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Equimultiplicity Theory of Strongly F-Regular Rings
THOMAS POLSTRA & ILYA SMIRNOV

ABSTRACT. We explore the equimultiplicity theory of the F-invariants
Hilbert—Kunz multiplicity, F-signature, Frobenius Betti numbers, and
Frobenius Euler characteristic in strongly F'-regular rings. Techniques
introduced in this paper provide a unified approach to the study of
localization of these invariants and detection of singularities.

1. Introduction

The most intrinsic feature of a ring R of prime characteristic p > 0 is the Frobe-
nius endomorphism given by taking the p-powers, x = x”. Let FZR be the R-
module obtained by restricting scalars along the eth Frobenius endomorphism.
For simplicity, we assume that (R, m, k) is local and F-finite, meaning that R is
a local ring and F¢ R is a finitely generated R-module for each e € N. At the root
of prime characteristic commutative algebra and algebraic geometry is Kunz’s
fundamental result characterizing flatness of the Frobenius endomorphism.

THEOREM 1.1 ([ D). Let (R,m, k) be an F-finite local ring of prime char-
acteristic p. Then R is regular if and only if FR is a free R-module for some
(equivalently, all) e € N.

Motivated by Kunz’s theorem, it is natural to study nonregular prime character-
istic rings by studying algebraic, geometric, and homological properties of the
family of R-modules {F¢ R}.en, which distinguish R from a regular local ring.
We consider the following measurements:

(1) w(F¢R), the minimal number of generators of F¢ R as an R-module;

(2) a.(R), the largest rank of a free summand of F¢ R

(3) B{(R) := dimk(Tor,-R (k, F{R)), the ith Betti number of F{R;

@ X (R) =2 i_o(=DIBf_;(R).

The asymptotic ratio of these numbers, as compared with the rank of F¢ R, pro-

duces several interesting and important numerical invariants unique to rings of

prime characteristic:

(1) Hilbert—Kunz multiplicity egg (R) = lim,—, oo w(F¢ R)/rank(F{R) [ 1.

(2) F-signature s(R) =1lim,—, o a.(R)/rank(F¢R) [ ; ; 1.

(3) The ith Frobenius Betti number ﬂF(R) = lim,— oo /3 (R)/rank(F{R)
[ I
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(4) The ith Frobenius Euler characteristic XI.F(R) =lim,_, o0 x{(R)/rank(F{ R)
[ 1.

This paper concerns the equimultiplicity theory of these numerical invariants,
a topic initiated by the second author in [ ]. Specifically, we are interested in
understanding when the above measurements are unchanged under localization.
Our main result in this direction is the following:

THEOREM A. Let (R, m) be an F-finite and strongly F -regular local ring of prime
characteristic p, and let P € Spec(R). Let {v.(R)}ceN be one of the following
sequences of numbers:

{W(FR)}een,

{ae(R)}een,

{Bf (R)}een,

{x{ (R)}een-

Let v(R) =lim,— o0 Ve (R)/ rank(F¢ R). Then the following are equivalent:
(1) v(R) =v(Rp);

(2) Foreache eN, v,(R) =v.(Rp).

In the scenario that {v,(R)}.cN is the sequence of numbers {u(Fy R)}.cN, Theo-

rem A is a significant improvement of [ Corollary 5.18], where the same
theorem was proven under the additional assumption that R/ P is a regular local
ring.

It has been known for some time that the Hilbert-Kunz multiplicity, F-
signature, and Frobenius Betti numbers serve as measurements of singularities;
see [ ; ; ; ], and [ ], respectively. The Frobenius Eu-
ler characteristic was developed in [ ] as a tool to prove that the functions
,Bl.F : Spec(R) — R sending P +— ,BiF (Rp) are upper semicontinuous, and it was
unclear from those techniques whether or not the Frobenius Euler characteristic
could be used to detect regular rings. Prior to this paper, only the first Frobe-
nius Euler characteristic was proven to serve as a measurement of singularity;
see [ Main Theorem (iv)]. In the present paper, we show that the Frobenius
Euler characteristic does indeed serve as a measurement of singularities under an
additional hypothesis.

THEOREM B. Let (R, m) be an F-finite and strongly F-regular local ring of prime
characteristic p. Then the following are equivalent:

(1) R is a regular local ring;

(2) xf(R) = (=1)' rank(FyR) for every e € N;

(3) xf(R) = (—1)' rank(F¢R) for some e € N>1;

@ x(R)=(=1)".

We conjecture that Theorem B can be proven under weaker hypotheses. It seems

likely that, similarly to the Hilbert—Kunz multiplicity and Frobenius Betti num-
bers, we would only need to assume that the completion of the local ring R at
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the maximal ideal has no low-dimensional components in order to know that
XiF(R) = (—1) implies that R is regular.

The F-signature of a local ring (R, m, k) can be studied through splitting
ideals, a notion originating in [ ]. For each e € N, the eth splitting ideal is

I,={r e R|¢(Fir) em, V¢ € Homg(F{R, R)},

and the F-signature of R is realized as the limit s(R) = lime—oo A(R/1c)/
pedim(R) To better understand the behavior of F-signature under localizations,
we consider relative splitting ideals: for each ideal / € R and e € N, let

I.(I)={r e R|¢(Fir) € I,V¢ € Homg(F{R, R)}.

