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1. Introduction

Denote by (R, m, k) a commutative Noetherian local ring with unique maximal ideal m
and residue field k. Unless otherwise stated, we assume R is of prime characteristic p > 0.
We let F¢ : R — R denote the eth-iterate of the Frobenius endomorphism which maps
an element r — r?°. The Frobenius endomorphisms induce natural Frobenius actions of
local cohomology modules

F¢:H.(R) — HL(R)

for each i € N. There are several interesting classes of singularities which can be defined
in terms of the behavior of these Frobenius actions. These include F-rational, F-injective,
and F-nilpotent singularities. The ring R is F-injective if the Frobenius actions above
are all injective. We say R is an F-nilpotent ring if the above Frobenius actions are
nilpotent on the local cohomology modules H{ (R) when i < dim(R) and the nilpotent
submodule of HY(R) is “as large as possible.” We refer the reader to Section 2 for a
precise definition. An excellent equidimensional ring R is F-rational if and only if it
is both F-injective and F-nilpotent. All three notions have interesting and important
connections with the theory of tight closure.

Let R° be the multiplicative set of elements of R which are not contained in a minimal
prime ideal. Given an ideal I C R we let I?"] denote the expansion of I along F€. If
x € R then we say that x is in the tight closure of I if there exists ¢ € R° such that
ca?” € IP"] for all e > 0. The collection of all such elements is denoted by I*. If the above
element ¢ € R° can be taken to be the element 1, i.e., if 27" € TP for all, equivalently
for some, e > 0, then it is said that = is in the Frobenius closure of I. The Frobenius
closure of an ideal is denoted by If. The sets I and I* are ideals of R and there are
inclusions I C I C I*. If T = IF then I is said to be Frobenius closed and if I = I*
then I is called tightly closed. We refer the reader to [10,11,17] for the basics of tight
closure.

A parameter ideal of R is an ideal q which is generated by a full system of parameters
for R. The ring R is F-rational if and only if q = gq* for every parameter ideal of R.
The second author and Shimomoto show in [30] that if ¢ = q¥" for each parameter ideal
of R then R is F-injective, but they also show that not every parameter ideal need
be Frobenius closed in an F-injective ring. In this article, the following classification of
F-nilpotent rings is given:

Theorem A. Let (R, m, k) be an excellent equidimensional local ring of prime character-
istic p > 0. Then the following are equivalent:

(1) The ring R is F-nilpotent.
(2) qF = q* for every parameter ideal q of R.
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The example of an F-injective ring with a parameter ideal not being Frobenius closed
given in [30] is not equidimensional. However, we shall see that all F-nilpotent rings are
equidimensional, and so Theorem A might be an indication that all parameter ideals in
an equidimensional F-injective ring are Frobenius closed.

If 21,...,x4 is a system of parameters for R then the top local cohomology module
with support in the maximal ideal has a very explicit description:

d ~ 1 R T1-zg R
Hm(R) :%E <—> (z{v,,zév) (x{v+1,_,.,x£lv+1) —)) .
Furthermore, if R is Cohen-Macaulay, i.e., H: (R) = 0 for all i < dim(R), then the maps
in direct limit system are injective. Having an explicit description of HZ(R) provides
a great advantage in making connections between the behavior of Frobenius actions
on local cohomology modules and prime characteristic properties of parameter ideals
in rings which are assumed to be Cohen-Macaulay. For example, an important open
problem, which is solved in the Cohen-Macaulay case, is whether F-injectivity deforms.
That is if x € R is a regular element such that R/(x) is an F-injective ring then is it
necessarily the case that R is an F-injective as well? Fedder proved that R is indeed
F-injective under the assumptions R is Cohen-Macaulay and R/(z) is F-injective for
some regular element z in [9]. We refer the reader to [13] and [27] for more recent
developments on the deformation of F-injectivity problem.

Similar to the study of F-injective rings, the difficulties of understanding F-nilpotent
rings comes from the study of non-Cohen-Macaulay rings. The notion of a filter regular
element allows some insight to the behavior of nonzero lower local cohomology modules.
An element x € m is called a filter regular element if x avoids all non-maximal associated
primes of R. The eth-iterate of the Frobenius endomorphism F¢ : R/(zx) — R/(x)
can be factored as R/(z) — R/(2?") — R/(x) where the second map is the natural
projection. In particular, there are induced maps of local cohomology modules Fg :
Hi(R/(x)) — HL(R/(2P")). We say that R/(x) is F-nilpotent relative to R if for each
i < dim(R/(z)) and n € HE(R/(z)) there exists e € N such that Fg(n) = 0 as an
element of HZ (R/(zP")). We will also require that the relative nilpotent submodule of
HI=Y(R/(x)) be as “large as possible.” We refer the reader to Section 5 for a precise
definition. Our proof of Theorem A will depend on the following characterization of
F-nilpotent rings.

Theorem B. Let (R, m, k) be a excellent and equidimensional local ring of prime charac-
teristic p > 0. Then the following are equivalent:

(1) The ring R is F-nilpotent.
(2) For each filter reqular element x on R the cyclic module R/(x) is F-nilpotent with
respect to R.
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Theorem B is crucial to proof of Theorem A, but more is needed. It is not enough to
consider the algebraic properties of a filter regular element, we will need to understand
algebraic properties of a filter regular sequence. A sequence of elements z1,...,xzy is a
called a filter regular sequence if for each 1 < j < ¢ the class of x; is a filter regular
element of R/(z1,...,2z;-1). We show that ideals generated by a filter regular sequence
enjoy the following desirable property:

Theorem C. Let (R,m, k) be a local ring of prime characteristic p > 0. Let x1,...,x; be

a filter reqular sequence of R and I = (x1,..., ). Then there exists a positive integer
C such that for alle € N

m" . HO(R/IP)) = 0.

Understanding algebraic and cohomological properties of filter regular sequences yields
the following characterization of lower local cohomology modules being F-nilpotent:

Theorem D. Let (R, m, k) be a local ring of dimension d and of prime characteristicp > 0
and let t < d. Then the following are equivalent:

(1) HE(R) is F-nilpotent for all i < t.
(2) For every filter reqular sequence 1, ..., x; we have

U(xl,...,mt):m"g(xl,...,xt)F.
neN

The paper is organized as follows: Section 2 covers the basic notions and background
material relevant to the results of later sections and develops a few new results concerning
F-nilpotent rings. Section 3 is where we prove Theorem C. The proof of Theorem D and
other characterizations of lower local cohomology modules to be F-nilpotent can be
found in Section 4. The final section, Section 5, is where we piece together the results of
the previous sections and prove Theorem A and Theorem B.

2. Preliminaries
2.1. Local cohomology

Let R be a Noetherian ring, not necessarily of prime characteristic, M an R-module,
and I an ideal of R. Then we denote by H%(M) the i-th local cohomology module with
support at I ([6] and [19]). Recall that H%(M) may be computed as the ith cohomology
of the Cech complex

t
C’(xl,...,zt;M):O%M%@Mm - = My 5 —0

=1
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where x1,...,2; are any choice of generators of I up to radical. If R — S is a homomor-
phism of rings then for each R-module M there is functorial map of local cohomology
modules Hi(M) — Hig(M®gS). In particular, if R is of prime characteristic p > 0, then
the eth-iterate of the Frobenius endomorphism F¢ : R — R induces the eth-Frobenius
action F° : Hj(R) — H},.(R) = H}(R) with the isomorphism of local cohomology
modules coming from the observation that the ideals I and I'""! are the same up to
radical.

