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Equimultiplicity Theory of Strongly F -Regular Rings

Thomas Polstra & Ilya Smirnov

Abstract. We explore the equimultiplicity theory of the F -invariants
Hilbert–Kunz multiplicity, F -signature, Frobenius Betti numbers, and
Frobenius Euler characteristic in strongly F -regular rings. Techniques
introduced in this paper provide a unified approach to the study of
localization of these invariants and detection of singularities.

1. Introduction

The most intrinsic feature of a ring R of prime characteristic p > 0 is the Frobe-
nius endomorphism given by taking the p-powers, x �→ xp . Let Fe∗R be the R-
module obtained by restricting scalars along the eth Frobenius endomorphism.
For simplicity, we assume that (R,m, k) is local and F -finite, meaning that R is
a local ring and Fe∗R is a finitely generated R-module for each e ∈ N. At the root
of prime characteristic commutative algebra and algebraic geometry is Kunz’s
fundamental result characterizing flatness of the Frobenius endomorphism.

Theorem 1.1 ([Kun69]). Let (R,m, k) be an F -finite local ring of prime char-
acteristic p. Then R is regular if and only if Fe∗R is a free R-module for some
(equivalently, all) e ∈N.

Motivated by Kunz’s theorem, it is natural to study nonregular prime character-
istic rings by studying algebraic, geometric, and homological properties of the
family of R-modules {Fe∗R}e∈N, which distinguish R from a regular local ring.
We consider the following measurements:

(1) μ(F e∗R), the minimal number of generators of Fe∗R as an R-module;
(2) ae(R), the largest rank of a free summand of Fe∗ R;
(3) βe

i (R) := dimk(TorRi (k,F e∗ R)), the ith Betti number of Fe∗R;

(4) χe
i (R) := ∑i

j=0(−1)jβe
i−j (R).

The asymptotic ratio of these numbers, as compared with the rank of Fe∗R, pro-
duces several interesting and important numerical invariants unique to rings of
prime characteristic:

(1) Hilbert–Kunz multiplicity eHK(R) = lime→∞ μ(F e∗R)/ rank(F e∗ R) [Mon83].
(2) F -signature s(R) = lime→∞ ae(R)/ rank(F e∗ R) [HL02; SvdB97; Tuc12].
(3) The ith Frobenius Betti number βF

i (R) = lime→∞ βe
i (R)/ rank(F e∗R)

[AL08].
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(4) The ith Frobenius Euler characteristic χF
i (R) = lime→∞ χe

i (R)/ rank(F e∗ R)

[dSPY18].

This paper concerns the equimultiplicity theory of these numerical invariants,
a topic initiated by the second author in [Smi19]. Specifically, we are interested in
understanding when the above measurements are unchanged under localization.
Our main result in this direction is the following:

Theorem A. Let (R,m) be an F -finite and strongly F -regular local ring of prime
characteristic p, and let P ∈ Spec(R). Let {νe(R)}e∈N be one of the following
sequences of numbers:

• {μ(F e∗R)}e∈N,
• {ae(R)}e∈N,
• {βe

i (R)}e∈N,
• {χe

i (R)}e∈N.

Let ν(R) = lime→∞ νe(R)/ rank(F e∗ R). Then the following are equivalent:

(1) ν(R) = ν(RP );
(2) For each e ∈N, νe(R) = νe(RP ).

In the scenario that {νe(R)}e∈N is the sequence of numbers {μ(F e∗R)}e∈N, Theo-
rem A is a significant improvement of [Smi19, Corollary 5.18], where the same
theorem was proven under the additional assumption that R/P is a regular local
ring.

It has been known for some time that the Hilbert–Kunz multiplicity, F -
signature, and Frobenius Betti numbers serve as measurements of singularities;
see [WY00; HY02; HL02; AL03], and [AL08], respectively. The Frobenius Eu-
ler characteristic was developed in [dSPY18] as a tool to prove that the functions
βF

i : Spec(R) → R sending P �→ βF
i (RP ) are upper semicontinuous, and it was

unclear from those techniques whether or not the Frobenius Euler characteristic
could be used to detect regular rings. Prior to this paper, only the first Frobe-
nius Euler characteristic was proven to serve as a measurement of singularity;
see [Li08, Main Theorem (iv)]. In the present paper, we show that the Frobenius
Euler characteristic does indeed serve as a measurement of singularities under an
additional hypothesis.

Theorem B. Let (R,m) be an F -finite and strongly F -regular local ring of prime
characteristic p. Then the following are equivalent:

(1) R is a regular local ring;
(2) χe

i (R) = (−1)i rank(F e∗ R) for every e ∈N;
(3) χe

i (R) = (−1)i rank(F e∗ R) for some e ∈ N≥1;
(4) χF

i (R) = (−1)i .

We conjecture that Theorem B can be proven under weaker hypotheses. It seems
likely that, similarly to the Hilbert–Kunz multiplicity and Frobenius Betti num-
bers, we would only need to assume that the completion of the local ring R at
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the maximal ideal has no low-dimensional components in order to know that
χF

i (R) = (−1)i implies that R is regular.
The F -signature of a local ring (R,m, k) can be studied through splitting

ideals, a notion originating in [AE06]. For each e ∈N, the eth splitting ideal is

Ie = {r ∈ R | φ(F e∗ r) ∈m,∀φ ∈ HomR(F e∗ R,R)},
and the F -signature of R is realized as the limit s(R) = lime→∞ λ(R/Ie)/

pe dim(R). To better understand the behavior of F -signature under localizations,
we consider relative splitting ideals: for each ideal I ⊆ R and e ∈ N, let

Ie(I ) = {r ∈ R | φ(F e∗ r) ∈ I,∀φ ∈ HomR(F e∗R,R)}.
Observe that Ie(m) = Ie. If I ⊆ R is an m-primary ideal, then we can define the
F -signature relative to the ideal I as s(I ) = lime→∞ λ(R/Ie(I ))/pe dim(R) (the
limit, as we will observe, exists). Relative splitting ideals allow us to understand
the behavior of F -signature in the context of Theorem B and we prove the fol-
lowing limit formula for F -signature, which is of independent interest. The corre-
sponding formula for the Hilbert–Samuel multiplicity is a classic and very useful
result of Lech [Lec57]; the version for the Hilbert–Kunz multiplicity can be found
in [Smi19, Proposition 5.4] and was extensively used therein.

Theorem C. Let (R,m) be an F -finite local domain of prime characteristic p.
Suppose that I ⊆ R is an ideal such that R/I is Cohen–Macaulay of dimension
h and x = x1, . . . , xh is a parameter sequence on R/I . Then

lim
n1,...,nh→∞

1

n1 · · ·nh

s(I, (xn1
1 , . . . , x

nh

h )) =
∑
P

e(x1, . . . , xh;R/P ) s(IRP ),

where the sum is taken over all prime ideals P ⊇ I such that dim(R/I) =
dim(R/P ).

