and Takagi prove that the property of being F -nilpotent localizes for rings 
which are assumed to be F -finite, [34, Proposition 2.4]. All F -finite rings are known to 
be excellent, [23, Theorem 2.5]. Theorem 5.16 gives a method of showing F -nilpotence 
localizes for all prime characteristic rings which are excellent.

Corollary 5.17. Let (R, m, k) be an excellent local ring of prime characteristic p > 0. If 
R is F -nilpotent then RP is F -nilpotent for each P ∈ Spec(R).

Proof. By Proposition 2.8 we may assume R is reduced. Suppose ht(P ) = t and I =
(a1, . . . , at)RP a parameter ideal of RP . Following the proof of [30, Proposition 6.9] we 
can choose partial parameter sequence x1, . . . , xt of R such that I = (x1, . . . , xt)RP . It 
is well-known that tight closure commutes with localization for parameter ideals under 
our hypotheses, see [1, Theorem 8.1] and [33, Theorem 5.1]. The Frobenius closure of 
an ideal I is the extension and contraction of the ideal along a high enough iterate of 
the Frobenius endomorphism. Hence the Frobenius closure of any ideal commutes with 
localization. Therefore for each e ∈ N we have by Theorem 5.16 that

IF = ((x1, . . . , xt)RP )F = (x1, . . . , xt)FRP = (x1, . . . , xt)∗RP = I∗,

where the third equality follows from Corollary 5.15. Therefore the tight closure of every 
parameter ideal of RP is equal to its Frobenius closure and the ring RP is now seen to 
be F -nilpotent by Theorem 5.11. �
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