If c € N then (z1,...,x¢) is cofinal with (z5,...,z¢) and H}(R) is isomorphic to the
direct limit system

I N R (z1-xy)® R N
lm DRI ... .
7 (x§n7 s 7x§n) ($i(n+1), ey :z:f(n+1))

In particular, if R is of prime characteristic then the Frobenius action on the top local
cohomology module H}(R) has the following explicit description: If  + (z7*,...,2}") is
a representative of an element in

R
Hi(R) = lim ————
T (xlr"?xt)
then the eth-Frobenius action on H!(R) sends n+ (2, ..., x}") > nP" +(xﬁ’em, e ,:cfem)
in HY(R) as it is realized as the direct limit
R
Hi(R) 2lim —————.
=

2.2. Filter reqular sequences

Definition 2.1. Let M be a finitely generated module over a local ring (R, m, k) and let
T1,...,Ts be aset of elements of R. Then we say that x1, ..., x; is a filter regular sequence
on M if the following conditions hold:

(1) (x1,...,2¢) Cm.

(2) x; ¢ p for all p € Assp ( M

(xl, sy i1

)M)\{m}, i=1,...t

The notion of a filter regular sequence was introduced by Cuong, Schenzel, and Trung
in [8]. If M is a finitely generated module over a local ring (R, m, k) then a simple prime
avoidance argument shows that there always exists a system of parameters for M which
is also a filter regular sequence on M. Filter regular sequences are also called m-filter
regular sequence in other sources.
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Lemma 2.2. Let (R,m, k) be a local ring and M a finitely generated R-module. Then
T1,...,T¢ € M is a filter reqular sequence on M if and only if one of the following four
equivalent conditions holds:

(1) For each 1 <1i <t the quotient

((1’1, N ,ZL’Z',l)M M 1’1)
(.131, ey xi—l)M

is an R-module of finite length.
(2) For each 1 < i <t the sequence

forms an Ry-regular sequence in M, for every p € (Spec(R/(z1,...,x;)) N
Suppy, M) \ {m}.

(8) The sequence z7*, ..., xy* Ais a filter reqular sequence for all\nl, co,mg > 1.

(4) The sequence x1 ...,x: € R is a filter reqular sequence of M.
If x1,..., 2 satisfies any of the above equivalent conditions then it also satisfies the
following fifth condition:

(5) For allny,...,ny; > 1 we have

Assp(M/(x1,...,xe)M)U{m} = Assp(M/(z]*, ...,z )M) U {m}.

Proof. Equivalence of the first three properties can be found in [29, Proposition 2.2]. For
the equivalence of (4) with the first three properties we refer to [31, Remark 2.4]. Lastly,
observe that the quotient module in condition (1) having finite length is unaffected by
completion. Hence condition (5) is equivalent to the other four conditions. 0O

The following result will be useful to this paper (cf. [29, Proposition 3.4]).

Lemma 2.3 (Nagel-Schenzel isomorphism). Let (R,m, k) be a local ring and let M be a

finitely generated R-module. If x1,. .., 2, is a filter regular sequence on M then
Hiy '(HE,, o (MD)  ifi>t

The Nagel-Schenzel’s isomorphism allows us to identify H (R) as the collection of
elements of H fwl '

This is often useful since the local cohomology module H(twl,..,,mt)(R) has an explicit

”’zt)(R) annihilated by a sufficiently large power of the maximal ideal.

description via Cech cohomology. Moreover, if R is of prime characteristic then the
Frobenius action on H{ (R) is the restriction of the Frobenius action on fol ey (B)
to HY (H! (R)).

(T1,..5me)
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If (R, m,k) is a local ring and M a module with support only at the maximal ideal
then H: (M) = 0 for all i > 1. In particular, if x is a filter regular element of R then
(0 : z) is supported only at the maximal ideal and examination of the long exact sequence
of local cohomology modules induced from the short exact sequence

0—-0:z) > R—R/(0:2)—=0

shows H: (R/(0: z)) = H (R) for each i > 1. Furthermore, for each i > 1 the induced
map of local cohomology modules H (R) = H: (R/(0: z)) — H. (R) derived from the
short exact sequence

0= R/(0:2) = R— R/(x) =0

is multiplication by the element x.
Another useful property of filter regular elements is the following:

Lemma 2.4. Let (R,m, k) be a local ring and fix N € N large enough so that H2 (R) =
(0:mN). If . € m¥ is a filter regular element then HY(R/(0 : x)) = 0, d.e., R/(0: x
has positive depth.

Proof. Consider the induced long exact sequence of local cohomology modules induced
from the short exact sequence

0—-(0:2) > R—R/(0:2)—0.

Observe that HY((0 : x)) — H2(R) is an isomorphism since every element of HO(R) =
(0 : mY) is an element of (0 : z). Furthermore, H}((0 : x)) = 0 since (0 : x) has finite
length and therefore HO(R/(0:2)) =0. O

2.3. Tight closure and Frobenius closure

Let R be a Noetherian ring of prime characteristic p > 0. We let F¢(R) denote the
R-bimodule which as an Abelian group and as a right R-module is R, but as a left
module F¢(R) is the module obtained by restricting scalars under F¢ : R — R. Given
x € R we let F°(x) denote the corresponding element in FZ(R). Thus given ¢ € R we
have F¢(z)c = F¢(xc) and cF¢(z) = FE(cP ). The ring R is F-finite if F¢(R) is a finite
left R-module for some, equivalently for all, e € N.

Definition 2.5 ([10,11,17]). Let R° = R\ U p and I C R an ideal of R.
pEMinR

(1) The Frobenius closure of I is the ideal

" = {z | ¥ e I”] for some e € N}.
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(2) The tight closure of I is the ideal
I* = {x | ca® e I”] for some ¢ € R® and for all e > 0}.

An element 2 € IT if and only if z is in the kernel of the composition of maps
R— R/I %, R/ o Fe(R)

for some e > 0. Similarly, an element x € I* if and only if it contained in the kernel of
the composition

R~ R/I — R/I @ F*(R) 2229,

R/I® F{(R)

for some ¢ € R° and for all e > 0. In general, let N be a submodule of an R-module M.
The Frobenius closure of N in M, denoted by N}, is the collection of elements in M
which lie in the kernel of the composition

M — M/N 2255 M/N @5 FE(R)

for some e > 0. The tight closure of N in M, denoted by N7, is the collection of elements
in M which lie in the kernel of the composition

M — M/N € NN @ Fo(R) 42,

M/N ® F{(R)
for some ¢ € R° and for all e > 0. Both NI, and N}, are submodules of M and there
are containments

N C Ni;, C N}; € M.

Given an R-module M, m € M, and ¢ € R we will denote by ¢m?” the element of
M ® F£(R) which is mapped to by m under the composition of maps

id ®F°¢

u M ® FS(R) id ®F¢(c)

M ® FE(R).

Remark 2.6. Let (R, m, k) be a local ring of prime characteristic p > 0, z1,...,2; a
sequence of elements in m, and I = (z1,...,x).

(1) The eth-Frobenius action on H}(R) becomes a left R-module homomorphism F*° :
Hi(R) — Hi(F¢(R)) for all i > 0.

(2) For each e € N there is an isomorphism of left R-modules Hi(R) @ F¢(R) =
HI(FE(R)) (this is not true in general for lower degree local cohomology modules).

If we identify the later with H}(R), then the map H(R) der, Hi(R)® F¢(R) is
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the eth-Frobenius action on H¢(R). In particular, the nilpotent submodule of H(R)
is simply OZ;( R)’ the Frobenius closure of the 0-submodule.

(3) If (R,m,k) is any local ring of prime characteristic p > 0, I C R an ideal, and
T1,...,Ts any choice of generators of I, then

(xf,... ,x?)F

lim =~ 0% -
—  (z7,...,2}) Hj(R)
See [15, Proposition 3.3] for a proof (cf. Lemma 5.5 below).
(4) If R is an excellent equidimensional local ring and z1,...,z; part of a system of
parameters then
lim M >~ (*

T () T

See [33, Proposition 3.3] for a proof (cf. Lemma 5.7 below).

An element ¢ € R° is called a test element if for all R-modules N C M if n € Nj,
then for all e € N the element 7 is an element of the kernel

M — M/N 9855 NN @p Fo(R) 21250,

M/N ®g F{(R).
If (R,m,k) is reduced and excellent then R admits a test element. Moreover, we may

assume ¢ € R° is a completely stable test element, i.e., c is also serves as a test element
for R.