Section 2 contains background results and basic properties of splitting ideals rel-
ative to an ideal. The proofs of Theorems A and B can be found in Section 3. We
also use Section 3 to further explore the behavior of splitting ideals. For example,
see Theorem 3.9 for a proof that depth(R/P ) = depth(R/Ie(P )) whenever P is a
prime ideal of a strongly F -regular local ring satisfying s(R) = s(RP ). Section 4
is devoted to proving Theorem C.

2. Preliminary Results

2.1. Hilbert–Kunz Multiplicity

Monsky’s introduction of Hilbert–Kunz multiplicity is a continuation of Kunz’s
work on prime characteristic rings in [Kun69; Kun76].

Definition 2.1. Let (R,m) be a local ring of prime characteristic p, and let
I be an m-primary ideal. Denote I [pe] = (xpe | x ∈ I ). Then the Hilbert–Kunz
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multiplicity of I is

eHK(I ) = lim
e→∞

λ(R/I [pe])
pe dimR

.

The Hilbert–Kunz multiplicity of a local ring (R,m, k) is the Hilbert–Kunz mul-
tiplicity of the maximal ideal m and is denoted by eHK(R). If R is an F -finite do-
main, then rank(F e∗ R) = pe dimR[k : kpe ] by [Kun76, Proposition 2.3], and there-
fore

eHK(R) = lim
e→∞

λ(R/m[pe])
pe dim(R)

= lim
e→∞

μ(F e∗R)

rank(F e∗ R)
.

Hence the definition of Hilbert–Kunz multiplicity presented in the Introduction
agrees with Definition 2.1.

2.2. F -Signature and Splitting Ideals

The following definition, shown to us by Kevin Tucker, is a natural generalization
of the splitting ideals and presents a natural extension of F -signature.

Definition 2.2. Let R be an F -finite ring, and let a be an ideal. The eth splitting
ideal of a is defined as

Ie(a) = {r ∈ R | φ(F e∗ r) ∈ a,∀φ ∈ HomR(F e∗ R,R)}.
We record the following basic properties concerning splitting ideals, many of
which mimic the behavior of the standard splitting ideals Ie = Ie(m).

Lemma 2.3. Suppose (R,m) is an F -finite local ring of prime characteristic p

and Krull dimension d . Let a ⊂ R be an ideal. Then the sequence of ideals {Ie(a)}
satisfies the following properties:

(1) Ie(a) is an ideal;
(2) a[pe] ⊆ Ie(a);
(3) Ie(a)

[p] ⊆ Ie+1(a);
(4) φ(F

e0∗ Ie+e0(a)) ⊆ Ie(a) for all e, e0 ∈N, and φ ∈ HomR(F
e0∗ R,R);

(5) If a is m-primary, then the limit s(a) := lime→∞ λ(R/Ie(a))

ped exists, and

λ(R/Ie(a)) = s(a)ped + O(pe(d−1)). The value s(a) is referred to as the
F -signature of a;

(6) If W is a multiplicative set, then Ie(a)RW = Ie(aRW);
(7) Ie(a : J ) = Ie(a) : J [pe] for all ideals J ;
(8) If P is a prime ideal, then Ie(P ) is P -primary;
(9) If x ∈ R is a regular element of R/a, then x is a regular element of R/Ie(a)

for every e ∈ N;
(10) If R is a regular local ring, then Ie(a) = a[pe] for every e ∈N;
(11) If b⊆ R is an ideal and a ⊆ b, then Ie(a) ⊆ Ie(b);

Proof. The proofs of (1)–(4) are straightforward and are left to the reader. State-
ment (5) then follows by [PT18, Corollary 4.5]. To prove (6), it is enough to
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observe that HomR(F e∗ R,R)W ∼= HomRW
(F e∗RW,RW). For (7), we note that

a ∈ Ie(a : J ) if and only if for all φ ∈ HomR(F e∗ R,R), we have φ(F e∗ a) ∈ (a : J )

or, equivalently, φ(F e∗J [pe]a) = Jφ(F e∗ a) ⊆ a. Statements (8) and (9) easily fol-
low from (7). Observation (10) follows from Theorem 1.1; if Fe∗ R is free, then
we easily see that Fe∗ Ie(a) = aFe∗R, from which it follows that Ie(a) = a[pe].
Property (11) is trivial. �

Corollary 2.4. Let (R,m) be an F -finite and F -pure local ring of prime char-
acteristic p. If J � I are ideals, then Ie(J ) � Ie(I ). Moreover, if R is strongly
F -regular and J, I are m-primary, then s(J ) > s(I ).

Proof. Without loss of generality, we may assume that I = (J, x) and x /∈ J . Then
Ie(J ) : xpe = Ie(J : x) ⊆ Ie(m) 
= R, so Ie(J ) � Ie(J ) + (xpe

) ⊆ Ie(J, x).
For the second part, observe that

λ

(
Ie(J, x)

Ie(J )

)
≥ λ

(
Ie(J ) + (xpe

)

Ie(J )

)
= λ(R/(Ie(J ) : xpe

)) ≥ λ(R/Ie(m)).

Therefore s(J ) − s((J, x)) ≥ s(R) > 0. �

Similarly to the usual F -signature, the F -signature of an m-primary ideal a is
realized as the limit of normalized Hilbert–Kunz multiplicities of the ideals Ie(a).

Theorem 2.5. Let (R,m) be an F -finite and reduced local ring of prime charac-
teristic p, and let a be an m-primary ideal. Then

s(a) = lim
e→∞

eHK(Ie(a))

pe dim(R)
.

Proof. The statement is equivalent to saying that

lim
e→∞

1

pe dimR
|λ(R/Ie(a)) − eHK(Ie(a))| = 0,

which is the content of [Tuc12, Corollary 3.7]. �

3. Equimultiplicity of F -Invariants

We are interested in understanding when the invariants Hilbert–Kunz multiplicity,
F -signature, Frobenius Betti numbers, and Frobenius Euler characteristics are
unchanged under localization. The second author began this study in [Smi19],
where the following was proven.

Theorem 3.1 ([Smi19, Corollary 5.16]). Let (R,m) be an excellent weakly F -
regular local ring of prime characteristic p, and let P ⊂ R be a prime ideal such
that R/P is a regular local ring. Then the following are equivalent:

(1) eHK(R) = eHK(RP ),
(2) for each e ∈N, λ(R/m[pe])/pe dim(R) = λ(RP /P [pe]RP )/pe ht(P ).
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The techniques surrounding Theorem 3.1 involve a careful and challenging anal-
ysis of the behavior of the ideals {P [pe]} and {(P, x)[pe]}, where x is a regular
system of parameters modulo P . Using elementary techniques, we recover the
theorem without assuming that R/P is a regular local ring, but we do replace
the assumption of weak F -regularity with the conjecturally equivalent assump-
tion that R is strongly F -regular. Our techniques stem from a novel, yet simple,
observation that if a module M is a direct summand of F

e0∗ R for some e0 ∈N and
R is strongly F -regular, then asymptotically there will be many direct summands
of Fe∗R isomorphic to M as e → ∞. To make this precise, we begin with some
notation.