Observe that I,(m) = I,. If I C R is an m-primary ideal, then we can define the
F-signature relative to the ideal 7 as s(I) = lim,_ o0 A(R/I(I))/p¢im®) (the
limit, as we will observe, exists). Relative splitting ideals allow us to understand
the behavior of F-signature in the context of Theorem B and we prove the fol-
lowing limit formula for F-signature, which is of independent interest. The corre-
sponding formula for the Hilbert—Samuel multiplicity is a classic and very useful
result of Lech [ ]; the version for the Hilbert—Kunz multiplicity can be found
in [ Proposition 5.4] and was extensively used therein.

THEOREM C. Let (R, m) be an F-finite local domain of prime characteristic p.
Suppose that I C R is an ideal such that R/I is Cohen—Macaulay of dimension

h and x = x1, ..., xy is a parameter sequence on R/1. Then
1
lim  ———s(, (x}', ..., x,") = E e(x1,...,xp; R/P)s(IRp),
Nlyenny np—>00 Ny ---Np >

where the sum is taken over all prime ideals P 2 I such that dim(R/I) =
dim(R/P).

Section 2 contains background results and basic properties of splitting ideals rel-
ative to an ideal. The proofs of Theorems A and B can be found in Section 3. We
also use Section 3 to further explore the behavior of splitting ideals. For example,
see Theorem for a proof that depth(R/P) = depth(R/I.(P)) whenever P is a
prime ideal of a strongly F-regular local ring satisfying s(R) = s(Rp). Section
is devoted to proving Theorem

2. Preliminary Results

2.1. Hilbert—Kunz Multiplicity

Monsky’s introduction of Hilbert—Kunz multiplicity is a continuation of Kunz’s
work on prime characteristic rings in [ ; ].

DerINITION 2.1. Let (R, m) be a local ring of prime characteristic p, and let
I be an m-primary ideal. Denote 117l = (x”* | x € I). Then the Hilbert—Kunz
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multiplicity of [ is

[p°]
enc(D) = lim ~ B0 D

e—00 pedim R

The Hilbert—Kunz multiplicity of a local ring (R, m, k) is the Hilbert—Kunz mul-
tiplicity of the maximal ideal m and is denoted by enk (R). If R is an F-finite do-
main, then rank(F¢R) = pedimR g . kP by [ Proposition 2.3], and there-
fore
AR /mlP*] FR

e—oo pedim(R) e—oo rank(F¢R)
Hence the definition of Hilbert—Kunz multiplicity presented in the
agrees with Definition

2.2. F-Signature and Splitting Ideals

The following definition, shown to us by Kevin Tucker, is a natural generalization
of the splitting ideals and presents a natural extension of F-signature.

DEFINITION 2.2. Let R be an F-finite ring, and let a be an ideal. The eth splitting
ideal of a is defined as

I.(a)={r e R|¢p(Fir) € a,Y¢ € Homg(F; R, R)}.

We record the following basic properties concerning splitting ideals, many of
which mimic the behavior of the standard splitting ideals I, = I, (m).

LEmMMA 2.3. Suppose (R, m) is an F-finite local ring of prime characteristic p
and Krull dimension d. Let a C R be an ideal. Then the sequence of ideals {I,(a)}
satisfies the following properties:

(1) I.(a) is an ideal,

2) a7l C I(a);

(3) L)1 C Iy (a);

(4) G(FIotey(a)) C L (a) forall e, eg € N, and ¢ € Homg(F"R, R);

LR/ 1 ()
o0 ed

(5) If a is m-primary, then the limit s(a) := lim,_, exists, and

MR/ L(0) = s(a) p@ 4+ O(p®?=D). The value s(a) is referred to as the
F-signature of a;
(6) If W is a multiplicative set, then I,(a) Ry = I,(aRw);
(1) L(a:J)=1I.(a): JIP) for all ideals J;
(8) If P is a prime ideal, then I,(P) is P-primary;
(9) If x € R is a regular element of R/a, then x is a regular element of R/1.(a)
for every e € N;
(10) If R is a regular local ring, then 1,(a) = al?] for every e € N;
(11) If b € R is an ideal and a C b, then I,(a) C I,(b);

Proof. The proofs of (1)—(4) are straightforward and are left to the reader. State-
ment (5) then follows by [ Corollary 4.5]. To prove (6), it is enough to
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observe that Homg(F¢R, R)w = Homg,, (F{Rw, Rw). For (7), we note that
a € I.(a: J) if and only if for all ¢ € Homgr (F¢ R, R), we have ¢ (F{a) € (a:J)
or, equivalently, ¢ (F¢J Plgy =g ¢(Ff{a) C a. Statements (8) and (9) easily fol-

low from (7). Observation (10) follows from Theorem 1.1; if F¢R is free, then
we easily see that F¢I.(a) = aF¢R, from which it follows that I.(a) = alP’l,
Property (11) is trivial. O

COROLLARY 2.4. Let (R, m) be an F-finite and F -pure local ring of prime char-
acteristic p. If J C I are ideals, then 1,(J) C 1,(I). Moreover, if R is strongly
F-regular and J, I are m-primary, then s(J) > s(I).

Proof. Without loss of generality, we may assume that / = (J, x) and x ¢ J. Then
L(J):xP" =1,(J : x) € L(m) # R, 50 I,(J) C Ie(J) + (x7°) € I.(J, x).
For the second part, observe that

(Ie(f,x))> (Ie(J>+(xﬁ”)
L(J) )~ I (J)
Therefore s(J) — s((J, x)) >s(R) > 0. O

) = AM(R/(L(J) : xP°)) = A(R/I,(m)).