2.4. F-nilpotent rings

Let (R,m, k) be a local ring of dimension d and prime characteristic p > 0. We say
that a local cohomology module H4(R) is F-nilpotent if the Frobenius action on H#(R)
is nilpotent. If I = m is the maximal ideal then the modules H: (R) are Artinian and it
follows that there is an e € N such that Spanz{Im(F*)} = Spanz{Im(F¢t)} =.... In
particular, if Hi (R) is F-nilpotent then F¢ : H. (R) — H (R) is the O-map for all e > 0
(cf. [16, Proposition 1.11] and [24, Proposition 4.4]). The ring R is said to be F-nilpotent
if H: (R) is F-nilpotent for all i < d and OF;]i\(R) = OTV,‘?,(R)’ i.e., the Frobenius action

H

on HZ(R) is nilpotent when restricted to the tight closure of the O-submodule, i.e.,
* _ nF

Vg r) = Vg -

The study of F-nilpotent rings predominates in [3] and [34]. The authors of [3] make
an explict relation between the Lyubeznik numbers of a closed point = in a variety X
defined over a separably closed field k£ of prime characteristic p > 0 which is assumed
to be F-nilpotent off  and étale cohomology groups of X with coefficients in F,. The
authors of [34] propose a geometric interpretation of F-nilpotent singularities. Given
isolated normal singularity z € X over C, the authors of [34] conjecture that a Hodge
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theoretic condition on the singularity x is equivalent to the reduction mod p of X being
F-nilpotent for almost all primes p. They verify their conjecture up to dimension 3.

This paper is concerned with algebraic and cohomological properties of F-nilpotent
rings. We continue by discussing a well-known fact.

Remark 2.7. Suppose x1,...,%4 is a system of parameters of R. The element 1 +
(x1,... : 74) is a nonzero element of HZ (R) & lim R/(zY,...,z}) by the Monomial Cocn—
jecture.® The eth Frobenius action on H&(R) maps 1+ (21,...,zq) — 1+ (2} ,...,2}),
which is also a nonzero element of Hd (R) = lim R/ N, ... ,xZ‘N). Thus the Frobenius

action on HZ(R) is never nilpotent.
Proposition 2.8. Let (R, m, k) be a local ring of prime characteristic p > 0.

(1) If R has dimension O then R is F-nilpotent.

(2) The ring R is F-nilpotent if and only if R/\/0 is F-nilpotent.

(3) If R is F-nilpotent then R is equidimensional.

(4) If R is excellent then R is F-nilpotent if and only if R is F-nilpotent.

Proof. If R is of dimension 0 then H)(R) = R and 0% = /0.

For (2) we let x = x1,...,24 be a system of parameters for R. Then the Frobe-
nius endomorphism induces a commutative diagram of short exact sequences of Cech
complexes:

0 —— C*(z;v0) —— C*(a;R) —— C*(z; R/V0) —— 0

N

0 —— C*(2;v0) —— C*(z;R) —— C*(a; R/V0) — 0.

Observe that F¢ : C*(z;/0) — C*(x;/0) is the 0-map for e > 0. It easily follows that
for 0 < i < d that H(R) is F-nilpotent if and only if HZ (R/+/0) is F-nilpotent. It

remains to show OZ%(R) = O;{;{(R) if and only if Oflg‘(R/\/ﬁ) = O*Hff,(R/\/G)' Suppose first
that Ogg,(R) = O*Hg‘(R) and let n € O*Hi(R/ﬁ)' Denote by ¢ and 7 the following maps of

local cohomology modules:
HL(V0) & HI(R) & HEL(R/V0).

The map 7 is onto and so there exists 77 € HZ (R) so that 7(7}) = 1. The commutative dia-
gram of Cech complexes induces the following commutative diagram of local cohomology
modules:

3 The Monomial Conjecture is equivalent to the Direct Summand Conjecture. The reader can find proofs
of these conjectures in the case R contains a field in [14]. We also refer the reader to [2,5] for proofs of the
Direct Summand Conjecture for the case that R does not contain a field.
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Hd

m

(V0) —— Hg(R) —— H{(R/V0) —— 0

R

HL(0) —— HL(R) —— HE(R/V0) —— 0.

m
It follows that there is a ¢ € R° so that cii?” € Tm(s) for all e > 0. However, if e €
N is chosen such that \/6[p 2 0 then Feo (v) = 0 for all v € HZ(+/0). A simple

eteq

diagram chase then shows ¢’ 7P =0 for all e € N, ie., 7 € O*Hgi,(R)' But we are

assuming R is F-nilpotent, hence for e > 0 we have 77" = 0 and another diagram chase

shows 1 € 0% Ha (R/V0)" We leave it to the reader to run a similar argument proving if
F _ n;( *
OHd(R/\/_) OH"(R/\/_) thenO H(R) = OH,d“(R)
To prove (3) we may assume R is reduced. Let {Py,---, P;} be the minimal primes of

R and suppose for a contradiction that dim(R/P;) =i < dim(R). Let I = P,N---N Py.
Consider the short exact sequence

R
0—-R— —o& — 0.

E R
P I

(P 1+ 1)
It follows that there is an onto map H:(R) — HE (R/Py) of local cohomology mod-
ules since dim(R/(Py + I)) < i. A straightforward diagram chase proves HE (R/Py) is
F-nilpotent, a contradiction since the top local cohomology module of a local ring cannot
be F-nilpotent.

For (4) we begin by recalling H: (R) = H{ (R) ®rR H;E(E) for all i € N. Suppose
first R is F-nilpotent. Clearly H! (R) are F-nilpotent for all i < dim(R). It remains to

Fr .. . o So ¥R
show O HE o OHd (R)" But this is also clear since R° C R°, hence 0,7 i (R) - OHd (R) =
OZ’% (R) and therefore a large iterate of the Frobenius action on H¢(R) maps 7 to 0.

Conversely, suppose that R is F-nilpotent. To ease notation, given a ring S we write
Sred to denote S//0 \/_ To show R is F- nilpotent it is enough to show Rred is F-nilpotent.
Observe Rred = (Rred)wd and so we instead prove Rrpd is F-nilpotent. The ring R,.q is
F-nilpotent by (2). Therefore we may assume R is an excellent reduced ring. All lower
local cohomology modules of R are F -nilpotent by assumption and it remains to show
04ty = of;i(R) Let 7 € 037 ).
and therefore 1 is an element of 037 H(R)

of the Frobenius action on H4 (R) must map 1 to 0. O

The ring R admits a complete stable test element
as well. By assumption, a large enough iterate

Remark 2.9. The proof of (3) of Proposition 2.8 did not fully use the hypothesis that
R is F-nilpotent. The proof only required that the Frobenius actions on H{ (R) were
nilpotent for ¢ < dim(R). Using the language of [25, Section 4], if the F-depth of a local
ring R is equal to the dimension of R, then R is necessarily an equidimensional local

ring.
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3. On the complexity of Frobenius powers of ideals

Let (R, m, k) be a local ring of prime characteristic p > 0. An ideal I C R is said to
satisfy condition (LC) if there is an integer C' such that for each e € N

m" . HO(R/IP)) = 0.

Showing every ideal satisfies condition (LC) would have an important application. If R
is assumed to be weakly F-regular, i.e., every ideal is tightly closed, and every ideal of
R satisfies condition (LC), then every localization of R would remain weakly F-regular.
A ring whose localizations are weakly F-regular is called F-regular. We refer the reader
to the discussion following [10, Proposition 4.16] or the discussion following [18, Corol-
lary 3.2] for further details on why every weakly F-regular ring satisfying condition (LC)
is F-regular.

Conjecture 3.1 (LC) Conjecture. Let (R, m, k) be a local (graded) ring of prime charac-
teristic p > 0 and I a (homogeneous) ideal of R. Then there exists a positive integer C
such that

m?" . HO(R/IP) =0
for all e > 0.