Notation 3.2. Let R be a ring, and let N ⊆ M be finitely generated R-modules.
Let rankN(M) denote the maximal number of N -summands appearing in all pos-
sible direct sum decompositions of M .

The following lemma should be compared with [SvdB97, Proposition 3.3.1].

Lemma 3.3. Let (R,m) be an F -finite and strongly F -regular local ring. Suppose
M is a finitely generated R-module such that rankM(F

e0∗ R) > 0 for some e0 ∈ N.
Then

lim inf
e→∞

rankM(F e∗ R)

rank(F e∗ R)
> 0.

Proof. Suppose that Fe0∗ R ∼= M ⊕N . For each e ∈N, write Fe∗R ∼= R⊕ae(R)⊕Me.
Then F

e+e0∗ R ∼= F
e0∗ R⊕ae(R) ⊕ F

e0∗ Me, and it follows that M⊕ae(R) is a direct
summand of F

e+e0∗ R. In particular, rankM(F
e+e0∗ R) ≥ ae(R), and therefore

lim inf
e→∞

rankM(F e∗ R)

rank(F e∗ R)
≥ lim inf

e→∞
ae−e0(R)

rank(F e∗R)
= s(R)

rank(F
e0∗ R)

> 0. �

3.1. F -Signature and Splitting Ideals

We are prepared to present a proof of Theorem A for F -signature. But we first
have the following:

Remark 3.4. To make full use of Lemma 3.3 in the following theorem, we remind
the reader that the maximal rank of a free summand of a finitely generated module
M over a local ring R is invariant of a choice of a direct sum decomposition. This
is because R is a direct summand of M if and only if R̂ is a direct summand of M̂

and a complete local ring satisfies the Krull–Schmidt condition.

Theorem 3.5. Let (R,m) be a strongly F -regular and F -finite local ring. Sup-
pose P ⊂ R is a prime ideal. Then s(R) = s(RP ) if and only if ae(R) = ae(RP )

for every e ∈N.

Proof. If ae(R) = ae(RP ) for every e ∈ N, then it is trivial that s(R) = s(RP )

since rankR(F e∗R) = rankRP
(F e∗ RP ).
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Suppose that ae0(RP ) > ae0(R) and write F
e0∗ R ∼= R⊕ae0 ⊕Me0 . Then (Me0)P

has a free RP -summand. For each e ∈N, by Remark 3.4 we may write

Fe∗R ∼= R⊕ae(R) ⊕ M
⊕ rankMe0

(F e∗ R)

e0 ⊕ Ne.

Localizing at the prime P , we see that ae(RP ) ≥ ae(R) + rankMe0
(F e∗ R) and

s(RP ) = lim
e→∞

ae(RP )

rank(F e∗ R)
≥ lim

e→∞
ae(R)

rank(F e∗ R)
+ lim inf

e→∞
rankMe0

(F e∗ R)

rank(F e∗ R)

= s(R) + lim inf
e→∞

rankMe0
(F e∗R)

rank(F e∗ R)
.

Therefore s(RP ) > s(R) by Lemma 3.3. �

The following theorem states that the splitting ideals of R and that of a localization
RP can be effectively compared whenever the Frobenius splitting numbers of R

and RP agree.

Theorem 3.6. Let (R,m) be an F -finite local ring of prime characteristic p, and
let P be a prime ideal. Then the following are equivalent:

(1) ae(R) = ae(RP ),
(2) Ie((P, I )) = Ie(P ) + I [pe] for all ideals I ,
(3) Ie(m) = Ie(P ) +m[pe].

Proof. Write Fe∗R ∼= R⊕ae(R) ⊕ Me. By definition, Fe∗ Ie(P ) = P ⊕ae(R) ⊕ {η ∈
Me | φ(η) ∈ P,∀φ ∈ HomR(Me,R)}. Hence ae(R) = ae(RP ) if and only if
HomR(Me,R) = HomR(Me,P ). It follows that HomR(Me,R) = HomR(Me,P +
I ), so Fe∗ (Ie(P ) + I [pe]) = (P, I )⊕ae(R) ⊕ (Me + IMe) = (P, I )⊕ae(R) ⊕ Me =
Fe∗ Ie(P + I ). Thus (1) implies (2).

Since (2) trivially implies (3), it is left to show that the last condition implies
the first. Suppose that Ie(m) = (Ie(P ),m[pe]). Then

F∗Ie(m) = m⊕ae(R) ⊕ Me

= m⊕ae(R) ⊕ ({η ∈ Me | φ(η) ∈ P,∀φ ∈ HomR(Me,R)} +mMe).

Then by Nakayama’s lemma we get that

Me = {η ∈ Me | φ(η) ∈ P,∀φ ∈ HomR(Me,R)},
that is, HomR(Me,R) = HomR(Me,P ), and therefore ae(R) = ae(RP ). �

Theorems 3.5 and 3.6 imply the following:

Corollary 3.7. Let (R,m) be an F -finite and strongly F -regular local ring of
prime characteristic p, and let P be a prime ideal. Then s(R) = s(RP ) if and only
if Ie(m) = Ie(P ) +m[pe] for every e ∈N.

The techniques surrounding Theorem 3.5 provide a novel proof that the F -
signature of a local ring is 1 if and only if R is a regular local ring.
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Theorem 3.8 ([HL02, Corollary 16]). Let (R,m) be an F -finite local ring. Then
s(R) = 1 if and only if R is a regular local ring.

Proof. Having positive F -signature implies that R is strongly F -regular. (The
converse also holds; see [AL03, Main Theorem].) Hence R is a domain, so R(0)

is a regular ring, and therefore s(R(0)) = s(R). Then invoking Theorem 3.5, we
have that ae(R) = ae(R(0)) = rank(F e∗ R). Therefore Fe∗R is a free R-module, and
R is a regular local ring by Theorem 1.1. �

The advantage of the proof of Theorem 3.8 is that it directly uses Kunz’s theo-
rem, whereas the proof of [HL02, Corollary 16] invokes the fact that R must be
regular if eHK(R) = 1 [WY00; HY02]. We may also adapt our approach to give a
somewhat novel proof that the Hilbert–Kunz multiplicity of a formally unmixed
local ring is 1 if and only if R is a regular local ring; see Theorem 3.11.

Theorem 3.9. Let (R,m) be an F -finite and strongly F -regular local ring
of prime characteristic p. Suppose that P ∈ Spec(R), s(R) = s(RP ) and x =
x1, . . . , xh is a sequence of elements in R. Then the following are equivalent:

(1) x is a regular sequence on R/P ;
(2) x is a regular sequence on R/Ie(P ) for each e ∈ N;
(3) x is a regular sequence on R/Ie(P ) for some e ∈N.

In particular, depth(R/P ) = depth(R/Ie(P )) for all e ∈N.