Similarly to the usual F-signature, the F-signature of an m-primary ideal a is
realized as the limit of normalized Hilbert—Kunz multiplicities of the ideals /. (a).

THEOREM 2.5. Let (R, m) be an F-finite and reduced local ring of prime charac-
teristic p, and let a be an m-primary ideal. Then
eHK (1 (a))

S(@)= i, = edmi)

Proof. The statement is equivalent to saying that

1
lim ——— | A(R/I(a)) — enx (Le(a))| =0,
> p

e—

which is the content of [ Corollary 3.7]. O

3. Equimultiplicity of F-Invariants

We are interested in understanding when the invariants Hilbert—Kunz multiplicity,
F-signature, Frobenius Betti numbers, and Frobenius Euler characteristics are
unchanged under localization. The second author began this study in [ 1,
where the following was proven.

THEOREM 3.1 ([ Corollary 5.16]). Let (R, m) be an excellent weakly F -
regular local ring of prime characteristic p, and let P C R be a prime ideal such
that R/ P is a regular local ring. Then the following are equivalent:

(1) euk(R) =eux(Rp), . ' .
(2) for each e € N, A(R/mlPly/pedimB®) — 5 (Rp / PIPIR )/ peht(P)
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The techniques surrounding Theorem 3.1 involve a careful and challenging anal-
ysis of the behavior of the ideals {PLP‘1} and {(P, x)!P‘1}, where x is a regular
system of parameters modulo P. Using elementary techniques, we recover the
theorem without assuming that R/P is a regular local ring, but we do replace
the assumption of weak F-regularity with the conjecturally equivalent assump-
tion that R is strongly F-regular. Our techniques stem from a novel, yet simple,
observation that if a module M is a direct summand of F° R for some eg € N and
R is strongly F-regular, then asymptotically there will be many direct summands
of F¢{R isomorphic to M as e — oo. To make this precise, we begin with some
notation.

NotaTION 3.2. Let R be aring, and let N € M be finitely generated R-modules.
Let ranky (M) denote the maximal number of N-summands appearing in all pos-
sible direct sum decompositions of M.

The following lemma should be compared with [ Proposition 3.3.1].

LEMMA 3.3. Let (R, m) be an F-finite and strongly F-regular local ring. Suppose
M is a finitely generated R-module such that rank (Fy° R) > 0 for some ey € N.
Then
.. ranky (F¢R)
liminf ————
e~>oo  rank(F¢R)

Proof. Suppose that F;,"R = M & N. For each e € N, write F¢R = R B gy M, .
Then F{TOR = FPOR®4(R) gy FOM,, and it follows that M®4%®) ig a direct
summand of Fy tOR In particular, rank; (Fy +60R) > a.(R), and therefore

. .oranky (FYR) . . de—ey(R) s(R)
liminf —————=>1i = = > 0.
e—oco  rank(F¢R) e—oco rank(F¢R)  rank(Fi°R) U

3.1. F-Signature and Splitting Ideals

We are prepared to present a proof of Theorem A for F-signature. But we first
have the following:

REMARK 3.4. To make full use of Lemma in the following theorem, we remind
the reader that the maximal rank of a free summand of a finitely generated module
M over alocal ring R is invariant of a choice of a direct sum decomposition. This
is because R is a direct summand of M if and only if R is a direct summand of M
and a complete local ring satisfies the Krull-Schmidt condition.

THEOREM 3.5. Let (R, m) be a strongly F-regular and F-finite local ring. Sup-
pose P C R is a prime ideal. Then s(R) = s(Rp) if and only if a.(R) = a.(Rp)
for every e € N.

Proof. 1If a,(R) = a.(Rp) for every e € N, then it is trivial that s(R) = s(Rp)
since rankg (F¢ R) =rankg, (F{Rp).
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Suppose that a,,(Rp) > ae,(R) and write Fy°R = R®%0 @ M,,. Then (M,,) p
has a free Rp-summand. For each e € N, by Remark 3.4 we may write

@ranky, (F{R)
FER= R®w® g pp, "

e-

Localizing at the prime P, we see that a.(Rp) > a.(R) + rankMeo (FfR) and

R R ranky, (FYR)
s(Rp) = lim —e B8 B g M (e T
e—>oorank(F¢R) ~ e~oorank(F¢R) e>oo  rank(F¢R)
ranky, (FER)
= s(R) + liminf —2~——
e~>oo  rank(F¢R)
Therefore s(Rp) > s(R) by Lemma 3.3. O

The following theorem states that the splitting ideals of R and that of a localization
Rp can be effectively compared whenever the Frobenius splitting numbers of R
and Rp agree.

THEOREM 3.6. Let (R, m) be an F-finite local ring of prime characteristic p, and
let P be a prime ideal. Then the following are equivalent:

(1) ac(R) =a.(Rp), .

(2) L((P. D) = 1,(P) + I'"] for all ideals I,

(3) Le(m) = I(P) +m!?"].

Proof. Write F¢R = R®%(R®) g M,. By definition, F¢I,(P) = P®® gy ¢
M, | ¢(n) € P,V € Homg(M,, R)}. Hence a.(R) = a.(Rp) if and only if
Homg (M., R) = Homg(M,, P). It follows that Homg (M., R) = Homg (M., P+
1), 50 F{(I(P) + 1)) = (P, N®*® & (M, + IM,) = (P, )**® & M, =
F¢I1,(P + I). Thus (1) implies (2).