There has been limited progress towards a proof of Conjecture 3.1. See [18, Corol-
lary 3.2] and [35, Theorem 1] for proofs that a homogeneous ideal I of a equidimensional
graded ring such that dim(R/I) = 1 satisfies the (LC) condition. We also refer the reader
to [20, Theorem 20] for a similar result which should be compared to Theorem 3.4, the
main result of this section, found below. Specifically, Theorem 3.4 shows that an ideal
generated by a filter regular sequence satisfies condition (LC). We begin with a pair of
lemmas.

Lemma 3.2. Let (R, m, k) be a local ring, of arbitrary characteristic, and t a non-negative
integer. For each j > 0 let a;(R) = Ann(Hpn(R)) and a = ag(R) -+~ ax(R). If z1,...,2¢
a filter regular sequence then

o HY(R/(z1,...,2,)) =0

Proof. There is nothing to show if ¢ = 0. If ¢ > 0 consider the long exact sequence of
local cohomology

c = Hy(R) = Hy (R (21)) = Hy ' (R) — -+

induced from the short exact sequence
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0— R/(0:21) 2 R— R/(z1) — 0.
Then for each ¢ <t — 1 we have
a;(R/(x1)) = Ann (Hy, (R/(21))) 2 ai(R)aiy1(R) 2 a®.

The assertion follows inductively as for each i < t — (j + 1) there will be short exact
sequence

e 4 H&(R/(.’El, .. .,(Ej)) — H]ZT‘(R/(ZL'l, .. 7£Ej,l'j+1))
—>Hzn+1(R/($1,...,l‘j))—>“'. O

For the next lemma we first recall the notion of an attached prime of an Artinian
module and some of their basic properties due to Macdonald, [26]. Let (R, m, k) be a
local ring and M a nonzero Artinian R-module. We say that M is secondary if for each
x € R the multiplication map M =5 M is either onto or nilpotent. If M is secondary then
P = \/Anng(M) is a prime ideal and we call M a P-secondary module. A secondary
representation of an Artinian R-module M is a decomposition M = Ny + - - + Ny
such that each NN; is secondary. The chosen secondary representation of M is called
minimal if N; ¢ N; for all i # j and \/Anng(N;) # /Anng(N;) for all i # j. We
say that the prime ideals y/Anng(V;) are attached primes of M. Minimal secondary
representations of Artinian modules always exist, are not unique, but the list of attached

primes associated with a minimal secondary representation is unique. The set of such
prime ideals is denoted by Attr(M).

Lemma 3.3. Let (R,m, k) be a local ring which is the image of a Cohen-Macaulay local
ring (e.g. R is excellent'), and t a non-negative integer. For each j > 0 let a;(R) =
Ann(HL(R)) and a = ag(R) -~ ay(R). If 1, ..., x; is a filter regular sequence then a +
(1,...,2¢) is m-primary.

Proof. It is enough to show a;(R)+(z1,...,2) is m-primary for each j < t. Without loss
of generality we assume H,]n(R) # 0 and t < d. Suppose there is a prime ideal P # m con-
taining a;(R)+ (1, .. .,2;). The module H (R) is Artinianian and P contains the annihi-
lator of HZ (R) by assumption. Therefore by [6, 7.2.11 (ii)] there exists Q € Attr(Hz(R))
such that @ C P. By [28, Theorem 1.1] we have QRp € AttRPH;;tm R/P(Rp). Thus
Hf);%iim R/P(Rp) # 0. However, x1,...,x; is a filter regular sequence in P # m. So
x1,...,xs becomes a regular sequence after localization at P by Lemma 2.2. So we also
have shown H{;RP (Rp) =0 for all j < t, a contradiction. O

We are now ready to prove the main result of this section.

4 Kawasaki proved every excellent local ring is the homomorphic image of a Cohen-Macaulay local ring,
see [21, Corollary 1.2].
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Theorem 3.4. Let (R, m, k) be a local ring of characteristic p > 0. Let x1,...,z; be a
filter regular sequence of R and I = (x1,...,x). Then there exists a positive integer C
such that

m?" . HO(R/IP) =0
for all e > 0.

Proof. The property that x1,...,x; is a filter regular sequence is unaffected by passing to
the completion of R, see (4) of Lemma 2.2. In particular, by passing to the completion, we
may assume R is the homomorphic image of a Cohen-Macaulay local ring. We can further
assume that ¢ > 0. For each j > 0 let a;(R) = Ann(H%(R)) and a = ag(R) - - - a;(R). The
sequence a:ffe, ooyt " is a filter regular sequence for each e > 0 by Lemma 2.2. Recall that
a2 - HO(R/IP)y = 0 for all e > 0 by Lemma 3.2. Thus a2 + I?] € Ann HO (R/IlP])
for all e > 0. By Lemma 3.3 the ideal a2 +1is m-primary. So we can choose C; such
that mC1 C a2’ + I, and so

(mP NG = ()P C (a2 4 )P C o2 4 [P]
for all e > 0. Then we can choose a suitable multiple C' of Cy such that
mCP" C o® 4 11 C Ann HO (R/IP)
foralle>0. O
4. Nilpotence of Frobenius action on local cohomology and deformation

Continue to let (R, m, k) be a local ring of prime characteristic p > 0. The first theo-
rem of the section is a deformation type result for F-nilpotent rings. More specifically,
Theorem 4.2 provides a necessary and sufficient criteria to determine if the Frobenius
endomorphism on H, (R) is nilpotent by examining the behavior of the Frobenius endo-
morphism on HY (R/(x)) for all i <t —1 for general choice of parameter element x € R.
The example following the proof of Theorem 4.2 indicates that the result is the best pos-
sible towards deforming F-nilpotent singularities. The reader should observe that the
Frobenius action on the 0th local cohomology module will always be nilpotent whenever
dim(R) > 0. In particular, if R is of Krull dimension at least 2 with parameter element
x, then the Frobenius action on HO(R/(x)) will always be nilpotent and cannot detect
if the Frobenius action on H} (R) is nilpotent. To describe our deformation type result
we will need to discuss the notion of being F-nilpotent relative to R.

Let I C K be ideals of R. The Frobenius endomorphism F : R/I — R/I can be
factored as composition of two natural maps: R/I — R/I bl R/I, where the first map
is obtained by base change along the Frobenius endomorphism F': R — R and the second
map is the natural projection map. We denote the first map by Fr: Fr(a+1) = a? + 1P
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for all @ € R. We say that a local cohomology module Hi-(R/I) is F-nilpotent with
respect to R if for every n € Hi(R/I) there is an e > 0 such that Fg(n) = 0 in
Hi(R/IP]) where F§ : Hi.(R/I) — Hi (R/I?]) is the natural map induced by the
eth Frobenius morphism F§ : R/I — R/IP"L.

Remark 4.1. Observe that H).(R/I) = (I : K*)/I = \U,—,(I : K™)/I. Therefore
HY%(R/T) is F-nilpotent with respect to R if and only if for all e > 0, (I : K*)P*] C 1P"],
This is equivalent to the requirement that (I : K>) C I, It should also be noted that
HY.(R/I) is always F-nilpotent whenever K ¢ P for all P € min(I).

Theorem 4.2. Let (R, m, k) be a local ring of prime characteristic p > 0 and of dimension
d > 0. For every integer t the following are equivalent:

(1) Hi(R) is F-nilpotent for all i < t.

(2) For every filter regular element x, H: (R/(z)) is F-nilpotent with respect to R for
every 1 <t —1.

(3) There exists a filter reqular element x such that for all n > 1, Hi (R/(z")) is F-
nilpotent with respect to R for alli <t —1.

(4) There exists a filter regular element x such that for all e > 0, H:(R/(zP")) is
F-nilpotent with respect to R for every i <t —1.

Proof. (1) = (2), suppose that H: (R) is F-nilpotent for each i <t and let z € m be a
filter regular element. The multiplication map R -5 R induces the short exact sequence

0—R/(0:2) % R— R/(z) — 0.