Proof. Let x1, . . . , xh be a regular sequence on R/P . To show that x1, . . . , xh is a
regular sequence on R/Ie(P ) it is equivalent to check that for every 0 ≤ i ≤ h−1,

(Ie(P ), x
pe

1 , . . . , x
pe

i ) : xpe

i+1 = (Ie(P ), x
pe

1 , . . . , x
pe

i ).

By Theorems 3.5 and 3.6 we have that (Ie(P ), x
pe

1 , . . . , x
pe

i ) = Ie(P, x1, . . . , xi),

and by (7) of Lemma 2.3 we have that (Ie(P, x1, . . . , xi)) : xpe

i+1 = Ie((P, x1, . . . ,

xi) : xi+1). But x1, . . . , xh is a regular sequence on R/P , and therefore by a sec-
ond application of Theorems 3.5 and 3.6 we see that

Ie((P, x1, . . . , xi) : xi+1) = Ie(P, x1, . . . , xi) = (Ie(P ), x
pe

1 , . . . , x
pe

i ).

Now suppose that for some e ∈ N, x1, . . . , xh is a regular sequence on
R/Ie(P ). Then for each 0 ≤ i ≤ h − 1, we have by (7) of Lemma 2.3, Theo-
rem 3.5, and Theorem 3.6 that

Ie((P, x1, . . . , xi) : xi+1)

= (Ie(P, x1, . . . , xi) : xpe

i+1) = (Ie(P ), x
pe

1 . . . , x
pe

i−1) : xpe

i

= (Ie(P ), x
pe

1 . . . , x
pe

i−1) = Ie((P, x1, . . . , xi−1)).

By Corollary 2.4 we must have that (P, x1, . . . , xi) : xi+1 = (P, x1, . . . , xi) for
each 0 ≤ i ≤ h − 1, and therefore x1, . . . , xh is indeed a regular sequence on
R/P . �
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Let (R,m) be an F -finite and strongly F -regular local ring of prime characteristic
p > 0. Observe by (9) of Lemma 2.3 that depth(R/Ie(P )) ≥ 1 for every e ∈
N and P ∈ Spec(R) \ {m}. However, it does not follow that depth(R/Ie(P )) =
depth(R/P ) if we do not assume that s(R) = s(RP ).

Example 3.10. Consider the regular local ring S of prime characteristic 2 ob-
tained by localizing F2[x, y, z,w] at the maximal ideal (x, y, z,w) and let R =
S/(xy − zw). Then R is a strongly F -regular isolated singularity. Consider the
height 1 prime ideal P = (x, z). By the techniques surrounding Fedder’s criterion
[Fed83] (c.f. [Gla96, Theorem 2.3]), for each e ∈N, we have that

Ie(R) = P [2e] :S (xy − zw)2e−1

(xy − zw)
.

Observe that R/P is a regular local ring of dimension 2; yet we can check that
I1(R) = (xz, x2, z2) and R/I1(R) has depth 1.

3.2. Hilbert–Kunz Multiplicity

Now we prove Theorem A for the Hilbert–Kunz multiplicity.

Theorem 3.11. Let (R,m) be a strongly F -regular and F -finite local ring of
prime characteristic p and Krull dimension d , and let P ∈ Spec(R). Then the
following are equivalent:

(1) eHK(R) = eHK(RP );
(2) λ(R/m[pe])/ped = λ(RP /P [pe])/pe ht(P ) for every e ∈N;
(3) μ(F e∗R) = μ(F e∗RP ) for every e ∈N;
(4) Fe∗R/PFe∗ R is a free R/P -module for every e ∈N.

Proof. Conditions (2) and (3) are equivalent by [Kun76, Proposition 2.3], and
conditions (2) and (3) clearly imply (1). To show that condition (1) implies con-
dition (3), suppose that μ(F

e0∗ R) > μ(F
e0∗ RP ). If F

e0∗ R ∼= R⊕ae0 (R) ⊕ Me0 , then
μ(Me0) > μ((Me0)P ). Let be = rankMe0

(F e∗ R). By Remark 3.4 we may write

Fe∗R ∼= R⊕ae ⊕ (Me0)
⊕be ⊕ Ne, and it follows that

eHK(R) = lim
e→∞

1

rank(F e∗ R)
(ae(R) + beμ(Me0) + μ(Ne))

and

eHK(RP ) = lim
e→∞

1

rank(F e∗ R)
(ae(R) + beμ((Me0)P ) + μ((Ne)P )).

Therefore

eHK(RP )

≤ lim
e→∞

1

rank(F e∗ R)
(ae(R) + be(μ(Me0) − 1) + μ(Ne))

≤ lim
e→∞

1

rank(F e∗ R)
(ae(R) + beμ(Me0) + μ(Ne)) − lim inf

e→∞
be

rank(F e∗ R)
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= eHK(R) − lim inf
e→∞

be

rank(F e∗R)
,

a value strictly less than eHK(R) by Lemma 3.3.
Now suppose that eHK(R) = eHK(RP ). To show that Fe∗ R/PFe∗R is a

free R/P -module, observe first that, by Nakayama’s lemma, μRP
(F e∗ RP ) =

μRP
(F e∗RP /PFe∗RP ). Therefore

μR(F e∗ R/PFe∗ R) = μR(F e∗R) = μRP
(F e∗ RP )

= μRP
(F e∗RP /PFe∗RP ) ≤ μR(F e∗R/PFe∗ R).

Therefore, as an R/P -module, we have that Fe∗R/PFe∗ R is generated by
rankR/P (F e∗R/PFe∗ R) elements and must be free.

Conversely, if Fe∗ R/PFe∗R is a free R/P -module for every e ∈ N, then
μR(F e∗R/PFe∗ R) = μRP

(F e∗ RP /PFe∗RP ), and therefore

μR(F e∗ R) = μR(F e∗R/PFe∗ R) = μRP
(F e∗ RP /PFe∗RP ) = μRP

(F e∗RP ). �

The following corollary is an analogue of Theorem 3.9 for the Hilbert–Kunz mul-
tiplicity.

Corollary 3.12. Let (R,m) be a strongly F -regular and F -finite local ring of
prime characteristic p. Suppose that P ∈ Spec(R) and eHK(R) = eHK(RP ). Then
for each sequence of elements x = x1, . . . , xh, the following are equivalent:

(1) x is a regular sequence on R/P ;
(2) x is a regular sequence on R/P [pe] for each e ∈N;
(3) x is a regular sequence on R/P [pe] for some e ∈N.

In particular, depth(R/P ) = depth(R/P [pe]) for every e ∈N.

Proof. For any finitely generated R-module M , a sequence of elements x is a reg-
ular sequence on M if and only if x is a regular sequence on Fe∗M . The corollary
is immediate by Theorem 3.11 since the modules Fe∗ (R/P [pe]) ∼= Fe∗ R/PFe∗R

are free R/P -modules. �

Corollary 3.12 is an improvement of an observation that can be made from
[Smi19, Proposition 3.1 and Corollary 5.19]: if (R,m) is weakly F -regular,
P ∈ Spec(R) satisfies eHK(R) = eHK(RP ), and R/P is regular, then R/P [pe] is
Cohen–Macaulay for e ∈N.