Since (2) trivially implies (3), it is left to show that the last condition implies
the first. Suppose that 1, (m) = (1, (P), m”‘1). Then

Fil,(m) =m®=® g p,

=m®® @ ((ne M, | () € P,¥¢ € Homg(M,, R)} + mM,).
Then by Nakayama’s lemma we get that
M,={neM.|¢(n) € P,V¢ € Homgp(M,, R)},

that is, Homg (M., R) = Homg (M., P), and therefore a.(R) = a.(Rp). O
Theorems and imply the following:

COROLLARY 3.7. Let (R, m) be an F-finite and strongly F-regular local ring of
prime characteristic p, and let P be a prime ideal. Then s(R) = s(Rp) if and only
if [,(m)=1,(P)+ m[pe]for every e € N,

The techniques surrounding Theorem provide a novel proof that the F-
signature of a local ring is 1 if and only if R is a regular local ring.
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THEOREM 3.8 ([ Corollary 16]). Let (R, m) be an F-finite local ring. Then
S(R) = 1 if and only if R is a regular local ring.

Proof. Having positive F-signature implies that R is strongly F-regular. (The
converse also holds; see [ Main Theorem].) Hence R is a domain, so R g
is a regular ring, and therefore s(R()) = s(R). Then invoking Theorem 3.5, we
have that a,(R) = a.(R()) = rank(F¢ R). Therefore F R is a free R-module, and
R is aregular local ring by Theorem 1.1. O

The advantage of the proof of Theorem is that it directly uses Kunz’s theo-
rem, whereas the proof of [ Corollary 16] invokes the fact that R must be
regularif egg(R) =1 [ ; ]. We may also adapt our approach to give a
somewhat novel proof that the Hilbert—Kunz multiplicity of a formally unmixed
local ring is 1 if and only if R is a regular local ring; see Theorem

THEOREM 3.9. Let (R,m) be an F-finite and strongly F-regular local ring
of prime characteristic p. Suppose that P € Spec(R), s(R) = s(Rp) and x =
X1, ..., X is a sequence of elements in R. Then the following are equivalent:

(1) x is a regular sequence on R/ P,
(2) x is a regular sequence on R/1,(P) for each e € N;
(3) x is a regular sequence on R/1,(P) for some e € N.

In particular, depth(R/P) = depth(R/I,(P)) for all e € N.

Proof. Let x1, ..., x; be aregular sequence on R/ P. To show that x1, ..., x; is a
regular sequence on R/I,(P) itis equivalent to check that forevery 0 <i <h—1,
(I(P),x{ ,....xl ) exl = Ue(P),x] ... x]).

By Theorems and we have that (Ie(P),xfe,...,xipe)=Ie(P,x1,...,xl-),

and by (7) of Lemma we have that (I,(P, x1,...,x;)): xipjl =IL(P,xq,...,
Xi) 1 xi41)- But xq, ..., x5 is a regular sequence on R/ P, and therefore by a sec-
ond application of Theorems and 3.6 we see that

IE((Pa-xls"'1xi):xi+1):I€(P’xls"'1xi):(I€(P)s-x]l7 a"'s-xl'p )‘

Now suppose that for some e € N, xj,...,x; is a regular sequence on
R/I,(P). Then for each 0 <i <h — 1, we have by (7) of Lemma 2.3, Theo-
rem 3.5, and Theorem that

L((P X1, ..., %) i Xiq1)

=, (P,x1,...,Xi) :xﬁrl) = (Ie(P),xf ...,xf_l) :le

=(L(P),x] ....x" D) =L(P,xi,...,xi-1)).

e

By Corollary we must have that (P, x1,...,x;) : xj41 = (P, xq,...,x;) for
each 0 <i < h — 1, and therefore xi,...,x; is indeed a regular sequence on
R/P. O
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Let (R, m) be an F-finite and strongly F'-regular local ring of prime characteristic
p > 0. Observe by (9) of Lemma that depth(R/I.(P)) > 1 for every e €
N and P € Spec(R) \ {m}. However, it does not follow that depth(R/I.(P)) =
depth(R/ P) if we do not assume that s(R) = s(Rp).

ExaMPLE 3.10. Consider the regular local ring S of prime characteristic 2 ob-
tained by localizing F2[x, y, z, w] at the maximal ideal (x, y, z, w) and let R =
S/(xy — zw). Then R is a strongly F-regular isolated singularity. Consider the
height 1 prime ideal P = (x, z). By the techniques surrounding Fedder’s criterion

[ J(ctf. [ Theorem 2.3]), for each ¢ € N, we have that
Pl s (xy — zw)zg_1
I.(R) = .
(xy — zw)

Observe that R/ P is a regular local ring of dimension 2; yet we can check that
I1(R) = (xz,x%,z%) and R/I;(R) has depth 1.

3.2. Hilbert—Kunz Multiplicity

Now we prove Theorem A for the Hilbert—Kunz multiplicity.

THEOREM 3.11. Let (R, m) be a strongly F-regular and F-finite local ring of
prime characteristic p and Krull dimension d, and let P € Spec(R). Then the
following are equivalent:

(1) euk(R) =enx(Rp);

@) A(R/mlP )/ ped = 3 (Rp/ PP/ peMP) for every e € N;

(B) w(FER) = u(F:Rp) for every e € N;

(4) F¢R/PFZR is afree R/ P-module for every e € N.