Let i <t —1 and pick n € H: (R/(x)). Let & be the induced connecting homomorphism
of local cohomology modules

H.(R/zR) — HY(R/(0: 2)) = HLFY(R).

Choose e > 0 such that F¢(6(n)) = 0 where F¢ : Hi.F'(R) — HLM(R) is the e-th
Frobenius action on H4(R). Consider the following commutative diagram whose rows
are exact:

Hi(R) —— HL(R/(z)) —— Hi(R)

ET I

Hiy(R) —2— HY (/")) —— Hi'(R).
Therefore F&(n) = B(1) for some i’ € HE (R). Hence there is ¢ >> 0 such that F¢ (/) =
0. Then examination of the followirllg commutative diagram, whose rows are exact, shows
that F&™' () = 0 in Hi (R/(z?"")).
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Hi(R) ——  Hi(R/(z)) —>— Hi(R)

e l Fe l e

Hi(R) —2— HI(R/(z")) — Hi'(R).

m

e ng'

Hi(R) —— HL(R/(@”")).

This completes the implication (1) = (2). Clearly, (2) = (3) = (4). We now show that
(4) = (1). Let = be a filter regular element on R such that HZ (R/(xP")) is F-nilpotent
with respect to R for every e and every i < t—1. We can assume that ¢ > 1. Since H),(R)
is always F-nilpotent we need only to show H{ (R) is F-nilpotent for all 1 < i < t.
Suppose that 7 € H: (R). After replacing x by ?° for some e > 0, we may assume that
xn = 0. We can then take e large, and then chase the following diagram to conclude that
Fe(n) =0.

Hi YR/ (2)) —— Hyp(R) —— Hy(R)

| |7 |7

H(R/(a7)) —— HL(R) —— H(R). O

Example 4.3. Let R be the localization of F,[T1,T5,T5)/(T#T2, TETs) at the ideal
(Th,T5,T3). Let t1,ta,t5 represent the classes of T1,T5,T5 in R respectively. Observe
that R is local ring of prime characteristic p of dimension 2, depth 1, and x = t1 + ¢
is an R-regular element. Moreover, H2(R/(z)) is F-nilpotent with respect to R but
H2(R/(zP)) is not F-nilpotent with respect to R. To see this observe that

H(R/(z)) f:v(“’”(’x t)l) and

(t1,t5 )

()

I

Hp(R/(2""))

for all e > 1.

It is then simple to see that every element of HO(R/(x)) is mapped to 0 under the
Frobenius map HY(R/(z)) — H2(R/(xP)). However, the element t3 of HQ(R/(xP))
cannot be mapped to 0 in H2(R/ (zP""")) under Frobenius for all e > 1 by degree
considerations.

We remind the reader that if I is an ideal generated by a filter regular sequence and
if « is a filter regular element on R/I, then x is a filter regular element on R/I P*] for all
e > 0 and I satisfies the (LC) condition by Theorem 3.4.
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Theorem 4.4. Let (R, m, k) be a local ring of prime characteristic p > 0 and of dimension
d. Let I be an ideal of R and suppose that x € R is a filter regular element on R/I[pe]
for all e > 0.

(1) If Hi (R/IP")) s F-nilpotent with respect to R for all i <t and for all e > 0 then
HQ(R/([[”E],xpe,)) is F-nilpotent with respect to R for all i < t —1 and for all
e, e/ >0.

(2) Conversely, if I satisfies the (LC) condition and H;(R/(I[pe],xpe,)) is F-nilpotent
with respect to R for alli < t—1 and for alle,e’ >0, then H: (R/IP")) is F-nilpotent
with respect to R for all t <t and for all e > 0.

Proof. Replacing 7P by I and P by z, it is enough to show that H: (R/(I,z)) is

F-nilpotent with respect to R for all i < t — 1. The multiplication map R/I % R/I
induces the short exact sequence

0— R/(I:x) 2 R/T— R/(I,z)— 0.
Since z is a filter regular element of R/I, we have (I : z)/I has finite length. So H: (R/(I :
x)) & Hi(R/I) for all i > 1. Thus we have the induced long exact sequence of local
cohomology
<= Hi(R/I) — HL(R/(Ix)) > HEY(R/T) 5 HEFY(R/T) — - .

There is a commutative diagram

0 —— R/I:2) —*— R/I —— R/(I,z) —— 0

| E |
0 —— R/(IWP) 07"y =y R/IW) — 5 R/(I,2)P) —— 0,
where the most left vertical map is the composition
R/(I:2) 5 RJ(I : o)) = R/(IWV) : 27°).
Moreover since x and 2P are filter regular elements of R/I and R/I [P*] respectively, the
derived maps of local cohomology modules in positive degrees can be identified with the
Frobenius maps

Fg: H (R/I) — H(R/IP).

Therefore we have the following commutative diagram whose rows are exact for any ¢ > 0
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Hi(R/I) —— HL(R/(Lz)) —>— HiY(R/I)

e e e

Hi(R/IW) —2— HL(R/(I,2)P) —— Hir'(R/IP).

Let i < t—1and pickn € Hy(R/(I,z)). Choose e > 0 such that F(d(1)) = 0. Therefore
F&(n) = B(n) for some i/ € HL(R). Hence there is €/ > 0 such that F€ (5') = 0. Then
the following commutative diagram, whose rows are exact, shows that F§+e (n) =01in

HL(R/((I,JL‘)[T’HG/]), ie., Hi (R/(I,z)) is F-nilpotent with respect to R.

Hi(R/I) ——  HL(R/(Ix)) —>— HIY(R/I)

E E E
Hi(R/IW)) —2 s HL(R/(I,2)P) —— HirY(R/IF)).

’ ’
I [

Hi (R/TVP)) —— Hi(R/(I,2) ).

Conversely, suppose I satisfies Conjecture 3.1 and HZ, (R/(IP"), P )) is F-nilpotent with
respect to R for all i <t — 1 and for all e, e’ > 0. By replacing 17! by I, it is enough to
show that H (R/I) is F-nilpotent for all i < t. We are assuming there exists C' € N such
that m“P" HO (R/IP"1) = 0 for all e > 0, i.e., HO(R/IP) = (IP"] . mCP")/TP"] for all
e > 0. Choose eg so that p® > C and replace 2 by zP"". Then HO(R/(I°] : zP")) = 0
by Lemma 2.4 for all e > 0. Therefore, the commutative diagram

0 —— R/I:2) —*— R/I —— R/(I,x) —— 0

|y | 72 |
0 —— RJ(IW] 27"y~ BRIV — RJ(I,2)P) ——s 0,
induces the following commutative diagram whose rows are exact for all e > 0:

0 —— Hu(R/I) —— Hy(R/(I,2))

I I

0 —— HY(R/IPYY —— HOY(R/(I,z)P).

It easily follows that the assumption HQ(R/(I,z)) is F-nilpotent with respect to R
implies H2(R/I) is F-nilpotent with respect to R. We next show that HE (R/I) is
F-nilpotent with respect to R for each 1 < i < t. Let n € HE (R/I). After replacing
by zP° for some e > 0, we may assume that £ = 0. We can then take e large, and then
chase the following diagram to conclude that F¢(n) = 0.
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Hi7 Y (R/(Iw) —— HL(R/I) ——  Hy(R/I)

£ I Js

Hi(R/(I,z)P")) —— Hi (R/I¥) —— Hi(R/I¥). O

Remark 4.5. Let (R, m, k) be a local ring of prime characteristic p > 0 and suppose
I C R is an ideal satisfying condition

AsspR/IP") C AsspR/I U {m}.

Then every filter regular element of R/I is also a filter regular element of R/IP"] for
all e > 0. Ideals generated by a filter regular sequence will always satisfy the above
condition, Remark 2.2.