We utilize Theorem 3.11 and results of [AE08] and provide a novel proof that
the Hilbert–Kunz multiplicity of a local ring is 1 if and only if the ring is regular.
We recall that a ring is unmixed if it is equidimensional and has no embedded
components.

Theorem 3.13 ([WY00]). Let (R,m) be a formally unmixed local F -finite ring.
Then eHK(R) = 1 if and only if R is a regular local ring.

Proof. The assumption on Hilbert–Kunz multiplicity implies that R is strongly
F -regular; see [AE08, Corollary 3.6]. By Theorem 3.11 applied to P = (0),
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μ(F∗R) = rankF∗R, so F∗R is a free R-module, and R is regular by Theo-
rem 1.1. �

3.3. Frobenius Betti Numbers and Frobenius Euler Characteristic

We now turn our attention to the behavior of Frobenius Betti numbers and Frobe-
nius Euler characteristics under localizations.

Definition 3.14. Let (R,m) be an F -finite local domain of prime characteristic
p. For each e ∈ N, let �e

i (R) be the ith syzygy in the minimal free resolution of
Fe∗R. The ith Frobenius Betti number of R is

βF
i (R) = lim

e→∞
μ(�e

i (R))

rank(F e∗R)
,

and the ith Frobenius Euler characteristic of R is

χF
i (R) = lim

e→∞

i∑
j=0

(−1)j
μ(�e

i−j (R))

rank(F e∗R)
=

i∑
j=0

(−1)jβF
i−j (R).

We refer the reader to [Li08; AL08; dSHB17; dSPY18] for basics on Frobenius
Betti numbers and to [dSPY18] for basics on Frobenius Euler characteristic. Our
study begins with a simple application of the Auslander–Buchsbaum formula.

Lemma 3.15. Let (R,m) be an F-finite local ring. The following are equivalent:

(1) R is a regular local ring;
(2) Fe∗R has finite projective dimension as an R-module for every e ≥ 1;
(3) Fe∗R has finite projective dimension for some e ∈N.

Proof. It is easy to see that depth(R) = depth(F e∗ R) for every e ∈ N. Hence by
the Auslander–Buchsbaum formula, if the projective dimension of Fe∗R is finite,
then Fe∗R is a free R-module, and the lemma follows from Theorem 1.1. �

Lemma 3.16. Let (R,m) be an F -finite local domain of prime characteristic p.
Then

rankR(�e
i (R)) = χe

i−1(R) + (−1)i rank(F e∗R).

Moreover, if R is not regular, then βe
i (R) > rankR(�e

i (R)) = χe
i−1(R) +

(−1)i rank(F e∗R).

Proof. Rank is additive on exact sequences, and there are long exact sequences

0 → �e
i (R) → R⊕βe

i−1(R) → ·· · → R⊕μ(F e∗ R) → Fe∗ R → 0.

By Lemma 3.15, if R is not regular, then �e
i (R) is not free, and hence βe

i (R) =
μ(�e

i (R)) > rank(�e
i (R)). �

Lemma 3.17. Let (R,m) be a local F -finite domain and let e, i ∈ N with e ≥ 1.
Then χe

i (R) ≥ (−1)i rank(F e∗ R) with equality if and only if R is a regular local
ring.
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Proof. For i = 0, the lemma follows from Theorem 1.1. If i ≥ 1 and e ∈ N, then
χe

i (R) = βe
i (R) − χe

i−1(R). Applying Lemma 3.16, we arrive at

χe
i (R) ≥ χe

i−1(R) + (−1)i rank(F e∗ R) − χe
i−1(R) = (−1)i rank(F e∗ R)

with equality if and only if R is a regular local ring. �

Lemma 3.18. Let (R,m) be a local F -finite domain, and let P ∈ Spec(R). Then
βe

i (R) = βe
i (RP ) if and only if χe

i (R) = χe
i (RP ) and χe

i−1(R) = χe
i−1(RP ). In

particular, if βe
1(R) = βe

1(RP ), then μ(F e∗R) = μ(F e∗RP ).

Proof. Observe first that

βe
i (R) = χe

i (R) + χe
i−1(R)

and
βe

i (RP ) = χe
i (RP ) + χe

i−1(RP ).

Suppose that βe
i (R) = βe

i (RP ). The function χe
i : Spec(R) → R is upper semi-

continuous ([dSPY18, Proposition 3.1]), and therefore χe
i (R) ≥ χe

i (RP ). If
βe

i (R) = βe
i (RP ), then

χe
i−1(RP ) ≥ χe

i−1(R),

but the function χe
i−1 : Spec(R) →R is also upper semicontinuous, and therefore

equality must hold. �

Similarly to Lemma 3.3, if R is strongly F -regular and a module M appears as a
direct summand of �

e0
i (R) for some e0 ∈ N, then M appears as a direct summand

of �e
i (R) asymptotically many times as e → ∞.

Lemma 3.19. Let (R,m) be an F -finite and strongly F -regular local ring, and let
M be a finitely generated R-module. If rankM(�

e0
i (R)) > 0 for some e0 ∈ N, then

lim inf
e→∞

rankM(�e
i (R))

rank(F e∗ R)
> 0.

Proof. Suppose M is a direct summand of �
e0
i (R). Observe that F

e+e0∗ R has a
direct summand F

e0∗ R⊕ae . It readily follows that �e+e0(R) has �e0(R)⊕ae(R) as
a direct summand, and therefore rankM(�e+e0) ≥ ae(R). In particular,

lim inf
e→∞

rankM(�e(R))

rank(F e∗R)
≥ s(R)

rank(F
e0∗ R)

> 0. �

We are now prepared to prove Theorem A for Frobenius Betti numbers and Frobe-
nius Euler characteristics. We first present a proof of Theorem A for Frobenius
Betti numbers.

Theorem 3.20. Let (R,m) be an F -finite strongly F -regular local ring and
let P ∈ Spec(R). Then for each integer i ≥ 0, βF

i (R) = βF
i (RP ) if and only if

βe
i (R) = βe

i (RP ) for every e ∈ N.



Equimultiplicity Theory of Strongly F -Regular Rings 849

Proof. Clearly, if βe
i (R) = βe

i (RP ) for every integer e, then βF
i (R) = βF

i (RP ).
Suppose there exists an integer e0 such that μ(�

e0
i (RP )) < μ(�

e0
i (R)). For each

e ∈N, let be = rank
�

e0
i (R)

(�e
i (R)). Then we can write �e

i (R) ∼= �
e0
i (R)⊕be ⊕Me.