Proof. Conditions (2) and (3) are equivalent by [ Proposition 2.3], and
conditions (2) and (3) clearly imply (1). To show that condition (1) implies con-
dition (3), suppose that u(F5°R) > u(Fs°Rp). If F{°R = R®*® g M, , then
wW(Mey) > n((Mgy)p). Let b, = rankMeO (F¢R). By Remark we may write
F¢R = R% @ (M,,)®" & N,, and it follows that

1
eHk (R) = lim ——————=(ac(R) + bet(Mey) + 11(N,))

e—>oo rank(F¢R)
and
. 1
egk(Rp) = el_l)Iglo m(ae(R) + beﬂ((Meo)P) + u((Ne)p)).
Therefore
enk (Rp)

< i ey @R Do (Mog) = 1) (N

| , b
= R ank(re TP Mo RN TR, k(e
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be
= R) —liminf ———,
et (R) lelglog rank(F¢R)
a value strictly less than egg (R) by Lemma
Now suppose that epkx(R) = enk(Rp). To show that FR/PF{R is a
free R/P-module, observe first that, by Nakayama’s lemma, ugr,(FfRp) =
MURp (F:RP/PF:RP). Therefore

UR(F{R/PF{R)=pur(F{R) = ur,(F;Rp)
= 1try (FRp/PFRp) < ur(FCR/PFCR).

Therefore, as an R/P-module, we have that F/R/PFZR is generated by
rankg,p (F R/ P F{R) elements and must be free.

Conversely, it FR/PF{R is a free R/P-module for every e € N, then
UR(F{R/PF{R) = ugr,(F{Rp/PF{Rp), and therefore

UR(FSR) = ug(FSR/PFER) = pg, (FSRp/PFSRp) = pigy (FSRp). O

The following corollary is an analogue of Theorem 3.9 for the Hilbert—Kunz mul-
tiplicity.

COROLLARY 3.12. Let (R, m) be a strongly F-regular and F-finite local ring of
prime characteristic p. Suppose that P € Spec(R) and eyk (R) = ek (Rp). Then
for each sequence of elements x = x1, ..., xp, the following are equivalent:

(1) x is a regular sequence on R/ P;

(2) x is a regular sequence on R/ P for each e € N;

(3) x is a regular sequence on R/P¥*) for some e € N.

In particular, depth(R/ P) = depth(R/P'P)) for every e € N.

Proof. For any finitely generated R-module M, a sequence of elements x is a reg-
ular sequence on M if and only if x is a regular sequence on F¢ M. The corollary
is immediate by Theorem since the modules F¢(R/PP)y = FCR/PF¢R

are free R/ P-modules. O
Corollary is an improvement of an observation that can be made from
[ Proposition 3.1 and Corollary 5.19]: if (R, m) is weakly F-regular,

P € Spec(R) satisfies epx (R) = ey (Rp), and R/ P is regular, then R/ PPl is
Cohen—Macaulay for e € N.

We utilize Theorem and results of [ ] and provide a novel proof that
the Hilbert—Kunz multiplicity of a local ring is 1 if and only if the ring is regular.
We recall that a ring is unmixed if it is equidimensional and has no embedded
components.

THEOREM 3.13 ([ 1). Let (R, m) be a formally unmixed local F-finite ring.
Then eyk (R) = 1 if and only if R is a regular local ring.

Proof. The assumption on Hilbert—Kunz multiplicity implies that R is strongly
F-regular; see [ Corollary 3.6]. By Theorem applied to P = (0),
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W(FyR) =rank FyR, so F,R is a free R-module, and R is regular by Theo-
rem |.1. g

3.3. Frobenius Betti Numbers and Frobenius Euler Characteristic

We now turn our attention to the behavior of Frobenius Betti numbers and Frobe-
nius Euler characteristics under localizations.

DEFINITION 3.14. Let (R, m) be an F-finite local domain of prime characteristic
p. For each e € N, let Qf(R) be the ith syzygy in the minimal free resolution of
F¢{R. The ith Frobenius Betti number of R is

(2 (R))
Bl (R) = —
e—>oo rank(FeR)
and the ith Frobenius Euler characteristic of R is
i i
/L( (R))
FRy= 1 — e e Il
xi (R) = lim ]X_(:)( rank(F¢ R) Z( DB (R
We refer the reader to [ ; ; ; ] for basics on Frobenius
Betti numbers and to [ ] for basics on Frobenius Euler characteristic. Our

study begins with a simple application of the Auslander—Buchsbaum formula.

LEMMA 3.15. Let (R, m) be an F-finite local ring. The following are equivalent:
(1) R is a regular local ring;

(2) F¢R has finite projective dimension as an R-module for every e > 1;

(3) F¢R has finite projective dimension for some e € N.

Proof. 1t is easy to see that depth(R) = depth(F{R) for every e € N. Hence by
the Auslander—-Buchsbaum formula, if the projective dimension of F¢ R is finite,
then F{ R is a free R-module, and the lemma follows from Theorem 1.1. g

LEMMA 3.16. Let (R, m) be an F-finite local domain of prime characteristic p.
Then

rankg (Q¢(R)) = x¢_ (R) + (—1)" rank(F¢R).
Moreover, if R is not regular, then B{(R) > rankg(Q{(R)) = x/_;(R) +
(=) rank(F¢R).

Proof. Rank is additive on exact sequences, and there are long exact sequences
0— Q¢(R) — R®F-1B) ... RORIER) _, pep 0.