Theorem 4.6. Let (R, m, k) be a local ring of prime characteristic p > 0 and of dimension
d. Let t < d. Then the following are equivalent:

(1) HE(R) is F-nilpotent for all i < t.
(2) For every filter reqular sequence x1, . .., x; we have (x1,...,x;) : m>® C (z1,...,24)F.
(3) There exists a filter reqular sequence x1, ..., x; such that

(7, zft) cm™ C (2], ayt

)F
forallny,...,ny > 1.
(4) There exists a filter reqular sequence x1,...,x: such that

el et €1 €t
() . 2l ) me C (@ el )

foralley,..., e > 0.

Proof. For (1) = (2), let x1,...,2;, ¢ <t be a filter regular sequence. By Theorem 4.4
and Remark 4.5 we have HJ (R/(x1,...,7;)) is F-nilpotent with respect to R for all
i+ j < t. In particular, we have HQ(R/(z1,...,2;)) is F-nilpotent with respect to R.
This condition is equivalent to the claim that

(z1,...,2) :m™® C (xq,...,24)F.
The implications (2) = (3) = (4) are trivial.

Our proof of (4) = (1) begins with the observation that all hypotheses and de-
sired conclusions are unaffected by passing to the completion of R, see Lemma 2.2 and
Proposition 2.8. Condition (4) is equivalent to HO (R/(z%" ..., 2%™")) being F-nilpotent
with respect to R for all e1,...,e; > 0. We next show that Hi (R/(z2" ...zt "))
is F-nilpotent with respect to R for all ¢ < 1 and for all ey,...,e;_1 > 0. For each
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e1,...,e—1 > 0 we denote I, o, , = (z2", ... b tl "). We have H&(R/(I&’flm,l,

:cfe,)) is F-nilpotent with respect to R for all e,e¢’ > 0. On the other hand Tei,esy 18
generated by a filter regular sequence, so its satisfies Conjecture 3.1 by Theorem 3.4. By
Theorem 4.4 we have H: (R/I.,. ., ,) is F-nilpotent with respect to R for all i < 1.
We continue this progress with the same method and we have (1). O

We next use the Nagel-Schenzel isomorphism, Lemma 2.3, to provide another equiva-
lent characterization for Frobenius actions to be nilpotent on local cohomology modules.

Proposition 4.7. Let (R, m, k) be local ring of prime characteristic p. Let x1,...,2; be a
filter regular sequence, I = (x1,...,x;), and suppose that for each e > 0 that (IP"] :
m>®) C (IP"))F | then H! (R) is F-nilpotent.

Proof. By Lemma 2.3 there is an isomorphism H{ (R) = HO (H!(R)). Moreover, we may
realize H!(R) as the direct limit system
HY(R) = lim(--- — R/TPT — R/IP™ — .

e+1

where R/IPT — R/ is multiplication by (zy - --2;)?" 7. Therefore

e+1

Hy,(R) = Hy (H{(R)) 2 lim(- -~ — Hy(R/IPT) — H (R/TVT) — --)
00 e+1 e+1
glgg( ([[p]:m )/[[p]_>(1[p l''m )/[ | N =),
and the map (IPl . m)/ Pl — (I[pcﬂ] : m"o)/I[pEH] is multiplication by

(zp--a)? P Let ) € HL (R), then there is an e > 0 such that 7 is represented
by an element € (1P : m>)/IP"] in the direct limit system. By assumption, there

. e’ e e’ ete’ . .
then exists an e/ > 0 such that r?° ¢ (IP1)lP"] = [IP""" I Consider the following
commutative diagram:

(I:m™) (JP:m>) o (P*l:mee)

I jitdl Ip°]
’ ’ ’
[ L |
(1P ) mo) (1 M mee) ()
1<) i) o ipete’]

The vertical maps F' ¢ are raising elements to the pel power and the horizontal maps
(I[pe”] : moo)/l[pe”] — (I[peuﬂ] : m‘x’)/I[pe”H] are multiplication by (z - -act)pe”“_pe”
The induced map on direct limit systems of the above commuting diagram gives the
¢'th Frobenius action on HY (R). Since the representative r € (IP*] : m>) /TPl of 5 is
mapped to 0 by F¢', we see that the ¢’th iterated Frobenius action on HE (R) sends 7
to0. O
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Theorem 4.8. Let (R, m, k) be a local ring of dimension d and prime characteristic p > 0
and let t < d. Then the following are equivalent:

(1) H} (R) is F-nilpotent for all i < t;
(2) There exists a filter reqular sequence x1, ..., x; such that

(mfe,...,xge) :m™>® C (a:zl’e,...,xpe)F

for all s <t and for all e > 0.

Proof. (1) = (2) follows from (1) = (2) of Theorem 4.6.
(2) = (1) follows from Proposition 4.7. O

Comparing with the condition (4) of Theorem 4.6, the condition (2) of Theorem 4.8
we need to consider all s < t. However, we need only consider Frobenius powers of a filter
regular sequence in (2) of Theorem 4.8 instead of mixed pth powers in (4) of Theorem 4.6.

5. F-nilpotent rings

Recall that a local ring (R, m, k) of dimension d and prime characteristic p > 0 is

F-nilpotent if H (R) are F-nilpotent whenever i < d and OZ@Q(R) = 034 (gy-

Proposition 5.1. Let (R, m, k) be an equidimensional excellent local ring of dimension d
and of prime characteristic p > 0. If x1,...,xq is a filter reqular sequence on R and
(1, ..., 2)PN)* = ((z1,...,2a)P D) for all e > 0 then the Frobenius action on 0%,

is nilpotent.

(R)
Proof. Under the assumptions R is equidimensional and excellent we have that for any
eeN

* s ((xla"'xd)[pE])*
OH;"(R) - 121_} (mh - md)[pe]
Moreover, it is generally the case that for each e € N

U (CITE LD
Ofrg oy = 10 = ]

(see Remark 2.6). The proposition easily follows from the above identifications of 07, (R

and Oflg,(R)' O

Combination of Theorem 4.8 and Proposition 5.1 yields a sufficient criterion for a ring
to be F-nilpotent.
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Theorem 5.2. Let (R, m, k) be an equidimensional excellent local ring of dimension d and
of prime characteristic p > 0. Suppose x1,...,xq is a filter reqgular sequence of R such
that the following hold:

(1) Forallt <d andjor all e > 0, (xf{, . ,xfi) m>® C (22, al)F.
(2) Foralle>0, (zf ,....,ah )* = (2} ,... 25 )F
Then R is F-nilpotent.

If (R, m, k) satisfies colon capturing and if z1,...,z4 is a system of parameters, then
for all t < d one has (x1,...,2¢) : m™> C (21,...,2¢) : 255, C (w1,...,2¢)*. If such a ring
also satisfies (x1,...,2¢)" = (z1,...,2)* for all filter regular sequences then R must be

F-nilpotent by Theorem 5.2.

Corollary 5.3. Let (R,m, k) be an excellent equidimensional local ring of dimension d
and of prime characteristic p > 0. Suppose x1,...,xq is a filter reqular sequence satis-
fying that (22", ... 2P ) = (@8, 2P )F for all t < d and for all e > 0. Then R is
F-nilpotent.

We now discuss the notion of a relative tight closure of the O-submodule of a local
cohomology module.

Remark 5.4. Let I C K be ideals of R and suppose K/I is an ideal of R/I generated
by t-elements. Then by (2) of Remark 2.6 the tight closure of the zero submodule of
H!.(R/I) with respect to R is
035y = (1 € Hic(R/T) | cFin) = 0 € Hye(R/T7)
for some ¢ € R° and for all e > 0}.

By the same remark, the Frobenius closure of zero submodule of Hi (R/I) with respect
to R is

0fr

Wi oryny = 10 € Hic(R/T) | F(n) =0 € HE(R/IP]) for some e > 0}.

Similar to (3) of Remark 2.6 we have the following.