Localizing at P , we have

�e
i (R)P ∼= �e

i (RP ) ⊕ FP ,

where FP is a free RP -module. It readily follows that

μ(�e
i (RP )) ≤ μ(�e

i (R)P ) ≤ μ(�e
i (R)) − be.

Therefore βF
i (RP ) ≤ βF

i (R) − lim infe→∞ be

rank(F e∗ R)
, which is strictly less than

βF
i (R) by Lemma 3.19. �

Following the proof of Theorem 3.11, we recover [AL08] for strongly F -regular
rings.

Corollary 3.21. Let (R,m) be an F -finite strongly F -regular local ring. Then
for each integer i ≥ 0, βF

i (R) = 0 if and only if R is a regular local ring.

Proof. By Lemma 3.15, βF
i (R(0)) = 0 = βF

i (R). Therefore βe
i (R) = βe

i (R(0)) =
0, and the claim follows from Lemma 3.15. �

Finally, we complete our proof of Theorem A by establishing an equimultiplicity
criterion for Frobenius Euler characteristic.

Theorem 3.22. Let (R,m) be an F -finite strongly F -regular local ring and
let P ∈ Spec(R). Then for each integer i ≥ 0, χF

i (R) = χF
i (RP ) if and only if

χe
i (R) = χe

i (RP ) for every e ∈ N.

Proof. Without loss of generality, we may assume that R is not regular. By
Lemma 3.16, χe

i (R) = χe
i (RP ) if and only if rank(�e

i+1(R)) = rank(�e
i+1(RP )),

and χF
i (R) = χF

i (RP ) if and only if

lim
e→∞

rank(�e
i (R))

rank(F e∗ R)
= lim

e→∞
rank(�e

i (RP ))

rank(F e∗ R)
.

Suppose there exists an integer e0 such that rank(�
e0
i+1(R)) 
= rank(�

e0
i+1(RP )).

Therefore �
e0
i+1(R)P has a nonzero free summand. Let be =

rank
�

e0
i+1(R)

(�e
i+1(R)); by Lemma 3.19 lim infe→∞ be

rank(F e∗ R)
> 0. Then for each

integer e ∈ N, the RP -module �e
i+1(R)P contains a free summand of rank be. In

particular, we have that rank(�e
i+1(RP )) ≤ rank(�e

i+1(R)P ) − be. Therefore

lim
e→∞

rank(�e
i+1(RP ))

rank(F e∗R)
≤ lim

e→∞
rank(�e

i+1(R))

rank(F e∗ R)
− lim inf

e→∞
be

rank(F e∗R)

< lim
e→∞

rank(�e
i+1(R))

rank(F e∗R)
. �
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As with F -signature, Hilbert–Kunz multiplicity, and Frobenius Betti numbers,
we now know that the Frobenius Euler characteristic can be used to detect regular
rings, provided that we know the ring being studied is strongly F -regular.

Theorem 3.23. Let (R,m) be an F -finite strongly F -regular local ring. The fol-
lowing are equivalent:

(1) R is a regular local ring;
(2) χe

i (R) = (−1)i rank(F e∗ R) for every e ∈N;
(3) χe

i (R) = (−1)i rank(F e∗ R) for some e ∈ N;
(4) χF

i (R) = (−1)i .

Proof. The equivalence of (1), (2), and (3) is the content of Lemma 3.17, and (4)

is trivially implied by condition (2). Now an argument with the generic point as
in Theorem 3.8 shows that (4) implies (2) by Theorem 3.22. �

4. An Associativity Formula for F -Signature

Our proof of Theorem C begins with two technical lemmas.

Lemma 4.1. Let (R,m) be an F -finite local ring of prime characteristic p. Sup-
pose that I ⊂ R is an ideal such that R/I is Cohen–Macaulay of dimension h and
x1, x2, . . . , xh is a parameter sequence on R/I . Then for all sequences of natural
numbers n1, n2, . . . , nh, we have that

(1)

λ

(
Ie(I + (x

n1
1 , x

n2
2 , . . . , x

nh

h ))

Ie(I + (x
n1+1
1 , x

n2
2 , . . . , x

nh

h ))

)
≥ λ

(
Ie(I + (x

n1−1
1 , x

n2
2 , . . . , x

nh

h ))

Ie(I + (x
n1
1 , x

n2
2 , . . . , x

nh

h ))

)

and
(2)

1

n1 + 1
λ

(
R

Ie(I + (x
n1+1
1 , x

n2
2 , . . . , x

nh

h ))

)
≥ 1

n1
λ

(
R

Ie(I + (x
n1
1 , x

n2
2 , . . . , x

nh

h )

)
.

Proof. We may pass to I ′ = I + (x
n2
2 , . . . , x

nh

h ) and assume that dimR/I = 1.
We claim there exist short exact sequences

0 → Ie(I + (xn−1))

Ie(I + (xn))

·xpe

−−→ Ie(I + (xn))

Ie(I + (xn+1))

→ Ie(I + (xn))

Ie(I + (xn+1)) + xpe
Ie(I + (xn−1))

→ 0.

Observe that if such short exact sequences exist, then the first inequality is obvious
since the length of the left piece of a short exact sequence is no more than the
length of the middle term. The second inequality is equivalent to the inequality

nλ

(
Ie(I + (xn))

Ie(I + (xn+1))

)
= n

(
λ

(
R

Ie(I + (xn+1))

)
− λ

(
R

Ie(I + (xn))

))
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≥ λ(R/Ie(I + (xn))),

which follows from (1) since we can filter λ(R/Ie(I + (xn))) as

λ(R/Ie(I + (xn))) =
n−1∑
i=0

λ

(
Ie(I + (xi))

Ie(I + (xi+1))

)
.

To show that the above short exact sequences exist, we first notice that

xpe

Ie(I + (xn−1)) ⊆ Ie(xI + (xn)) ⊆ Ie(I + (xn)).

Indeed, if u ∈ Ie(I + (xn−1)) and φ ∈ HomR(F e∗ R,R), then

φ(F e∗ xpe

u) = xφ(F e∗ u) ∈ x(I + (xn−1)) ⊆ (I + (xn)).

Therefore there are right exact sequences

Ie(I + (xn−1))

Ie(I + xn))

·xpe

−−→ Ie(I + (xn))

Ie(I + (xn+1))

→ Ie(I + (xn))

Ie(I + (xn+1)) + xpe
Ie(I + (xn−1))

→ 0.

To show injectivity of the first map, observe that an element u ∈ Ie(I + (xn−1))

satisfies xpe
u ∈ Ie(I + (xn+1)) if and only if u ∈ Ie(I + (xn+1)) : xpe

. By (7) of
Lemma 2.3 we have that

Ie(I + (xn1+1)) : xpe = Ie((I + (xn+1)) : x) = Ie(I + (xn)),

where the second equality follows by standard observations on parameter ideals
in the Cohen–Macaulay ring R/I . �

The following technical lemma is very much in the spirit of [PT18, Theorem 4.3].