By Lemma ,if R is not regular, then Q7 (R) is not free, and hence g (R) =

(82 (R)) > rank (827 (R)). O

LeEmMaA 3.17. Let (R, m) be a local F-finite domain and let e,i € N with e > 1.
Then x{(R) > (—1)" rank(Fy R) with equality if and only if R is a regular local
ring.
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Proof. For i =0, the lemma follows from Theorem 1.1. If i > 1 and e € N, then
x{ (R) =B/ (R) — x{_(R). Applying Lemma , We arrive at

x{(R) > xf | (R) + (=)' rank(FER) — xf_(R) = (—1)" rank(F¢ R)

with equality if and only if R is a regular local ring. O

LeEMMA 3.18. Let (R, m) be a local F-finite domain, and let P € Spec(R). Then
Bi (R) = B{ (Rp) if and only if x{(R) = x{(Rp) and x{_|(R) = x{_(Rp). In
particular, if B{(R) = B{ (Rp), then u(F;R) = u(F;Rp).

Proof. Observe first that

Bi (R) = x; (R) + x{_1(R)
and
B{ (Rp) = x{(Rp) + x{_;(Rp).
Suppose that 87 (R) = 7 (Rp). The function x/: Spec(R) — R is upper semi-
continuous ([ Proposition 3.1]), and therefore x/(R) > x/(Rp). If
BS(R) = B (Rp), then
X,'e_l(RP) = Xie_l(R),

but the function x/_,: Spec(R) — R is also upper semicontinuous, and therefore
equality must hold. (]

Similarly to Lemma 3.3, if R is strongly F-regular and a module M appears as a
direct summand of Qfo (R) for some ¢p € N, then M appears as a direct summand
of Qf(R) asymptotically many times as e — oo.

LEMMA 3.19. Let (R, m) be an F-finite and strongly F-regular local ring, and let
M be a finitely generated R-module. IfrankM(QfO (R)) > 0 for some ey € N, then

Ky (9 (R
lim inf " (2 (R))

> 0.
e>oo  rank(F¢R)

Proof. Suppose M is a direct summand of QfO(R). Observe that Fy TR has a
direct summand Fy° R®%. It readily follows that Q,.¢,(R) has Q,(R)®% R as
a direct summand, and therefore rank s (Q2¢4¢,) > a.(R). In particular,

.. .rankpy (R2.(R)) s(R)
liminf > - > 0.
e—co  rank(F¢R) — rank(FR) O

We are now prepared to prove Theorem A for Frobenius Betti numbers and Frobe-
nius Euler characteristics. We first present a proof of Theorem A for Frobenius
Betti numbers.

THEOREM 3.20. Let (R, m) be an F-finite strongly F-regular local ring and
let P € Spec(R). Then for each integer i > 0, ﬂiF(R) = ,BI-F(RP) if and only if
B{ (R) = B{ (Rp) for every e € N.
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Proof. Clearly, if B¢(R) = B¢(Rp) for every integer e, then B (R) = B (Rp).
Suppose there exists an integer eq such that /L(Qfo (Rp)) < /L(Qfo (R)). For each
eeN,leth, = rankggo(R)(Qf(R)). Then we can write Q7 (R) = Qf" (R)®Pe M, .
Localizing at P, we fllave
Qf(R)p Z Q¢ (Rp) @ Fp,
where Fp is a free R p-module. It readily follows that
(2 (Rp)) < u(2 (R)p) < (2 (R)) — be.

Therefore ﬂiF (Rp) < ,BZ.F (R) — liminf, which is strictly less than

be
=00 rank(FER)’

,Bl.F (R) by Lemma . [l
Following the proof of Theorem , We recover [ ] for strongly F-regular
rings.

COROLLARY 3.21. Let (R, m) be an F-finite strongly F-regular local ring. Then
for each integer i > 0, ,BiF(R) =0 ifand only if R is a regular local ring.

Proof. By Lemma , ,BZ.F(R(O)) =0= ﬂiF(R). Therefore B (R) = B (R)) =
0, and the claim follows from Lemma . O

Finally, we complete our proof of Theorem A by establishing an equimultiplicity
criterion for Frobenius Euler characteristic.

THEOREM 3.22. Let (R, m) be an F-finite strongly F-regular local ring and
let P € Spec(R). Then for each integer i > 0, xiF(R) = XI-F(RP) if and only if
x{ (R) = x{(Rp) for every e € N.

Proof. Without loss of generality, we may assume that R is not regular. By
Lemma , X{ (R) = x{(Rp) if and only if rank(QfH(R)) = rank(QfH(Rp)),
and x/ (R) = x/ (Rp) if and only if
rank(Q2{ (R)) . rank(Q¢(Rp))
im = lim
e~>oo rank(F¢R) e>oo  rank(F¢R)

Suppose there exists an integer ep such that rank(Qf?H (R)) # rank(Qf?H (Rp)).
Therefore inl(R) p has a nonzero free summand. Let b, =

rankgfgr N R)(Q? (R)); by Lemma liminf,_, o - > (. Then for each

be

i+1 rank(FZR)

integer e € N, the R p-module Qf 41 (R) p contains a free summand of rank b,. In
particular, we have that rank (€27, (Rp)) <rank(Q{, ; (R)p) — be. Therefore

i+1
rank(2¢, | (R rank(2¢, | (R
fim KR (Re) o rank(8 (R) e P
e~>oo  rank(F¢R) e—>oo  rank(F¢R) e—>oo rank(F¢R)
rank (27, | (R))

< lim ————M.
e~>oo  rank(F¢R) O
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As with F-signature, Hilbert—-Kunz multiplicity, and Frobenius Betti numbers,
we now know that the Frobenius Euler characteristic can be used to detect regular
rings, provided that we know the ring being studied is strongly F-regular.