Lemma 5.5. Let (R,m, k) be a local ring of prime characteristic p > 0, I C R an ideal,

Z1,...,2¢ a sequence of elements in R, and K = (I,x1,...,2). If we identify
. R T1ox R
HY(R/T) 2 lim (- — L —
x(R/D) 77( (L,2%,...,a%) (Lt th) )

then
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OFR glim (‘[7‘%7117"'7‘%?)}?
H%(R/I) T (I’ x?""7x?) '
Proof. It is easy to see that
(L, a)E
(I D lim T
HieID = =3 (1,af,.. af)
Conversely, let n € Ofﬁ (R/T)" Without loss of generality we may assume 7 is represented
K

by an element = + (I,z1,...,2¢) in R/(I,21,...,2:). We are assuming that there is an
e € N such that 7 is mapped to 0 under F¢ : Hi (R/I) — Hi(R/IP7). If we identify
HE (R/TP"]) as the direct limit system

o (I°], 20 2P (Ile] P (D) gt (L)
then 7 is mapped to the element represented by zP° + (I[pe],xll’e7...,x€e). Since
Fe(n) = 0 there is a n € N such that 27 (zy---2,)?" =D e (AP 22" . 20",
hence z(z1---x¢)" ! is an element of (I,2%,...,27)f and 7 is also represented by
x(wy--x)" (Ll . 2R). O

We also extend (4) of Remark 2.6 in the same way we extend (3) of Remark 2.6 in
Lemma 5.5, but first we recall a couple of facts concerning annihilators of local coho-
mology modules. Let (R, m, k) be a local ring of dimension d > 0 and for each ¢ > 0 set
a;(R) = Ann(H: (R)) and let a(R) = ag(R)...a4_1(R). Suppose further that R is an
image of a Cohen-Macaulay local ring. Then we have the following (see [4, Section 8.1]):

(1) dim R/a(R) < d.
(2) If zq1,...,2;, 1 < i< dis part of a system of parameters then

Cl(R)((.’l]‘l, ceey xi—l) : J}l) g (.131, . ,I‘i_l).
In particular, repeated application of (2) provides the following:

Lemma 5.6. Let (R, m, k) be an excellent local ring of dimension d > 0. Suppose that

Tlyeey Ly Totly---  Tsrt 18 6 part of a system of parameters of R then
t ni n Ns+1+Mst1 Nspt+Mstty\ ./ Mst+1 Mstt
CI(R) ((331 7"‘7$ss’ms+1 gy Lgqy ) '(xs+1 Ty )) -
ni n, MNs+1 MNs4t
(@' x e )

for allm;,m; > 1.
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Proof. Set I = (z}*,...,2%<), let a1,...,a; € a(R), and let

Ns1+Mst1 NspttMsyty | Mst1 Mt
’ye(I’xs—i-l yee e Lstt )'(xs-&-l sy )
. Ms+1 Mstt—1 Ms+t Nst1 Mstt—1Y .
Then there is an r € R so that ya 5" -2 577" —re 7 € (L0, o 00)

Mstt
zg . Therefore

Ns1+Mst1 Nspt—1FTMstt—1  MNstt) | M1 Mstt—1
a1y € (I7$s+1 yeeeslgqp1 » Lstt ): (xs-i-l Tt )-
. . Ng Ng
By induction, a; - --aza1y € (21", ..., 20, x4, .. x0"). O

Lemma 5.7. Let (R,m, k) be an excellent equidimensional local ring of prime character-
istic p > 0. Suppose that x1,...,%s,Ts41,...,Ts+t 1S a part of system of parameters of
R, and set I = (x1,...,25) and K = (I, xs41,...,Tstt). If we identify

. R Ty1Togt R
Hi(R/I) = lim | - n . w T
o (I Tgiqy--- 7xs+t) (I, xsi117 . sjr_tl)
then
0% & lim (I, g, xh )"

Hic(R/1) - (U, $s+17---a$?+t) .

Proof. It easy to see that

(I, g, xh )
*R s s
Okt 27

—

s
Ty T )

Now suppose 7 € O’;f?{ (R/T)" Without loss of generality we may assume that 7 is repre-

sented by an element x + (I, Tsy1,...,%Ts1¢) € ﬁ. The Frobenius action

T stt)

R
Fe¢:HY(R/I) — HL(R/IP]) = lim —
K _’(I[p]x+1,...,x§+t)

%.
(1tee 5+17 7$s+t)

We are assuming there is ¢ € R° such that en?” = 0 for all e > 0. So for each e > 0
there is an n € N such that ca?’ (zqqq---xep0)? D € (TP, §+1, . S-‘rt) We are
assuming R is equidimensional, hence there is d € R° Na(R)* and it fOHOWb

maps 7 to the element 7P" represented by 2P" + (I1P°], x’s’il, e :cfj_t) €

dex? € (I[pc],xzs’jrl,... H_t) (I, xsﬂ,...,msﬂ)[pc]

for all e > 0 by Lemma 5.6. Therefore n is represented by an element of
(Iaxs+1a~-~7ws+t)* O
(I, xsy1,sTstt)
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Remark 5.8. Let (R, m, k) be an equidimensional excellent local ring of dimension d and
of characteristic p > 0. Let x1,...,2; be a part of system of parameters of R, and set
I =(x1,...,z;). Then

(1) 0%r agrees with the usual tight closure 0* here we consider

Hy~'(R/I) Hy~'(R/T)
H3=%(R/I) as an R-module. Indeed, set K = (z;41,...,74) a parameter ideal of

R/I. We have HE/(R/I) = H{~*(R/I). Thus

HA™ (R/T) @r FE(R) = HiT (R/T) @5 FE(R) 2 His ' (FE(R)/TFE(R))

= Hy '(FZ(R)/IFL(R)).

Therefore if we identify F¢(R) with R, then the map HI ' (R/I) dor,
HAY(R/I) ® F¢(R) can be identified with the e-th Frobenius action with re-
spect to R, F§ : HI"/(R/T) — HIH(R/IP]). Now two tight closures OE?“;,,‘_,;(R/I)
and 0;151,*"'(1%/1) are the same by their definitions.

(2) Let a;(R) = Ann(H. (R)) and let a(R) = ag(R)---a4_1(R). Notice that since
dim R/a(R) < d and R is equidimensional that R°Na(R) # 0. Moreover for any part
of system of parameters y1,...,y; of R we have a(R)H%L(R/(y1,...,y:)) = 0 for all
j < d—i (see [7, Remark 2.2, Lemma 3.7]). Therefore for all n € H},(R/I), j < d—1,
we have a(R)F(n) = 0 € HL(R/IP) for all e > 0. Thus O*H?(R/I) = HL(R/I) for
all j < d—i.

By the above remark, an equidimensional excellent local ring (R, m, k) is F-nilpotent
. . % __ nF .
if and only if OH’E‘(R) = OHZ(R) for all j <d.

Let (R, m, k) be a local ring of prime characteristic p > 0 and I C R an ideal. Suppose
that dim(R/I) = t. We say that R/I is F-nilpotent with respect to R if the following

hold:

(1) Hi(R/I) is F-nilpotent with respect R for each i < t.

* F
(2) Ot (ryry = Omt, (ry)-

Theorem 5.9. Let (R, m, k) be an excellent equidimensional local ring of dimension d and
prime characteristic p > 0. Let x1,...,x;, 1 < d, be a filter reqular sequence of R and let
I=(x1,...,2i_1). The following are equivalent

(1) R/I) is F-nilpotent with respect to R for all e > 0.
(2) R/(I[pe},xfe ) is F-nilpotent with respect to R for all e, e’ > 0.
Proof. (1) = (2) It is enough to prove that R/(I,z;) is F-nilpotent with respect to R.

Moreover by Theorem 4.4 we need only to prove that O;IRi’i (R/(I.e0)) is F-nilpotent with
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respect to R. Similar to the proof of Theorem 4.4 we have the following commutative
diagram

HEHR/I)  —— HEUR/(La)  —2—  HEWHY(R/I)

72 [ [

HEZ(R/IP) P HE(R/(La)P)  —— HEH(R/IP)).