Lemma 4.2. Let (R,m) be an F -finite local domain of prime characteristic p and
of Krull dimension d . Suppose that I ⊂ R is an ideal such that R/I is Cohen–
Macaulay of dimension h and x = x1, . . . , xh is a parameter sequence on R/I .
Then there exists a constant C ∈R such that for all e,n1, n2, . . . , nh ∈N,∣∣∣∣ 1

ped
λ(R/Ie(I + (x

n1
1 , . . . , x

nh

h )) − s(I + (x
n1
1 , . . . , x

nh

h ))

∣∣∣∣ ≤ Cn1 · · ·nh

pe
.

Proof. Denote by N = (n1, n2, . . . , nh) a Cartesian product of natural num-
bers, let N = n1n2 · · ·nh, and for each N , let xN be the sequence of elements
x

n1
1 , x

n2
2 , . . . , x

nh

h . We claim that there exists a constant C, depending only on
λ(R/(I + (x))), such that for all N ,∣∣∣∣ 1

ped
λ(R/Ie(I + (x)N)) − s(I + (xN))

∣∣∣∣ ≤ CN

pe
.

We will first show that there exists a constant C such that for all N and e ∈N,

1

ped
λ(R/Ie(I + (x)N)) ≤ s(I + (xN)) + CN

pe
.
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The R-module F∗R is finitely generated and torsion-free, so there exists a short
exact sequence

0 → F∗R
ψ−→ R⊕ rank(F∗R) → T → 0,

where T is a finitely generated torsion R-module. By (4) of Lemma 2.3

ψ(F∗Ie+1(I + (xN))) ⊆ Ie(I + (xN))⊕ rank(F∗R),

and therefore there are right exact sequences

F∗R/(Ie+1(I + (xN))
ψ−→ R⊕ rank(F∗R)/Ie(I + (xN))⊕ rank(F∗R) → Te → 0,

where Te is the homomorphic image of T/Ie(I + (xN))T . Therefore

rank(F∗R)λ(R/Ie(I + (xN)))

≤ λ(F∗R/Ie+1(I + (xN))) + λ(T /Ie(I + (xN))T ). (4.1)

Suppose that c ∈ R is a nonzero element that annihilates T . Because (I +
(xN))[pe] ⊆ Ie(I + (xN)), there exists a surjective map

(R/(c, (I + (xN))[pe]))⊕μ(T ) → T/Ie(I + (xN))T ,

and we have that

λ(T /Ie(I + (x)T )) ≤ μ(T )λ(R/(c, (I + (xN))[pe])).

It is well known that there exists C ∈ R, depending only on the ring R, such that

λ(R/(c, (I + (xN)))[pe]) ≤ Cp(e dim(R)−1)
λ(R/(I + (xN)));

see, for example, [Pol18, Proposition 3.3]. Because R/I is Cohen–Macaulay, we
know that

λ(R/(I + (xN))) = e(xN ;R/I) = N e(x;R/I) = N λ(R/(I + (x))).

Dividing inequality (4.1) by rank(F∗R)p(e+1)d , we obtain that

λ(R/Ie(I + (xN)))

ped
≤ λ(R/Ie+1(I + (xN)))

p(e+1)d
+ μ(T )C λ(R/(I + x))N

pe

for every e ∈N. The constant μ(T )C λ(R/(I +x)) has no dependence on e or N ,
so we replace C by this constant and utilize [PT18, Lemma 3.5] to obtain that

λ(R/Ie(I + (xN)))

ped
≤ s(I + (xN)) + 2CN

pe
.

Obtaining inequalities of the form

s(I + (xN)) ≤ λ(R/Ie(I + (xN)))

ped
+ CN

pe
(4.2)

is almost identical to the above. Begin by examining a short exact sequence of the
form

0 → R⊕ rank(F∗R) ψ−→ F∗R → T ′ → 0,
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where T ′ is a torsion R-module. By (3) of Lemma 2.3 we have that ψ(Ie(I +
(xN))[p]) ⊆ Ie+1(I + (xN))F∗R, and so there are right exact sequences

(R/Ie(I + (xN))[p])⊕ rank(F∗R) ψ−→ F∗R/Ie+1(I + (xN))F∗R → T ′
e → 0,

where T ′
e is the homomorphic image of T ′/Ie+1(I + (xN))T ′. The reader is now

encouraged to follow the techniques above and the techniques of [PT18, Theo-
rem 4.3] to obtain inequalities as described in (4.2). �

For the proof of the Theorem C, we recall the following standard result: if am,n is
a bisequence such that

• limm,n→∞ am,n exists, and
• limn→∞ am,n exists for all m,

then limm,n→∞ am,n = limm→∞ limn→∞ am,n.

Theorem 4.3. Let (R,m) be an F -finite local ring of prime characteristic p and
of Krull dimension d . Suppose that I ⊆ R is an ideal such that R/I is Cohen–
Macaulay of dimension h and x = x1, . . . , xh is a parameter sequence on R/I .
Then

lim
n1,...,nh→∞

1

n1 · · ·nh

s(I, (xn1
1 , . . . , x

nh

h )) =
∑
P

e(x1, . . . , xh;R/P ) s(IRP ),

where the sum is taken over all prime ideals P ⊇ I such that dim(R/I) =
dim(R/P ).

Proof. Lemma 4.2 allows us to swap limits and identify

lim
n1,...,nh→∞

1

n1 · · ·nh

s(I, (xn1
1 , . . . , x

nh

h ))

= lim
n1,...,nh→∞ lim

e→∞
1

n1 · · ·nhped
λ(R/Ie(I + (x

n1
1 , . . . , x

nh

h ))

= lim
e→∞ lim

n1,...,nh→∞
1

n1 · · ·nhped
λ(R/Ie(I + (x

n1
1 , . . . , x

nh

h )).

Furthermore, by Lemma 4.1

lim
n1,...,nh→∞

λ(R/Ie(I + (x
n1
1 , . . . , x

nh

h )))

n1 · · ·nh

= sup
n1,...,nh

λ(R/Ie(I + (x
n1
1 , . . . , x

nh

h )))

n1 · · ·nh

= sup
n

λ(R/Ie(I + (xn
1 , . . . , xn

h)))

nh
.

We prove the theorem by induction on h. Let us start with the case of h = 1.
In this case, let us introduce an auxiliary bisequence that will link the two sides

of the formula together.
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Claim 4.4. For each pair of natural numbers n,m ∈ N, let

an,m = λ(R/(Ie(I + (xn+m)) + (xnpe

))).

Then the bisequence an,m satisfies the following properties:

(1) an,0 = λ(R/Ie(I + (xn)));
(2) limm→∞ an,m = λ(R/(Ie(I ) + (xnpe

)));
(3) an,m = an+m,0 − am,0.