THEOREM 3.23. Let (R, m) be an F-finite strongly F-regular local ring. The fol-
lowing are equivalent:

(1) R is a regular local ring;

(2) x{(R)=(—=1)rank(F{R) for every e € N;
(3) xf(R) = (—1)' rank(F{ R) for some e € N;
@ xl'(R)= (-1

Proof. The equivalence of (1), (2), and (3) is the content of Lemma ,and (4)
is trivially implied by condition (2). Now an argument with the generic point as
in Theorem shows that (4) implies (2) by Theorem . U

4. An Associativity Formula for F-Signature

Our proof of Theorem C begins with two technical lemmas.

LEMMA 4.1. Let (R, m) be an F-finite local ring of prime characteristic p. Sup-
pose that I C R is an ideal such that R/I is Cohen—Macaulay of dimension h and

X1, X2, ..., X is a parameter sequence on R/I. Then for all sequences of natural
numbers ny,ny, ..., n,, we have that
ey
x( L+ 252, X)) )>A(Ie(1+(x'1”_1,x£’2,...,x2”)))
L+ G g2 ) TN LU+ G xR )

and
2)
1 R R
1)L i+l _np nn = —A ny_np A
ny+ LI+ (x5, x,") ni To(I+ (x)', x57 . x,")

Proof. We may pass to I’ =1 + (x3?,...,x,") and assume that dim R/ = 1.
We claim there exist short exact sequences

(I + (") o L + (™)
L (I + (x™)) L (I 4 (x"T1))
L(I + ("))
— — —
L(I + (x"F1) +xP L (I + (x"~1))
Observe that if such short exact sequences exist, then the first inequality is obvious

since the length of the left piece of a short exact sequence is no more than the
length of the middle term. The second inequality is equivalent to the inequality

o) =0 laar o) ~(maren)
LI+ @xmthy) ) L(I + (xmt1y) L(I + (x™))

0.
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> MR/ + (x"))),
which follows from (1) since we can filter A(R/I.(I + (x™))) as

n—1 ;
L(I 4+ (x"))
MR/ + (") = x(7>
; I + G

To show that the above short exact sequences exist, we first notice that
LA+ ") S L]+ (") S LA+ ).
Indeed, if u € I,(I + (x"~')) and ¢ € Homg(F¢R, R), then
G (FixP u) =x¢(Flu) € x(I + (x"~1) C (I + (x")).
Therefore there are right exact sequences

L+ ") o L+ (x™)
L(I +xM)) L(I 4 (xn+1))
LI+ (x™)
— ; —
L(I 4 (x"T1)) + xP I, (I + (xn~1))

0.

To show injectivity of the first map, observe that an element u € 1,(I + (x"1y)
satisfies x? u € I,(I + (x"1)) if and only if u € I,(I + (x"*t1)) : xP°. By (7) of
Lemma we have that

LI+ ") e = L(( 4+ ") 1) = L + ("),
where the second equality follows by standard observations on parameter ideals
in the Cohen—-Macaulay ring R/1I. O

The following technical lemma is very much in the spirit of [ Theorem 4.3].

LEMMA 4.2. Let (R, m) be an F-finite local domain of prime characteristic p and
of Krull dimension d. Suppose that 1 C R is an ideal such that R/ is Cohen—
Macaulay of dimension h and x = x1, ..., Xy, is a parameter sequence on R/I.
Then there exists a constant C € R such that for all e,ny,n3, ..., n, €N,

< Cnl s ny '

pe

1
Fx(R/Ie(I + L) = s+ (™)

Proof. Denote by N = (n1,nz,...,n,) a Cartesian product of natural num-
bers, let N =nny---ny, and for each N, let x¥ be the sequence of elements
xy', x5%, ..., x;". We claim that there exists a constant C, depending only on
M(R/(I 4+ (x))), such that for all N,

=

P

‘# AR/ LI+ @)M) — s + ()

We will first show that there exists a constant C such that for all N and e € N,

1
e AR/ LI+ M) < s+ ) + cN

e -



852 THOMAS POLSTRA & ILYA SMIRNOV

The R-module FR is finitely generated and torsion-free, so there exists a short
exact sequence
0— F.R ﬂ) ROnk(FR) _ 0,
where T is a finitely generated torsion R-module. By (4) of Lemma
Y (Feler1 (I + @) € Le(1 + (@) PrnkiR),

and therefore there are right exact sequences

FuR/ (o1 (I + (xy) 5 REFKER p () 4 (N @rnk(FR) 7,
where 7}, is the homomorphic image of T/I,(I + (xX))T . Therefore
rank(F,R) A(R/I(I + (x™)))
SMFR/ T (I + (xM9) + (T /LI + &) T). (4.1)

Suppose that ¢ € R is a nonzero element that annihilates 7. Because (I +
M)IPTC 1,1 + (xY)), there exists a surjective map

(R/(c, (I + M) Iy®e® — 1/1,(1 + M) T,
and we have that
MT/Le(I+ )T)) < (T AR/ (e, (I + )Py
It is well known that there exists C € R, depending only on the ring R, such that
AR/ (e, (I + @M < cp@dim®=D 5 (R/(I + (xM)));

see, for example, [ Proposition 3.3]. Because R/I is Cohen—Macaulay, we
know that

AR/ + (™)) =e(x™; R/I) = Ne(x; R/T) =N u(R/(I + (1)),
Dividing inequality (4.1) by rank(FyR) pt14  we obtain that