[ [

HE (R/1V) —— HEZ(R/(12,)P ).
For any element 7 € O;J?\*i(R/(I,a:) we have 6(n) € O*HI},”“(R/I) by Lemma 5.7 and chasing

the image of 7. Therefore we can choose e large enough such that F5(6(n)) = 0. Thus
F5(n) € Im(B). On the other hand HZ(R/IP’l) is F-nilpotent with respect to R, so
we have F™ (1) = 0 for all ¢’ > 0. Hence O3t 1)) = ogfé,i ()1 A0 B/ (T 1)
is F-nilpotent.

(2) = (1) It is enough to prove that R/I is F-nilpotent. Moreover by Theorem 4.4 we

need only to prove that 0?"‘”’“ is F-nilpotent with respect to R. Extend x1,...,x;

(R/D)
to a full system of parameters x1,...,z4 and let n € O*HRd_i+1(R/I)' By Lemma 5.7 and
by replacing xz;, ..., x4 by their p®-powers, e > 0, we can assume that 7 is represented
by an element z + (I, 2;,...,24) € (Im—Rxd)’ where x € (I,z;,...,24)". This element

maps to some element 6 € 0;’34 (R/(Lzs)" Hence in the following commutative diagram
5(0) =1 -

HEH(R/(Lz) —>—  HEY(R/I)

I Js

HY= (RI(L, )Py —— B (R/T0),
Since R/(I,z;) is F-nilpotent, F'5(6) = 0 for large enough e. So F§(n) = 0, and hence
R/I is F-nilpotent. O

An application of the previous theorem is the following deformation type result for
F-nilpotent rings.

Theorem 5.10. Let (R, m, k) be an excellent equidimensional local ring of dimension d
and prime characteristic p > 0. The following are equivalent:

(1) The ring R is F-nilpotent.

(2) For each filter reqular element x the ring R/(x) is F-nilpotent with respect to R.

(8) There exists a filter reqular element x such that for each n € N the ring R/(z™) is
F-nilpotent with respect to R.
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(4) There exists a filter reqular element x such that for each e € N the ring R/(xP") is
F-nilpotent with respect to R.

We next give a proof of Theorem A.

Theorem 5.11. Let (R, m, k) be an excellent local ring of dimension d and of prime char-
acteristic p > 0. Consider the following statements:

(1) R is F-nilpotent.
(2) For every parameter ideal q we have q* = qF .

(8) There exists filter reqular sequence x1,...,xq such that
((,Cnl xnd)* _ (xnl xnd)F
A S0 I € N
forallny,...,ng > 1.
(4) There exists filter reqular sequence x1,...,xq such that
e1 €d \ % e1 N
(.2l )y = (2,2l
foralley,...,eq > 0.

Then (1) = (2) = (3) = (4). If R is equidimensional then (4) = (1).

Proof. The implications (2) = (3) = (4) are obvious. We first prove that (1) = (2).
Suppose R is F-nilpotent and q = (z1,...,24) is a parameter ideal. We may assume
Z1,...,2q is a filter regular sequence. Note that R is equidimensional by (3) of Propo-
sition 2.8. Applying Theorem 5.9 consecutively we have R/(x1),...,R/(x1,...,24) are
F-nilpotent with respect to R. Moreover dim R/q = 0 and H2(R/q) = R/q. We also
have 0}}% =q*/q and 02’% = q¥"/q. Therefore q* = qf for all parameter ideals q.

We prove the implication (4) = (1) under the additional assumption that R equidi-
mensional. Fix eq,...,eq_1 € N and consider the filter regular sequence x’fEI . ,xZﬂj; '
of Randlet Io, ., , = C/A xsﬁ_dl_l). Then R/(Ic[’f,]wed_l,xgl) is F-nilpotent rela-
tive to R for all e, e’ > 0. By Theorem 5.9, R/I, .. ., , is F-nilpotent relative to R for
all eq,...,eq_1 > 0. Consecutive use of Theorem 5.9 then shows R is F-nilpotent. O

We now wish to show that if (R, m, k) is a local ring of prime characteristic p > 0
which is F-nilpotent and I an ideal generated by part of system of parameters then
I* = I¥. But first, we will need to discuss the notion of Frobenius test exponent for
parameter ideals.

Definition 5.12. Let (R, m, k) be a local ring of prime characteristic p > 0. The Frobenius
test exponent for parameter ideals of R defined as follows
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Fte(R) = min{e | (¢7)P1 = gl"] for all parameter ideals q},
and Fte(R) = oo if no such e exists.

Remark 5.13. Katzman and Sharp asked in [22] under what hypotheses on local ring
(R,m, k) of prime characteristic p > 0 is Fte(R) < oo. If R is Cohen-Macaulay they
showed that Fte(R) is finite and is equal to the Hartshorne-Spieser-Lyubeznik number
of R, which under the Cohen-Macaulay hypothesis, is the least integer e for which F*€ :
Ogg( R Ogg‘( gy is the 0-map. The authors of [12] are able to show under the weaker
hypotheses R is generalized Cohen-Macaulay that Fte(R) < oco.

The second author of this paper uses techniques of this article in [32] to provide a
simpler proof of the main result of [12]. An argument, which also utilizes the techniques of
this paper, also proves the Frobenius test exponent for parameter ideals of an F-nilpotent

ring is finite.

Theorem 5.14 ([52]). Let (R, m, k) be a local ring of dimension d and prime characteristic
p > 0. If H. (R) is F-nilpotent for all i < d then Fte(R) < co.

Theorem 5.11 and Theorem 5.14 yield the desired corollary.

Corollary 5.15. Let (R,m,k) be an excellent F-nilpotent local ring of dimension d.

Then for every part of system of parameters x1,...,z; of R we have (x1,...,2¢)* =
(Ila AR xt)F‘

Proof. Extend x1,...,x; to a full system of parameters x1,...,z4. We can assume that
R is reduced. Let = € (1,...,2¢)*, then © € (z1,..., 34,27, ...,27)F for all n > 1.

Let e = Fte(R), then

a? € ﬂ (mh...,xt7$?+1,...,xg)[pe] = (z1,...,2¢)"]
n>1
by the Krull interestion theorem. Thus we have z € (z1,...,2¢)". O

Combining the above result with Corollary 5.3 we have the following.

Theorem 5.16. Let (R, m, k) be an equidimensional excellent local ring of dimension d
and of prime characteristic p > 0. Then the following are equivalent:

(1) R is F-nilpotent.
(2) There exists filter reqular sequence x1, . . ., x; so that (x’fe, o,
for allt < d and for all e > 0.
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Srinivas and Takagi prove that the property of being F-nilpotent localizes for rings
which are assumed to be F-finite, [34, Proposition 2.4]. All F-finite rings are known to
be excellent, [23, Theorem 2.5]. Theorem 5.16 gives a method of showing F-nilpotence
localizes for all prime characteristic rings which are excellent.

Corollary 5.17. Let (R, m, k) be an excellent local ring of prime characteristic p > 0. If
R is F-nilpotent then Rp is F-nilpotent for each P € Spec(R).

Proof. By Proposition 2.8 we may assume R is reduced. Suppose ht(P) = ¢ and [ =
(a1,...,a;)Rp a parameter ideal of Rp. Following the proof of [30, Proposition 6.9] we
can choose partial parameter sequence x1,...,z; of R such that I = (z1,...,2;)Rp. It
is well-known that tight closure commutes with localization for parameter ideals under
our hypotheses, see [1, Theorem 8.1] and [33, Theorem 5.1]. The Frobenius closure of
an ideal I is the extension and contraction of the ideal along a high enough iterate of
the Frobenius endomorphism. Hence the Frobenius closure of any ideal commutes with
localization. Therefore for each e € N we have by Theorem 5.16 that

IF = ((xl,...,xt)Rp)F = (1‘1,...,$t)FRP = (.Z‘l,...,l‘t)*RP = I*,

where the third equality follows from Corollary 5.15. Therefore the tight closure of every
parameter ideal of Rp is equal to its Frobenius closure and the ring Rp is now seen to
be F-nilpotent by Theorem 5.11. O
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