Proof. The first two properties are immediate from the definition.
For the third formula, we first recall that if J is an ideal and x /∈ J , then

λ(R/(J, x)) = λ(R/J ) − λ(R/J : x). Applying this to J = Ie(I + (xn+m)) and
xnpe

, we obtain by (7) of Lemma 2.3 that

an,m = λ(R/Ie(I + (xn+m))) − λ(R/Ie(I + (xn+m)) : xnpe

)

= an+m,0 − λ(R/Ie((I + (xn+m)) : xn))

= an+m,0 − am,0. �

Recall that for any bisequence, supn supm an,m = supn,m an,m = supm supn an,m.
By definition the sequence an,m is increasing in m, so by Claim 4.4

sup
n

sup
m

an,m

n
= sup

n

1

n
λ(R/(Ie(I ) + (xnpe

))) = pe e(x,R/Ie(I )),

because x is a regular element modulo Ie(I ) by Lemma 2.3(9). On the other hand,
by Lemma 4.1 an,0/n is an increasing function in n ∈ N, so Claim 4.4 also shows
that

sup
n

an,m

n
= sup

n

an+m,0 − am,0

n
= lim

n→∞
an,0

n
.

Thus

pe e(x,R/Ie(I )) = sup
n

sup
m

an,m

n
= sup

m
lim

n→∞
an,0

n
= lim

n→∞
λ(R/Ie(I + (xn)))

n
,

which proves the theorem in the case h = 1 after using the additivity of multiplic-
ity and passing to the limit as e → ∞.

For h ≥ 2, we may first consider the ideal I ′ = I + (xn
1 , . . . , xn

h−1) and get that

lim
m→∞

λ(R/Ie(I
′ + (xm

h )))

m
=

∑
Q

e(xh;R/Q)λ(RQ/Ie(I
′)RQ),

where Q varies through the prime ideals P containing Ie(I
′) such that dimRQ/

PRQ = dimRQ/Ie(I
′)RQ. By induction,

lim
n→∞

λ(RQ/Ie(I
′)RQ)

nh−1
=

∑
P

e(x1, . . . , xh−1;RQ/PRQ)λ(RP /Ie(I )RP ),

where P varies through the prime ideals P containing Ie(I ) such that dimRQ/

PRQ = dimRQ/Ie(I )RQ. Thus

lim
n→∞

λ(R/Ie(I + (xn
1 , . . . , xn

h)))

nh
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= lim
n→∞ lim

m→∞
λ(R/Ie(I

′ + (xm
h )))

mnh−1

=
∑
Q

∑
P

e(xh;R/Q) e(x1, . . . , xh−1;RQ/PRQ)λ(RP /Ie(I )RP ).

The theorem follows by changing the order of summation and using the associa-
tivity formula for parameter ideals ([Lec57, Theorem 1]); see the proof of [Smi19,
Theorem 4.9]. �

Acknowledgments. The authors thank Alessandro De Stefani for valuable
feedback on a preliminary draft of this paper.

References

[AE06] I. M. Aberbach and F. Enescu, When does the F-signature exists? Ann. Fac.
Sci. Toulouse Math. (6) 15 (2006), no. 2, 195–201.

[AE08] , Lower bounds for Hilbert–Kunz multiplicities in local rings of fixed
dimension, Michigan Math. J. 57 (2008), 1–16, Special volume in honor of
Melvin Hochster.

[AL03] I. M. Aberbach and G. J. Leuschke, The F -signature and strong F -regularity,
Math. Res. Lett. 10 (2003), no. 1, 51–56.

[AL08] I. M. Aberbach and J. Li, Asymptotic vanishing conditions which force regu-
larity in local rings of prime characteristic, Math. Res. Lett. 15 (2008), no. 4,
815–820.

[dSHB17] A. De Stefani, C. Huneke, and L. N. Betancourt, Frobenius Betti numbers and
modules of finite projective dimension, J. Commut. Algebra 9 (2017), no. 4,
455–490.

[dSPY18] A. De Stefani, T. Polstra, and Y. Yao, Global Frobenius Betti numbers and F-
splitting ratio, arXiv e-prints (2018), arXiv:1811.11022.

[Fed83] R. Fedder, F -purity and rational singularity, Trans. Amer. Math. Soc. 278
(1983), no. 2, 461–480.

[Gla96] D. Glassbrenner, Strong F -regularity in images of regular rings, Proc. Amer.
Math. Soc. 124 (1996), no. 2, 345–353.

[HL02] C. Huneke and G. J. Leuschke, Two theorems about maximal Cohen–Macaulay
modules, Math. Ann. 324 (2002), no. 2, 391–404.

[HY02] C. Huneke and Y. Yao, Unmixed local rings with minimal Hilbert–Kunz multi-
plicity are regular, Proc. Amer. Math. Soc. 130 (2002), no. 3, 661–665.

[Kun69] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J.
Math. 91 (1969), 772–784.

[Kun76] , On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976),
no. 4, 999–1013.

[Lec57] C. Lech, On the associativity formula for multiplicities, Ark. Mat. 3 (1957),
301–314.

[Li08] J. Li, Characterizations of regular local rings in positive characteristics, Proc.
Amer. Math. Soc. 136 (2008), no. 5, 1553–1558.

[Mon83] P. Monsky, The Hilbert–Kunz function, Math. Ann. 263 (1983), no. 1, 43–49.
[Pol18] T. Polstra, Uniform bounds in F-finite rings and lower semi-continuity of the

F-signature, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3147–3169.

http://arxiv.org/abs/arXiv:1811.11022


856 Thomas Polstra & Ilya Smirnov

[PT18] T. Polstra and K. Tucker, F -signature and Hilbert–Kunz multiplicity: a com-
bined approach and comparison, Algebra Number Theory 12 (2018), no. 1,
61–97.

[Smi19] I. Smirnov, Equimultiplicity in Hilbert–Kunz theory, Math. Z 291 (2019), no.
1–2, 245–278.

[SvdB97] K. E. Smith and M. Van den Bergh, Simplicity of rings of differential operators
in prime characteristic, Proc. Lond. Math. Soc. (3) 75 (1997), no. 1, 32–62.

[Tuc12] K. Tucker, F -signature exists, Invent. Math. 190 (2012), no. 3, 743–765.
[WY00] K. Watanabe and K. Yoshida, Hilbert–Kunz multiplicity and an inequality be-

tween multiplicity and colength, J. Algebra 230 (2000), no. 1, 295–317.

T. Polstra
Department of Mathematics
University of Utah
Salt Lake City, UT 84112
USA

polstra@math.utah.edu

I. Smirnov
Department of Mathematics
Stockholm University
Stockholm, SE-106 91
Sweden

smirnov@math.su.se

mailto:polstra@math.utah.edu
mailto:smirnov@math.su.se

	Introduction
	Preliminary Results
	Hilbert-Kunz Multiplicity
	F-Signature and Splitting Ideals

	Equimultiplicity of F-Invariants
	F-Signature and Splitting Ideals
	Hilbert-Kunz Multiplicity
	Frobenius Betti Numbers and Frobenius Euler Characteristic

	An Associativity Formula for F-Signature
	Acknowledgments
	References
	Author's Addresses