AR/ + (xM))) MR/ e (I + (M) w(TC AR/ +x)N
ed - (e+1)d + e
p p p

for every e € N. The constant (7')C A(R/(I + x)) has no dependence on e or N,
so we replace C by this constant and utilize [ Lemma 3.5] to obtain that

AR/ LI + (xM))) 2CN
pea' e
Obtaining inequalities of the form
AR/LU+ M)  CN
ped * ra
is almost identical to the above. Begin by examining a short exact sequence of the
form

<s(I + V) +

s(I + (xV)) < 4.2)

0— RéBrank(F*R) K) F*R—> T/_) O,
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where T’ is a torsion R-module. By (3) of Lemma we have that ¥ (I, (I +
)P C 11 (T + (xX)) FiR, and so there are right exact sequences

(R/1(I + ey Ph@rank ) Yo gy (1 4 (1Y) FuR — T — 0,

where T is the homomorphic image of 7’/I,11(I + (x¥))T’. The reader is now
encouraged to follow the techniques above and the techniques of [ Theo-
rem 4.3] to obtain inequalities as described in (4.2). U

For the proof of the Theorem C, we recall the following standard result: if a, , is
a bisequence such that

o limy, 00 Gm.n €Xists, and
o lim,_, o0 Gy, exists for all m,

then limy, —s 00 Gm.n = liMyy— 00 liMy 5 00 G i

THEOREM 4.3. Let (R, m) be an F-finite local ring of prime characteristic p and
of Krull dimension d. Suppose that 1 C R is an ideal such that R/ is Cohen—

Macaulay of dimension h and x = x1, ..., x) is a parameter sequence on R/I.
Then
1
lim  ————s(I, (x}", .. x)) = e(xr. ... xn: R/P)sUIRp),
ny,....np—>00 Ny - -Np 7

where the sum is taken over all prime ideals P O I such that dim(R/I) =
dim(R/P).

Proof. Lemma 4.2 allows us to swap limits and identify

1
lim  ———s(I, (x}', ..., x,")
ny,..., np—>oony---np
1
= lim  lim ————A(R/L(I + (x", ..., x,")
Nyyeees njp—00 e—>00 nl"'nh[)e
. . 1 n 1y
= lim lim 7dA(R/Ie(I—I—()c1 s X))
e—>00ny,..., np— 00 nl...nhpe

Furthermore, by Lemma

AR/L+ (x) o x,™M))

lim
N, —> 00 ny---np
AR/ + (x)" ... x,")
= sup
Nlyenny np ny---np

o MR/ + (x], ..., x})))
= 7 .

n n

We prove the theorem by induction on /. Let us start with the case of & = 1.
In this case, let us introduce an auxiliary bisequence that will link the two sides
of the formula together.



854 THOMAS POLSTRA & ILYA SMIRNOV

CrLam 4.4. For each pair of natural numbers n,m € N, let

anm = AR/ eI+ (") + (")),
Then the bisequence ay, , satisfies the following properties:
(1) an,0=1(R/I(I + (x"))); .
(2) im0 an,m = )\(R/(Ie(l) + (x"7)));
3) n.m = An+m,0 — Am,0-

Proof. The first two properties are immediate from the definition.

For the third formula, we first recall that if J is an ideal and x ¢ J, then
MR/(J,x)) =A(R/J) — A(R/J : x). Applying this to J = I.(I 4 (x"t™)) and
x"P° | we obtain by (7) of Lemma that

anm = MR/ LI 4+ (X"™™))) = A (R/Lo(I + (x" ™)) : x"P°)
= gm0 — MR /L((I + (x" ™)) : x™))
= an+m,0 — Am,0- U

Recall that for any bisequence, sup,, sup,, a,.m» = sup,, ,, @n,m = Sup,, SuUp,, an.m-
By definition the sequence aj ,, is increasing in m, so by Claim

n,m 1 e
supsup < = sup — 1 (R/(e(1) + (x""")) = p* e(x, R/Lo(1).

because x is a regular element modulo /,(7) by Lemma 2.3(9). On the other hand,
by Lemma 4.1 a, o/n is an increasing function in n € N, so Claim 4.4 also shows

that

an,m Ap+m,0 — Am,0 . an,0
sup = sup = lim
n n n n n—oo n

Thus

R/I,(1 n
pée(x, R/1.(I)) = supsup nm sup lim 10 _ tim MR/TeT + (x ))),
n o m n m n—>o0 n n—o00 n
which proves the theorem in the case 7 = 1 after using the additivity of multiplic-
ity and passing to the limit as e — oo.

For h > 2, we may first consider the ideal /' =1 + (x{, ..., x;_,) and get that

lim MR/ LI+ (x}')) -y

m— 00 m

e(xn; R/Q)M(Ro/I.(INRo),

0
where Q varies through the prime ideals P containing I, (I") such that dim Ry /
PRg=dimRgy/I.(I")Rg. By induction,

Ro/I,(I'R
lim MRo/L(I)Ro) = ZG(M,..-,X};*I; Ro/PRo)MRp/I.(I)Rp),

n— 00 nh—1
P

where P varies through the prime ideals P containing /. (/) such that dim Rg/
PRp=dimRgp/I.(I)Rg. Thus

o AR+ G x)))

n— 00 nh
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— Lm Lm MR/ LI+ (x}'))

n— 00 m— 00 mnh—1

=Y e R/Q)e(x1, ..., xn-1; Ro/PRQ) AM(Rp/I.(I)Rp).
P

The theorem follows by changing the order of summation and using the associa-
tivity formula for parameter ideals ([ Theorem 1]); see the proof of [
Theorem 4.9]. O
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